
Technical Report, No. TR-2003301, Dept. of Computer Science and Business Informatics,

University of Vienna, February, 2003

A Typed Representation and Type Inference for MPEG-7

Media Descriptions∗

Utz Westermann, Wolfgang Klas

Department of Computer Science and Business Informatics

University of Vienna, Austria

{gerd-utz.westermann,wolfgang.klas}@univie.ac.at

Abstract

MPEG-7 is a promising standard for multimedia content description. Adequate means

for the management of large amounts of MPEG-7 media descriptions are needed in the

near future. Essentially, MPEG-7 media descriptions are XML documents following media

description schemes defined with an extension of XML Schema named MPEG-7 DDL.

However, XML database solutions available today are not well-suited for the management

of MPEG-7 media descriptions. They typically neglect type information available with

media description schemes and represent the basic contents of media descriptions as text.

But storing non-textual multimedia data typically contained in media descriptions such as

melody contours and object shapes textually and forcing applications to access and process

such data as text is neither adequate nor efficient. In this paper, we therefore propose

the Typed Document Object Model (TDOM), a data model for XML documents that can

benefit from available schema definitions and represent the basic contents of a document

in a typed fashion. Through these typed representations, applications can access and work

with multimedia data contained in MPEG-7 media descriptions in way that is appropriate

to the particular type of the data. Along with TDOM, we propose typing automata as an

∗This report constitutes a significantly extended version of Technical Report TR-2003301, Dept. of Computer

Science and Business Informatics, University of Vienna, February, 2003

1

executable intermediary representation of media description schemes. Typing automata

are not only capable of validating MPEG-7 media descriptions against their description

schemes but also of inferring appropriate typed representations of their basic contents

by exploiting type information. Thereby, TDOM and typing automata constitute solid

foundations for an XML database solution that enables the adequate management of

MPEG-7 media descriptions.

1 Introduction

Recently, there have been considerable efforts to standardize the description of multimedia

content. This has resulted in a variety of standards, such as the Dublin Core Metadata Ele-

ment Set [15], Learning Object Metadata [27], VRA Core Categories [58], and the Multimedia

Content Description Interface (MPEG-7) [30, 29, 45, 46]. Being an ISO standardization effort

which is backed by prominent broadcasting companies, consumer electronics manufacturers,

and telecommunication service providers and which has reached a mature state by the end

of 2001, MPEG-7 receives considerable attention in the multimedia community. What makes

MPEG-7 particularly attractive is that it is targeted at the description of multimedia content

on a technical, feature-oriented level as well as on a semantic level. For instance, it is not

only possible to describe the frequency spectrum of a song recording in an MPEG-7 media

description. It is also possible to refer to the lyrics and the musical score, all within the same

description.

The scope of standardization basically comprises two parts: a Description Definition Lan-

guage (MPEG-7 DDL) [31] with which schemes for the description of media can be specified,

and, defined via MPEG-7 DDL, a comprehensive set of media description schemes that are use-

ful for a variety of applications. The media description schemes standardized include schemes

for visual media [32] and audible media [33] as well as schemes of general use [34]. Applications

are not limited to these standardized media description schemes: new description schemes

can defined with MPEG-7 DDL, either from scratch, or by extending or combining existing

description schemes.

By the diversity of aspects with which content can be described and by the extensibility

2

of the standard with new description schemes, MPEG-7 is expected to face wide-spread use

in a broad range of applications: media archives, journalism, education, entertainment, etc.

Therefore, means for the effective management of large amounts of MPEG-7 media descriptions

are certainly needed.

Basically, MPEG-7 media descriptions are XML documents that are valid to a media de-

scription scheme expressed in MPEG-7 DDL. Thus, it seems natural to employ XML database

solutions for the management of MPEG-7 media descriptions. Closer examination of current

XML database solutions for their suitability for MPEG-7, however, reveals difficulties. One of

the main problems with current solutions is that they typically represent the basic contents

of XML documents, i.e., simple content of elements and the content of attribute values, as

text. But textually representing multimedia data such as melody contours and object shapes

often contained in MPEG-7 media descriptions is inadequate: textual representations of non-

textual data consume unnecessary storage space, do not preserve the meaning of the data (e.g.,

with respect to indexing), and are inefficient and cumbersome to handle such that applications

are forced to constantly translate the textual representations to data structures better suiting

the particular data type at the cost of considerable processing power. Clearly, more adequate

database solutions are required for MPEG-7.

In this respect, we make several substantial contributions in this paper: we motivate and

present several basic but nevertheless essential requirements for the management of MPEG-7

media descriptions. Along these requirements, we analyze existing XML database solutions –

native XML database solutions as well as extensions for relational systems, commercial systems

as well as research prototypes – fortifying the demand for more suitable MPEG-7 database so-

lutions. As a solid foundation for such a solution, we then propose the Typed Document

Object Model (TDOM). TDOM is an object-oriented data model for XML documents specifi-

cally designed bearing the requirements for the management of MPEG-7 media descriptions in

mind. The model’s outstanding feature is that type information contained in media description

schemes written in MPEG-7 DDL is exploited to represent the basic contents of an XML doc-

ument in a typed fashion and not just as text. In typed representation, simple element content

and the content of attribute values is kept in data structures that are appropriate for the re-

spective content type and that come with type-specific operations to reasonably work with the

3

content. Thereby, applications can process the multimedia data contained in MPEG-7 media

descriptions more adequately and efficiently. Finally, we introduce typing automata as a formal

mechanism for use with TDOM that allows to infer such typed representations out of media

description schemes expressed in MPEG-7 DDL.

The remainder of the paper is organized as follows: Section 2 derives essential requirements

for the adequate management of MPEG-7 media descriptions. Section 3 evaluates existing

XML database solutions according to these requirements. Section 4 introduces and gives a

thorough definition of TDOM. Section 5 introduces and formally specifies typing automata.

Section 6 concludes the paper with a summary and an outlook to current and future work.

2 Requirements for the management of MPEG-7 media

descriptions

In this section, we briefly illustrate the nature of MPEG-7 media descriptions (2.1). We then

derive a set of fundamental requirements for the management of such descriptions (2.2).

2.1 MPEG-7 media descriptions

MPEG-7 is strongly committed to XML and related standards. MPEG-7 DDL, the language

used for the definition of media description schemes, is a superset of XML Schema [56, 3], a

schema definition language for XML documents recently standardized by the W3C. Certain

extensions to XML Schema were considered neccessary to better cope with the peculiarities of

multimedia data. In particular, support for array and matrix data types as well as additional

data types for time points and time durations were added to XML Schema. Regarded as an

extended XML Schema, MPEG-7 DDL is thus just another schema definition language for

XML documents. Since media description schemes are defined with MPEG-7 DDL, an MPEG-

7 media description complying to a given media description scheme is consequently an XML

document that is valid with respect to the schema definition given by the description scheme.

We would like to illustrate the concepts of media description schemes and media descrip-

tions with an example. The MPEG-7 Melody media description scheme [33] is a representative

4

description scheme that can serve as the basis for the realization of query-by-humming appli-

cations. A slightly simplified version of this description scheme expressed in MPEG-7 DDL is

shown in Figure 1.

…

<complexType name=“MelodyType”>
<complexContent>

<extension base=“mpeg7:AudioDSType”>
<sequence>

<element name=“Meter”
type=“mpeg7:MeterType”
minOccurs=“0”/>

<element name=“MelodyContour”
type=“mpeg7:MelodyContourType”
minOccurs=“0”/>

</sequence>
</extension>

</complexContent>
</complexType>

<complexType name=“MelodyContourType”>
<complexContent>

<extension base=“mpeg7:AudioDSType”>
<sequence>

<element name=“Contour”>
<simpleType>

<list itemType=“integer”/>
</simpleType>

</element>
<element name=“Beat”>

<simpleType>
<list itemType=“integer”/>

</simpleType>
</element>

</sequence>
</extension>

</complexContent>
</complexType>

<complexType name=“MeterType”>
<complexContent>

<extension base=“mpeg7:AudioDType”>
<sequence>

<element name=“Numerator”>
<simpleType>

<restriction base=“integer”>
<minInclusive value=“1”/>
<maxInclusive value=“128”/>

</restriction>
</simpleType>

</element>
<element name=“Denominator”>

<simpleType>
<restriction base=“integer”>

<enumeration value=“1”/>
<enumeration value=“2”/>
<enumeration value=“4”/>
<enumeration value=“8”/>
<enumeration value=“16”/>
<enumeration value=“32”/>
<enumeration value=“64”/>
<enumeration value=“128”/>

</restriction>
</simpleType>

</element>
</sequence>

</extension>
</complexContent>

</complexType>

<element name=“AudioDescriptionScheme”
type=“mpeg7:AudioDSType”/>

…

…

<complexType name=“MelodyType”>
<complexContent>

<extension base=“mpeg7:AudioDSType”>
<sequence>

<element name=“Meter”
type=“mpeg7:MeterType”
minOccurs=“0”/>

<element name=“MelodyContour”
type=“mpeg7:MelodyContourType”
minOccurs=“0”/>

</sequence>
</extension>

</complexContent>
</complexType>

<complexType name=“MelodyContourType”>
<complexContent>

<extension base=“mpeg7:AudioDSType”>
<sequence>

<element name=“Contour”>
<simpleType>

<list itemType=“integer”/>
</simpleType>

</element>
<element name=“Beat”>

<simpleType>
<list itemType=“integer”/>

</simpleType>
</element>

</sequence>
</extension>

</complexContent>
</complexType>

<complexType name=“MeterType”>
<complexContent>

<extension base=“mpeg7:AudioDType”>
<sequence>

<element name=“Numerator”>
<simpleType>

<restriction base=“integer”>
<minInclusive value=“1”/>
<maxInclusive value=“128”/>

</restriction>
</simpleType>

</element>
<element name=“Denominator”>

<simpleType>
<restriction base=“integer”>

<enumeration value=“1”/>
<enumeration value=“2”/>
<enumeration value=“4”/>
<enumeration value=“8”/>
<enumeration value=“16”/>
<enumeration value=“32”/>
<enumeration value=“64”/>
<enumeration value=“128”/>

</restriction>
</simpleType>

</element>
</sequence>

</extension>
</complexContent>

</complexType>

<element name=“AudioDescriptionScheme”
type=“mpeg7:AudioDSType”/>

…

Figure 1: Simplified MPEG-7 Melody media description scheme

According to the media description scheme depicted, the melody of a song (see the declara-

tion of the complex type MelodyType in the upper left column) can be described by its meter

and melody contour (element types Meter and MelodyContour declared in MelodyType). The

meter of a melody is a fraction number consisting of a numerator and denominator (see ele-

ment types Numerator and Denominator declared in the complex type MeterType in the right

column). There is the restriction that the numerator must be an integer value in the interval

from 1 to 128, while the denominator must be a power of two in the same interval. The melody

contour consists of an optional contour and beat (see element types Contour and Beat declared

in the complex type MelodyContourType in the lower left column). The contour of a melody is

a list of integer values giving a measure for the distance between every two consecutive notes

5

of the melody while the beat is a list of integer values associating every note of the melody to

its position in the beat.

<!-- Melody description of 8 notes taken from “Moon River” by Henry Mancini -->

<AudioDescriptionScheme xmlns=“http://www.mpeg7.org/...”
xmlns:xsi=“http://www.w3.org/...”
xsi:type=“MelodyType”>

<Meter>
<Numerator>3</Numerator>
<Denominator>4</Denominator>

</Meter>
<MelodyContour>

<!-- Distance between two notes -->

<Contour>2 -1 -1 -1 -1 -1 1</Contour>

<!-- Beat position of notes -->

<Beat>1 4 5 7 8 9 9 10</Beat>
</MelodyContour>

</AudioDescriptionScheme>

<!-- Melody description of 8 notes taken from “Moon River” by Henry Mancini -->

<AudioDescriptionScheme xmlns=“http://www.mpeg7.org/...”
xmlns:xsi=“http://www.w3.org/...”
xsi:type=“MelodyType”>

<Meter>
<Numerator>3</Numerator>
<Denominator>4</Denominator>

</Meter>
<MelodyContour>

<!-- Distance between two notes -->

<Contour>2 -1 -1 -1 -1 -1 1</Contour>

<!-- Beat position of notes -->

<Beat>1 4 5 7 8 9 9 10</Beat>
</MelodyContour>

</AudioDescriptionScheme>

Figure 2: Example of an MPEG-7 media description

A media description complying to the Melody media description scheme is an XML doc-

ument that is valid to the schema definition presented. Figure 2 gives an example of such a

document describing a small fraction of the melody of the song “Moon River” by Henry Mancini

(taken from [33], page 101).

There are some general observations that can be made on MPEG-7 media descriptions:

• MPEG-7 media descriptions are XML documents.

• MPEG-7 media descriptions comply to media description schemes expressed in MPEG-7

DDL, a schema definition language for XML documents.

• The set of available media description schemes is not fixed by MPEG-7. The standard

ships with a multitude of predefined schemes such as our example Melody media descrip-

tion scheme but applications may create new description schemes with MPEG-7 DDL if

desired.

6

• Much of the information encoded in XML documents that constitute MPEG-7 media

descriptions is not of a textual nature. Large portions of the information consist of

numbers and mathematical structures such as lists, vectors, and matrices – usually to

describe rather technical aspects of media content. As a matter of fact, about 84% of the

media description schemes predefined by the standard for visual and audible content in

[32] and [33] consist primarily of non-textual data.

2.2 Requirements

As we have observed, MPEG-7 media descriptions are XML documents. Thus, the problem of

adequately managing MPEG-7 media descriptions can be curtailed to the problem of managing

XML documents in principal. In literature, general requirements for XML database solutions

have already been identified [48]. Among the desired features of an XML database solution are

rich document modeling capabilities, the availability of a query language, support for document

updates, the availability of index structures, the management of access rights, support for

transactions as well as backup and recovery.

In the following, however, we want to specifically look onto the management of XML docu-

ments from the perspective of MPEG-7: we motivate and present four very basic but neverthe-

less critical requirements for the effective management of MPEG-7 media descriptions. Namely,

the requirements are fine-grained representation of description structure, typed representation

of description content, support for updates, and support for MPEG-7 DDL. As it will turn out

in Section 3, current XML database solutions fail in fulfilling all of these basic requirements.

Fine-grained representation of description structure. With MPEG-7 DDL, schemes

of arbitrary complexity for the description of media content can be defined, describing media

content from possibly very different points of view. However, not every application working

with media descriptions conforming to a complex description scheme can be expected to process

the full scope of a description. Rather, applications will access only those parts of a description

that are necessary to fulfil their particular tasks.

Enabling fine-grained access to the constituents of a media description is therefore essential

for the adequate management of MPEG-7 media descriptions. This calls for the fine-grained

7

representation of the structure of the media description. With a faithful reproduction of the

hierarchy of the various nodes, i.e., markups, of which the description consists, applications

can access exactly those parts that they are interested in. In contrast, if the description was

represented as a single unstructured object, an application would always have to access the

complete description and decompose it into its constituents – even if the application is interested

in just a small fraction.

Typed representation of description content. As we have already noticed by the means

of the Melody media description scheme of Figure 1 as a typical representative of many descrip-

tion schemes predefined by MPEG-7, much of the information encoded in media descriptions

consists of non-textual data like numbers and rather complex structures like lists. Since MPEG-

7 media descriptions are XML documents and, as such, a form of text documents, these data

are encoded as text.

This might be adequate for the platform-independent exchange of media descriptions. It

is doubtful for several reasons, however, whether textual representation of non-textual data is

also reasonable for the management of media descriptions within a database: textual repre-

sentations of non-textual data typically consume more storage space than equivalent binary

representations. Moreover, they are less efficient and cumbersome to handle. A good example

for this point is the list of integer values being the content of the Contour element in the media

description of Figure 2. The effort necessary to retrieve the 4th element of the list on the

basis of the list’s textual representation, i.e., through string operations, is significantly higher

than the effort necessary for the same action on the basis of an adequate data structure, e.g.,

an array. Therefore, applications must usually translate textual representations of non-textual

data to internal data structures more appropriate to the particular type of data before they can

adequately work with the data – at the cost of considerable processing power. Finally, textual

encoding of non-textual data does not necessarily preserve the semantics, e.g., with respect to

ordering. For instance, the alphanumeric order of the textual representations of integer values

differs from their numeric order hindering reasonable indexing.

Given these problems, a suitable database solution should represent the basic contents of an

MPEG-7 media description – namely, simple content of elements and content of attribute values

8

– in a typed fashion and not as text. With typed representation, we mean that these contents

are kept in data structures that are adequate to the particular content type and come with

type-specific operations to reasonably work with the content. To that end, a database solution

should not only support the whole lot of simple data types predefined with MPEG-7 DDL

[31, 3] but also the variety of derivation methods for simple types coming with the standard

– MPEG-7 DDL allows to flexibly derive new simple types from existing ones in a schema

definition. Examples of such derived simple types are the list type and the range-restricted

integer type defining the allowed contents of the Contour and Numerator element types in

Figure 1: both are based on the predefined type integer.

Fine-grained updates. It is unrealistic to assume that MPEG-7 media descriptions are

produced in one shot and then never touched again. Just like the media content they describe,

media descriptions evolve and are constantly subject to change during the different phases of the

content’s lifecycle. Acknowledging that media descriptions are subject to change, we demand

that a database solution should offer adequate means for updating media descriptions. Just

like it is necessary to offer applications fine-grained access to the nodes of a possibly complex

media description, applications should be allowed to perform fine-grained updates on any part

of the description – having to unload the complete description from the database, to modify

it outside the database, and to reinsert it into the database just to update a small fraction is

definitely not efficient and prevents concurrent access.

Support for MPEG-7 DDL. For the suitable management of MPEG-7 media descriptions,

it is of advantage to be capable of processing media description schemes expressed in MPEG-7

DDL. The exploitation of the information available in these schema definitions is on the one

hand required to ensure the consistency of the database contents by validating whether an XML

document constitutes a correct media description with respect to a given media description

scheme. Typical occasions where such a validation is reasonable are during the import of a

media description into a database and during the update of a media description to decide

whether an update operation can be permitted without violating the description scheme. On

the other hand, processing of type information contained in schema definitions is necessary to

be able to infer the types and, by these types, appropriately typed representations of the basic

9

contents of a media description.

One might argue that the use of media description schemes to type the basic contents of a

media description could prohibitively increase the complexity of inserting new media descrip-

tions into a database and the complexity of database updates such that the benefits of typed

representations are overweighed by performance problems. It is our experience, however, that

this does not constitute a problem for most applications. If one admits that it is a vital task of

a database solution to ensure the consistency of database contents, an MPEG-7 database solu-

tion must take the effort anyway to validate a media description against its associated media

description scheme whenever the description is newly inserted into a database or updated.

During validation, the database solution already has to verify whether the textual represen-

tation of the simple content of an element or the content of an attribute value matches the type

for the content as declared in the media description scheme. The additional effort necessary

to bring the content into an appropriate typed representation after a successful verification is

likely to be negligible for most applications, except for ones with very high update and insert

frequencies and with harsh real-time constraints.

But for such applications, a database solution will already have to abstain from the val-

idation of media descriptions after insertions and updates to noticeably save processing time

– a time saving, the applications will presumably pay for later when they must ensure the

consistency of media descriptions themselves and bring the basic contents of a description from

their textual representations to internal ones more suitable for further processing whenever

they access the description.

3 Analysis of XML database solutions

On the basis of the requirements elaborated in the previous section, we have examined current

XML database solutions with regard to their suitability for managing MPEG-7 media descrip-

tions. Figure 3 gives a summary of our analysis, showing whether or to what extent each of

the solutions meets each of our requirements.

In the figure, two coarse categories of database solutions for XML documents are distin-

guished: native database solutions specifically designed for the storage of XML documents and

10

Fine-grained
Represen-
tation of

Description
Structure

Typed
Representation of

Description Content

Fine-
grained
Updates

Support for
MPEG-7 DDL

dbXML [43] + - + -

eXcelon XIS [12] +

Textual representation -
interpretation as string or
number can be explicitly

specified for indexing
purposes

+ Limited XML
Schema support

GoXML DB [50] +
Though claimed [50]

apparently not realized in
Version 2.0.2

+ Limited XML
Schema support

Infonyte-DB [22] + - + -

Tamino [42] -

Textual representation -
interpretation as string,
real, or integer can be
explicitly specified for

indexing purposes

- Limited XML
Schema support

TEXTML [29] -

Textual representation -
interpretation as string,
date, or number can be
explicitly specified for

indexing purposes

- -

X-Hive/DB [48] + - + -

N
at

iv
e

Pr
od

uc
ts

Xindice [44] + - + -

Lore [17] +
Limited set of elementary
simple types supported
for attribute values only

+ -

Natix [31] + Limited set of elementary
simple types supported + - N

at
iv

e
R

es
ea

rc
h

PDOM [19] + - + -
IBM DB2 XML
Extender [20] - - - -

Microsoft
 SQLXML [34] - - - -

R
el

at
io

na
l

Pr
od

uc
ts

Oracle XML DB [18] - - - -

Monet XML [39] + - + -
Shimura et al. [41] + - + -

R
el

at
io

na
l

R
es

ea
rc

h

XML Cartridge [16] + - + -

Figure 3: Analysis of current XML database solutions (+ support, - no support, comment in

case of partial support)

solutions based on relational database management systems (DBMS). Both categories are fur-

ther subdivided into products – commercial ones as well as open source projects – and research

prototypes. In the following, we briefly discuss the results of Figure 3 for native XML database

solutions (3.1) and for relational XML database solutions (3.2) before concluding this section

11

with a summary (3.3).

3.1 Native XML database solutions

Taking a look at Figure 3, we can see that the analyzed native XML solutions have strong

deficiencies with respect to the typed representation of the basic contents of a media descrip-

tion: most of the native solutions investigated represent simple content of elements and the

content of attribute values of XML documents as text – with all the incurring problems with

regard to the appropriate processing of non-textual data often contained in MPEG-7 media

descriptions. eXcelon XIS [17], TEXTML [35], and Tamino [53] somewhat alleviate the lack

of typed representations by allowing to manually specify whether the content of an element or

attribute value is to be interpreted as a string, number, or date for indexing purposes. Apart

from the fact that support for strings, numbers, and dates does not come even close to the

broad variety of elementary simple types and simple type derivation methods available with

MPEG-7 DDL, the content still remains represented as text.

To some extent, three of the examined native XML database solutions, the commercial

GoXML DB [61] and the research prototypes Lore [22] and Natix [38], address the issue of

typed representations. GoXML DB claims that the basic contents of an XML document are

represented in a typed fashion. Experiments with the current Version 2.0.2, however, have

revealed that this feature has apparently not been implemented yet. Content of attribute

values and simple content of elements is represented and interpreted as text. Compared to

that, Lore and Natix offer some elementary simple types for the typed representation of basic

document contents. However, both solutions support just small subsets of the simple types

predefined by MPEG-7 DDL. Simple type derivation methods, such as lists and matrices, are

not supported at all. Furthermore, Lore limits the use of typed representations to the content

attribute values; simple element content remains represented as text.

Even if the native solutions sufficiently supported the typed representation of the basic

contents of an XML document, they would not be able to infer adequate typed representations

for the contents of an MPEG-7 media description: no solution investigated can fully process

MPEG-7 DDL schema definitions. In fact, most systems do not make use of schema definitions

at all for XML document storage. Just eXcelon XIS, Tamino, and GoXML DB support more

12

or less limited subsets of XML Schema for the purpose of document validation not reaching the

expressive power of MPEG-7 DDL.

3.2 Relational XML database solutions

Three principal approaches to storing XML documents in a relational DBMS can be distin-

guished. In the first approach, XML documents are directly stored in their textual format in a

character large object (CLOB). Special stored procedures are provided to access the contents

of a document from SQL, e.g., via XPath expressions [9]. Most XML database extensions of

the major relational DBMS vendors support this approach, such as Oracle XML DB [23], IBM

DB2 XML Extender [26], and Microsoft SQLXML [43]. With respect to the management of

MPEG-7 media descriptions, however, it is obvious from Figure 3 that this approach is not

adequate. As documents are stored as a whole in their textual format in a CLOB, there is

neither a fine-grained representation of the structure of a media description nor a typed repre-

sentation of the basic contents of a media description. Updates are only possible by replacing

complete documents and any existing schema definitions are not exploited for the storage of

XML documents.

The second approach to the management of XML documents in a relational DBMS keeps

the nodes of a document and the hierarchical relationships between them in tables. There has

been considerable research in this area (see [19] for an overview) and a lot of research prototypes

have been developed. For our analysis, we have focused on three representative systems: Monet

XML [49], Shimura et al. [52], and the XML Cartridge [21]. These systems have in common

that they represent the structure of XML documents with a fine granularity and that they also

allow fine-grained updates. Nevertheless, they are not suitable for the management of MPEG-7

media descriptions, since they do not make use of schema definitions to represent the basic

contents a document in a typed manner but rather represent all contents as text.

The third approach to the management of XML documents in a relational DBMS maps the

data conveyed in XML documents to application-specific database schemas. Even though this

would in principal place all modeling capabilities available with the relational DBMS at the

disposal for representing document content, we have decided to ignore this approach for the

management of MPEG-7 media descriptions. The definition of an application-specific database

13

schema as well as the specification of the mapping between an XML format to this schema are

elaborate manual tasks. Bearing in mind that MPEG-7 allows to define arbitrary description

schemes in excess to those predefined with the standard, the effort necessary to cope with

a media description following a previously unknown media description scheme is prohibitive.

In literature, there are some approaches for the automatic derivation of relational database

schemas from schema definitions for XML documents [51, 57, 16] and the automatic mapping

between them. However, these are based on Document Type Definitions and whether they

scale to the far more complex MPEG-7 DDL remains to be proven.

3.3 Summary

As we have seen, none of the XML database solutions examined, native as well as relational,

is adequate for the management of MPEG-7 media descriptions. Their main limitations are

the lack of typed representations for the basic contents of an XML document and the inability

to process schema definitions expressed in MPEG-7 DDL to derive such typed representations.

For the suitable management of MPEG-7 media descriptions, we therefore certainly see a need

for a solution that focuses on exactly these points.

4 The Typed Document Object Model

As we have seen in Section 3, database solutions more suitable for the management of MPEG-7

media descriptions are needed. The heart of such a solution – just as with any other database

solution – is a data model. The purpose of this data model is to provide a detailed, accurate,

and adequate representation of the structure and contents of MPEG-7 media descriptions at

a logical level. On the basis of such a logical representation, applications can gain access

to the contents of media descriptions and process them more appropriately compared to the

alternative of constantly working on the original textual format through parsing operations.

