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Abstract

Current XML database solutions largely neglect or make insufficient use of available

schema definitions. Although XML documents are to some extent self-describing by means

of their markup, availability and use of rich structure and type information contained in

schema definitions written in languages such as XML Schema is nevertheless essential for

their effective management in a database: only with this information at hand, it is possi-

ble to ensure database consistency by document validation, to store, index, and access the

content of elements and attribute values in an appropriately typed manner and not just

as text, and to perform more sophisticated query optimizations. In this paper, we give a

system overview of the Persistent Typed DOM (PTDOM), a schema-aware native XML

database solution originally developed for the management of MPEG-7 media descrip-

tions. The core of PTDOM is made up of a schema catalog capable of managing schema

definitions written in MPEG-7 DDL, a superset of XML Schema. PTDOM exploits the

schema information maintained by this catalog in a variety of contexts: for document

validation, for typed storage of elements and attribute values, for structural indexing of

XML documents providing additional efficient access paths to document contents, and

for optimized construction of query execution plans for XPath expressions. This along

with its profound extensibility with new datatypes, user-defined functions, and value in-

dex structures makes PTDOM a flexible and effective database solution not only for the

management of MPEG-7 media descriptions but also for the management of any kind of

XML documents for which schema definitions exist.
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1 Introduction

Although the structure of XML documents is to some extent self-describing by means of their

markup, it has long been recognized that additional structure and type information in form of

schema definitions – provided that such definitions are available – can considerably contribute

to an effective management of larger numbers of XML documents in a database [2, 15, 65]. In

consideration of this fact, it is remarkable that the plenitude of XML database solutions exist-

ing today [3, 63, 61] – commercial systems, research prototypes, just as open-source projects;