Furthermore, the data model can serve as the foundation for the physical storage scheme

implemented by an MPEG-7 database solution. Closely orienting the physical storage scheme of

MPEG-7 media descriptions in a database along the data model has the advantage that exactly

those parts of a media description can be loaded from a database that are actually accessed

14

during the processing of a description on the basis of the data model thereby minimizing I/O

operations and main memory consumption. Storing media descriptions in their original textual

format – which requires to constantly load the entire description into main memory whenever

it is accessed in order to parse it and bring it into the data model representation for further

processing – is not very attractive as we could observe with relational XML database solutions

like Oracle XML DB and IBM DB2 XML Extender in Section 3.

Since MPEG-7 media descriptions are XML documents, a suitable data model should be a

model for XML documents that considers the basic requirements for the management of these

descriptions that we have presented earlier in Section 2. In this section, we propose the Typed

Document Object Model (TDOM), a conceptual object-oriented model for XML documents

that we have created bearing exactly these requirements in mind. We begin by taking a brief

look onto existing data models for XML documents unveiling their limitations concerning the

representation of MPEG-7 media descriptions (4.1). Having thus fortified the need for a new

data model, we then illustrate and give a thorough definition of TDOM (4.2).

4.1 Data models for XML documents

A variety of data models for XML documents have been proposed in literature, e.g., [36, 22, 21,

52, 49, 38]. Concerning their application for the representation of MPEG-7 media descriptions,

however, these models suffer from mainly two weaknesses: firstly, they typically constitute

variations of rather simple edge-labeled tree and graph data models. Though they provide

fine-grained representations of MPEG-7 media descriptions in principle, these models often

ignore more subtle aspects of the descriptions’ structure like the ordering the child nodes of an

element, markup different from elements and attribute values such as processing instructions

and comments, or the distinction between attribute values and elements. Secondly, they usually

do not support typed representations: simple element content and the content of attribute

values is typically represented as text hindering the reasonable processing of non-textual data

on the basis of these models. Those few models that support typed representations (e.g.,

[38, 22]) only offer limited subsets of the elementary simple types predefined with MPEG-7

DDL; none of the models to our knowledge supports the simple type derivation methods of

MPEG-7 DDL.

15

In addition to the models originating from research, several data models for XML documents

have appeared in the context of standardization efforts. Prominent representatives are the

XPath Data Model which constitutes the foundation for the XPath language [9], the DOM

Structure Model which is specified along with the DOM API by the Document Object Model

(DOM) standard [40], and the XML Information Set [13]. These models generally offer detailed

and accurate representations of XML documents. But their applicability for the processing of

MPEG-7 media descriptions is limited, since they neglect the types of the basic contents of a

description representing them always as text.

There are two recent developments with regard to standard data models for XML documents

which are of particular interest for our aim to adequately represent MPEG-7 media descriptions,

namely DOM Level 3 [41] and the XQuery 1.0 and XPath 2.0 Data Model [18]. The current

DOM Level 3 standardization effort originally not only aimed at the fine-grained representation

of XML documents but also at the fine-grained representation of the schema definitions to which

the documents comply. In that context, Abstract Schemas [5] have been proposed as a schema-

dialect-neutral model for the representation of schema definitions. Hence, Abstract Schemas

might serve as a basis for the representation of media description schemes expressed in MPEG-

7 DDL. However, Abstract Schemas do not reach the expressiveness of MPEG-7 DDL. It is

furthermore noteworthy that work on Abstract Schemas has recently been canceled and that

they will not be included in the final version of DOM Level 3.1

The XQuery 1.0 and XPath 2.0 Data Model is currently being defined as the foundation

of the XQuery standardization effort for a common XML query language [4]. What makes the

model interesting with regard to the representation of MPEG-7 media descriptions is that it

supports the elementary data types predefined by XML Schema for the typed representation of

simple element content and the content of attribute values. Nevertheless, difficulties concerning

the use of the XQuery 1.0 and XPath 2.0 Data Model for MPEG-7 still remain: with the

exception of lists, the current working draft does not support the far majority of the simple

type derivation methods offered by XML Schema and MPEG-7 DDL for typed representations.

Furthermore, the model is still in a very unstable state. For example, the paradigm followed

for the specification of the data model has just been changed fundamentally compared to the

1See http://lists.w3.org/Archives/Public/www-dom/2002JulSep/0010.html.

16

previous working draft issued in April 2002. Instead of an open structural definition, the model

is now opaquely defined similar to abstract data types.

4.2 TDOM in seven points

On the way to an adequate MPEG-7 database solution, the deficiencies of the existing data

models for XML documents fortify the need for a new model that pays more attention to

the basic requirements for the management of MPEG-7 media descriptions. With the Typed

Document Object Model (TDOM), we now propose a data model which does exactly that.

TDOM is an object-oriented model for XML documents that carries on traditional DOM

[40] to allow an appropriate representation of MPEG-7 media descriptions. In the following, we

provide a detailed and illustrated definition of TDOM which we present in seven points closely

oriented along our requirements for the management of MPEG-7 media descriptions.

Since TDOM is an object-oriented model, we employ UML class diagrams [2] for the defini-

tion of the various classes of the model and their interrelationships.2 Whenever it is necessary

to make formal statements about TDOM, we make use of the Object Constraint Language

(OCL) defined as part of the UML standard.

1. TDOM is fine-grained.

Similar to traditional DOM, TDOM faithfully and fine-grainedly reproduces the structure of an

XML document with an object-oriented model that permits to access and manipulate the doc-

ument’s constituents at any required granularity. We have opted for an object-oriented model

because object-oriented concepts are widely supported by potential implementation platforms

for TDOM today, such as most programming languages, object-oriented and object-relational

DBMSs. This promises a small gap between the model and its implementations.

The class diagram of Figure 4 introduces the classes of TDOM that are responsible for the

representation of an XML document and the detailed reproduction of its structure. The class

2The TDOM classes defined in the subsequent class diagrams do not show any getter and setter methods

with which applications can access and manipulate the classes’ attributes and associations. A concrete imple-

mentation of TDOM, of course, has to provide such methods. As this is straightforward, however, we have

omitted them for the definition of our model for the sake of clarity.

17

Comment

+ comment : String

ProcessingInstruction

+ target : String
+ data : String

Text

+ text : String
AttributeValueElement

0..n1 0..n1

{ordered}

DocumentNode

0..1

0..n

+parentNode0..1

+childNode
0..n

{ordered}

DocumentType

+ name : String
+ systemID : String
+ publicID : String
+ internalSubset : String

Document

+ location : String

0..1

1..n

0..1

+rootNode1..n

{ordered}

0..1 10..1 1

Figure 4: Representation of document structure (UML class diagram)

Document represents XML documents. In the model, a document is identified by its storage

location addressed with an URL. A document can optionally be characterized by document

type information (modeled by the class DocumentType) that might be conveyed in its DOCTYPE

section. As an entry point to its contents, each document refers to the sequence of root doc-

ument nodes constituting the top level of its hierarchical structure, which is expressed by the

aggregation between the classes Document and DocumentNode.

Being an abstract base class, DocumentNode subsumes one class each for the representation

of the primal kinds of nodes of which an XML document may consist: Comment represents

comments, ProcessingInstruction represents processing instructions together with their as-

sociated source and target declarations, Text copes with text interspersed with other document

nodes in mixed content, and Element represents elements. Through elements, the hierarchical

structure of a document is established – elements are the only kind of document nodes that

may contain other nodes as their child nodes. This is expressed by the aggregation between

Element and DocumentNode. Since elements can be further described by attribute values,

TDOM introduces the class AttributeValue for their representation which is aggregated by

Element.

18

melodyDescription:Document

:Comment audioDescriptionScheme:Element xsiType:AttributeValue

meter:Element

numerator:Element denominator:Element

melodyContour:Element

contour:Element beat:Element

:Comment :Comment

rootNoderootNode

childNode childNode

childNode

childNode

childNode

childNode

childNodechildNode

parentNode

parentNode parentNode

melodyDescription:Document

:Comment audioDescriptionScheme:Element xsiType:AttributeValue

meter:Element

numerator:Element denominator:Element

melodyContour:Element

contour:Element beat:Element

:Comment :Comment

rootNoderootNode

childNode childNode

childNode

childNode

childNode

childNode

childNodechildNode

parentNode

parentNode parentNode

Figure 5: Structural representation of the example MPEG-7 media description with TDOM

(UML object diagram)

The UML object diagram of Figure 5 exemplifies the structural representation of an MPEG-7

media description with TDOM using the example melody description of Figure 2. The descrip-

tion itself is represented by the object of the class Document depicted at the top of the diagram;

the document nodes contained in the description are represented by objects of the TDOM-

classes corresponding to the particular kind of node. Via the references of the Document object

to its root nodes and the references of the Element objects to their child nodes and attribute

values, TDOM reconstructs the hierarchical structure of the example description. Outgoing

from the Document object, an application can thus traverse the structure of the example media

description and access and manipulate any desired document node at any granularity.

There are some limitations on the allowable structure of XML documents. There is the re-

striction that the attribute names and attribute namespaces of the attribute values associated

with an element must be unique. This is formally expressed in OCL by Contraint 1. The con-

straint employs the shorthands attNamespace and attName to refer to the attribute namespace

and attribute name of an attribute value. These shorthands will be defined later under point

3.

Constraint 1 (Unique attribute values)

context Element

19

inv: attributeValue -> forAll(av1, av2 |

av1.attNamespace = av2.attNamespace and

av1.attName = av2.attName implies

av1 = av2)

There is the further limitation that there must be exactly one element among the root nodes

of a document. Also, there must not be a text node among the root nodes. These restrictions

are formally expressed by Constraint 2.

Constraint 2 (Root nodes)

context Document

inv: rootNode -> one(e | e.oclIsTypeOf(Element))

inv: not(rootNode -> exists(t | t.oclIsTypeOf(Text)))

The single element among the root nodes is called the root element of the document. The

term root element is formalized by Definition 1.

Definition 1 (Root element)

context Document def:

let rootElement : Element =

rootNode -> any(e | e.oclIsTypeOf(Element))

To ease navigation along the document hierarchy in future OCL expressions, Definition 2

finally introduces the formal shorthands childElements and allChildElements to refer to an

element’s sequence of direct child elements and to an element’s set of direct and indirect child

elements, respectively.

Definition 2 (Child elements)

context Element def:

let childElements : Sequence(Element) =

childNode -> select(d | d.oclIsTypeOf(Element))

let allChildElements : Set(Element) =

Element.allInstances -> select(e |

childElements -> includes(e) or

childElements -> exists(c | c.allChildElements -> includes(e)))

20

2. TDOM is typed.

Traditional DOM represents the basic contents of an XML document as text prohibiting appro-

priate access to non-textual data. With TDOM, in contrast, it is our primary goal to exploit

type information contained in media description schemes to which MPEG-7 media descriptions

comply. The idea is to keep simple content of elements and the content of attribute values in a

way that is appropriate for the particular content type. For this reason, we have made typed

representations a central concept of TDOM.

+attribute

SimpleTypeInstance

+ equalTo()
+ getSimpleType()

<<Interface>>

Attribute

+ name : String
+ namespace : String
+ scope : String

AttributeValue

+ typed : Boolean
+ name : String
+ namespace : String
+ content : String

0..1

0..1

0..1

+typedContent 0..1

0..1

0..n

0..1

0..n

ElementType

+ name : String
+ namespace : String
+ scope : String

Element

+ typed : Boolean
+ namespace : String
+ simpleContent : String
+ name : String

0..1
0..1

0..1
+typedSimpleContent 0..1

0..n

1

0..n

1

{ordered}

0..10..n

+elementType

0..10..n

Figure 6: Representation of elements and attribute values (UML class diagram)

In typed representation, elements and attribute values are tightly coupled to the element

types and attributes declared in the schema definition accompanying an XML document. Ac-

cording to the class diagram of Figure 6 which unveils more details regarding the representation

of elements and attribute values with TDOM, an element or attribute in typed representation

(indicated by the boolean attribute typed of the classes Element and AttributeValue) is ex-

plicitly associated with the respective element type or attribute it instantiates, i.e., it is valid

to. This is expressed by the associations between the classes Element and ElementType and

AttributeValue and Attribute respectively. Element types and attributes are characterized

by their names and namespaces and an optional scope.

Furnishing the classes ElementType and AttributeValue with the scope attribute is a

tribute to the fact that MPEG-7 DDL, just like other schema definition languages for XML

documents, not only allows to declare element types and attributes that are globally visible

21

but also those that are only visible within a certain scope, e.g., a complex type. In order to

distinguish different element types and attributes with identical names and namespaces that

might exist within different scopes of one and the same schema definition, the attribute scope

contains a string uniquely describing the scope in which the element type or attribute is visible.

The explicit association of elements and attribute values in typed representation with their

element types and attributes declared in the schema definition not only provides an index

allowing to efficiently look up all instances of a certain element type or attribute in a document.

It also opens up type information that is used to acquire an adequate representation of the

content of elements and attribute values: elements with simple content and attribute values in

typed representation do not keep their content as text, but rather encapsulate their content

within an object. This is captured in Figure 6 by the aggregations between the classes Element

and AttributeValue and the interface SimpleTypeInstance, which the objects holding the

content have to implement as a minimum (we will describe this interface in detail later under

point 5). Inside these objects, the content is kept in a way adequate to the content type declared

for the element type or attribute in the schema definition. The objects offer methods specific

to the content type that allow applications to appropriately access and operate on the content.

:List

equalTo()
getSimpleType()
addElement()
elementAt()
size()
...

:Integer

value=2

equalTo()
getSimpleType()
lessThan()
...

value=2

equalTo()
getSimpleType()
lessThan()
...

...

value=1

equalTo()
getSimpleType()
lessThan()
...

:Integer

value=1

equalTo()
getSimpleType()
lessThan()
...

value=1

equalTo()
getSimpleType()
lessThan()
...

:Integer

element

element

contour:Element

typed=true

typedSimpleContent

namespace=‘http://...’
name=‘Contour’
scope=‘MelodyContourType’

:ElementType

elementType

< Contour > 2 -1 -1 -1 -1 -1 1 </Contour>

Figure 7: Typed representation of the example Contour element (UML object diagram)

22

In Figure 7, we give an example for a better understanding of typed representations. At the

top of the Figure, the Contour element of our example MPEG-7 media description of Figure

2 is shown. Below the Contour element, the objects used for its representation are depicted in

UML object diagram notation. A dashed arrow between an object and the Contour element

indicates which part of the element is represented by the object. TDOM represents the whole

element by an object of the class Element. In typed representation, an element is explicitly

associated with the element type it instantiates. This is captured in the example by the reference

from the Element object to the ElementType object representing the element type Contour

that has been declared within the complex type MelodyContourType in the media description

scheme of Figure 1. It is known from this element type declaration that the valid contents for

elements of the type Contour are lists of integer values. As the example element is kept in

typed representation, its content is thus encapsulated within an object of a class that offers an

implementation for lists with reasonable methods to work with them – the class List. Since

the elements of the list are known to be integer values, they are encapsulated in objects of the

class Integer providing an implementation for integer values.

With this representation of the Contour element at hand, an application can now reasonably

operate on the element. E.g., an application can query the size of the list making up the content

of the element and access its single elements, all by invoking the appropriate methods size()

and elementAt() offered by the class List.

There are some constraints that have to be obeyed with regard to typed representations

though. It must be ensured that the content of an element in typed representation is either

simple, i.e., it is represented by an object implementing the interface SimpleTypeInstance, or

complex, i.e., its content consists of further child nodes via the aggregation between Element

and DocumentNode given in the class diagram of Figure 4, both not both. This is expressed by

Constraint 3.

Constraint 3 (Typed element content)

context Element

inv: typed implies

(typedSimpleContent -> notEmpty() implies

childNode -> isEmpty()) and

23

(childNode -> notEmpty() implies

typedSimpleContent -> isEmpty())

Moreover, it must be assured that the element type associated with a root element in typed

representation is globally visible, i.e., it may not be scoped. This is expressed by the subsequent

Constraint 4.

Constraint 4 (Typed root element)

context Document inv:

rootElement.typed implies

rootElement.elementType.scope = null

3. TDOM needs not to be typed.

Even though it is the central goal of TDOM to exploit type information available in schema

definitions to infer an adequate, typed representation of elements and attribute values for

appropriate access, there are nevertheless situations in which type information is not available.

This might be the case, for example, if a media description scheme makes use of constructs

that prohibit type inference for parts of an MPEG-7 media description. As an example, the

constructs <any> and <anyAttribute> of MPEG-7 DDL state that an arbitrary element or

attribute value is valid as the content of a certain element type respectively. This includes

elements and attribute values for which no further schema information is available. Obviously,

it will prove difficult to create a typed representation of such elements and attribute values.

As a fallback for such situations, TDOM offers the notion of untyped representations. In

untyped representation, elements or attribute values are decoupled from the schema definition,

not being explicitly associated with the definition’s element types or attributes. They maintain

the name and namespace of their respective element type or attribute as well as their content

in the corresponding textual attributes of the classes Element and AttributeValue that are

depicted in the class diagram of Figure 6 – with all the problems involved related to the

appropriate access to the content.

The UML object diagram of Figure 8 illustrates the concept of untyped representations.

The diagram once more depicts the Contour element taken from our example MPEG-7 media

24

< Contour > 2 -1 -1 -1 -1 -1 1 </Contour>

contour:Element

typed=false

namespace=‘http://…’

name=‘Contour’

content=‘2 -1 -1 -1 -1 -1 1’

< Contour > 2 -1 -1 -1 -1 -1 1 </Contour>

contour:Element

typed=false

namespace=‘http://…’

name=‘Contour’

content=‘2 -1 -1 -1 -1 -1 1’

contour:Element

typed=false

namespace=‘http://…’

name=‘Contour’

content=‘2 -1 -1 -1 -1 -1 1’

Figure 8: Unyped representation of the example Contour element (UML object diagram)

description of Figure 2 – this time, however, in untyped representation. Again, dashed arrows

indicate which parts of the object diagram correspond to which part of the element shown at

the top of the figure. The encoding of the list of integer values constituting the content of

the element in the textual attribute content is especially noteworthy. There is no indication

for an application that this string represents a list. Without further knowledge, the content

of the element can thus only be processed as a string with doubtable usefulness. Even if the

application had that knowledge, it would always have to parse the string and cast it to an

appropriate internal representation before adequate access to the list of integer values could

take place.

There are some contraints with regard to untyped representations. Just as with elements

in typed representation, it must be assured that the content of an element in untyped repre-

sentation is either simple or complex. This is the purpose of Constraint 5.

Constraint 5 (Untyped element content)

context Element

inv: not(typed) implies

(simpleContent <> null implies

childNode -> isEmpty()) and

(childNode -> notEmpty() implies

simpleContent = null)

Moreover, elements and attribute values must be created in a consistent manner: an element

or attribute value has to be either in typed or in untyped representation but not in an odd

25

mixture of both. I.e., an element or attribute value in typed representation should not make

use of the attributes of the classes Element and AttributeValue that are intended for untyped

representations and vice versa. This is covered by Constraint 6.

Constraint 6 (Consistency of representations)

context AttributeValue

inv: typed implies

attribute -> notEmpty() and

typedContent -> notEmpty() and

name = null and namespace = null and content = null

inv: not(typed) implies

attribute -> isEmpty() and

typedContent -> isEmpty() and

name <> null and namespace <> null and content <> null

context Element

inv: typed implies

elementType -> notEmpty() and

name = null and namespace = null and

simpleContent = null

inv: not(typed) implies

elementType -> isEmpty() and

typedSimpleContent -> isEmpty() and

name <> null and namespace <> null

Finally, we are now able to provide the reader with the definition of the formal short-

hands attName and attNamespace that we have used in Constraint 1 to address the name and

namespace of the attribute to which an attribute value belongs:

Definition 3 (Attribute name and namespace)

context AttributeValue def:

let attName : String =

26

if typed then

attribute.name

else

name

endif

let attNamespace : String =

if typed then

attribute.namespace

else

namespace

endif

The definition of similar formal shorthands etName and etNamespace to address the name

and namespace of the element type of an element will also prove useful later:

Definition 4 (Element type name and namespace)

context Element def:

let etName : String =

if typed then

elementType.name

else

name

endif

let etNamespace : String =

if typed then

elementType.namespace

else

namespace

endif

4. TDOM can be typed and untyped at the same time.

We have already mentioned before that MPEG-7 DDL offers constructs, e.g., <any> and

27

<anyAttribute>, which permit the inclusion of elements and attribute values in an MPEG-7

media description for which no further schema information is available that could be used for

the construction of typed representations. As a consequence, TDOM has to keep these elements

and attribute values in untyped representation. Considering the advantages of typed represen-

tations, however, it is undoubtedly unattractive to keep all the description’s other elements and

attribute values for which schema information is available in untyped representation as well,

just because of the existence of a few untypeable elements and attribute values.

For this reason, we explicitly allow elements and attribute values in typed and untyped

representation to coexist in a single document. We leave it very well possible that an element in

typed representation has attribute values and child elements in untyped representation among

its constituents: the declaration of the element type to which the element refers in typed

representation might allow arbitrary child elements and attribute values including those for

which typed representations cannot be inferred due to the lack of type information.

On the contrary, we do not allow an element in untyped representation to contain child

elements and attribute values in typed representation. In untyped representation, the exact

element type of an element is not known (only its name and namespace) and with it the type’s

declaration. Without the declaration, the exact element types and attributes of the child

elements and attribute values of the element are not known as well and therefore the child

elements and attribute values cannot be in typed representation. This restriction is captured

by Constraint 7.

Constraint 7 (Untyped representation of elements)

context Element

inv: not(typed) implies

not(childNode -> exists(e : Element | e.typed)) and

not(attributeValue -> exists(av | av.typed))

5. TDOM supports arbitrary simple types.

From the perspective of MPEG-7 DDL, an object representing the simple content of an element

or the content of an attribute value in typed representation constitutes an instance of a simple

type. MPEG-7 DDL predefines a comprehensive set of elementary simple types whose instances

28

may occur as the content of elements and attribute values in MPEG-7 media descriptions, as

well as a variety of derivation methods for the definition of new simple types.

For the handling of simple types and their instances, TDOM provides a generic simple type

framework. Using that framework, support for arbitrary simple types and their instances can

be smoothly integrated with TDOM which keeps the model simple and extensible and relieves

us from the need to anticipate and to hardwire all supported simple types into the model.

SimpleTypeInstance

+ equalTo()
+ getSimpleType()

<<Interface>>

SimpleTypeInstanceFactory

+ fromString()
+ toString()
+ getSimpleType()

<<Interface>>

SimpleType

+ name : String
+ namespace : String
+ scope : String10..n 10..n

1

1

1

1

<<instantiate>>

Figure 9: Simple type framework (UML class diagram)

The simple type framework of TDOM is presented in the class diagram of Figure 9. As

shown in the diagram, the framework represents simple types by the class SimpleType. A

SimpleType object serves to represent either an elementary simple type predefined by MPEG-

7 DDL or a simple type specific to a certain schema definition that has been derived from a

predefined simple type using the constructs for type derivation available with MPEG-7 DDL.

TDOM attributes a simple type with its name, namespace and an optional scope in which it is

visible in a schema definition.

TDOM represents the instances of a simple type as objects of a class offering a meaningful

implementation for the instances of that type. Each of these objects encapsulates a suitable

representation of the simple type instance and offers type-specific functionality that can be

used by applications to appropriately operate on the instance. The simple type framework,

however, abstracts from the concrete classes implementing a certain simple type. Instead, it

demands a minimal functionality that they have to provide which is specified by the interface

SimpleTypeInstance. The interface SimpleTypeInstance consists of the methods equalTo(),

29

which provides basic lookup functionality for simple type instances as it can be used to compare

two simple type instances for equality, and getSimpleType(), which delivers simple type of the

instance. Each simple type keeps track of its instances which is expressed by the association

between SimpleType and SimpleTypeInstance.

Having provided a way to represent simple types and their instances, it must be possible

to construct simple type instances from the textual representation in which they are conveyed

in XML documents as well as to reconstruct that textual representation from a given sim-

ple type instance. For that purpose, each simple type references a factory for the production

of its instances. TDOM demands a minimum functionality for each of these factories which

is collected by the interface SimpleTypeInstanceFactory. The interface provides the meth-

ods fromString(), which produces an instance of the simple type to which the factory is

related from the textual representation in which the instance is conveyed in an XML doc-

ument, toString(), which returns a textual representation of a simple type instance, and

getSimpleType(), which delivers the simple type whose instances are produced by the factory.

Integer

+ equalTo()
+ getSimpleType()
+ lessThan()
+ greaterThan()
+ add()
+ sub()
+ mult()
+ div()
+ Integer()

IntegerFactory

+ fromString()
+ toString()
+ getSimpleType()
+ IntegerFactory()

<<instantiate>>

SimpleTypeInstance

equalTo()
getSimpleType()

<<Interface>>

List

+ equalTo()
+ getSimpleType()
+ addElement()
+ delElement()
+ size()
+ elementAt()
+ contains()
+ List()

0..n

0..n

+element
0..n{ordered}

0..n

SimpleTypeInstanceFactory

fromString()
toString()
getSimpleType()

<<Interface>>

<<instantiate>>

ListFactory

+ fromString()
+ toString()
+ getSimpleType()
+ ListFactory()

1

0..n

+elementFactory

1

0..n

<<instantiate>>

Figure 10: Example implementation of simple type support (UML class diagram)

Figure 10 gives an impression of how the simple type framework can be utilized to support

a set of simple types. In our example, support for the simple type integer and its instances is

provided. This is achieved by defining the class Integer which, beyond type-specific methods,

30

e.g., for adding and substracting, implements the interface SimpleTypeInstance so that its

objects are usable as the content of elements and attribute values in typed representation. For

the construction of Integer objects from the textual representations in which integer values are

encoded in XML documents, the class IntegerFactory is supplied implementing the Interface

SimpleTypeInstanceFactory.

Likewise, TDOM can accommodate derivation methods for simple types. Figure 10 exem-

plifies the integration of a list type with TDOM. Similar to other simple types, the classes List

and ListFactory provide support for the instances of the list type and for their construction

by implementing the interfaces SimpleTypeInstance and ListFactory, respectively. In con-

trast to elementary simple types such as integer, however, the construction of instances of a

derived simple type typically includes the construction of instances of the base type. In our

example, the construction of a list includes the construction of instances of the simple type of

its elements. Therefore, the factory for the list type must refer to the factory of its base type,

modeled by the aggregation between ListFactory and SimpleTypeInstanceFactory.

With these classes, we are able to adequately represent lists of integer values in TDOM

and to construct them from the textual representation in which they are conveyed in XML

documents; we can thus already build the typed representation of the example Contour element

of Figure 7. The approach outlined for the implementation of simple types can be systematically

followed to the extent where all the elementary simple types and simple type derivation methods

coming with MPEG-7 DDL are supported.

In the following, we formally specify the semantics of the methods of interfaces

SimpleTypeInstance and SimpleTypeInstanceFactory introduced by the simple type frame-

work. Constraint 8 starts with the interface SimpleTypeInstance.

Constraint 8 (Simple type instance)

context SimpleTypeInstance::equalTo(SimpleTypeInstance sti) :

Boolean

post: sti = self implies

result = true

post: result = true implies

self.getSimpleType() = sti.getSimpleType()

31

context SimpleType inv:

simpleTypeInstance -> forAll(sti |

sti.getSimpleType() = self)

The first postcondition of the method equalTo() ensures that a simple type instance is

always equal to itself. The second postcondition states that, in order to be equal, two simple

type instance must be of the same simple type. The invariant for the class SimpleType defines

that the result of the method getSimpleType() on a simple type instance is the simple type

associated with the simple type instance.

Constraint 9 describes the interface SimpleTypeInstanceFactory in more detail.

Constraint 9 (Simple type instance factory)

context SimpleTypeInstanceFactory::fromString(String s) :

SimpleTypeInstance

post: result <> null implies

result.getSimpleType() = self.getSimpleType()

post: result <> null implies

self.simpleType.simpleTypeInstance -> forAll(sti |

self.toString(sti) = s implies

sti.equalTo(result))

context SimpleType

inv: simpleTypeInstance -> forAll(sti1, sti2 |

simpleTypeInstanceFactory.toString(sti1) =

simpleTypeInstanceFactory.toString(sti2) implies

sti1.equalTo(sti2))

inv: simpleTypeInstanceFactory.getSimpleType() = self

The first postcondition of the method fromString() assures that an instance of a simple

type successfully constructed from a textual representation refers to the simple type associated

with the factory. The second postcondition states that if an instance of a simple type is

32

successfully constructed from a textual representation that is the result of the call of the method

toString() on another instance of the same type, then both instances are equal. In other

words, fromString() constitutes the inverse method to toString().3 In general, we can say

that if calling toString() on two instances of the same simple type yields the same textual

representation, then both instances are also equal to each other. This is formally described by

the first invariant of the class SimpleType in the constraint above. Finally, the second invariant

of SimpleType defines that the result of the call of the method getSimpleType() on a simple

type instance factory is always the simple type to which the factory belongs.

6. TDOM facilitates flexible, fine-grained updates.

The basic characteristics of TDOM pave the way to sophisticated updates on MPEG-7 media

descriptions. The model’s fine-grained representation of an XML document’s structure allows

applications to access any part of the document and to perform modifications at any granularity.

Moreover, the combination of the concepts of typed and untyped representation of elements

and attribute values offer great flexibility with respect to updates.

To illustrate the benefit of having both typed and untyped representation available, we

consider an update on our example media description of Figure 2. An application might want

to replace the Beat element by a new one. A natural way to perform this task would be the

deletion the Beat element followed by the insertion of the new Beat element as a child of the

element MelodyContour.

Did TDOM only support typed representations, it would have to be ensured after every

single update operation that every element and attribute value affected by the update is valid

with respect to the declaration of the particular element type or attribute it is associated with

in typed representation. This is very rigid. In our example, the deletion the Beat element

already violates the validity of the MelodyContour element, since, according to the schema

definition of Figure 1, an element of type MelodyContour must contain exactly one element of

type Beat. Thus, the deletion and thereby the whole sequence of update operations would have

3The opposite need not to be true. For example, one and the same float value might be constructed from

different textual representations (e.g., 123e-2 and 12.3e-1 represent the same float value 1.23). However,

calling toString() on the float value always yields just one of the possible textual representations which does

not need to be the one from which the value has been constructed.

33

to be refused – even though the subsequent insertion of the new Beat element would restore

schema consistency.

melodyContour:Element

contour:Element beat:Element

childNode

childNodechildNode

parentNode

1 …

melodyContour:Element

contour:Element beat:Element

childNode

childNodechildNode

parentNode

2 …

melodyContour:Element

contour:Element beat:Element

childNode

childNodechildNode

parentNode

3 …

beat‘:Element

childNode

melodyContour:Element

contour:Element beat‘:Element

childNode

childNodechildNode

parentNode

4 …

Legend:

xxx:Element
Element in typed
representation

xxx:Element
Element in untyped
representation

Deletion of elementxxx:Element

xxx:Element Insertion of element

melodyContour:Element

contour:Element beat:Element

childNode

childNodechildNode

parentNode

11 …

melodyContour:Element

contour:Element beat:Element

childNode

childNodechildNode

parentNode

22 …

melodyContour:Element

contour:Element beat:Element

childNode

childNodechildNode

parentNode

33 …

beat‘:Element

childNode

melodyContour:Element

contour:Element beat‘:Element

childNode

childNodechildNode

parentNode

44 …

Legend:

xxx:Element
Element in typed
representationxxx:Element
Element in typed
representation

xxx:Element
Element in untyped
representationxxx:Element
Element in untyped
representation

Deletion of elementxxx:Element Deletion of elementxxx:Element

xxx:Element Insertion of elementxxx:Element Insertion of element

Figure 11: Switching between corresponding representations for an update

But having the additional means of untyped representations at hand (see Figure 11), ap-

plications can transform elements and attribute values in typed representation (1) that are

affected by an update to a corresponding untyped representation (2). Thereby, they are decou-

pled from the element types and attributes of the schema definition. Any desired sequence of

update operations can then be performed without being concerned with schema validity (3).

After all update operations have been completed, the updated elements and attribute values

can be brought back to corresponding typed representations (4) as long as the document is still

valid with respect to the schema definition.

What do we mean exactly by the terms corresponding untyped representation and corre-

sponding typed representation? A corresponding untyped representation should reproduce an

element or attribute value that is kept in typed representation as faithful as possible with the

means of untyped representation. Likewise, a corresponding typed representation should faith-

fully reproduce an element or attribute value in untyped representation by the means of typed

representation.

34

Definition 5 formalizes a natural notion of correspondence for attribute values. An attribute

value av’ in untyped representation constitutes a corresponding untyped representation of an

attribute value av in typed representation (formally: av.CUR(av’)), if av’ refers to the name

and namespace of the attribute associated with av and if the textual content of av’ is a textual

representation of the simple type instance forming the content of av. Conversely, we can also

say that av constitutes a corresponding typed representation of av’ (formally: av’.CTR(av)).

Definition 5 (Corresponding representations of attribute values)

context AttributeValue def:

let CUR(AttributeValue av) : Boolean =

typed and not(av.typed) and

attribute.namespace = av.namespace and

attribute.name = av.name and

typedContent.simpleType.simpleTypeInstanceFactory.

fromString(av.content) <> null and

typedContent.simpleType.simpleTypeInstanceFactory.

fromString(av.content).equalTo(typedContent)

let CTR(AttributeValue av) : Boolean =

av.CUR(self)

Definition 6 formally introduces a notion of correspondence for elements.4 Following that

definition, an element e’ in untyped representation constitutes a corresponding untyped rep-

resentation of an element e in typed representation (formally: e.CUR(e’)), if e’ refers to the

name and namespace of the element type associated with e. If e has simple content, it is

furthermore demanded that e’ has simple content as well and the simple content of e’ is a

textual representation of the simple type instance forming the simple content of e. If e has

complex content, however, it is demanded that e’ also has complex content and the child nodes

of e’ are equal to the child nodes of e – with the exception of elements: the child elements of

e’ are expected to be corresponding untyped representations of the respective child elements

of e. Finally, every attribute value of e’ must appear among the attribute values of e or be

4In the definition, we assume the existence of the method deepEqualTo() to compare two objects for deep

equality.

35

a corresponding untyped representation of an attribute value of e. With all these conditions

fulfilled, we can conversely say that e constitutes a corresponding typed representation of e’

(formally: e’.CTR(e)).

Definition 6 (Corresponding representations of elements)

context Element def:

let CUR(Element e) : Boolean =

typed and not(e.typed) and

elementType.namespace = e.namespace and

elementType.name = e.name and

(typedSimpleContent -> notEmpty() implies

e.simpleContent <> null and

typedSimpleContent.simpleType.simpleTypeInstanceFactory.

fromString(e.simpleContent) <> null and

typedSimpleContent.simpleType.simpleTypeInstanceFactory.

fromString(e.simpleContent).equalTo(typedSimpleContent)

) and

(childNode -> notEmpty() implies

childNode -> size() = e.childNode -> size() and

Sequence{1..childNode -> size()} -> forAll(i : Integer |

childNode -> at(i).deepEqualTo(e.childNode -> at(i)) or

(childNode -> at(i).oclIsTypeOf(Element) and

e.childNode -> at(i).oclIsTypeOf(Element) and

childNode -> at(i).CUR(e.childNode -> at(i))))

) and

(attributeValue -> notEmpty() implies

attributeValue -> size() = e.attributeValue -> size() and

attributeValue -> forAll(av1 |

e.attributeValue -> exists(av2 |

av1.deepEqualTo(av2) or av1.CUR(av2))))

let CTR(Element e) : Boolean =

e.CUR(self)

36

The construction of a corresponding untyped representation of an element or attribute value

in typed representation is straightforward as the typed representation generally contains all the

information that must be included with the corresponding untyped representation. An attribute

value in typed representation keeps the name and namespace of the attribute with the attribute

referred to by the attribute value in typed representation. Moreover, a textual representation of

the content of the attribute value can be obtained from the simple type instance by employing

the method toString() of the associated simple type instance factory. Definition 7 furnishes

the class AttributeValue with the method untype which transforms an attribute value in

typed representation to a corresponding untyped representation in this manner. The definition

also outlines a straightforward implementation of this method as pseudocode.

Definition 7 (Untyping attribute values)

context AttributeValue::untype()

pre: self.typed

post: self@pre.CUR(self)

pseudocode:

-- change attribute value to untyped representation

self.typed := false

-- get attribute name and namespace from

-- attribute definition

Attribute att := self.attribute -> any(true)

self.name := att.name

self.namespace := att.namespace

-- remove reference to attribute definition

self.attribute := self.attribute -> excluding(att)

-- construct textual representation of content

-- from simple type instance

SimpleTypeInstance sti := self.typedContent -> any(true)

self.content := sti.simpleType.simpleTypeInstanceFactory.

toString(sti)

-- remove reference to simple type instance

self.typedContent := self.typedContent -> excluding(sti)

37

Likewise, an element in typed representation keeps the name and namespace of the ele-

ment type with the element type referenced. A textual representation of a potentially existing

simple content can be derived from the simple type instance representing that simple content

in typed representation via the associated simple type instance factory. Corresponding un-

typed representations of any child elements and attribute values of the element can be obtained

recursively. Definition 8 augments the class Element with the method untype which imple-

ments this approach to bring an element in typed representation to a corresponding untyped

representation.

Definition 8 (Untyping elements)

context Element::untype()

pre: self.typed

post: self@pre.CUR(self)

pseudocode:

-- change all child elements to untyped representation

foreach e1 in self.childNode ->

select(e2 : Element | e2.typed) do

e1.untype()

endforeach

-- change all attribute values to untyped representation

foreach av1 in self.attributeValue ->

select (av2 | av2.typed) do

av1.untype()

endforeach

-- change element to untyped representation

self.typed := false

-- get name and namespace of element type from

-- element type definition

ElementType et := self.elementType -> any(true)

self.name := et.name

self.namespace := et.namespace

-- remove reference to element type definition

38

self.elementType := self.elementType -> excluding(et)

-- construct textual representation from simple type

-- instance representing potentially existing simple

-- content

if self.typedSimpleContent -> notEmpty() then

SimpleTypeInstance sti := self.typedSimpleContent ->

any(true)

self.simpleContent := sti.simpleType.

simpleTypeInstanceFactory.toString(sti)

-- remove reference to simple type instance

self.typedSimpleContent := self.typedSimpleContent ->

excluding(sti)

endif

In contrast to the construction of a corresponding untyped representation, the construction

of a corresponding typed representation of an element or attribute value in untyped represen-

tation is more complicated. This is due to the fact that elements or attribute values in untyped

representation do not, apart from the name and namespace of their respective element type or

attribute, convey type information that would allow the construction of a valid corresponding

typed representations solely on the basis of the untyped representation. Additional informa-

tion in form of a schema definition is needed. With the element types and attributes and the

associated type information contained in a schema definition, the respective element type or

attribute can be inferred to which an element or attribute value in untyped representation is

valid. Based on the inferred element type or attribute and the associated type information, a

corresponding typed representation can then be constructed straightforwardly.

To this end, we have developed typing automata. A typing automaton constitutes a well-

defined, executable representation of the schema and type information carried in a schema

definition that is capable of traversing an XML document, inferring the element types and

attributes to which the elements and attribute values of the document comply, and obtain-

ing corresponding typed representations of these elements accordingly. We will treat typing

automata in detail later in Section 5.

39

7. TDOM takes account of MPEG-7 DDL.

TDOM has been designed to take advantage of media description schemes written in MPEG-

7 DDL which accompany MPEG-7 media descriptions. These can be used to obtain typed

representations of elements and attribute values such that the document’s basic contents are

kept in a fashion appropriate to the respective content type. To facilitate extensive construction

of such typed representations for the basic contents that may occur in media descriptions,

TDOM furthermore is capable of embracing the plenitude of predefined simple types and simple

type derivation methods that come with MPEG-7 DDL via the simple type framework.

Since the purpose of TDOM is to effectively represent media descriptions and not the

description schemes to which they comply, however, the detailed representation of an MPEG-7

DDL media description scheme coming with a media description has been left out of the scope

of the model. Abstracting from the schema definition language, TDOM just presumes the

existence of element types, attributes, and simple types in a schema definition for the modeling

of typed representations.

The decision to abstract from the details of the schema definition language has the conve-

nient side effect that it leaves TDOM, though primarily intended for MPEG-7, applicable to

other application domains. In other domains, the typed representation of the basic contents

of an XML document might also be desirable, but schema definition languages different from

MPEG-7 DDL might play dominant roles. As an example taken from the domain of electronic

data interchange, the structure of business documents following the XML Common Business

Library (xCBL) [60] is defined with the schema definition languages SOX [14] and XDR [20].

In order to be able to validate an MPEG-7 media description against its description scheme

and to construct typed representations of the basic contents of the description, an MPEG-

7 database solution using TDOM as its data model must, of course, be able to process the

description scheme and provide means for its detailed representation. For this purpose, we

have complemented TDOM with the already-mentioned typing automata. Typing automata are

expressive enough to capture the schema and type information contained in media description

schemes written in MPEG-7 DDL but are nevertheless independent of MPEG-7 DDL. They can

therefore be used to represent schema definitions for XML documents indited in other schema

definition languages as well that might be encountered in different application domains.

40

5 Typing

In the previous section, we have introduced the TDOM data model for XML documents as a

basis for the development of an XML database solution that is suitable for the management of

MPEG-7 media descriptions. The design of TDOM already addresses several of the fundamental

requirements regarding the management of MPEG-7 media descriptions. The model’s main

virtue is that it offers the concept of typed representation for elements and attribute values

in XML documents. With typed representations, TDOM exploits available type information

contained in schema definitions such as MPEG-7 media description schemes to represent simple

element content and the content of attribute values appropriate to the particular content type

thereby allowing applications to reasonably access and process such contents. For cases that

type information is not available, TDOM still offers untyped representations where simple

element content and the content of attribute values is kept as text.

A central characteristic of TDOM is that representations can be switched depending on

the needs of a particular task. For instance, it may be useful to transform elements and

attribute values that are affected by an update operation to untyped representation prior to

the update. In that manner, they are decoupled from the schema definition permitting updates

that temporarily violate the schema. Similarly, it is reasonable during the import of XML

documents to TDOM, i.e., when bringing XML documents from their textual format into

TDOM representation, to first produce a TDOM representation of the document that makes

use of untyped representation only: untyped representations can be constructed without having

to consider schema information. As a second step, the elements and attribute values can then

be brought to corresponding typed representations by exploiting schema information for a more

reasonable representation of document contents.

While the straightforward construction of corresponding untyped representations of ele-

ments and attribute values in typed representation has already been covered, this section

discusses in detail how, given a media description scheme written in MPEG-7 DDL, corre-

sponding typed representations of elements and attribute values in untyped representation can

be obtained.

The discussion starts with some basic considerations on the problem (5.1). Then, the con-

41

cept of typing automata as a formal, executable, and language-neutral means for representing

the schema and type information carried by MPEG-7 media description schemes is proposed

(5.2). Typing automata are capable of inferring and creating typed representations of elements

and attribute values. The computational complexity of the behavior of typing automata is

examined (5.3) and, in order to reduce the effort necessary for creating typed representations

in many practical situations, optimizations are suggested (5.4). This section concludes showing

how the basic typing automaton mechanism can be extended, so that even the more complex

constructs of MPEG-7 DDL are supported and the expressiveness of that language is reached

(5.5).

5.1 Basic considerations

The construction of a corresponding typed representation of an element or attribute value in

untyped representation can be regarded as a process consisting essentially of two steps: firstly,

it has to be inferred to which element types or attributes declared in a schema definition the

element or attribute value is valid (if any). Secondly, a typed representation of the element

or attribute value has to be constructed based on the type information carried by one of the

inferred declarations. While the second step is pretty straightforward, implementing the first

step on the basis of schema definitions expressed in a schema definition language like MPEG-7

DDL quickly shows considerable complexity.

Figure 12 intends to get across a presentiment of this. It shows the sample MPEG-7 media

description known from Figure 2 in a TDOM representation consisting solely of untyped repre-

sentations along with the Melody media description scheme of Figure 1 to which the description

complies. The element type declarations spread all over the description scheme are highlighted.

For the first step in constructing typed representations, a TDOM implementation must find

out which element types the elements of the media description validly instantiate – i.e., the

implementation somehow has to infer exactly those relationships between elements and element

types which have been marked by dashed arrows in the figure.

But this inference is difficult: MPEG-7 DDL is a declarative schema definition language. It

defines no directly executable algorithm for inferring those declarations in a schema definition

that are validly instantiated by a particular element or attribute value. As it can be seen at

42

…

<complexType name=“MelodyType”>
<complexContent>

<extension base=“mpeg7:AudioDSType”>
<sequence>

<element name=“Meter”
type=“mpeg7:MeterType”
minOccurs=“0”/>

<element name=“MelodyContour”
type=“mpeg7:MelodyContourType”
minOccurs=“0”/>

</sequence>
</extension>

</complexContent>
</complexType>

<complexType name=“MelodyContourType”>
<complexContent>

<extension base=“mpeg7:AudioDSType”>
<sequence>

<element name=“Contour”>
<simpleType>

<list itemType=“integer”/>
</simpleType>

</element>
<element name=“Beat”>

<simpleType>
<list itemType=“integer”/>

</simpleType>
</element>

</sequence>
</extension>

</complexContent>
</complexType>

<complexType name=“MeterType”>
<complexContent>

<extension base=“mpeg7:AudioDType”>
<sequence>

<element name=“Numerator”>
<simpleType>

<restriction base=“integer”>
<minInclusive value=“1”/>
<maxInclusive value=“128”/>

</restriction>
</simpleType>

</element>
<element name=“Denominator”>

<simpleType>
<restriction base=“integer”>

<enumeration value=“1”/>
<enumeration value=“2”/>
<enumeration value=“4”/>
<enumeration value=“8”/>
<enumeration value=“16”/>

<enumeration value=“32”/>
<enumeration value=“64”/>
<enumeration value=“128”/>

</restriction>
</simpleType>

</element>
</sequence>

</extension>
</complexContent>

</complexType>

<element name=“AudioDescriptionScheme”
type=“mpeg7:AudioDSType”/>

…

melodyDescription:Document

rootNode

childNode

childNodechildNode childNode

childNode

childNode

parentNode

parentNode parentNode

audioDescriptionScheme:Element

typed=false
namespace=‘http://…‘
name=‘AudioDescriptionScheme‘
simpleContent=null

meter:Element

typed=false
namespace=‘http://…‘
name=‘Meter‘
simpleContent=null

melodyContour:Element

typed=false
namespace=‘http://…‘
name=‘MelodyContour‘
simpleContent=null

denominator:Element

typed=false
namespace=‘http://…‘
name=‘Denominator‘
simpleContent=‘4‘

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘3‘

contour:Element

typed=false
namespace=‘http://…‘
name=‘Contour‘
simpleContent=‘2 -1 -1…‘

beat:Element

typed=false
namespace=‘http://…‘
name=‘Beat‘
simpleContent=‘1 4 5…‘

…

<complexType name=“MelodyType”>
<complexContent>

<extension base=“mpeg7:AudioDSType”>
<sequence>

<element name=“Meter”
type=“mpeg7:MeterType”
minOccurs=“0”/>

<element name=“MelodyContour”
type=“mpeg7:MelodyContourType”
minOccurs=“0”/>

</sequence>
</extension>

</complexContent>
</complexType>

<complexType name=“MelodyContourType”>
<complexContent>

<extension base=“mpeg7:AudioDSType”>
<sequence>

<element name=“Contour”>
<simpleType>

<list itemType=“integer”/>
</simpleType>

</element>
<element name=“Beat”>

<simpleType>
<list itemType=“integer”/>

</simpleType>
</element>

</sequence>
</extension>

</complexContent>
</complexType>

<complexType name=“MeterType”>
<complexContent>

<extension base=“mpeg7:AudioDType”>
<sequence>

<element name=“Numerator”>
<simpleType>

<restriction base=“integer”>
<minInclusive value=“1”/>
<maxInclusive value=“128”/>

</restriction>
</simpleType>

</element>
<element name=“Denominator”>

<simpleType>
<restriction base=“integer”>

<enumeration value=“1”/>
<enumeration value=“2”/>
<enumeration value=“4”/>
<enumeration value=“8”/>
<enumeration value=“16”/>

<enumeration value=“32”/>
<enumeration value=“64”/>
<enumeration value=“128”/>

</restriction>
</simpleType>

</element>
</sequence>

</extension>
</complexContent>

</complexType>

<element name=“AudioDescriptionScheme”
type=“mpeg7:AudioDSType”/>

…

melodyDescription:Document

rootNode

childNode

childNodechildNode childNode

childNode

childNode

parentNode

parentNode parentNode

audioDescriptionScheme:Element

typed=false
namespace=‘http://…‘
name=‘AudioDescriptionScheme‘
simpleContent=null

meter:Element

typed=false
namespace=‘http://…‘
name=‘Meter‘
simpleContent=null

melodyContour:Element

typed=false
namespace=‘http://…‘
name=‘MelodyContour‘
simpleContent=null

denominator:Element

typed=false
namespace=‘http://…‘
name=‘Denominator‘
simpleContent=‘4‘

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘3‘

contour:Element

typed=false
namespace=‘http://…‘
name=‘Contour‘
simpleContent=‘2 -1 -1…‘

beat:Element

typed=false
namespace=‘http://…‘
name=‘Beat‘
simpleContent=‘1 4 5…‘

melodyDescription:Document

rootNode

childNode

childNodechildNode childNode

childNode

childNode

parentNode

parentNode parentNode

audioDescriptionScheme:Element

typed=false
namespace=‘http://…‘
name=‘AudioDescriptionScheme‘
simpleContent=null

audioDescriptionScheme:Element

typed=false
namespace=‘http://…‘
name=‘AudioDescriptionScheme‘
simpleContent=null

meter:Element

typed=false
namespace=‘http://…‘
name=‘Meter‘
simpleContent=null

meter:Element

typed=false
namespace=‘http://…‘
name=‘Meter‘
simpleContent=null

melodyContour:Element

typed=false
namespace=‘http://…‘
name=‘MelodyContour‘
simpleContent=null

melodyContour:Element

typed=false
namespace=‘http://…‘
name=‘MelodyContour‘
simpleContent=null

denominator:Element

typed=false
namespace=‘http://…‘
name=‘Denominator‘
simpleContent=‘4‘

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘3‘

contour:Element

typed=false
namespace=‘http://…‘
name=‘Contour‘
simpleContent=‘2 -1 -1…‘

beat:Element

typed=false
namespace=‘http://…‘
name=‘Beat‘
simpleContent=‘1 4 5…‘

denominator:Element

typed=false
namespace=‘http://…‘
name=‘Denominator‘
simpleContent=‘4‘

denominator:Element

typed=false
namespace=‘http://…‘
name=‘Denominator‘
simpleContent=‘4‘

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘3‘

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘3‘

contour:Element

typed=false
namespace=‘http://…‘
name=‘Contour‘
simpleContent=‘2 -1 -1…‘

contour:Element

typed=false
namespace=‘http://…‘
name=‘Contour‘
simpleContent=‘2 -1 -1…‘

beat:Element

typed=false
namespace=‘http://…‘
name=‘Beat‘
simpleContent=‘1 4 5…‘

beat:Element

typed=false
namespace=‘http://…‘
name=‘Beat‘
simpleContent=‘1 4 5…‘

Figure 12: Typing problem

hand of our example Melody media description scheme, MPEG-7 DDL furthermore supports

highly complex constructs for the structuring of schema definitions such as complex types and

complex type derivation that further complicate validation directly on the basis of DDL syntax.

Faced with these difficulties, the adoption of an artifice common to the discipline of compiler

construction lies close at hand. In compiler construction, declarative grammars are typically

translated to various kinds of formal automata that serve as simpler, executable intermediary

representations of grammars for the purpose of parsing. In a similar manner, MPEG-7 media

description schemes could be translated into a simpler intermediary and executable represen-

tation for the purpose of inferring valid element types and attributes.

In literature, several executable intermediary representations of schema definitions have

been proposed for XML document validation. Proposals include rather exotic approaches

that translate schema definitions to XSLT stylesheets [7] which transform XML documents

to HTML pages highlighting those places inside these documents that are not valid [37]. An-

other approach is to transform schema definitions to LL(1) grammars [39] which are then fed

into standard parser generators used for compiler construction to generate code for specialized

parsers specifically tailored to these schema definitions. Further approaches use various kinds

of formal automata for the intermediary representation of schema definitions, such as finite

state automata [50] (which can cover a restricted subset of non-recursive schema definitions

43

only due to their limited expressiveness), pushdown automata [50], and regular tree automata

[6, 42, 44, 47, 24]. The latter have heavily inspired the design of several schema definition

languages such as TREX [8] and RELAX-NG [10].

With regard to our typing problem, the adoption of regular tree automata as means for

the intermediary representation of schema and type information conveyed in MPEG-7 media

description schemes is especially attractive: regular tree automata essentially reduce the prob-

lem of validating an XML document to the problem of successively evaluating string regular

expressions. The evaluation of string regular expressions is well-understood and there exists a

broad variety of highly efficient software libraries for this purpose. Apart from the fact that

these libraries not only simplify the implementation of regular tree automata in practice, most

of these libraries – for instance, libraries that support Perl 5 regular expressions – additionally

offer powerful extensions to traditional regular expressions that prove useful to cope with more

complex constructs of MPEG-7 DDL. Regular tree automata also have manageable computa-

tional complexity: it is known that a deterministic regular tree automaton consumes a tree

with a running time linear to the number of tree nodes [11]. Last but not least, regular tree

automata permit a natural and intuitive representation of MPEG-7 media description schemes

as we will see.

S={Meter, MelodyContour, Contour, Beat, Numerator,

Denominator, AudioDescriptionScheme}

Q={et1, et2, et3, et4, et5, et6, et7}

D={list(integer), integer} F={et7}

d(Meter, et5 et6) = et1

d(MelodyContour, et3 et4) = et2

d(Contour, list(integer)) = et3

d(Beat, list(integer)) = et4

d(Numerator, integer) = et5

d(Denominator, integer) = et6

d(AudioDescriptionScheme, et1? et2?) = et7

…

<complexType name=“MelodyType”>

<complexContent>

<extension base=“mpeg7:AudioDSType”>

<sequence>

<element name=“Meter”

type=“mpeg7:MeterType”

minOccurs=“0”/>

<element name=“MelodyContour”

type=“mpeg7:MelodyContourType”

minOccurs=“0”/>

</sequence>

</extension>

</complexContent>

</complexType>

<complexType name=“MelodyContourType”>

<complexContent>

<extension base=“mpeg7:AudioDSType”>

<sequence>

<element name=“Contour”>

<simpleType>

<list itemType=“integer”/>

</simpleType>

</element>

<element name=“Beat”>

<simpleType>

<list itemType=“integer”/>

</simpleType>

</element>

</sequence>

</extension>

</complexContent>

</complexType>

<complexType name=“MeterType”>

<complexContent>

<extension base=“mpeg7:AudioDType”>

<sequence>

<element name=“Numerator”>

<simpleType>

<restriction base=“integer”>

<minInclusive value=“1”/>

<maxInclusive value=“128”/>

</restriction>

</simpleType>

</element>

<element name=“Denominator”>

<simpleType>

<restriction base=“integer”>

<enumeration value=“1”/>

<enumeration value=“2”/>

<enumeration value=“4”/>

<enumeration value=“8”/>

<enumeration value=“16”/>

<enumeration value=“32”/>

<enumeration value=“64”/>

<enumeration value=“128”/>

</restriction>

</simpleType>

</element>

</sequence>

</extension>

</complexContent>

</complexType>

<element name=“AudioDescriptionScheme”

type=“mpeg7:AudioDSType”/>

…

et6

et5

et7

et1

et2

et3

et4

Figure 13: Example tree automaton

To give an impression of regular tree automata and how they can serve as a means for

44

the intermediary representation of media description schemes, Figure 13 depicts the example

Melody media description scheme (depicted on the right-hand side of the figure) represented as

a bottom-up regular tree automaton5 (depicted on the left-hand side). The figure employs the

notation for regular tree automata introduced in [6].

As we can see to the left of the figure, a bottom-up regular tree automaton is basically a 5-

tuple consisting of the sets Σ defining the alphabet used for the naming of tree nodes, Q defining

the set of states that may be applied to the individual tree nodes during the consumption of

a tree by the automaton, D defining the set of datatypes to which leaf node contents have to

comply, F ⊆ Q defining the set of final states indicating a successful consumption of a tree,

and the function δ defining the transition rules according to which states are applied to tree

nodes.

A transition rule always takes a name n ∈ Σ and yields a state q ∈ Q. Two different variants

of transition rules are distinguished. The first variant is applicable to leaf nodes only and takes a

datatype d ∈ D as an argument in addition to n, e.g., δ(Contour, list(integer)) = et3. Whenever

a leaf node l bears the name n and has a content that complies to d, the transition rule fires and

q is applied to l. The second variant of transition rules is applicable to inner nodes only and

takes a string regular expression over Q as an additional argument, e.g., δ(Meter, et5 et6) = et1.

Whenever an inner node i bears the name n and there exists a concatenation of states applicable

to the child nodes of i that complies to the regular expression, the transition rules fires and q

is applied to i.

A bottom-up regular tree automaton starts consuming a tree at the leaf nodes making its

way up to the root node constantly trying to apply the transition rules to the nodes traversed.

If a state f ∈ F can be applied to the root node, then the tree has been successfully consumed

by the automaton.

As Figure 13 exemplifies, the formal mechanism of regular tree automata can be utilized for

the representation of the Melody media description scheme in a straightforward manner. Every

element type declared in the media description scheme is given a textual label (et1, . . . , et7

in this case) which is indicated in the figure by grey circles next to the declarations. These

5Note that literature also knows of top-down regular tree automata [11]. Since these classes are generally

equivalent to each other, our limitation to bottom-up regular tree automata implies no loss of generality.

45

labels make up the set of states Q. The idea is that, while consuming an XML document from

the bottom up, the tree automaton applies to an element exactly the labels of those element

types that are validly instantiated by the element. The labels of all unscoped element types

in the description scheme make up the set of final states F . Whenever the tree automaton

attaches one of these states to the root element, the document is considered valid because the

root element correctly instantiates a globally visible element type declaration.

Furthermore, the names of the element types declared in the media description scheme

(namespaces have been neglected for the sake of simplicity) make up the alphabet of allowed

tree node names Σ. The simple types used in the description scheme for the declaration of

element types with simple content constitute the set of datatypes D (again, some details of the

simple type declarations, such as enumerations and the like, have been omitted in this example

for simplicity reasons).

Finally, every element type declaration in the description scheme is translated to a corre-

sponding transition rule of the tree automaton. Each of these transition rules takes the name

of the declared element type as the first argument and yields the element type’s label as its

result. Depending on whether the content of the element type is declared as simple or complex,

a transition rule of the first or second variant is created. For element types with simple content,

the second argument of the transition rule is the simple type used for the content declaration.

For element types with complex content, the content model is translated to an equivalent regu-

lar expression based on the labels of those element types that occur in the content model. For

instance, the content model of the element type MelodyContour (which is labeled et2) consist-

ing of a sequence of elements of types Contour and Beat (labeled et3 and et4, respectively)

is translated to the regular expression et3 et4. The regular expression created in this manner

consitutes the second argument of the transition rule.

Figure 14 illustrates the consumption of our example MPEG-7 media description in TDOM

representation by the constructed bottom-up regular tree automaton. Beginning at the leaf

elements of the description, the automaton ascends through the tree structure as indicated by

the dashed arrows. For every element, the automaton fires as much transition rules as possible.

The figure shows the states yielded for the different elements of the media description as grey

circles. As the applicable states are labels representing the different element type declared in the

46

melodyDescription:Document

rootNode

parentNode

audioDescriptionScheme:Element

typed=false
namespace=‘http://…‘
name=‘AudioDescriptionScheme‘
simpleContent=null

et7

childNode

childNode childNode

parentNode

melodyContour:Element

typed=false
namespace=‘http://…‘
name=‘MelodyContour‘
simpleContent=null

contour:Element

typed=false
namespace=‘http://…‘
name=‘Contour‘
simpleContent=‘2 -1 -1…‘

beat:Element

typed=false
namespace=‘http://…‘
name=‘Beat‘
simpleContent=‘1 4 5…‘

et2

et3 et4et5

denominator:Element

typed=false
namespace=‘http://…‘
name=‘Denominator‘
simpleContent=‘4‘

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘3‘

childNodechildNode

childNode

parentNode

typed=false
namespace=‘http://…‘
name=‘Meter‘
simpleContent=null

et1

et6

meter:Element

melodyDescription:Document

rootNode

parentNode

audioDescriptionScheme:Element

typed=false
namespace=‘http://…‘
name=‘AudioDescriptionScheme‘
simpleContent=null

et7

childNode

childNode childNode

parentNode

melodyContour:Element

typed=false
namespace=‘http://…‘
name=‘MelodyContour‘
simpleContent=null

contour:Element

typed=false
namespace=‘http://…‘
name=‘Contour‘
simpleContent=‘2 -1 -1…‘

beat:Element

typed=false
namespace=‘http://…‘
name=‘Beat‘
simpleContent=‘1 4 5…‘

et2

et3 et4et5

denominator:Element

typed=false
namespace=‘http://…‘
name=‘Denominator‘
simpleContent=‘4‘

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘3‘

childNodechildNode

childNode

parentNode

typed=false
namespace=‘http://…‘
name=‘Meter‘
simpleContent=null

et1

et6

meter:Element

Figure 14: Tree automaton application (UML object diagram)

media description scheme, the automaton thus infers exactly those types that are instantiated

by the respective elements. Since the label et7 attached to the root element refers to the globally

visible element type AudioDescriptionScheme, the automaton has also found that the media

description as a whole is valid with regard to the Melody media description scheme.

5.2 Typing automata

As we have seen, bottom-up regular tree automata provide an intuitive formal foundation

for the intermediary, language-neutral representation of MPEG-7 media description schemes.

Their execution behaviour permits the inference of the element types and attributes that are

instantiated by the elements and attribute values in an MPEG-7 media description. For our

aim of constructing corresponding typed representations of elements and attribute values in

untyped representation within TDOM, we have therefore decided to pick up that mechanism

and to develop it further to what we call typing automata.

At their core, typing automata still constitute bottom-up regular tree automata. However,

they have been remodeled in an object-oriented fashion in order to be compatible and seam-

lessly applicable to XML documents represented with TDOM. During remodeling, special care

47

has been taken to keep typing automata extensible so that they can reach the expressiveness of

MPEG-7 DDL and are thus suitable for the representation of arbitrary MPEG-7 media descrip-

tion schemes. Further exceeding the functionality of regular tree automata, typing automata

are not only capable of validating XML documents and finding the element types and attribute

values instantiated by the elements and attribute values of an XML document; they are ad-

ditionally able to produce corresponding typed representations of the elements and attribute

values on the basis of these inferred element types and attributes in a second processing phase.

In the following, we introduce and formally specify typing automata by means of UML and

OCL. We begin by providing some basic definitions and by specifying the overall structure of

typing automata (5.2.1). For simplicity, we neglect the existence of attributes and attribute

values in the ensuing definitions (we will come back to attributes and attribute values and

how they can be incorporated into typing automata later in Section 5.5). We then specify the

behavior of typing automata when they are applied to TDOM-represented XML documents. We

have broken down the behavioral specification into two phases: the validation phase (5.2.2), in

which the element types instantiated by the elements of an XML document are inferred, and the

typing phase (5.2.3), in which elements in untyped representation are brought to corresponding

typed representations accordingly.

5.2.1 Structure

Before we can start with the structural definition of typing automata, some preliminaries have

to be addressed. In order to give a typing automaton the ability to address element types

within string regular expressions just like a regular tree automaton, the class ElementType

that represents element types within TDOM must be able to provide a textual label uniquely

identifying a given element type.

Definition 9 serves exactly that purpose. It introduces the formal shorthand etID which de-

livers a textual identifier for an element type consisting of four parts separated by the delimiter

"::": the first part is always the string "et" indicating that the ID refers to an element type.

The second part consists of the scope the element type, followed by the namespace and the

name of the element type as the third and fourth part. The inclusion of the scope, namespace,

and name of an element type into its ID has the advantage that these data can be accessed

48

within string regular expressions. As we will see later, this facilitates the implementation of

more complex constructs supported by MPEG-7 DDL on the basis of regular expressions.

namespace=‘http://...’
name=‘AudioDescriptionScheme’
scope=null

et7:ElementType

namespace=‘http://...’
name=‘Meter’
scope=‘MelodyType’

et1:ElementType

namespace=‘http://...’
name=‘MelodyContour’
scope=‘MelodyType’

et2:ElementType

namespace=‘http://...’
name=‘Numerator’
scope=‘MeterType’

et5:ElementType

namespace=‘http://...’
name=‘Denominator’
scope=‘MeterType’

et6:ElementType

namespace=‘http://...’
name=‘Contour’
scope=‘MelodyContourType’

et3:ElementType

namespace=‘http://...’
name=‘Beat’
scope=‘MelodyContourType’

et4:ElementType

et1.etID = ‘et::MelodyType::http://...::Meter’

et2.etID = ‘et::MelodyType::http://...::MelodyContour’

et3.etID = ‘et::MelodyContourType::http://...::Contour’

et4.etID = ‘et::MelodyContourType::http://...::Beat’

et5.etID = ‘et::MeterType::http://...::Numerator’

et6.etID = ‘et::MeterType::http://...::Denominator’

et7.etID = ‘et::null::http://...::AudioDescriptionScheme’namespace=‘http://...’
name=‘AudioDescriptionScheme’
scope=null

et7:ElementType

namespace=‘http://...’
name=‘Meter’
scope=‘MelodyType’

et1:ElementType

namespace=‘http://...’
name=‘MelodyContour’
scope=‘MelodyType’

et2:ElementType

namespace=‘http://...’
name=‘Numerator’
scope=‘MeterType’

et5:ElementType

namespace=‘http://...’
name=‘Denominator’
scope=‘MeterType’

et6:ElementType

namespace=‘http://...’
name=‘Contour’
scope=‘MelodyContourType’

et3:ElementType

namespace=‘http://...’
name=‘Beat’
scope=‘MelodyContourType’

et4:ElementType

namespace=‘http://...’
name=‘AudioDescriptionScheme’
scope=null

et7:ElementType

namespace=‘http://...’
name=‘AudioDescriptionScheme’
scope=null

et7:ElementType

namespace=‘http://...’
name=‘Meter’
scope=‘MelodyType’

et1:ElementType

namespace=‘http://...’
name=‘Meter’
scope=‘MelodyType’

et1:ElementType

namespace=‘http://...’
name=‘MelodyContour’
scope=‘MelodyType’

et2:ElementType

namespace=‘http://...’
name=‘MelodyContour’
scope=‘MelodyType’

et2:ElementType

namespace=‘http://...’
name=‘Numerator’
scope=‘MeterType’

et5:ElementType

namespace=‘http://...’
name=‘Numerator’
scope=‘MeterType’

et5:ElementType

namespace=‘http://...’
name=‘Denominator’
scope=‘MeterType’

et6:ElementType

namespace=‘http://...’
name=‘Denominator’
scope=‘MeterType’

et6:ElementType

namespace=‘http://...’
name=‘Contour’
scope=‘MelodyContourType’

et3:ElementType

namespace=‘http://...’
name=‘Contour’
scope=‘MelodyContourType’

et3:ElementType

namespace=‘http://...’
name=‘Beat’
scope=‘MelodyContourType’

et4:ElementType

namespace=‘http://...’
name=‘Beat’
scope=‘MelodyContourType’

et4:ElementType

et1.etID = ‘et::MelodyType::http://...::Meter’

et2.etID = ‘et::MelodyType::http://...::MelodyContour’

et3.etID = ‘et::MelodyContourType::http://...::Contour’

et4.etID = ‘et::MelodyContourType::http://...::Beat’

et5.etID = ‘et::MeterType::http://...::Numerator’

et6.etID = ‘et::MeterType::http://...::Denominator’

et7.etID = ‘et::null::http://...::AudioDescriptionScheme’

et1.etID = ‘et::MelodyType::http://...::Meter’

et2.etID = ‘et::MelodyType::http://...::MelodyContour’

et3.etID = ‘et::MelodyContourType::http://...::Contour’

et4.etID = ‘et::MelodyContourType::http://...::Beat’

et5.etID = ‘et::MeterType::http://...::Numerator’

et6.etID = ‘et::MeterType::http://...::Denominator’

et7.etID = ‘et::null::http://...::AudioDescriptionScheme’

Figure 15: Example element type IDs (UML object diagram)

Figure 15 illustrates element type IDs by showing the element types occurring the example

Melody media description scheme represented as instances of ElementType together with their

IDs.

Definition 9 (Element type ID)

context ElementType def:

let etID : String =

"et::".concat(scope.concat("::".concat(

namespace.concat("::".concat(name)))))

49

There may be situations in which no element type is declared in a schema definition that suits

a particular element in an XML document. Nevertheless, the document does not necessarily

have to be invalid: the element of unknown type might validly occur, for example, in an

element whose content is defined via the <any> construct of MPEG-7 DDL. In order to be able

to proceed with the consumption of the document, a typing automaton needs a textual label

for the unknown type of the element. Definition 10 introduces the shorthand uetID for the

class Element that provides such an identifyer for an unknown element type. The IDs delivered

by uetID are very similar to those delivered by etID. The only differences are that they always

start with the prefix "uet" to distinguish them from known element types declared in a schema

definition and that the scope fraction of the ID is always set to "null".

Definition 10 (Unknown Element type ID)

context Element def:

let uetID : String =

"uet::null::".concat(etNamespace.concat("::".concat(etName)))

TypingAutomaton

ElementType

name : String
namespace : String
scope : String

0..n

0..n

+state0..n

0..n

Condition

+ evaluate()
+ type()

TransitionRule

0..n

1

0..n

1

1 0..n
+resultState
1 0..n 10..1 10..1

ComplexContentCondition

+ regExp : String

+ evaluate()
+ type()

SimpleContentCondition

+ evaluate()
+ type()

SimpleType

name : String
namespace : String
scope : String

0..n1 0..n1

Figure 16: Typing automaton structure (UML class diagram)

After these preliminaries, we can now provide the specification of typing automata. Figure

16 defines the structure of a typing automaton by means of an UML class diagram. As it can be

50

seen from that diagram, a typing automaton, which is modeled by the class TypingAutomaton,

consists of a set of states, which are element types represented by the TDOM class ElementType,

and a set of transition rules modeled by the class TransitionRule. Transition rules define how

the states, i.e., element types, are to be applied to the elements of a TDOM-represented XML

document when the document is consumed by the automaton. A transition rule consists of two

parts: the result state which is applied to an element when the transition rule is applicable and

a condition that decides applicability.

Conditions are represented by the abstract base class Condition which offers two abstract

methods evaluate() and type(). The method evaluate() takes an element and the transi-

tion rule to which the condition belongs as its arguments and returns whether the condition

represented by a Condition object is satisfied by the element or not. The method type()

takes an element and the transition rule to which the condition belongs as its arguments and

transforms the element to a corresponding typed representation in a way that depends on the

particular kind of condition.

Subsuming the conditions of transition rules under an abstract base class makes typing au-

tomata extensible with regard to expressiveness. Different kinds of conditions can be integrated

with the basic typing automaton mechanism by subclassing Condition and providing the meth-

ods evaluate() and type() until all constructs offered by a schema definition language like

MPEG-7 DDL are supported by typing automata as well.

For the beginning, we restrict ourselves to the expressiveness of bottom-up regular

tree automata. We introduce two kinds of conditions, namely simple content conditions

and complex content conditions represented by the classes SimpleContentCondition and

ComplexContentCondition, respectively. Essentially, a simple content condition refers to a

simple type which is represented by the class SimpleType of TDOM’s simple type framework.

The condition is fulfilled if an element has simple content and if this simple content is a valid

instance of the simple type referenced. A complex content condition consists of a Perl 5 string

regular expression (kept in the attribute regExp) and is fulfilled if an element has complex

content and the concatenation of the IDs of the element types applicable to the element’s child

elements satisfy the regular expression. Hence, both variants of transition rules that are of-

fered by traditional regular tree automata can be expressed using simple content conditions

51

and complex content conditions within a typing automaton as well.

Constraint 10 imposes several structural restrictions on typing automata. Firstly, it is

ensured that there exists at least one transition rule for every state of a typing automaton that

features exactly that state as its result state. Otherwise a typing automaton would have states

that would never be applied to an element. Secondly, it is ensured that every result state of a

transition rule also occurs among the states of the typing automaton in which the transition

rule is contained.

Constraint 10 (Typing automaton)

context TypingAutomaton

inv: state -> forAll(et | transitionRule -> exists(r |

r.resultState = et))

context TransitionRule

inv: typingAutomaton.state -> includes(resultState)

We conclude the structural definition of typing automata with an example. The UML object

diagram of Figure 17 depicts all transition rules of a typing automaton capturing our example

Melody media description scheme. Just as with the regular tree automaton of Figure 13, a

corresponding transition rule has been constructed for every element type declaration contained

in the scheme. Each transition rule refers to the corresponding element type declared as its

result state. Depending on whether the element type declaration defines a simple or complex

content model, simple content conditions or complex content conditions have been created

appropriately. Due to limitations of space, we refrain from using the full element type IDs as

given by Figure 15 within the regular expressions of complex content conditions. Instead, we

use ‘et.etID‘ as a placeholder for the ID of element type et.

5.2.2 Validation phase

Having specified the structure of typing automata, we are now able to continue with the spec-

ification of their behavior. As already mentioned, the consumption of an XML document in

TDOM representation by a typing automaton proceeds in two phases. During the first of these

52

namespace=‘http://...’

name=‘AudioDescriptionScheme ’

scope=null

et7:ElementType

tr7:TransitionRule

regExp=‘(`et1.etID`)?(`et2.etID`)?’

c7:ComplexContentCondition

evaluate()

type()

resultState

namespace=‘http://...’

name=‘Numerator’

scope=‘MeterType’

et5:ElementType c5:SimpleContentCondition

evaluate()

type()

tr5:TransitionRule

resultState
namespace=‘http://...’

name=null

scope=‘Numerator’

st3:SimpleType

namespace=‘http://...’

name=‘Denominator’

scope=‘MeterType’

et6:ElementType c6:SimpleContentCondition

evaluate()

type()

tr6:TransitionRule

resultState
namespace=‘http://...’

name=null

scope=‘Denominator’

st4:SimpleType

namespace=‘http://...’

name=‘MelodyContour’

scope=‘MelodyType’

et2:ElementType

tr2:TransitionRule

regExp=‘`et3.etID``et4.etID`’

c2:ComplexContentCondition

evaluate()

type()

resultState

namespace=‘http://...’

name=‘Contour’

scope=‘MelodyContourType’

et3:ElementType c3:SimpleContentCondition

evaluate()

type()

tr3:TransitionRule

resultState
namespace=‘http://...’

name=null

scope=‘Contour’

st1:SimpleType

namespace=‘http://...’

name=‘Beat’

scope=‘MelodyContourType’

et4:ElementType c4:SimpleContentCondition

evaluate()

type()

tr4:TransitionRule

resultState
namespace=‘http://...’

name=null

scope=‘Beat’

st2:SimpleType

namespace=‘http://...’

name=‘Meter’

scope=‘MelodyType’

et1:ElementType

tr1:TransitionRule

regExp=‘`et5.etID``et6.etID`’

c1:ComplexContentCondition

evaluate()

type()

resultState

Figure 17: Example transition rules (UML object diagram)

phases, the validation phase, the element types which the elements of the document validly

instantiate are inferred. A typing automaton does this in a way similar to bottom-up regular

tree automata: the automaton attempts to apply all transition rules to each of the document’s

53

elements. The element types serving as the result states of all those transition rules that are

applicable to a given element are called the element’s applicable element types.

This notion is formally concretized by Definition 11. According to the definition, an element

type et is applicable to an element e if and only if the name and namespace of et match the

element type name and namespace of e and if the typing automaton has a transition rule which

bears et as its result state and for which its condition evaluates to true for e.

Definition 11 (Applicable element types)

context TypingAutomaton def:

let applicableElementTypes(Element e) : Set(ElementType) =

states -> select(et | transitionRule -> exists(tr |

et = tr.resultState and

e.etName = et.name and

e.etNamespace = et.namespace and

tr.condition.evaluate(e, tr)))

We then define an XML document to be valid with regard to a typing automaton, if there

exists an applicable element type for the document’s root element that is not scoped, i.e., that

is globally visible. This is formally expressed by Definition 12.

Definition 12 (Valid document)

context TypingAutomaton def:

let valid(Document d) : Boolean =

applicableElementTypes(d.rootElement) -> exists (et |

et.scope = null)

In Definition 11, much of the complexity of validating an XML document with regard to a

typing automaton lies hidden within the method evaluate() of the abstract class Condition.

For a complete specification, the respective implementation of this method for both kinds of

conditions that we consider so far, simple content conditions and complex content conditions,

has to be detailed.

Definition 13 specifies the behavior of the method evaluate() for the class

SimpleContentCondition. The method checks whether an element has simple content and

54

whether that simple content complies to the simple type referenced by the simple content con-

dition. Taking a closer look at the postconditions contained in the definition, evaluate()

returns false if the element passed as the method’s argument does not have simple content,

i.e., the element has either complex content or empty content. In case that the element is

in typed representation and has simple content, evaluate() returns true, if and only if an

instance of the simple type referenced by the simple content condition can be successfully con-

structed from the textual representation of the element’s content using the simple type instance

factory of TDOM’s simple type framework that is associated with the simple type. In case that

the element is in untyped representation and has simple content, evaluate() returns true, if

and only if an instance of the simple type referenced by the simple content condition can be

successfully constructed from the element’s content.

Definition 13 (Evaluation of simple content condition)

context SimpleContentCondition::evaluate(Element e, TransitionRule tr) : Boolean

post: e.childNode -> notEmpty() or

(e.typedSimpleContent -> isEmpty() and

e.simpleContent = null) implies

result = false

post: e.typedSimpleContent -> notEmpty() implies

result = self.simpleType.simpleTypeInstanceFactory.

fromString(e.typedSimpleContent.getSimpleType().

simpleTypeInstanceFactory.

toString(e.typedSimpleContent)) <> null

post: e.simpleContent <> null implies

result = self.simpleType.simpleTypeInstanceFactory.

fromString(e.simpleContent) <> null

Definition 14 specifies the behavior of the method evaluate() for the class

ComplexContentCondition. The method checks whether an element has complex content

and whether the IDs of the element types applicable to the element’s child elements satisfy the

string regular expression of the complex content condition. Closer inspecting the postcondi-

tions of the definition, evaluate() always returns false if the element passed as the method’s

55

argument has simple content. If the element does not have simple content, evaluate() returns

true if and only if there exists a sequence of element types applicable to the element’s child

elements for which holds that the sequence’s signature, i.e., the concatenation of the element

type IDs in the sequence, matches the condition’s regular expression.6

Definition 14 (Evaluation of complex content condition)

context ComplexContentCondition::evaluate(Element e, TransitionRule tr) : Boolean

post: e.typedSimpleContent -> notEmpty() or

e.simpleContent <> null implies

result = false

post: e.typedSimpleContent -> isEmpty() and

e.simpleContent = null implies

result = tr.typingAutomaton.

applicableChildElementTypes(e) -> exists(acet |

tr.typingAutomaton.signature(acet).matches(regExp))

Definition 15 serves to clarify the meaning of the construct

applicableChildElementTypes(e) used in the previous definition to denote sequences

of element types applicable to the child elements of a given element e. More precisely,

applicableChildElementTypes(e) refers to the set of all possible sequences that have the

same size as the sequence of child elements of e and whose members satisfy the following

conditions: if the set of applicable element types for a given child element of e is not empty,

then the member of the sequence at the position corresponding to the position of the child

element below e must be one of these applicable element types. If the set of applicable element

types for a given child element of e is empty, then the member of the sequence at the position

corresponding to the position of the child element must be the child element itself.

Definition 15 (Applicable child element types)

6For the definition, we assume that the type String predefined by OCL supplies the operation matches

which evaluates a given string against a Perl 5 regular expression and returns true if and only if the string

constitutes a valid word of the language defined by that regular expression.

56

context TypingAutomaton def:

let applicableChildElementTypes(Element e) : Set(Sequence(OclAny)) =

Sequence(OclAny).allInstances -> select(seq |

seq -> size() = e.childElements -> size() and

Sequence{1..seq -> size()} -> forAll(i |

(applicableElementTypes(e.childElements -> at(i))

-> notEmpty() implies

applicableElementTypes(e.childElements -> at(i))

-> contains(seq -> at(i)) and

(applicableElementTypes(e.childElements -> at(i))

-> isEmpty() implies

e.childElements -> at(i) = seq -> at(i)))))

For the sake of completeness, Definition 16 finally provides us with the specification of the

signature of a sequence of applicable child element types as employed within Definition 14. This

signature is simply the concatenation of of all element type IDs and unknown element type IDs

of all element types and elements contained in that sequence, respectively.

Definition 16 (Signature)

context TypingAutomaton def:

let signature(Sequence(OclAny) seq) : String =

seq -> iterate(

obj : OclAny;

res : String = "";

if obj.oclIsTypeOf(ElementType) then

res.concat(obj.etID)

elseif obj.oclIsTypeOf(Element) then

res.concat(obj.uetID)

endif

)

One might get the impression that due to the mutually recursive definition of

applicableElementTypes() and applicableChildElementTypes() via the indirection of the

57

method evaluate() of the class ComplexContentCondition, the behavior of a typing automa-

ton during the validation phase consitutes a form of top-down processing. However, one should

consider that, according to these definitions, the recursion immediately descends down to the

leaf elements of a document without performing any calculations; the applicable element types

are not inferred until the recursion ascends back up the document on its way from the leaves.

Thus, not denying its origin from bottom-up regular tree automata, a typing automaton’s

behaviour during the validation phase rather has to be considered as bottom-up processing.

5.2.3 Typing phase

If a typing automaton has succeeded in validating an XML document in TDOM representation

and inferring the element types applicable to the document’s element during the validation

phase, it enters its second phase of processing, the so-called typing phase. Starting out from

the root element in a top-down manner, the automaton uses the applicable element types

inferred during the validation phase to transform the individual elements of the document to

corresponding typed representations.

Figure 18 illustrates the typing phase of a typing automaton using our example MPEG-7

Melody media description. Beginning at the root element, the typing automaton selects an

applicable unscoped element type for the root element – et7 in this case as it is the only one

available – and uses this element type to bring the root element into a corresponding typed

representation (1). Having transformed the root element to typed representation, the automa-

ton proceeds with the root’s child elements and selects one of their applicable element types

to produce corresponding typed representations as well (2). In that fashion, the automaton

continues on descending down the document (3) until the leaf elements of the document have

been reached and transformed to corresponding typed representations (4).

The core of a typing automaton’s behavior during the typing phase is given by Definition 17.

This definition formally introduces the method typeElement() of the TypingAutomaton class.

The method is passed an element e and an element type et as its parameters. As specified

by the pre- and postconditions in the definition, the method transforms e to a corresponding

typed representations on the basis of et provided that e is in untyped representation and that

et is applicable to e. The transformation recursively brings as much of the child elements of

58

melodyDescription:Document

rootNode

audioDescriptionScheme:Element

typed=false
namespace=‘http://…‘
name=‘AudioDescriptionScheme‘
simpleContent=null

parentNode

…

type()

type(et7)
parentNode

audioDescriptionScheme:Element

typed=true

childNode childNode

melodyContour:Element

typed=false
namespace=‘http://…‘
name=‘MelodyContour‘
simpleContent=null

typed=false
namespace=‘http://…‘
name=‘Meter‘
simpleContent=null

meter:Element

parentNode

…

parentNode

…

namespace=‘http://...’
name=‘AudioDescriptionScheme’
scope=null

et7:ElementType
elementType

type(et2)type(et1)

parentNode

childNode

namespace=‘http://...’
name=‘Meter’
scope=‘MelodyType’

et1:ElementType
elementType

type(et6)type(et5)

typed=true

meter:Element

childNode

denominator:Element

typed=false
namespace=‘http://…‘
name=‘Denominator‘
simpleContent=‘4‘

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘3‘

parentNode

childNode

namespace=‘http://...’
name=‘MelodyContour’
scope=‘MelodyType’

et2:ElementType
elementType

type(et4)type(et3)

childNode

melodyContour:Element

typed=true

contour:Element

typed=false
namespace=‘http://…‘
name=‘Contour‘
simpleContent=‘2 -1 -1…‘

beat:Element

typed=false
namespace=‘http://…‘
name=‘Beat‘
simpleContent=‘1 4 5…‘

namespace=‘http://...’
name=‘Numerator’
scope=‘MeterType’

et5:ElementType

elementType

numerator:Element

typed=true

namespace=‘http://...’
name=‘Denominator’
scope=‘MeterType’

et6:ElementType

elementType

denominator:Element

typed=true

namespace=‘http://...’
name=‘Contour’
scope=‘MelodyContourType’

et3:ElementType

elementType

contour:Element

typed=true

namespace=‘http://...’
name=‘Beat’
scope=‘MelodyContourType’

et4:ElementType

elementType

beat:Element

typed=true

value=3

equalTo()
getSimpleType()
lessThan()
...

:Integer

typedSimpleContent

value=4

equalTo()
getSimpleType()
lessThan()
...

:Integer

typedSimpleContent

:List

equalTo()
getSimpleType()
addElement()
elementAt()
size()
...

typedSimpleContent

:List

equalTo()
getSimpleType()
addElement()
elementAt()
size()
...

typedSimpleContent

1 2

3

4

et7 et2et1

et3 et4et5 et6

melodyDescription:Document

rootNode

audioDescriptionScheme:Element

typed=false
namespace=‘http://…‘
name=‘AudioDescriptionScheme‘
simpleContent=null

parentNode

…

type()

type(et7)
parentNode

audioDescriptionScheme:Element

typed=true

childNode childNode

melodyContour:Element

typed=false
namespace=‘http://…‘
name=‘MelodyContour‘
simpleContent=null

typed=false
namespace=‘http://…‘
name=‘Meter‘
simpleContent=null

meter:Element

parentNode

…

parentNode

…

namespace=‘http://...’
name=‘AudioDescriptionScheme’
scope=null

et7:ElementType
elementType

type(et2)type(et1)

parentNode

childNode

namespace=‘http://...’
name=‘Meter’
scope=‘MelodyType’

et1:ElementType
elementType

type(et6)type(et5)

typed=true

meter:Element

childNode

denominator:Element

typed=false
namespace=‘http://…‘
name=‘Denominator‘
simpleContent=‘4‘

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘3‘

parentNode

childNode

namespace=‘http://...’
name=‘MelodyContour’
scope=‘MelodyType’

et2:ElementType
elementType

type(et4)type(et3)

childNode

melodyContour:Element

typed=true

contour:Element

typed=false
namespace=‘http://…‘
name=‘Contour‘
simpleContent=‘2 -1 -1…‘

beat:Element

typed=false
namespace=‘http://…‘
name=‘Beat‘
simpleContent=‘1 4 5…‘

namespace=‘http://...’
name=‘Numerator’
scope=‘MeterType’

et5:ElementType

elementType

numerator:Element

typed=true

namespace=‘http://...’
name=‘Denominator’
scope=‘MeterType’

et6:ElementType

elementType

denominator:Element

typed=true

namespace=‘http://...’
name=‘Contour’
scope=‘MelodyContourType’

et3:ElementType

elementType

contour:Element

typed=true

namespace=‘http://...’
name=‘Beat’
scope=‘MelodyContourType’

et4:ElementType

elementType

beat:Element

typed=true

value=3

equalTo()
getSimpleType()
lessThan()
...

:Integer

typedSimpleContent

value=4

equalTo()
getSimpleType()
lessThan()
...

:Integer

typedSimpleContent

:List

equalTo()
getSimpleType()
addElement()
elementAt()
size()
...

typedSimpleContent

:List

equalTo()
getSimpleType()
addElement()
elementAt()
size()
...

typedSimpleContent

1 2

3

4

melodyDescription:Document

rootNode

audioDescriptionScheme:Element

typed=false
namespace=‘http://…‘
name=‘AudioDescriptionScheme‘
simpleContent=null

parentNode

…

type()

type(et7)
parentNode

audioDescriptionScheme:Element

typed=true

childNode childNode

melodyContour:Element

typed=false
namespace=‘http://…‘
name=‘MelodyContour‘
simpleContent=null

typed=false
namespace=‘http://…‘
name=‘Meter‘
simpleContent=null

meter:Element

parentNode

…

parentNode

…

namespace=‘http://...’
name=‘AudioDescriptionScheme’
scope=null

et7:ElementType
elementType

type(et2)type(et1)

melodyDescription:Document

rootNode

audioDescriptionScheme:Element

typed=false
namespace=‘http://…‘
name=‘AudioDescriptionScheme‘
simpleContent=null

parentNode

…

type()

type(et7)

melodyDescription:Document

rootNode

audioDescriptionScheme:Element

typed=false
namespace=‘http://…‘
name=‘AudioDescriptionScheme‘
simpleContent=null

audioDescriptionScheme:Element

typed=false
namespace=‘http://…‘
name=‘AudioDescriptionScheme‘
simpleContent=null

parentNode

…

parentNode

…

type()

type(et7)
parentNode

audioDescriptionScheme:Element

typed=true

childNode childNode

melodyContour:Element

typed=false
namespace=‘http://…‘
name=‘MelodyContour‘
simpleContent=null

childNode

melodyContour:Element

typed=false
namespace=‘http://…‘
name=‘MelodyContour‘
simpleContent=null

melodyContour:Element

typed=false
namespace=‘http://…‘
name=‘MelodyContour‘
simpleContent=null

typed=false
namespace=‘http://…‘
name=‘Meter‘
simpleContent=null

meter:Element

typed=false
namespace=‘http://…‘
name=‘Meter‘
simpleContent=null

meter:Element

parentNode

…

parentNode

…

parentNode

…

parentNode

…

namespace=‘http://...’
name=‘AudioDescriptionScheme’
scope=null

et7:ElementType
elementType

type(et2)type(et1)

parentNode

childNode

namespace=‘http://...’
name=‘Meter’
scope=‘MelodyType’

et1:ElementType
elementType

type(et6)type(et5)

typed=true

meter:Element

childNode

denominator:Element

typed=false
namespace=‘http://…‘
name=‘Denominator‘
simpleContent=‘4‘

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘3‘

parentNode

childNode

namespace=‘http://...’
name=‘MelodyContour’
scope=‘MelodyType’

et2:ElementType
elementType

type(et4)type(et3)

childNode

melodyContour:Element

typed=true

contour:Element

typed=false
namespace=‘http://…‘
name=‘Contour‘
simpleContent=‘2 -1 -1…‘

beat:Element

typed=false
namespace=‘http://…‘
name=‘Beat‘
simpleContent=‘1 4 5…‘

parentNode

childNode

namespace=‘http://...’
name=‘Meter’
scope=‘MelodyType’

et1:ElementType

namespace=‘http://...’
name=‘Meter’
scope=‘MelodyType’

et1:ElementType
elementType

type(et6)type(et5)

typed=true

meter:Element

typed=true

meter:Element

childNode

denominator:Element

typed=false
namespace=‘http://…‘
name=‘Denominator‘
simpleContent=‘4‘

denominator:Element

typed=false
namespace=‘http://…‘
name=‘Denominator‘
simpleContent=‘4‘

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘3‘

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘3‘

parentNode

childNode

namespace=‘http://...’
name=‘MelodyContour’
scope=‘MelodyType’

et2:ElementType

namespace=‘http://...’
name=‘MelodyContour’
scope=‘MelodyType’

et2:ElementType
elementType

type(et4)type(et3)

childNode

melodyContour:Element

typed=true

melodyContour:Element

typed=true

contour:Element

typed=false
namespace=‘http://…‘
name=‘Contour‘
simpleContent=‘2 -1 -1…‘

contour:Element

typed=false
namespace=‘http://…‘
name=‘Contour‘
simpleContent=‘2 -1 -1…‘

beat:Element

typed=false
namespace=‘http://…‘
name=‘Beat‘
simpleContent=‘1 4 5…‘

beat:Element

typed=false
namespace=‘http://…‘
name=‘Beat‘
simpleContent=‘1 4 5…‘

namespace=‘http://...’
name=‘Numerator’
scope=‘MeterType’

et5:ElementType

elementType

numerator:Element

typed=true

namespace=‘http://...’
name=‘Denominator’
scope=‘MeterType’

et6:ElementType

elementType

denominator:Element

typed=true

namespace=‘http://...’
name=‘Contour’
scope=‘MelodyContourType’

et3:ElementType

elementType

contour:Element

typed=true

namespace=‘http://...’
name=‘Beat’
scope=‘MelodyContourType’

et4:ElementType

elementType

beat:Element

typed=true

value=3

equalTo()
getSimpleType()
lessThan()
...

:Integer

typedSimpleContent

value=4

equalTo()
getSimpleType()
lessThan()
...

:Integer

typedSimpleContent

:List

equalTo()
getSimpleType()
addElement()
elementAt()
size()
...

typedSimpleContent

:List

equalTo()
getSimpleType()
addElement()
elementAt()
size()
...

typedSimpleContent

namespace=‘http://...’
name=‘Numerator’
scope=‘MeterType’

et5:ElementType

namespace=‘http://...’
name=‘Numerator’
scope=‘MeterType’

et5:ElementType

elementType

numerator:Element

typed=true

numerator:Element

typed=true

namespace=‘http://...’
name=‘Denominator’
scope=‘MeterType’

et6:ElementType

namespace=‘http://...’
name=‘Denominator’
scope=‘MeterType’

et6:ElementType

elementType

denominator:Element

typed=true

denominator:Element

typed=true

namespace=‘http://...’
name=‘Contour’
scope=‘MelodyContourType’

et3:ElementType

namespace=‘http://...’
name=‘Contour’
scope=‘MelodyContourType’

et3:ElementType

elementType

contour:Element

typed=true

contour:Element

typed=true

namespace=‘http://...’
name=‘Beat’
scope=‘MelodyContourType’

et4:ElementType

namespace=‘http://...’
name=‘Beat’
scope=‘MelodyContourType’

et4:ElementType

elementType

beat:Element

typed=true

beat:Element

typed=true

value=3

equalTo()
getSimpleType()
lessThan()
...

:Integer

value=3

equalTo()
getSimpleType()
lessThan()
...

value=3

equalTo()
getSimpleType()
lessThan()
...

:Integer

typedSimpleContent

value=4

equalTo()
getSimpleType()
lessThan()
...

:Integer

typedSimpleContent

value=4

equalTo()
getSimpleType()
lessThan()
...

:Integer

value=4

equalTo()
getSimpleType()
lessThan()
...

value=4

equalTo()
getSimpleType()
lessThan()
...

:Integer

typedSimpleContent

:List

equalTo()
getSimpleType()
addElement()
elementAt()
size()
...

:List

equalTo()
getSimpleType()
addElement()
elementAt()
size()
...

equalTo()
getSimpleType()
addElement()
elementAt()
size()
...

typedSimpleContent

:List

equalTo()
getSimpleType()
addElement()
elementAt()
size()
...

:List

equalTo()
getSimpleType()
addElement()
elementAt()
size()
...

equalTo()
getSimpleType()
addElement()
elementAt()
size()
...

typedSimpleContent

1 2

3

4

et7 et2et1

et3 et4et5 et6

Figure 18: Typing phase (UML object diagrams)

e as possible to corresponding typed representations. More precisely, there are only two cases

in which one of the direct or indirect child elements of e is not transformed to a corresponding

typed representation using one of its applicable element types: in case that the child element has

no such applicable element types or in case that its parent element has not been transformed to

typed representation either. Consideration of the latter case is necessary because it happen that

an element has applicable element types while its parent element has not. As a corresponding

typed representation of the parent element thus cannot be constructed and TDOM does not

allow an element in typed representation to appear among the child nodes of an element in

untyped representation, a corresponding typed representation of the element itself also cannot

be created.

The pseudocode given in the definition proposes a simple algorithm for the implementation

of this method that consists of two major steps: in the first step, a transition rule of the typing

59

automaton is selected that has decided in the validation phase that et is applicable to e. I.e.,

the chosen transition rule must return et as its result state and its condition must evaluate to

true for e. In the second step, the element is passed on to the type() method of the transition

rule’s condition which brings it into a corresponding typed representation in a way that depends

on the particular kind of condition.

Definition 17 (Typing elements)

context TypingAutomaton::typeElement(Element e, ElementType et)

pre: not(e.typed)

pre: self.applicableElementTypes(e) -> includes(et)

post: e.CUR(e@pre)

post: e.elementType = et

post: e.allChildElements -> forAll(c |

not(c.CUR(c@pre) and

self.applicableElementTypes(c) -> includes(c.elementType)) implies

self.applicableElementTypes(c) -> isEmpty() or

not(c.parentNode.typed))

pseudocode:

-- Find a transition rule which decides that the element

-- type is applicable

tr := self.transitionRule -> any(tr1 |

tr1.resultState = et and

tr1.condition.evaluate(e, tr1))

-- Type element according to the transition rule’s condition

tr.condition.type(e, tr)

Note that the proposed algorithm bears a source of inefficiency if implemented naively. It

includes the selection of a transition rule deciding that et is applicable to e. Simply realizing this

step by checking all transition rules of the typing automaton until one is found that delivers

et as its result state and whose condition evaluates to true for e is not very efficient: this

calculation has already been performed during the validation phase – not to mention the fact,

that the repeated evaluation of a complex content condition might involve the inference of the

60

applicable element types of e’s child elements which has already been done in the validation

phase as well.

Nevertheless, the typeElement() method can be realized efficiently at the expense of main

memory without needing to change the overall structure of the proposed algorithm. While

traversing an XML document from the bottom-up inferring the applicable element types during

the validation phase, the typing automaton can cache for each element of the document (a)

its applicable element types and (b) the transition rule which decided that an element type

is applicable. With these data at hand, the selection in question merely constitutes a simple

cache lookup operation.

Definition 18 specifies common characteristics of the type() method that have to be ful-

filled by every implementation of that method in the subclasses of Condition, even though

the concrete behaviour of these implementations depends on the particular kind of condition.

According to the pre- and postconditions given by the definition, all implementations of type()

have in common that whenever they are passed an element in untyped representation as their

first argument which has the same element type name and namespace as the element type

acting as the result state of the transition rule passed as their second argument and for which

the condition evaluates to true, they bring the element and as much of its direct and indirect

child elements as possible into a corresponding typed representation on the basis of the result

state.

Definition 18 (Typing functionality of Conditions)

context Condition::type(Element e, TransitionRule tr)

pre: not(e.typed)

pre: tr.resultState.name = e.etName

pre: tr.resultState.namespace = e.etNamespace

pre: self.evaluate(e, tr)

post: e.CUR(e@pre)

post: e.elementType = tr.resultState

post: e.allChildElements -> forAll(c |

not(c.CUR(c@pre) and tr.typingAutomaton.

applicableElementTypes(c) -> includes(c.elementType)) implies

61

tr.typingAutomaton.applicableElementTypes(c) -> isEmpty() or

not(c.parentNode.typed))

Definition 19 proposes an algorithm for the implementation of the type() method for sim-

ple content conditions. The algorithm transforms elements with simple content, that are in

untyped representation and foe which a given simple content condition evaluates to true, into

a suitable corresponding typed representation. Following the pseudocode given by the defini-

tion, type() first changes the basic structure of the passed element to typed representation,

i.e., the element’s type attribute is set to true, the name and namespace attributes are set

to null, and the element is associated with the element type acting as the result state of the

passed transition rule. Then, employing the factory of the simple type associated with the

simple content condition, an appropriate simple type instance for the simple element content is

constructed and linked with the element. Note that this is always possible as the preconditions

of the type() method assure that a call of the evaluate() method of the condition yields

true; evaluate() already checks whether a simple type instance can be constructed for the

element content.

Definition 19 (Typing elements with simple content)

context SimpleContentCondition::type(Element e, TransitionRule tr)

pre: not(e.typed)

pre: tr.resultState.name = e.etName

pre: tr.resultState.namespace = e.etNamespace

pre: self.evaluate(e, tr)

post: e.CUR(e@pre)

post: e.elementType = tr.resultState

post: e.allChildElements -> forAll(c |

not(c.CUR(c@pre) and tr.typingAutomaton.

applicableElementTypes(c) -> includes(c.elementType)) implies

tr.typingAutomaton.applicableElementTypes(c) -> isEmpty() or

not(c.parentNode.typed))

pseudocode:

-- Bring element to appropriate typed representation

62

e.typed := true

e.name := null

e.namespace := null

e.elementType := e.elementType -> including(tr.resultState)

-- Use the simple type instance factory associated

-- with the simple type of the condition to produce

-- an appropriate simple type instance for use as

-- typed element content

stif := self.simpleType.simpleTypeInstanceFactory

sti := stif.fromString(e.simpleContent)

-- Set simple type instance as simple content of element

e.simpleContent := null

e.typedSimpleContent := e.typedSimpleContent

-> including(sti)

Definition 20 covers an algorithm for the implementation of the type() method for complex

content conditions. The algorithm transforms elements with complex content, that are in

untyped representation and on which a given complex content condition evaluates to true,

into a suitable corresponding typed representation. Similar to the type() method for simple

content conditions, the implementation first changes the basic structure of the passed element

to typed representation. Then, type() chooses a sequence of element types applicable to the

element’s child elements that satisfies the condition, i.e., whose signature matches the Perl 5

string regular expression of the condition. Again, this is always possible. The evaluate()

method already checks the existence of such a sequence. At last, the child elements of the

element passed as the method’s parameter are brought to corresponding typed representations

in a way that the complex content condition remains satisfied. This is achieved by synchronously

iterating over the chosen sequence of applicable child element types and the sequence of child

elements. In case that the current member of the sequence of applicable child element types

is an element type, the method uses this element type to bring the corresponding member

in the sequence of child elements into typed representation by recursively calling the typing

automaton’s typeElement() method.

63

Definition 20 (Typing elements with complex content)

context ComplexContentCondition::type(Element e, TransitionRule tr)

pre: not(e.typed)

pre: tr.resultState.name = e.etName

pre: tr.resultState.namespace = e.etNamespace

pre: self.evaluate(e, tr)

post: e.CUR(e@pre)

post: e.elementType = tr.resultState

post: e.allChildElements -> forAll(c |

not(c.CUR(c@pre) and tr.typingAutomaton.

applicableElementTypes(c) -> includes(c.elementType)) implies

tr.typingAutomaton.applicableElementTypes(c) -> isEmpty() or

not(c.parentNode.typed))

pseudocode:

-- Bring element to appropriate typed representation

e.typed := true

e.name := null

e.namespace := null

e.elementType := e.elementType -> including(tr.resultState)

-- Choose a suitable sequence of applicable element

-- types for the element’s child elements.

-- The sequence’s signature must match the regular

-- expression of the condition

acet := tr.typingAutomaton.

applicableChildElementTypes(e) -> any (acet1 |

tr.typingAutomaton.contentSignature(acet1).

matches(self.regExp))

-- Type child elements according to the applicable content

-- element types

foreach i in Sequence{1..acet -> size()} do

if acet -> at(i).oclIsTypeOf(ElementType) then

tr.typingAutomaton.typeElement(e.childElements -> at(i),

64

acet -> at(i))

endif

endforeach

The proposed implementation of the type() method once more contains a possible source of

inefficiency. Selecting a suitable sequence of applicable element types for the child elements of

the passed element such that the complex content condition evaluates to true for that sequence

is inefficient if implemented naively: this calculation has already taken place during the typing

phase and repetition of that calculation implies the repeated inference of the applicable element

types of the child elements.

But again, the method can be realized efficiently at the expense of memory without the need

of changing the overall structure of the proposed algorithm. During the validation phase, the

typing automaton can not only cache for each element of the document its applicable element

types and the transition rule which decided applicability but also, in case that the transition

rule bears a complex content condition, the sequence of child element types for which the

complex content condition evaluated to true. This way, the selection in question constitutes a

cache lookup operation.

So far, the behavior of typing automata has been separated into a validation phase and a

typing phase. What is still missing is a central entry point to a typing automaton’s behavior

that interconnects both phases. Such an entry point is given by Definition 21. The definition

provides the specification of the method type() of the class TypingAutomaton. This method

takes an XML document in TDOM representation as its parameter.

As specified by the postconditions in the definition, the method transforms as much elements

as possible to corresponding typed representations if the document is valid with regard to the

typing automaton represented by the current TypingAutomaton object. More specifically, there

are only three cases in which an element is allowed not to constitute a corresponding typed

representation compared to its representation prior to the call of the method: the first case

is that element has already been in typed representation before the call and is still in typed

representation on the basis of one of its applicable element types. The second case is that the

element is in untyped representation and has no applicable element types. The third case is

that not only the element is in untyped representation but also its parent element. Should the

65

document be invalid with regard to the typing automaton, type() transforms all elements of

the document to untyped representation.

The pseudocode given in the definition shows a straightforward implementation of this

method. In order to obtain a clean basis for processing, the method first brings all elements

to untyped representation by calling the untype() method on the root element. Next, the

method initiates the validation phase by checking the validity of the document and, in doing

so, inferring the applicable element types for the document’s elements. If the document is valid,

the method proceeds to the typing phase and selects an unscoped element type applicable to

the root element and employs it to create a corresponding typed representation of the root

element via typeElement().

Definition 21 (Typing documents)

context TypingAutomaton::type(Document d)

post: self.valid(d) implies

Element.allInstances -> forAll(e |

e.document = d and not(e.CUR(e@pre) and

self.applicableElementTypes(e) -> includes(e.elementType)) implies

(e.typed@pre and e.typed and

self.applicableElementTypes(e) -> includes(e.elementType)) or

(not(e.typed) and

self.applicableElementTypes(e) -> isEmpty()) or

(not(e.typed) and e.parentNode -> notEmpty() and

not(e.parentNode.typed)))

post: not(self.valid(d)) implies

not(d.rootElement.typed)

pseudocode:

-- Untype document if root element is typed

if d.rootElement.typed then

d.rootElement.untype()

endif

-- Select an arbitrary applicable unscoped element type to type

-- root element with if possible.

66

if self.valid(d) then

rootElementType := self.applicableElementTypes(d.rootElement)

-> any(et | et.scope = null)

-- Type root element

self.typeElement(d.rootElement, rootElementType)

endif

5.3 Computational complexity

Having provided the core specification of typing automata, it is useful to obtain an indicator

for the computational complexity of their behavior. In the following, we therefore estimate an

upper bound for the running time of the type() method of the TypingAutomaton class given

by Definition 21. This bound will be expressed in terms of the number of elements n contained

in the XML document that is to be typed and the number of transition rules t of the typing

automaton used for typing.

For the estimation, we make two assumptions: firstly, we assume that a typing automaton

caches the element types applicable to the elements of the document during the validation

phase along with the transition rules that decided applicability and the sequences of child

element types what were applied to these transition rules. We have already suggested this in

Section 5.2.3 for the implementation of the typeElement() and type() methods of the classes

TypingAutomaton and ComplexContentCondition. Such a caching ensures that applicable

element types only need to be calculated once for each element and that the complexity of

repeated access to the cached results of this calculation is negligible for our estimation, i.e.,

O(1), if applying a suitable hashing technique.

Secondly, we assume that a typing automaton is deterministic, i.e., the number of applicable

element types for each element is at most one. This restriction does not imply a loss of generality.

It has been proven in literature that the classes of non-deterministic and deterministic bottom-

up regular tree automata are equivalent to each other [6, 11]: for each non-deterministic bottom-

up regular tree automaton an equivalent deterministic one can be algorithmically constructed.

Given the structural similarity between bottom-up regular tree automata and typing automata

– both types of automata support the same kinds of transition rules and the mapping between

67

them is straightforward as we have illustrated by means of Figures 13 and 17 – this result also

applies to typing automata.

Besides, unambiguousness is a natural quality criterion for schema design. It is no surprise

that most schema definitions for XML documents occurring in practice are intuitively designed

to be unambiguous and thus straightforwardly translate to deterministic typing automata. The

example Melody media description scheme of Figure 1 and its typing automaton representation

given by Figure 17 perfectly illustrate this point.

Given these assumptions, the running time of the type() method of the class

TypingAutomaton in terms of n and t can be expressed as follows:

T (n, t) =
n∑

i=1

Uei
+

n∑
i=1

Aei
+

n∑
i=1

Cei
(1)

Equation 1 becomes clear when taking a look at the algorithm proposed in Definition 21.

The algorithm first brings all elements of the XML document that is to be typed to untyped

representation, then initiates the validation phase in which the element types applicable to

the elements are inferred, and finally starts the typing phase in which typed representations

of the elements are produced according to the inferred element types. For each of the doc-

ument’s elements ei, i = 1 . . . n, a typing automaton thus spends the running times Uei
to

bring it to untyped representation, Aei
to infer its applicable element types, and Cei

to create

a corresponding typed representation of ei on the basis of an applicable element type.

Since the production of a corresponding untyped representation of a single element ei – if at

all required because ei might already be in untyped representation – merely involves changes to

the attribute values of the Element object representing ei and the associations it participates

in, the required running time Uei
is independent of the number of elements n in a document

and the number of transition rules t of a typing automaton. Hence:

Uei
= O(1), i = 1 . . . n (2)

Similarly, the production of a corresponding typed representation of a single element ei

on the basis of an applicable element type mainly involves changes to the Element object

representing ei that are independent of n and t. Moreover, since we assume a caching of

applicable element types, the selection of the particular applicable element type and transition

68

rule that is used for the creation of the corresponding typed representation constitutes an effort

that is independent of n and t as well. Therefore:

Cei
= O(1), i = 1 . . . n (3)

Inserting Equations 2 and 3 into Equation 1 yields:

T (n, t) =
n∑

i=1

O(1) +
n∑

i=1

Aei
+

n∑
i=1

O(1) = O(n) +
n∑

i=1

Aei
(4)

The estimation of an upper bound for the running time Aei
that has to be spent for the

inference of the applicable element types of element ei during the validation phase is more

complicated. Basically, a typing automaton attempts to apply all of its t transition rules to

ei. In case that a transition rule has a simple content condition, the test for the transition

rule’s applicability mainly involves checking whether ei has simple content and whether a valid

simple type instance can be constructed from the textual representation of ei’s simple content

(see Definition 13). This is independent of the number of elements n in the document and the

number of transition rules t of the typing automaton and thus can be estimated with O(1).

In case that a transition rule has a complex content condition, the test for the transition

rule’s applicability mainly involves checking whether ei has complex content and evaluating a

string regular expression on the signature of the sequence of applicable child element types of

ei (see Definition 14). As we assume that the typing automaton is deterministic, there exists

only one such signature. It is a well-known fact that the evaluation of string regular expressions

on a string takes linear time with regard to the length of the string [1]. Since the length of the

signature of the sequence of applicable child element types of ei is roughly proportional to the

number of ei’s child elements cei
, the running time for checking a complex content condition

should not exceed O(cei
) in practice.

Therefore, Aei
can be bounded as follows:

Aei
= t max(O(cei

), O(1)) = t O(cei
), i = 1 . . . n (5)

Inserting Equation 5 into Equation 4 we obtain:

69

T (n, t) = O(n) + t
n∑

i=1

O(cei
) (6)

As in general
∑n

i=1 O(fi(n)) = O(
∑n

i=1 fi(n)) [12], Equation 6 becomes:

T (n, t) = O(n) + t O(
n∑

i=1

cei
) (7)

Since the only element among the n elements contained in an XML document that is not a

child element of another and that is thus not covered by the sum
∑n

i=1 cei
is the root element,

it follows that
∑n

i=1 cei
= n− 1. Hence, Equation 7 can be rewritten as:

T (n, t) = O(n) + t O(n− 1) = O(t n) (8)

Given the bound of Equation 8, we can state that, subject to our preliminary assump-

tions concerning caching and determinism, the running time of the type() method of the class

TypingAutomaton never grows more than linearly with the number of transition rules t of the

typing automaton on which the method is executed. Its running time also never grows more

than linearly with the number of elements n in the XML document that is passed to type().

Given this linearity, we conclude that a typing automaton’s behaviour can be considered suffi-

ciently efficient to allow the application of even complex typing automata with large numbers

of transition rules to large XML documents.

5.4 Optimizations

Having discussed of the computional complexity of the behavior of typing automata, it is

now time to spend some thoughts on possible optimizations. The proposed algorithm for the

type() method of the class TypingAutomaton (see Definition 21), which validates a document

and transforms as much elements as possible to corresponding typed representations, is subop-

timal in many practical cases. The algorithm behaves reasonably well when applied to an XML

document whose TDOM representation consists of elements in untyped representation only.

This is typically the case during the import of a document to TDOM where usually a TDOM

representation based solely on untyped representations is produced as a first step, before apply-

ing a typing automaton in order to validate the document and to create typed representations.

70

In such a situation, the algorithm traverses the elements contained in the document from the

bottom up in order to calculate their applicable element types while checking the document’s

validity. Assuming a caching as described above, the algorithm then traverses the elements

from the top down for a second time and brings them to corresponding typed representations.

But when applied to a document which does not just contain elements in untyped represen-

tation, the behaviour of the algorithm is less reasonable. Such a situation might occur during

the update of an XML document where only parts of the document have been temporarily

transformed to untyped representation in order to decouple them from the schema definition

and now need to be brought back to typed representation. In this case, the algorithm first

brings all elements of the document to untyped representation as a first step before continuing

on as supplied before. It is rather obvious that this behaviour is far from perfect as it ignores

the typing results of previous runs of the typing automaton on the document just because

potentially very small fractions of a document have been changed and brought to untyped rep-

resentation during the update. Especially for large documents, validation and production of

typed representations might have consumed considerable processing power that should not be

thrown away carelessly.

Therefore, we want to propose an alternative implementation of the type() method of

TypingAutomaton that makes use of already existing typed representations of elements. We

call this variant local document typing as it aims at limiting the effects of bringing the docu-

ment’s elements from untyped to corresponding typed representations to the immediate vicinity

of the elements in untyped representation. It attempts to preserve already existing typed rep-

resentations of elements thereby significantly reducing the number of elements that need to be

traversed for the purpose of document typing in many cases occurring in practice.

Figure 19 illustrates the different steps of the local document typing approach at hand of an

excerpt of the example Melody media description known from Figure 2 in TDOM representation.

The excerpt covers the Meter element and its child elements. It is assumed that all elements of

the media description are in typed representation with the exception of the Numerator element

which is in untyped representation because its simple content has been changed to 5 during an

update operation. It is now intended to bring as much elements of the description as possible,

especially the Numerator element of course, to appropriate typed representations by employing

71

parentNode

childNode

namespace=‘http://...’
name=‘Meter’
scope=‘MelodyType’

et1:ElementType
elementType

typed=true

meter:Element

childNode

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘5‘

namespace=‘http://...’
name=‘Denominator’
scope=‘MeterType’

et6:ElementType
elementType

denominator:Element

typed=true

value=4

equalTo()
getSimpleType()
lessThan()
...

:Integer

typedSimpleContent

1

untype()

childNode

…

2

applicableElementTypes()
childNode

…

parentNode

childNode childNode

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘5‘

denominator:Element

typed=false
namespace=‘http://…‘
name=‘Denominator‘
simpleContent=‘4‘

typed=false
namespace=‘http://…‘
name=‘Meter‘
simpleContent=null

meter:Element

3

type(et1)
childNode

…

parentNode

childNode childNode

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘5‘

denominator:Element

typed=false
namespace=‘http://…‘
name=‘Denominator‘
simpleContent=‘4‘

typed=false
namespace=‘http://…‘
name=‘Meter‘
simpleContent=null

meter:Element

et1

et5 et6

…

parentNode

childNode

namespace=‘http://...’
name=‘Meter’
scope=‘MelodyType’

et1:ElementType
elementType

typed=true

meter:Element

childNode

namespace=‘http://...’
name=‘Denominator’
scope=‘MeterType’

et6:ElementType
elementType

denominator:Element

typed=true

value=4

equalTo()
getSimpleType()
lessThan()
...

:Integer

typedSimpleContent

4

childNode

namespace=‘http://...’
name=‘Numerator’
scope=‘MeterType’

et5:ElementType
elementType

numerator:Element

typed=true

value=5

equalTo()
getSimpleType()
lessThan()
...

:Integer

typedSimpleContent

parentNode

childNode

namespace=‘http://...’
name=‘Meter’
scope=‘MelodyType’

et1:ElementType
elementType

typed=true

meter:Element

childNode

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘5‘

namespace=‘http://...’
name=‘Denominator’
scope=‘MeterType’

et6:ElementType
elementType

denominator:Element

typed=true

value=4

equalTo()
getSimpleType()
lessThan()
...

:Integer

typedSimpleContent

1

untype()

childNode

…

parentNode

childNode

namespace=‘http://...’
name=‘Meter’
scope=‘MelodyType’

et1:ElementType
elementType

typed=true

meter:Element

childNode

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘5‘

namespace=‘http://...’
name=‘Denominator’
scope=‘MeterType’

et6:ElementType
elementType

denominator:Element

typed=true

value=4

equalTo()
getSimpleType()
lessThan()
...

:Integer

value=4

equalTo()
getSimpleType()
lessThan()
...

value=4

equalTo()
getSimpleType()
lessThan()
...

:Integer

typedSimpleContent

1

untype()

childNode

…

2

applicableElementTypes()
childNode

…

parentNode

childNode childNode

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘5‘

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘5‘

denominator:Element

typed=false
namespace=‘http://…‘
name=‘Denominator‘
simpleContent=‘4‘

denominator:Element

typed=false
namespace=‘http://…‘
name=‘Denominator‘
simpleContent=‘4‘

typed=false
namespace=‘http://…‘
name=‘Meter‘
simpleContent=null

meter:Element

typed=false
namespace=‘http://…‘
name=‘Meter‘
simpleContent=null

meter:Element

3

type(et1)
childNode

…

parentNode

childNode childNode

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘5‘

denominator:Element

typed=false
namespace=‘http://…‘
name=‘Denominator‘
simpleContent=‘4‘

typed=false
namespace=‘http://…‘
name=‘Meter‘
simpleContent=null

meter:Element

et1

et5 et6

3

type(et1)
childNode

…

parentNode

childNode childNode

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘5‘

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘5‘

denominator:Element

typed=false
namespace=‘http://…‘
name=‘Denominator‘
simpleContent=‘4‘

denominator:Element

typed=false
namespace=‘http://…‘
name=‘Denominator‘
simpleContent=‘4‘

typed=false
namespace=‘http://…‘
name=‘Meter‘
simpleContent=null

meter:Element

typed=false
namespace=‘http://…‘
name=‘Meter‘
simpleContent=null

meter:Element

et1

et5 et6

…

parentNode

childNode

namespace=‘http://...’
name=‘Meter’
scope=‘MelodyType’

et1:ElementType

namespace=‘http://...’
name=‘Meter’
scope=‘MelodyType’

et1:ElementType
elementType

typed=true

meter:Element

typed=true

meter:Element

childNode

namespace=‘http://...’
name=‘Denominator’
scope=‘MeterType’

et6:ElementType

namespace=‘http://...’
name=‘Denominator’
scope=‘MeterType’

et6:ElementType
elementType

denominator:Element

typed=true

denominator:Element

typed=true

value=4

equalTo()
getSimpleType()
lessThan()
...

:Integer

typedSimpleContent

value=4

equalTo()
getSimpleType()
lessThan()
...

:Integer

value=4

equalTo()
getSimpleType()
lessThan()
...

value=4

equalTo()
getSimpleType()
lessThan()
...

:Integer

typedSimpleContent

4

childNode

namespace=‘http://...’
name=‘Numerator’
scope=‘MeterType’

et5:ElementType

namespace=‘http://...’
name=‘Numerator’
scope=‘MeterType’

et5:ElementType
elementType

numerator:Element

typed=true

numerator:Element

typed=true

value=5

equalTo()
getSimpleType()
lessThan()
...

:Integer

value=5

equalTo()
getSimpleType()
lessThan()
...

value=5

equalTo()
getSimpleType()
lessThan()
...

:Integer

typedSimpleContent

Figure 19: Local document typing (UML object diagrams)

the typing automaton that represents the Melody media description scheme with transition

rules as given by Figure 17.

To achieve that aim, local document typing starts the typing process at the topmost untyped

elements of the document. These are all those elements that are in untyped representation but

whose parent elements are in typed representation or, in case that the root element is in untyped

72

representation already, the root element itself. The topmost untyped elements subsume all

elements of the document that need to be brought to corresponding typed representations as

their direct and indirect child elements. They further constitute the boundary to those parts of

the document which already are in typed representation and which ideally should be affected

by the typing process as little as possible.

In our figure, the single topmost untyped element is the Numerator element. Local doc-

ument typing picks up that element and memorizes the element type of its parent element,

namely the element type Meter represented by the ElementType object et1 (1). The parent

element, and with it all of its direct or indirect child elements, is transformed to a correspond-

ing untyped representation (2). Then, its applicable element types are determined (3). Since

the memorized element type Meter still occurs among its applicable element types, the parent

element, and with it again all of its direct or indirect child elements, is brought back imme-

diately to a corresponding typed representation on the basis of Meter (4). There is no need

for any further processing: the implicit assumption underlying the typed representations of the

elements located above the parent element in the document hierarchy originating from previous

runs of the typing automaton is that the parent element validly instantiates Meter – which it

still does.

Figure 20 illustrates the behaviour of local document typing in case that the memorized

element type of a topmost untyped element’s parent element is no longer applicable. For this

purpose, we assume that the simple content of the Numerator element has been set to the

nonsense-string invalid instead of 5 during the update operation. In the beginning, local doc-

ument typing proceeds as usual by memorizing the element type of the parent of the Numerator

element (1) and by transforming the parent element to a corresponding untyped representation

(2). When determining the applicable element types of the parent element, however, we find

that the memorized element type is no longer applicable (3). The parent element even does no

longer have any applicable element types. This is due to the fact that the Numerator element

has no applicable element types (the only transition transition rule of the typing automaton

potentially suitable for the Numerator element, tr5, expects integer content according to Fig-

ure 17) and thus transition rule tr1 of the typing automaton is no longer satisfied by the parent

element as well. As a consequence, the implicit assumption underlying the typed representa-

73

parentNode

childNode

namespace=‘http://...’
name=‘Meter’
scope=‘MelodyType’

et1:ElementType
elementType

typed=true

meter:Element

childNode

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘invalid‘

namespace=‘http://...’
name=‘Denominator’
scope=‘MeterType’

et6:ElementType
elementType

denominator:Element

typed=true

value=4

equalTo()
getSimpleType()
lessThan()
...

:Integer

typedSimpleContent

1

untype()

childNode

…

2

applicableElementTypes()
childNode

…

parentNode

childNode childNode

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘invalid‘

denominator:Element

typed=false
namespace=‘http://…‘
name=‘Denominator‘
simpleContent=‘4‘

typed=false
namespace=‘http://…‘
name=‘Meter‘
simpleContent=null

meter:Element

3

untype()

childNode

…

parentNode

childNode childNode

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘invalid‘

denominator:Element

typed=false
namespace=‘http://…‘
name=‘Denominator‘
simpleContent=‘4‘

typed=false
namespace=‘http://…‘
name=‘Meter‘
simpleContent=null

meter:Element

et6

parentNode

childNode

namespace=‘http://...’
name=‘Meter’
scope=‘MelodyType’

et1:ElementType
elementType

typed=true

meter:Element

childNode

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘invalid‘

namespace=‘http://...’
name=‘Denominator’
scope=‘MeterType’

et6:ElementType
elementType

denominator:Element

typed=true

value=4

equalTo()
getSimpleType()
lessThan()
...

:Integer

typedSimpleContent

1

untype()

childNode

…

parentNode

childNode

namespace=‘http://...’
name=‘Meter’
scope=‘MelodyType’

et1:ElementType
elementType

typed=true

meter:Element

childNode

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘invalid‘

namespace=‘http://...’
name=‘Denominator’
scope=‘MeterType’

et6:ElementType
elementType

denominator:Element

typed=true

value=4

equalTo()
getSimpleType()
lessThan()
...

:Integer

value=4

equalTo()
getSimpleType()
lessThan()
...

value=4

equalTo()
getSimpleType()
lessThan()
...

:Integer

typedSimpleContent

1

untype()

childNode

…

2

applicableElementTypes()
childNode

…

parentNode

childNode childNode

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘invalid‘

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘invalid‘

denominator:Element

typed=false
namespace=‘http://…‘
name=‘Denominator‘
simpleContent=‘4‘

denominator:Element

typed=false
namespace=‘http://…‘
name=‘Denominator‘
simpleContent=‘4‘

typed=false
namespace=‘http://…‘
name=‘Meter‘
simpleContent=null

meter:Element

typed=false
namespace=‘http://…‘
name=‘Meter‘
simpleContent=null

meter:Element

3

untype()

childNode

…

parentNode

childNode childNode

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘invalid‘

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘invalid‘

denominator:Element

typed=false
namespace=‘http://…‘
name=‘Denominator‘
simpleContent=‘4‘

denominator:Element

typed=false
namespace=‘http://…‘
name=‘Denominator‘
simpleContent=‘4‘

typed=false
namespace=‘http://…‘
name=‘Meter‘
simpleContent=null

meter:Element

typed=false
namespace=‘http://…‘
name=‘Meter‘
simpleContent=null

meter:Element

et6

Figure 20: Failing local document typing (UML object diagrams)

tion of the element located above the parent element in the document hierarchy that the parent

element constitutes a valid instantiation of the element type Meter does not hold anymore.

Local document typing responds to this situation by considering the parent element as the

new topmost untyped element and relaunches processing as supplied above. In the worst case

(which happens to occur in our example), this may result in a cascading untyping of parent

elements until the root element of the document is reached and transformed to a corresponding

untyped representation (and with it all elements of the document). Local document typing

then checks whether there exists an applicable unscoped element type for the root element.

If it does, it constructs a corresponding typed representation of the root element on the basis

of the unscoped element type. If it does not, the document is invalid and all of its elements

remain in untyped representation.

In the following, we specify an alternative implementation of the method type() of the

74

class TypingAutomaton that realizes the local document typing algorithm. As a prelimary, we

first formalize the notion of the topmost untyped elements of a document in Definition 22.

Definition 22 (Topmost untyped elements)

context Document def:

let topmostUntypedElements : Set(Element) =

Element.allInstances -> select(e |

not(e.typed) and e.document = self and

(e.parentNode -> isEmpty() or

e.parentNode.typed))

Definition 22 provides the pseudocode describing the new implementation of the type()

method. Throughout the implementation, a set of elements that are to be brought to typed

representation is maintained. This set is initialized with the topmost untyped elements of

the document. As long as there are still elements in this set and the document has not been

found to be invalid, one of these elements is selected successively. For each selected element, the

implementation distinguishes whether the element constitutes the root element of the document

or not. In case that the selected element is the root element, the implementation behaves

exactly like the conventional implementation of the type() method of Definition 21: it chooses

an applicable unscoped element type and brings the root element to a corresponding typed

representation accordingly. If such an element type exists, typing of the document is finished;

if not, the document is considered invalid and processing terminates.

In case that the selected element is not the root element of the document, the element type

of element’s parent is stored in a temporary variable and the parent element is transformed to a

corresponding untyped representation. If the stored element type is still applicable to the parent

element, it is transformed back to a corresponding typed representation using that element type.

Any of the parent element’s child elements potentially existing in the set of elements that are

to be brought to typed representation are removed from that set: their typing has been already

been covered by the construction of the corresponding typed representation of their parent.

If the stored element type is no longer applicable to the parent element, the parent element

remains in untyped representation. It is further added to the set of elements to be brought to

75

typed representation. Again, its child elements are removed from this set as well, since their

typing will be covered by the typing of the parent element.

Definition 23 (Local variant of document typing)

context TypingAutomaton::type(Document d)

post: self.valid(d) implies

Element.allInstances -> forAll(e |

e.document = d and not(e.CUR(e@pre) and

self.applicableElementTypes(e) -> includes(e.elementType)) implies

(e.typed@pre and e.typed and

self.applicableElementTypes(e) -> includes(e.elementType)) or

(not(e.typed) and

self.applicableElementTypes(e) -> isEmpty()) or

(not(e.typed) and e.parentNode -> notEmpty() and

not(e.parentNode.typed)))

post: not(self.valid(d)) implies

not(d.rootElement.typed)

pseudocode:

-- Assume valid document

invalid := false

-- Retrieve the elements that need to be brought to typed

-- representation

toType := d.topmostUntypedElements

-- As long as the document is not invalid, iteratively

-- select one these elements

while toType -> notEmpty() and not(invalid) do

-- Select arbitrary element for typing

element := toType -> any(true)

if element = d.rootElement then

-- The root element needs to brought to typed representation.

-- Use applicable unscoped element type for that purpose

if not(self.applicableElementTypes(element)

76

-> exists(et | et.scope = null)) then

-- As there is no such element type, the document

-- is invalid

invalid := true

else

-- Create corresponding typed representation of the

-- root element using the unscoped element type.

rootElementType := self.applicableElementTypes(element)

-> any(et | et.scope = null)

self.typeElement(element, rootElementType)

-- Typing of the document is finished

toType := Set{}

endif

else

-- Memorize the type of the chosen element’s parent

parentType := element.parentNode.elementType

-- Bring parent element to untyped representation

element.parentNode.untype()

if self.applicableElementTypes(element.parentNode)

-> includes(parentType) then

-- As the memorized element type is still applicable,

-- bring the parent element to a corresponding typed

-- representation on the basis of that type

self.typeElement(element.parentNode, parentType)

-- Ignore all of the parent’s child elements for the

-- further creation of typed representations.

toType := toType -> excludingAll(

element.parentNode.childNode)

else

-- The memorized element type is no longer applicable.

-- Add the parent element to the set of elements that

-- are to be brought to typed representation.

77

toType := toType -> including(element.parentNode)

-- Ignore all of the parent’s child elements for

-- the further creation of typed representations

toType := toType -> excludingAll(

element.parentNode.childNode)

endif

endif

endwhile

It is noteworthy that, assuming that a typing automaton caches for each element the ap-

plicable element types, the respective transition rules that decided applicability, as well as the

sequence of child element types for which the transition rules evalutated to true as we have

proposed before, the local variant of document typing never performs worse than traditional

document typing given by Definition 21. The worst case for local document typing occurs

when the single topmost untyped element of a document is a leaf element for which the existing

typed representations of all its direct and indirect parent elements, including the root element,

cannot be preserved. In this situation, local document typing essentially performs two major

operations at every element while ascending from the leaf element to the document root from

the bottom up: the first operation is that every direct or indirect parent element of the leaf

element, and with it recursively all of its child elements, is brought to a corresponding untyped

representation. This implies that once local document typing has arrived at the root element,

all elements of the document have been transformed to corresponding untyped representations.

As the implementation of the method untype() of the class Element as proposed by Definition

8 cancels its recursion whenever hitting an element that already is in untyped representation,

it is assured that every element is only brought to untyped representation once. The second

operation is that the applicable element types of every parent element traversed and its child

elements are inferred. If these are cached by the typing automaton as assumed, inference has

also taken place only once for each element when the root element has been reached. Given that

there exists an unscoped element type applicable to the root element, local document typing

finally performs a third major operation on every element of the document: it uses this element

type to bring the root element and recursively the other document’s elements to corresponding

78

typed representations.

In this worst case situation for local document typing, traditional document typing basically

performs the same three major operations on each element as well, but only in different order:

since the root element is in typed representation (the single topmost untyped element is a leaf

element), every element with the exception of the leaf element is brought to a corresponding

untyped representation. Then, the applicable element types of the root element, and with these

recursively the applicable element types for all elements of the document, are inferred. Finally,

the root element and the other elements of the document are brought to corresponding typed

representations.

In the best case for traditional document typing, i.e., all elements of a document are in

untyped representation, local document typing does not exceed the complexity of traditional

document typing either. As in this case the topmost untyped element of the document is the

root element, local document typing behaves exactly the same as traditional document typing.

In many other cases however – especially after document updates during which only small

fractions of a document have been changed to untyped representation – local document typing

can be expected to perform substantially more efficient than traditional document typing be-

cause existing typed representations are preserved if possible. Thereby, the number of elements

for which corresponding typed and untyped representations are created and applicable element

types are inferred can often be reduced. As a consequence, local document typing is in any

case preferable to traditional document typing.

5.5 Extensions

Up to this point, we have been restricting typing automata to the expressiveness of regular tree

automata by supporting only two kinds of conditions within transition rules: simple content

conditions and complex content conditions. Apart from traditional simple content and com-

plex content declarations, however, MPEG-7 DDL permits the use of additional constructs for

declaring the content models of the element types and attributes of a schema definition. As

it is our aim to use typing automata as an intermediary representation of MPEG-7 media de-

scription schemes, it should be examined how these constructs can be expressed within typing

automata.

79

In the following, we therefore pick up several MPEG-7 DDL constructs that face common

usage within MPEG-7 media description schemes. For each of these constructs, we investigate

whether they are already expressible by the basic typing automaton mechanism supporting

simple and complex content conditions only. If not, we outline appropriate extensions. Thereby

we show that typing automata constitute an intermediary representation of schema definitions

that is flexible enough to be extended up to the expressiveness of MPEG-7 DDL.

We start out by examining the representation of any, repeated, and empty content dec-

larations within typing automata (5.5.1). We then investigate the representation of mixed

content declarations (5.5.2) as well as complex type declarations (5.5.3). Finally, we explore

how attribute declarations can be covered within a typing automaton (5.5.4).

5.5.1 Any, repeated, and empty content declarations

With complex content conditions, typing automata provide a very flexible means for restricting

valid element contents which is already capable of expressing quite a few additional constructs

offered by MPEG-7 DDL. This is due to the fact that complex content conditions make use

of expressive Perl 5 string regular expressions to determine permissible sequences of applicable

element type IDs for an element’s child elements.

Employing such Perl 5 string regular expressions, complex content conditions are well-

suited, for example, to represent occurrences of the <any> construct within MPEG-7 DDL

schema definitions. For a given element type, <any> specifies that arbitrary elements are

eligible to appear within the elements of that type. This can be easily expressed by a

transition rule that employs a complex content condition with the string regular expression

((et::.*|uet::null)::.*::.*)*7 which matches any sequence of known and unknown ele-

ment type IDs. In order to understand that regular expression, it should be mentioned that

within Perl 5 string regular expressions . matches any character (except linebreaks) and hence

.* matches an arbitrary sequence of characters.

Since the namespace of an element type is an integral part of its ID, complex con-

tent conditions are also suited to model occurrences of <any> that further restrict the

7For the sake of clarity, we omit any quoting backslashes within the Perl 5 string regular expressions to come

that would normally be necessary in order to distinguish character data from reserved characters.

80

content model of an element type to a certain namespace. For instance, a tran-

sition rule with a complex content condition containing the string regular expression

((et::.*|uet::null)::http://www.example.org::.*)* can be used to limit the contents

of the elements of a given type to elements with types that originate from the namespace

http://www.example.org.

Furthermore, Perl 5 string regular expressions enable a painless mapping of repeated

content declarations to complex content conditions. Not only optional and arbitrarily re-

peatable content can be modeled using the standard regular expression operators ? and *.

Also, explicitly declared minimum and maximum occurrences of repeatable content can be

directly expressed within Perl 5 string regular expressions using curly brackets. For exam-

ple, a transition rule with a complex content condition containing the string regular expression

(et::MelodyType::http://...::Meter){1,5} allows the elements of a certain type to consist

of one up to five elements of type Meter with the scope MelodyType.

Finally, curly brackets also permit complex content conditions to enforce empty content.

The regular expression .{0,0} matches empty strings only. As Definitions 15 and 16 assure,

the signature of a sequence of applicable child element types for a given element – on which

complex content conditions evaluate their string regular expressions during the validation phase

– is an empty string if and only if the element has empty content.

5.5.2 Mixed content declarations

MPEG-7 DDL allows the declaration of mixed content. Permitting mixed content means that

it is valid to intersperse arbitrary text fragments between an elements’ child nodes. TDOM

represents such text fragments by the means of text nodes, i.e., instances of the class Text.

When examining the support of typing automata for mixed content, we find that text nodes

have not played any role so far for document validation and typing. When determining the

applicable element types of an element and when bringing it to a corresponding typed repre-

sentation, complex content conditions restrict themselves to the element’s child elements and

their applicable element types completely ignoring any other kinds of document nodes. Given

this situation, the question is not whether typing automata accept mixed content whenever it

is allowed – they always do because text nodes are simply overlooked – but rather how typing

81

automata can be brought to reject mixed content whenever it is not permitted.

One solution to do this is to introduce a dedicated unmixed content condition. An unmixed

content condition is a secondary condition that is not self-contained like a simple or complex

content condition. Instead, it augments another condition with additional checks and opera-

tions. During the validation phase, an unmixed content condition verifies that no text nodes

are interspersed with the child elements of an element in addition to checking the augmented

condition. During the typing phase, an unmixed content condition behaves exactly like the aug-

mented condition because the notion of typed representation applies to elements and attribute

values only and not to text nodes and is thus independent of mixed content.

UnmixedContent
Condition

+ evaluate()
+ type()

ComplexTypePolymorphism
Condition

+ name : String
+ namespace : String

+ type()
+ evaluate()

AttributeCondition

+ evaluate()
+ type()

Condition

+ evaluate()
+ type()

SecondaryCondition

1

0..1

+augmented
1

0..1

Figure 21: Secondary conditions (UML class diagram)

The basic idea of secondary conditions is shown in the class diagram of Figure 21. The

diagram introduces an abstract class SecondaryCondition as a subclass of Condition. This

class subsumes all secondary conditions, among others the class UnmixedContentCondition for

unmixed content conditions. The association between SecondaryCondition and Condition

ensures that a secondary condition always augments another condition, which may be a simple

content condition or complex content condition but just as well another secondary condition.

Thus, arbitrarily long chains of secondary conditions can be produced that ultimately refer

to a simple content condition or complex content condition. In effect, this paves the way

82

to the representation of very complex content models within the transition rules of a typing

automaton.

…
<complexType name=“MelodyType”>

<complexContent>
<extension base=“mpeg7:AudioDSType”>

<sequence>
…
<element name=“MelodyContour”

type=“mpeg7:MelodyContourType”
minOccurs=“0”/>

</sequence>
</extension>

</complexContent>
</complexType>

<complexType name=“MelodyContourType”>
<complexContent>

<extension base=“mpeg7:AudioDSType”>
<sequence>

<element name=“Contour”>
…

<element name=“Beat”>
…

</sequence>
</extension>

</complexContent>
</complexType>
…

namespace=‘http://...’
name=‘MelodyContour’
scope=‘MelodyType’

et2:ElementType

tr2:TransitionRule

regExp=‘`et3.etID``et4.etID`’

c2:ComplexContentCondition

evaluate()
type()

resultState

et4

et3

et2

:UnmixedContentCondition

evaluate()
type()

augmented

Figure 22: Example mapping of unmixed element content declaration (UML object diagram)

Figure 22 illustrates the use of unmixed content conditions for the representation of element

type declarations contained in MPEG-7 DDL schema definitions whose content models do

not permit mixed content. In that figure, we have mapped the declaration of the element

type MelodyContour contained in the complex type MelodyType within the Melody media

description scheme to transition rule tr2 just as we did before in Figure 17. But as the

MelodyContour declaration does not permit mixed content, we have augmented the transition

rule’s complex content condition c2 with a further unmixed content condition to obtain a more

faithful mapping.

Definition 24 outlines a formal specification of the behaviour of evaluate() and type()

methods for the class UnmixedContentCondition so that instances of this class can be used

like in Figure 22 to prevent the occurrence of mixed content. According to the postcondition

provided for the specification of evaluate(), the method first checks whether the passed ele-

ment has text nodes among its child nodes. If it has, the unmixed content condition already

evaluates to false. Otherwise, the result of the evaluate() method is identical to the result

83

of the augmented condition’s evaluate() method. As an unmixed content condition behaves

like the augmented condition for the construction of typed representations, the pseudocode

given for the type() method of UnmixedContentCondition simply delegates all its calls to the

type() method of the augmented condition.

Definition 24 (Unmixed content condition)

context UnmixedContentCondition::evaluate(Element e, TransitionRule tr) : Boolean

post: result = not(e.childNode -> exists(d | d.oclIsTypeOf(Text)) and

self.augmented.evaluate(e, tr)

context UnmixedContentCondition::type(Element e, TransitionRule tr)

pre: not(e.typed)

pre: tr.resultState.name = e.etName

pre: tr.resultState.namespace = e.etNamespace

pre: self.evaluate(e, tr)

post: e.CUR(e@pre)

post: e.elementType = tr.resultState

post: e.allChildElements -> forAll(c |

not(c.CUR(c@pre) and tr.typingAutomaton.

applicableElementTypes(c) -> includes(c.elementType)) implies

tr.typingAutomaton.applicableElementTypes(c) -> isEmpty() or

not(c.parentNode.typed))

pseudocode:

self.augmented.type(e, tr)

5.5.3 Complex type declarations

MPEG-7 DDL offers complex type declarations as a powerful and flexible construct for orga-

nizing the structure of schema definitions which, as we have already been able to observe by

means of our sample Melody media description scheme, faces extensive use within MPEG-7

media description schemes. A complex type essentially constitutes a named complex content

model which can be referenced within an element type declaration in order to define the con-

84

tents valid for the element type. Given their relevance for MPEG-7, it is clearly of interest to

examine how complex type declarations are represented within typing automata.

Inspection of the mapping scheme we have used to translate the Melody media description

scheme of Figure 1 to the set of transition rules depicted by Figure 17 reveals that there is no

one-to-one correspondence between complex type declarations and transition rules. Instead, a

complex type declaration is implicitly covered by the complex content conditions of all those

transition rules that represent element type declarations where the complex type is used to

define the element type’s content model. E.g, the complex type MeterType is not translated

to a dedicated transition rule. But it is used to create the complex content condition c1 of the

transition rule tr1 which represents the declaration of the element type Meter because Meter’s

content model is defined by means of MeterType.

This kind of mapping imposes no problems as long as complex types are not interrelated.

However, MPEG-7 DDL allows to derive complex types from each other. A complex type may

extend the content model of the complex type it is derived from with additional elements and

attributes or it may restrict the content model to a valid subset. Complex types can thus be

organized into a kind of specialization hierarchy. MPEG-7 makes heavy use of this feature for

organizing its media description schemes. In our Melody media description scheme, for instance,

every complex type is derived from the complex types AudioDSType or AudioDType, which in

turn are ultimately derived from the predefined complex types DSType and DType which form

the roots of MPEG-7’s specialization hierarchy [34].

Once such a specialization hierarchy is established, MPEG-7 DDL supports a special form

of polymorphism: whenever a complex type is used to define the content model of an element

type, the content models defined by the complex types directly or indirectly derived from the

complex type constitute perfectly valid content models for the element type as well. An element

that instantiates the element type in an XML document according to the content model of a

derived complex type only has to announce the name and namespace of that derived type

employing the predefined attribute xsi:type.

The problem with the mapping scheme used so far for translating MPEG-7 DDL schema

definitions to typing automata is that it completely ignores complex type polymorphism. Be-

cause of this – and as an observant reader might have already noticed – we were forced to fall

85

back on some black magic during the translation of the Melody media description scheme

to the transition rules of Figure 17 so that the example media description of Figure 2 is

valid with regard to the typing automaton. Although the content model of the element type

AudioDescriptionScheme is defined by the complex type AudioDSType, we clairvoyantly knew

that the example description would employ complex type polymorphism and fill the content

of its root element according to the complex type MelodyType. Thus, we have constructed

transition rule tr7 as if the the content model of AudioDescriptionScheme had been defined

by MelodyType right from the beginning.

To obtain support for complex type polymorphism, we therefore suggest an extended map-

ping scheme. In that scheme, every element type declaration is translated to a corresponding

transition rule just as before. But whenever the content model within an element type declara-

tion is defined by means of a complex type from which other complex types are derived in the

schema definition, an additional transition is introduced for each of the directly or indirectly

derived complex types. Such an additional transition bears the element type of the original

element type declaration as its result state; its condition basically constitutes a complex content

condition that represents the effective content model which is defined by the derived complex

type. Hence, we effectively create a transition rule for every of the element type’s content

models that could be potentially instantiated by an element of that type via complex type

polymorphism within a document.

It must be observed that this form of mapping might result in a proliferation of transition

rules for a typing automaton that represents an MPEG-7 DDL schema definition with a deep

complex type derivation hierarchy and element types whose content models are defined by

complex types located in the upper parts of this hierarchy. But this is not so much a problem

of typing automata and the extended mapping scheme. It is rather a tribute to the high

expressiveness and considerable complexity inherent to the concepts of complex type derivation

and complex type polymorphism any MPEG-7 DDL schema processor has to deal with. In

order to allow reasonable handling of (a potentially large number of) alternative transition

rules for one and the same element type declaration introduced by complex type derivation,

typing automata should be given a means that helps them to quickly decide for one of these

alternative rules during the validation phase when complex type polymorphism occurs inside a

86

document by means of an xsi:type attribute value.

Thus, we suggest the introduction of complex type polymorphism conditions as a further

kind of secondary condition. Complex type polymorphism conditions are represented by the

class ComplexTypePolymorphismCondition in the class diagram of Figure 21. A complex type

polymorphism condition maintains the name and namespace of a given complex type as in-

dicated by the attributes name and namespace. During the validation phase, a complex type

polymorphism verifies whether the element for which the condition is evaluated features an

xsi:type attribute value addressing the name and namespace of the complex type maintained

by the condition. Only if this relatively simple check has been successfully passed, the con-

dition augmented the complex content condition augments is also evaluated. Since complex

type polymorphism conditions only serve to decide for one of the alternative transition rules

representing a single element type declaration more quickly but do not otherwise influence the

creation of corresponding typed representations once an appropriate transition rule has been

chosen, they exactly behave like the augmented conditions during the typing phase.

Complex type polymorphism conditions are applied in the extended mapping scheme in that

way that the complex content condition of every transition rule which has been additionally

introduced for an element type declaration due to complex type derivation is augmented by an

appropriate complex type polymorphism condition addressing the name and namespace of the

particular derived complex type.

Figure 23 provides an example that illustrates the extended mapping scheme and the ap-

plication of complex type polymorphism conditions. The top of the figure shows an excerpt

of the Melody media description scheme consisting of the complex types MelodyContourType

and MelodyType as well as the element type AudioDescriptionScheme as we know them from

Figure 1 already. In addition, the declaration of the complex type AudioDSType is provided

that is used to define the content model of AudioDescriptionScheme. AudioDSType specifies

a content model consisting of an arbitrarily repeatable sequence of elements of type Header.

The bottom of the figure depicts the mapping of the AudioDescriptionScheme ele-

ment type declaration to the transition rules of a typing automaton according to the sug-

gested extended mapping scheme. First of all, the element type declaration is translated

to the transition rule tr8 as usual. tr8 employs the complex condition c8 to restrict the

87

regExp=‘(`et8.etID`)*’

namespace=‘http://...’
name=‘AudioDescriptionScheme’
scope=null

et7:ElementType

tr9:TransitionRule

resultState

regExp=‘(`et8.etID`)*(`et1.etID`)?(`et2.etID`)?’

c9:ComplexContentCondition

evaluate()
type()

augmented

:ComplexTypePolymorphismCondition

evaluate()
type()

namespace=‘http://...’
name=‘MelodyType’

namespace=‘http://...’
name=‘AudioDescriptionScheme’
scope=null

et7:ElementType

tr8:TransitionRule

resultState

c8:ComplexContentCondition

evaluate()
type()

augmented

namespace=‘http://...’
name=‘AudioDescriptionScheme’
scope=null

et7:ElementType

tr10:TransitionRule

resultState

regExp=‘(`et8.etID`)* `et3.etID``et4.etID`’

c10:ComplexContentCondition

evaluate()
type()

augmented

:ComplexTypePolymorphismCondition

evaluate()
type()

namespace=‘http://...’
name=‘MelodyContourType’

regExp=‘(`et8.etID`)*’

namespace=‘http://...’
name=‘AudioDescriptionScheme’
scope=null

et7:ElementType

tr9:TransitionRule

resultState

regExp=‘(`et8.etID`)*(`et1.etID`)?(`et2.etID`)?’

c9:ComplexContentCondition

evaluate()
type()

augmented

:ComplexTypePolymorphismCondition

evaluate()
type()

namespace=‘http://...’
name=‘MelodyType’

namespace=‘http://...’
name=‘AudioDescriptionScheme’
scope=null

et7:ElementType

tr8:TransitionRule

resultState

c8:ComplexContentCondition

evaluate()
type()

augmented

namespace=‘http://...’
name=‘AudioDescriptionScheme’
scope=null

et7:ElementType

tr10:TransitionRule

resultState

regExp=‘(`et8.etID`)* `et3.etID``et4.etID`’

c10:ComplexContentCondition

evaluate()
type()

augmented

:ComplexTypePolymorphismCondition

evaluate()
type()

namespace=‘http://...’
name=‘MelodyContourType’

namespace=‘http://...’
name=‘AudioDescriptionScheme’
scope=null

et7:ElementType

namespace=‘http://...’
name=‘AudioDescriptionScheme’
scope=null

et7:ElementType

tr9:TransitionRuletr9:TransitionRule

resultState

regExp=‘(`et8.etID`)*(`et1.etID`)?(`et2.etID`)?’

c9:ComplexContentCondition

evaluate()
type()

augmented

:ComplexTypePolymorphismCondition

evaluate()
type()

namespace=‘http://...’
name=‘MelodyType’

namespace=‘http://...’
name=‘AudioDescriptionScheme’
scope=null

et7:ElementType

tr8:TransitionRuletr8:TransitionRule

resultState

c8:ComplexContentCondition

evaluate()
type()

augmented

namespace=‘http://...’
name=‘AudioDescriptionScheme’
scope=null

et7:ElementType

namespace=‘http://...’
name=‘AudioDescriptionScheme’
scope=null

et7:ElementType

tr10:TransitionRuletr10:TransitionRule

resultState

regExp=‘(`et8.etID`)* `et3.etID``et4.etID`’

c10:ComplexContentCondition

evaluate()
type()

augmented

:ComplexTypePolymorphismCondition

evaluate()
type()
evaluate()
type()

namespace=‘http://...’
name=‘MelodyContourType’

<complexType name=“MelodyType”>
<complexContent>

<extension base=“mpeg7:AudioDSType”>
<sequence>

<element name=“Meter” …
minOccurs=“0”/>

<element name=“MelodyContour” …
minOccurs=“0”/>

</sequence>
</extension>

</complexContent>
</complexType>

<complexType name=“AudioDSType”>
<sequence>

<element name=“Header” …
minOccurs=“0”
maxOccurs=“unbounded”/>

</sequence>
</complexType>

<element name=“AudioDescriptionScheme”
type=“mpeg7:AudioDSType”/>

…

<complexType name=“MelodyContourType”>
<complexContent>

<extension base=“mpeg7:AudioDSType”>
<sequence>

<element name=“Contour”>
…

<element name=“Beat”>
…

</sequence>
</extension>

</complexContent>
</complexType>

et8

et7

et4

et3

et2

et1

<complexType name=“MelodyType”>
<complexContent>

<extension base=“mpeg7:AudioDSType”>
<sequence>

<element name=“Meter” …
minOccurs=“0”/>

<element name=“MelodyContour” …
minOccurs=“0”/>

</sequence>
</extension>

</complexContent>
</complexType>

<complexType name=“AudioDSType”>
<sequence>

<element name=“Header” …
minOccurs=“0”
maxOccurs=“unbounded”/>

</sequence>
</complexType>

<element name=“AudioDescriptionScheme”
type=“mpeg7:AudioDSType”/>

…

<complexType name=“MelodyContourType”>
<complexContent>

<extension base=“mpeg7:AudioDSType”>
<sequence>

<element name=“Contour”>
…

<element name=“Beat”>
…

</sequence>
</extension>

</complexContent>
</complexType>

<complexType name=“MelodyType”>
<complexContent>

<extension base=“mpeg7:AudioDSType”>
<sequence>

<element name=“Meter” …
minOccurs=“0”/>

<element name=“MelodyContour” …
minOccurs=“0”/>

</sequence>
</extension>

</complexContent>
</complexType>

<complexType name=“AudioDSType”>
<sequence>

<element name=“Header” …
minOccurs=“0”
maxOccurs=“unbounded”/>

</sequence>
</complexType>

<element name=“AudioDescriptionScheme”
type=“mpeg7:AudioDSType”/>

…

<complexType name=“MelodyContourType”>
<complexContent>

<extension base=“mpeg7:AudioDSType”>
<sequence>

<element name=“Contour”>
…

<element name=“Beat”>
…

</sequence>
</extension>

</complexContent>
</complexType>

et8

et7

et4

et3

et2

et1

Figure 23: Example mapping of complex type derivation hierarchy (UML object diagram)

allowable contents of AudioDescriptionScheme elements to arbitrarily long sequences of

Header elements as demanded by AudioDSType. In a second step, further transition rules

with AudioDescriptionScheme as their result state are created for each complex type de-

rived from AudioDSType. In this example, these are the complex types MelodyType and

MelodyContourType which lead to the transition rules tr9 and tr10. The conditions of tr9

and tr10 are made up of complex type polymorphism conditions which reference the names

and namespaces of the respective complex types. Both conditions further augment complex

content conditions that model the effective content models defined by the complex types. I.e.,

88

condition c9 restricts the permitted content of AudioDescriptionScheme elements to arbitrar-

ily long sequences of Header elements followed by optional Meter and MelodyContour elements

as defined by the complex type MelodyType; condition c10 restricts the permitted content to

arbitrarily long sequences of Header elements followed by Contour and Beat elements as defined

by the complex type MelodyContourType.

Given these transition rules, the element type AudioDescriptionScheme is only applicable

to an element inside an XML document, if (a) the element complies to transition rule tr8 by

satisfying the complex content condition c8 or if (b) the element complies to transition rule

tr9 or tr10 by satisfying complex content condition c9 or c10, respectively, and further bears

an xsi:type attribute value referring to the corresponding complex type MelodyContourType

or MelodyContourType.

We conclude our treatment of the representation of complex types within typing automata

by sketching a suitable specification of the evaluate() and type() methods for the class

ComplexTypePolymorphismCondition within Definition 25. For the purpose of the defini-

tion, we assume that there exist the operators name and namespace for strings that allow to

extract the name and the namespace out of a qualified reference to a complex type. The

postcondition of evaluate() states that the method checks whether the element passed to the

method possesses an attribute value with the attribute name type and the attribute namespace

http://www.w3.org/2001/XMLSchema-instance – i.e., an xsi:type attribute value – whose

content refers to the name and namespace of the complex type maintained by the current

complex type polymorphism condition before evaluating the condition it augments. The im-

plementation that is suggested by the pseudocode for the type() method simply delegates its

call to the condition augmented by the complex type polymorphism condition.

Definition 25 (Complex type polymorphism condition)

context ComplexTypePolymorphismCondition::evaluate(Element e,

TransitionRule tr) : Boolean

post: result = e.attributeValue -> exists(av |

av.attName = "type" and

av.attNamespace = "http://www.w3.org/2001/XMLSchema-instance" and

av.content.name = self.name and

89

av.content.namespace = self.namespace) and

self.augmented.evaluate(e, tr)

context ComplexTypePolymorphismCondition::type(Element e, TransitionRule tr)

pre: not(e.typed)

pre: tr.resultState.name = e.etName

pre: tr.resultState.namespace = e.etNamespace

pre: self.evaluate(e, tr)

post: e.CUR(e@pre)

post: e.elementType = tr.resultState

post: e.allChildElements -> forAll(c |

not(c.CUR(c@pre) and tr.typingAutomaton.

applicableElementTypes(c) -> includes(c.elementType)) implies

tr.typingAutomaton.applicableElementTypes(c) -> isEmpty() or

not(c.parentNode.typed))

pseudocode:

self.augmented.type(e, tr)

5.5.4 Attribute declarations

MPEG-7 DDL, just like any other XML schema definition language, allows to restrict for each

element type the attribute values eligible to appear within the elements instantiating that

element type in an XML document. For this purpose, content models specified by means

of complex type declarations inside MPEG-7 DDL schema definitions can be enhanced with

additional attribute declarations. The different kinds of attribute declarations supported by

MPEG-7 DDL mainly comprise those already known from classic DTDs. The essential differ-

ence between attribute declarations in MPEG-7 DDL and DTDs is DDL’s support for strong

typing that allows to restrict the permissible domain of the values of an attribute to a simple

type.

Regarding this support for strong typing and given the fact that MPEG-7 media description

schemes considerably make use of that support to define attributes that carry non-textual data,

it is no surprise that TDOM’s notion of typed representation not only encompasses elements

90

but also attribute values. In order to be considered an adequate intermediary representation

of an MPEG-7 DDL schema definition, typing automata should consequently provide support

for the representation of attribute declarations that facilitate the validation of attribute values

occurring in a document and the production of corresponding typed representations of these

values. So far, however, our specification of typing automata has intentionally ignored attribute

values for simplicity.

In the following, we therefore want to outline an extension of typing automata for the

representation of attribute declarations. Just like the other extensions suggested so far, we again

perform this extension by introducing a dedicated kind of secondary condition, namely attribute

conditions which are represented by the class AttributeCondition in the diagram of Figure 21.

An attribute condition basically consists of a collection of attribute declarations. If an attribute

condition is used to augment a transition rule’s condition, not only the augmented condition is

evaluated during the validation phase whenever the transition rule is applied to an element; it

is also verified whether the attribute values of the element conform to the attribute declarations

collected by the attribute condition. During the typing phase, the attribute condition behaves

like the augmented condition but additionally transforms the attribute values of the element

to corresponding typed representations in a way that suits the attribute declarations to which

the attibute values comply.

The class diagram of Figure 24 provides further details on the structure we suggest

for attribute conditions and attribute declarations. According to the diagram, an at-

tribute condition collects at least one attribute declaration all of which are subsumed by

the abstract base class AttributeDeclaration. Attribute declarations are categorized into

single attribute declarations and any attribute declarations as modeled by the subclasses

SingleAttributeDeclaration and AnyAttributeDeclaration. The abstract notion of single

attribute declarations subsumes basic attribute declarations that essentially permit a single

value of the attribute (addressed by the association to the class Attribute) to appear within

an element, if the content of the attribute value originates from the domain of the simple type

(addressed by the association to the class SimpleType). In the diagram, the single attribute

declarations considered are fixed, optional, required, and prohibited attribute declarations rep-

resented by corresponding subclasses. These represent the usual basic kinds of attribute decla-

91

RequiredAttribute
Declaration

+ evaluate()
+ type()

AnyAttributeDeclaration

+ namespace : String

+ evaluate()
+ type()

AttributeDeclaration

+ evaluate()
+ type()

AttributeCondition

+ evaluate()
+ type()

1..n1 1..n1

Attribute

name : String
namespace : String
scope : String

SimpleType

name : String
namespace : String
scope : String

SingleAttribute
Declaration

1
0..n

1
0..n

1

0..n

1

0..n

OptionalAttribute
Declaration

+ evaluate()
+ type()

SimpleTypeInstance

equalTo()
getSimpleType()

<<Interface>>

0..1 0..1
+defaultValue
0..1 0..1

FixedAttribute
Declaration

+ evaluate()
+ type()1

0..1

+fixedValue 1

0..1

Figure 24: Attribute condition structure (UML class diagram)

rations that are supported by most XML schema definition languages: required attribute dec-

larations enforce the instantiation of a given attribute within an element. Optional attribute

declarations allow the instantiation of a given attribute within an element but do not enforce it.

A default value in form of a simple type instance can be specified for the case that an optional

attribute is not instantiated. Fixed attribute declarations behave like optional attribute decla-

rations but rigidly restrict the allowable contents of attribute values to the simple type instance

provided as the fixed value. Finally, prohibited attribute declarations forbid the instantiation

of an attribute within an element. Support for further kinds of attribute declarations could

be integrated into this structure by additional subclasses of SingleAttributeDeclaration if

necessary.

An any attribute declaration, in contrast, allows the occurrence of arbitrary attribute val-

ues within an element whose attribute namespaces can be optionally limited to the namespace

contained in AnyAttributeDeclaration’s namespace attribute. This facilitates the represen-

tation of the <anyAttribute> construct of MPEG-7 DDL within transition rules of a typing

92

automaton.

There are a few restrictions concerning the structure of attribute conditions which are

formally expressed by Constraint 11. The first restriction is that the names and namespaces

of the attributes referred to by single attribute declarations must be unique in order to avoid

conflicting declarations. I.e., there may be no two different single attribute conditions which

refer to attributes that bear the same name and namespace. The second restriction is that if

an optional attribute declaration refers to a default value, that default value must be a valid

instance of the simple type addressed by the attribute declaration. The third restriction is

quite similar: the fixed value of a fixed attribute declaration must be an instance of the simple

type that is referenced by the declaration.

Constraint 11 (Restrictions on attribute conditions)

context AttributeCondition

inv: attributeDeclaration -> forAll(sad1, sad2 : SingleAttributeDeclaration |

sad1.attribute.namespace = sad2.attribute.namespace and

sad1.attribute.name = sad2.attribute.name implies

sad1 = sad2)

context OptionalAttributeDeclaration

inv: defaultValue -> notEmpty implies

defaultValue.getSimpleType() = simpleType

context FixedAttributeDeclaration

inv: fixedValue.getSimpleType() = simpleType

Figure 25 provides an example how attribute conditions can be used to represent attribute

declarations occurring in an MPEG-7 media description scheme. The right part of the fig-

ure shows the declaration of the complex type AudioDSType which has been enhanced by an

attribute declaration permitting the optional use of an attribute id of type ID and by a dec-

laration on the basis of the <anyAttribute> construct further allowing the use of arbitrary

attributes as long as they originate from the namespace http://www.mpeg7.org/.

93

namespace=‘http://...’

name=‘AudioDescriptionScheme ’

scope=null

et7:ElementType

tr8:TransitionRule

resultState

regExp=‘(`et8.etID`)*’

c8:ComplexContentCondition

evaluate()

type()

augmented

…

<complexType name=“AudioDSType”>

<sequence>

<element name=“Header” …

minOccurs=“0”

maxOccurs=“unbounded”/>

</sequence>

<attribute name=“id” type=“ID”

use=“optional”/>

<anyAttribute

namespace=“http://www.mpeg7.org/”/>

</complexType>

…

<element name=“AudioDescriptionScheme”

type=“mpeg7:AudioDSType”/>

…

et8

et7

:AttributeCondition

evaluate()

type()

namespace=‘http://...’

name=‘ID’

scope=null

:SimpleType

namespace=‘http://...’

name=‘id’

scope=‘AudioDSType’

:Attribute

:AnyAttributeDeclaration

evaluate()

type()

namespace=‘http://www.mpeg-7.org/ ’

:OptionalAttributeDeclaration

evaluate()

type()

Figure 25: Example mapping of attribute declarations (UML object diagram)

The left part of the figure shows the representation of the declaration of the element type

AudioDescriptionScheme, whose content model is defined via AudioDSType, by means of a

transition rule. For the figure, complex type polymorphism is neglected for the sake of clar-

ity. As one can observe, the attribute declaration is straightforwardly mapped to an attribute

condition within the transition rule. The attribute condition augments a complex content

condition that restricts allowable element contents to arbitrarily long sequences of Header el-

ements in accordance to AudioDSType. The attribute condition models the declaration of the

id attribute with an optional attribute declaration which references an Attribute object rep-

resenting id and a SimpleType object modeling the simple type ID. The <anyAttribute>

construct is mapped to an any attribute declaration whose namespace property is set to

http://www.mpeg7.org/.

Definition 26 details the behaviour of attribute conditions during the validation and typ-

ing phases of a typing automaton by outlining a specification of the evaluate() and type()

methods of the class AttributeCondition. Since an attribute condition essentially constitutes

a container for various kinds of attribute declarations, the specification of both methods relies

on a fixed set of functionality that has to be offered by an attribute declaration. As already

indicated by the abstract methods of the abstract base class AttributeDeclaration in the

94

class diagram of Figure 24, any concrete subclass of AttributeDeclaration that represents a

particular kind of attribute declaration must provide appropriate implementations for the meth-

ods evaluate() and type() similar to a condition’s methods of the same name: evaluate()

expects an attribute value as its parameter and returns true if the attribute value constitutes

a valid instantiation of the current attribute declaration; type() takes an attribute value in

untyped representation as its parameter and transforms the attribute value to a corresponding

typed representation in a manner that is appropriate for the current attribute declaration.

According to the postconditions that are given in Definition 26 for the evaluate() method

of the class AttributeCondition, an attribute condition performs the following checks on

an element during the validation phase of a typing automaton in addition to evaluating the

augmented condition: it is first verified for each attribute value of the element whether there

exists an attribute declaration within the attribute condition that is validly instantiated by the

attribute value. It is further ensured that every required attribute declaration of the condition

is satisfied by one of the element’s attribute values. Finally, it is ascertained that no attribute

value satisfies a prohibited attribute declaration that might be potentially contained within an

attribute condition.

Provided that an element in untyped representation is passed to AttributeCondition’s

type() method for which the current attribute condition evaluates to true, the pseudocode

suggested for the implementation of that method first brings the element and as much of its

direct and indirect child elements as possible to corresponding typed representations by del-

egating its call to the augmented condition. Then, type() tries to transform each of the

element’s attribute values in untyped representation to a corresponding typed representation

using the type() method of an attribute declaration which the attribute value validly instanti-

ates. There is always at least one such attribute declaration since this has already been ensured

by evaluate(). Note that there is one case where the construction of a corresponding typed

representation of an attribute value might not be possible which is expressed by the last of

type()’s postconditions: in case that the attribute value instantiates an any attribute decla-

ration only. Any attribute declarations, however, lack important type information, i.e. the

instantiated attribute and the simple type forming the domain of its values, that is necessary

for the construction of typed representations.

95

Definition 26 (Attribute condition)

context AttributeCondition::evaluate(Element e, TransitionRule tr) : Boolean

post: result = e.attributeValue -> forAll(av |

self.attributeDeclaration -> exists(ad | ad.evaluate(av))) and

self.attributeDeclaration -> forAll(rad : RequiredAttributeDeclaration |

e.attributeValue -> exists(av | rad.evaluate(av))) and

self.attributeDeclaration -> forAll(pad : ProhibitedAttributeDeclaration |

not(e.attributeValue -> exists(av | pad.evaluate(av)))) and

self.augmented.evaluate(e, tr)

context AttributeCondition::type(Element e, TransitionRule tr)

pre: not(e.typed)

pre: tr.resultState.name = e.etName

pre: tr.resultState.namespace = e.etNamespace

pre: self.evaluate(e, tr)

post: e.CUR(e@pre)

post: e.elementType = tr.resultState

post: e.allChildElements -> forAll(c |

not(c.CUR(c@pre) and tr.typingAutomaton.

applicableElementTypes(c) -> includes(c.elementType)) implies

tr.typingAutomaton.applicableElementTypes(c) -> isEmpty() or

not(c.parentNode.typed))

post: e.attributeValue -> forAll(av |

not(av.CUR(av@pre)) implies

self.attributeDeclaration -> exists(sad :

AnyAttributeDeclaration | sad.evaluate(av)) and

self.attributeDeclaration -> size() = 1)

pseudocode:

-- Invoke behaviour of augmented condition

self.augmented.type(e, tr)

-- Type all attribute values in untyped representation which

-- validly instantiate a single attribute declaration

96

foreach av in e.attributeValue -> select(untyped) do

iad := self.attributeDeclaration -> any(ad | ad.evaluate(av))

iad.type(av)

endforeach

We conclude our treatment of attribute conditions by showing how implementations of

the evaluate() and type() methods of attribute declarations could look like. We restrict

ourselves to optional attribute declarations and any attribute declarations that we have used

for our example of Figure 25. The implementations of both methods for optional attribute

declarations are covered by Definition 27. evaluate() delivers true for an attribute value if

(a) the attribute name and namespace of the attribute value match the name and namespace

of the attribute addressed by the current optional attribute declaration and if (b) an instance

of the simple type addressed by the optional attribute declaration can be constructed from the

textual representation of the attribute value’s content. type() uses the attribute and simple

type associated with the optional attribute declaration to straightforwardly the attribute value

that is passed passed to the method to typed representation.

Definition 27 (Optional attribute condition)

context OptionalAttributeCondition::evaluate(AttributeValue av) : Boolean

post: result = (av.attName = self.attribute.name) and

(av.attNamespace = self.attribute.namespace) and

(av.attNamespace = self.attribute.namespace) and

(av.typedContent -> notEmpty() implies

self.simpleType.simpleTypeInstanceFactory.

fromString(av.typedContent.getSimpleType().

toString(av.typedContent)) <> null) and

(av.typedContent -> isEmpty() implies

self.simpleType.simpleTypeInstanceFactory.

fromString(av.content) <> null)

context OptionalAttributeCondition::type(AttributeValue av)

pre: not(av.typed)

97

pre: self.evaluate(av)

post: av.CUR(av@pre)

pseudocode:

-- Bring the attribute value to an appropriate typed

-- representation.

av.typed := true

av.name := null

av.namespace := null

av.attribute := av.attribute -> including(self.attribute)

-- Use the simple type instance factory associated

-- with the simple type of the optional attribute condition

-- to produce an appropriate simple type instance for use as

-- typed attribute value content

stif := self.simpleType.simpleTypeInstanceFactory

sti := stif.fromString(av.simpleContent)

-- Set simple type instance as simple content of element

av.simpleContent := null

av.typedSimpleContent := av.typedSimpleContent

-> including(sti)

Definition 28 treats the evaluate() and type() methods of any attribute declarations.

evaluate() returns true if the attribute namespace of the attribute value matches the names-

pace referred to by the current any attribute declaration. Because an any attribute declaration

does not carry sufficient information for the construction of a corresponding typed representa-

tion of the attribute value that is passed to type(), the method attempts to delegate its call to

a single attribute declaration that is also validly instantiated by the attribute value. Should no

such single attribute declaration exists, the attribute value remains in untyped representation.

Definition 28 (Any attribute condition)

context AnyAttributeCondition::evaluate(AttributeValue av) : Boolean

post: result = self.namespace <> null implies

av.attNamespace = self.namespace

98

context AnyAttributeCondition::type(AttributeValue av)

pre: not(av.typed)

pre: self.evaluate(av)

post: self.attributeCondition -> exists(ad :

not(ad.oclIsTypeOf(AnyAttributeCondition)) and

ad.evaluate(av)) implies

av.CUR(av@pre)

pseudocode:

-- Check whether attribute value also instantiates a

-- single attribute declaration.

if self.attributeCondition.attributeDeclaration -> exists(sad :

SingleAttributeDeclaration | sad.evaluate(av)) then

-- If so, use single attribute declaration to produce

-- a corresponding typed representation of the attribute

-- value, because this can’t be done on the basis of an

-- any attribute declaration.

isad := self.attributeCondition.attributeDeclaration -> any(sad :

SingleAttributeDeclaration | sad.evaluate(av))

isad.type(av)

endif

6 Conclusion

Starting out with essential requirements for the management of MPEG-7 media descriptions,

we have analyzed current XML database solutions for their suitability for use in the context of

MPEG-7. Facing the deficiencies of these solutions with respect to these requirements, we have

realized the need for more adequate database solutions for MPEG-7 media descriptions. As a

foundation of such a solution, we have introduced the Typed Document Object Model, a data

model for XML documents specifically designed with the requirements for the management of

MPEG-7 media descriptions in mind. We have highlighted TDOM’s key features and given a

99

thorough definition of the model. We have introduced and formally defined typing automata

as an executable intermediary representation for media description schemes that is capable

of validating MPEG-7 media descriptions and inferring typed representations their contents.

We have proposed optimizations for the core functionality of typing automata that promise to

substantially reduce the effort necessary for document validation and typing, especially after

document updates. We have further shown that the mechanism of typing automata is flexible

enough to be extended up to the expressiveness of MPEG-7 DDL.

We have fully implemented TDOM with Java on the basis of the object-oriented DBMS

ObjectStore. Our implementation comes with a schema catalog that manages media description

schemes on the basis of typing automata and uses these automata for the validation of MPEG-7

media descriptions and the automatic construction of typed representations of the contents of

the descriptions. Furthermore, our implementation includes an indexing component supporting

a variety of secondary access methods for indexing the basic contents of a media description

including Hashtables, B-Trees, and R-Trees. We are currently providing a processor for XPath

expressions [9] that exploits schema information and indexes available for an optimized query

evaluation. The XPath processor forms the heart of optimizing processors for XQuery [4] and

XSLT [7] that we plan to implement in future.

References

[1] A.V. Aho, R. Sethi, and J.D. Ullmann. Compilers: Principles, Techniques, and Tools. Addison-

Wesley, Reading, Massachussetts, 1986.

[2] Analysis & Design Platform Task Force. Unified Modeling Language (UML). OMG Available

Specification Version 1.4, Object Management Group (OMG), September 2001.

[3] P.V. Biron and A. Mahotra. XML Schema Part 2: Datatypes. W3C Recommendation, World

Wide Web Consortium (W3C), May 2001.

[4] S. Boag, D. Chamberlin, M.F. Fernandez, et al. XQuery 1.0: An XML Query Language. W3C

Working Draft, World Wide Web Consortium (W3C), August 2002.

100

[5] B. Chang, E. Litani, J. Kesselman, and R. Rahman. Document Object Model (DOM) Level 3

Abstract Schemas Specification. W3C Note Version 1.0, World Wide Web Consortium (W3C),

July 2002.

[6] B. Chidlovskii. Using Regular Tree Automata as XML Schemas. In Proc. of the IEEE Advances

in Digital Libraries 2000 (ADL 2000), Washington, D.C., May 2000.

[7] J. Clark. XSL Transformations (XSLT). W3C Recommendation, World Wide Web Consortium

(W3C), November 1999.

[8] J. Clark. TREX – Tree Regular Expressions for XML Language Specification. Specification, Thai

Open Source Software Center, Ltd., February 2001.

[9] J. Clark and S. DeRose. XML Path Language (XPath). W3C Recommendation Version 1.0,

World Wide Web Consortium (W3C), November 1999.

[10] J. Clark and M. Murata. RELAX NG Specification. OASIS Committee Specification, Organiza-

tion for the Advancement of Structured Information Standards (OASIS), December 2001.

[11] H. Comon, M. Dauchet, R. Gilleron, et al. Tree Automata Techniques and Applica-

tions. Unpublished Book Manuscript, October 2002. Available at: http://www.grappa.univ-

lille3.fr/tata/tata.pdf.

[12] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. The MIT Press,

Cambridge, Massachussetts, 1990.

[13] R. Cowan and R. Tobin. XML Information Set. W3C Recommendation, World Wide Web

Consortium (W3C), October 2001.

[14] A. Davidson, M. Fuchs, M. Hedin, et al. Schema for Object-Oriented XML. W3C Note Version

2.0, World Wide Web Consortium (W3C), July 1999.

[15] DCMI. Dublin Core Metadata Element Set. DCMI Recommendation Version 1.1, Dublin Core

Metadata Initiative (DCMI), July 1999.

[16] A. Deutsch, M. Fernandez, and D. Suciu. Storing Semistructured Data with STORED. In

Proc. of the ACM SIGMOD International Conference on Management of Data (SIGMOD 1999),

Philadelphia, Pennsylvania, June 1999.

101

[17] eXcelon Corp. Managing DXE. System Documentation Release 3.5, eXcelon Corp., December

2001.

[18] M. Fernandez, J. Marsh, and M. Nagy. XQuery 1.0 and XPath 2.0 Data Model. W3C Working

Draft, World Wide Web Consortium (W3C), August 2002.

[19] D. Florescu and D. Kossmann. Storing and Querying XML Data Using an RDBMS. IEEE Data

Engineering Bulletin, 22(3), 1999.

[20] C. Frankston and H.S. Thompson. XML-Data Reduced. Unpublished Draft of W3C Note Version

0.21, University of Edinburgh, July 1998.

[21] G. Gardarin, F. Sha, and T.D. Ngoc. XML-Based Components for Federating Multiple Hetero-

geneous Data Sources. In Proc. of the 18th International Conference on Conceptual Modeling

(Conceptual Modeling - ER ’99), Paris, France, November 1999.

[22] R. Goldman, J. McHugh, and J. Widom. From Semistructured Data to XML: Migrating the Lore

Data Model and Query Language. In Proc. of the ACM SIGMOD Workshop on The Web and

Databases (WebDB ’99), Philadelphia, Pennsylvania, June 1999.

[23] S. Higgins, O. Alonso, S. Banerjee, et al. Oracle 9i Application Developer’s Guide – XML.

Product Documentation Release 1 (9.0.1), Oracle Corp., June 2001.

[24] H. Hosoya. Regular Expression Types for XML. PhD thesis, University of Tokyo, Japan, 2000.

[25] G. Huck, I. Macherius, and P. Fankhauser. PDOM: Lightweight Persistency Support for the Doc-

ument Object Model. In Proc. of the Workshop “Java and Databases: Persistence Options” of the

14th Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages,

and Applications (OOPSLA ’99), Denver, Colorado, November 1999.

[26] IBM Corp. IBM DB2 Universal Database – XML Extender Administration and Programming.

System Documentation Version 7, IBM Corp., 2000.

[27] IEEE P1484.12 Learning Object Metadata Working Group. Draft Standard for Learning Object

Metadata. IEEE Draft Standard P1484.12/D6.1, Institute of Electrical and Electronics Engineers,

Inc. (IEEE), April 2001.

[28] Infonyte GmbH. Infonyte-DB – User Manual and Programmers Guide. System Documentation

Version 2.0.2, Infonyte GmbH, May 2002.

102

[29] ISO/IEC JTC 1/SC 29/WG 11. MPEG-7: Context, Objectives and Technical Roadmap, V.12.

ISO/IEC Document N2861, International Organization for Standardization/International Elec-

trotechnical Commission (ISO/IEC), July 1999.

[30] ISO/IEC JTC 1/SC 29/WG 11. Information Technology – Multimedia Content Description

Interface – Part 1: Systems. ISO/IEC Final Draft International Standard 15938-1:2001, Interna-

tional Organization for Standardization/International Electrotechnical Commission (ISO/IEC),

November 2001.

[31] ISO/IEC JTC 1/SC 29/WG 11. Information Technology – Multimedia Content Description

Interface – Part 2: Description Definition Language. ISO/IEC Final Draft International Stan-

dard 15938-2:2001, International Organization for Standardization/International Electrotechnical

Commission (ISO/IEC), September 2001.

[32] ISO/IEC JTC 1/SC 29/WG 11. Information Technology – Multimedia Content Description

Interface – Part 3: Visual. ISO/IEC Final Draft International Standard 15938-3:2001, Interna-

tional Organization for Standardization/International Electrotechnical Commission (ISO/IEC),

July 2001.

[33] ISO/IEC JTC 1/SC 29/WG 11. Information Technology – Multimedia Content Description Inter-

face – Part 4: Audio. ISO/IEC Final Draft International Standard 15938-4:2001, International

Organization for Standardization/International Electrotechnical Commission (ISO/IEC), June

2001.

[34] ISO/IEC JTC 1/SC 29/WG 11. Information Technology – Multimedia Content Description

Interface – Part 5: Multimedia Description Schemes. ISO/IEC Final Draft International Stan-

dard 15938-5:2001, International Organization for Standardization/International Electrotechnical

Commission (ISO/IEC), October 2001.

[35] IXIASOFT Inc. Creating Client Applications for TEXTML Server – Programmer’s Guide. System

Documentation Version 2.1, IXIASOFT Inc., December 2001.

[36] H.V. Jagadish, L.V.S. Lakshmanan, and D. Srivastava. Hierarchical or Relational? A Case for

a Modern Hierarchical Data Model. In Proc. of the IEEE Workshop on Knowledge and Data

Engineering Exchange (KDEX’99), Chicago, Illinois, November 1999.

103

[37] R. Jelliffe. Using XSL as a Validation Language. Draft Technical Document, Academia

Sinica, Taipei, Taiwan, January 1999. Available at: http://www.ascc.net/xml/en/utf-

8/XSLvalidation.html.

[38] C.C. Kanne and G. Moerkotte. Efficient Storage of XML Data. Technical Report 8/99, University

of Mannheim, Germany, August 1999.

[39] M. Kempa and V.Linnemann. Efficient Parsing of XML Documents without Limitations: DTD

implies LL(1) Grammar (in German). Technical Report: Schriftenreihe der Institute für Infor-

matik und Mathematik A-00-21, University of Lübeck, Germany, December 2000.

[40] A. Le Hors, P. Le Hégaret, L. Wood, et al. Document Object Model (DOM) Level 2 Core Spec-

ification. W3C Recommendation Version 1.0, World Wide Web Consortium (W3C), November

2000.

[41] A. Le Hors, P. Le Hégaret, L. Wood, et al. Document Object Model (DOM) Level 3 Core

Specification. W3C Working Draft Version 1.0, World Wide Web Consortium (W3C), April

2002.

[42] M. Mani and D. Lee. XML to Relational Conversion using Theory of Regular Tree Grammars. In

Proc. of the First VLDB Workshop on Efficiency and Effectiveness of XML Tools and Techniques

(EEXTT 2002), Hongkong, China, August 2002.

[43] Microsoft Corp. Microsoft SQL Server 2000 – SQLXML 2.0. System Documentation, Microsoft

Corp., 2000.

[44] M. Murata. Hedge Automata: a Formal Model for XML Schemata. Draft Technical Document,

Fuji Xerox Information Systems, Fuji Xerox Co., Ltd., Tokyo, Japan, October 1999.

[45] F. Nack and A.T. Lindsay. Everything You Wanted to Know About MPEG-7: Part 1. IEEE

MultiMedia, 6(3), 1999.

[46] F. Nack and A.T. Lindsay. Everything You Wanted to Know About MPEG-7: Part 2. IEEE

MultiMedia, 6(4), 1999.

[47] P. Prescod. Formalizing XML and SGML Instances with Forest Automata Theory. Draft technical

document, School of Computer Science, University of Waterloo, Canada, May 1998. Available

at: http://www.prescod.net/forest/shorttut.

104

[48] A. Salminen and F.W. Tompa. Requirements for XML Document Database Systems. In Proc. of

the ACM Symposium on Document Engineering 2001 (DocEng ’01), Atlanta, Georgia, November

2001.

[49] A. Schmidt, M. Kersten, M. Windhouwer, et al. Efficient Relational Storage and Retrieval of

XML Documents. In Proc. of the Third International Workshop on the Web and Databases

(WebDB 2000), Dallas, Texas, May 2000.

[50] L. Segoufin and V. Vianu. Validating Streaming XML Documents. In Proc. of the 21st ACM

SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS 2002), Madi-

son, Wisconsin, June 2002.

[51] J. Shanmugasundaram, K. Tufte, G. He, et al. Relational Databases for Querying XML Docu-

ments: Limitations and Opportunities. In Proc. of the 25th International Conference on Very

Large Data Bases (VLDB ’99), Edinburgh, Scotland, September 1999.

[52] T. Shimura, M. Yoshikawa, and S. Uemura. Storage and Retrieval of XML Documents Using

Object-Relational Databases. In Proc. of the Database and Expert Systems Applications, 10th

International Conference (DEXA ’99), Florence, Italy, September 1999.

[53] Software AG. User Guide. System Documentation Version 3.1.1, Software AG, November 2001.

[54] K. Staken. dbXML Developers Guide 0.5. System Documentation Version 1.0, The dbXML

Project, September 2001.

[55] K. Staken. Xindice Developers Guide 0.7. System Documentation Version 1.0, The Apache

Software Foundation, March 2002.

[56] H.S. Thompson, D. Beech, M. Maloney, et al. XML Schema Part 1: Structures. W3C Recom-

mendation, World Wide Web Consortium (W3C), May 2001.

[57] F. Tian, D.J. DeWitt, J. Chen, and C. Zhang. The Design and Performance Evaluation of

Alternative XML Storage Strategies. ACM SIGMOD Record, 31(1), 2002.

[58] VRA Data Standards Committee. VRA Core Categories. VRA Standard Version 3.0, Visual

Resources Assocation (VRA), February 2002.

[59] X-Hive Corp. X-Hive/DB 2.0 – Manual. System Documentation Release 2.0.2, X-Hive Corp.,

May 2002.

105

[60] xCBL.org. XML Common Business Library (xCBL). Structure Reference Version 3.5, Commerce

One, Inc., November 2001.

[61] XML Global Technologies, Inc. GoXML DB Administrator Help. System Documentation Version

2.0.1, XML Global Technologies, Inc., December 2001.

106

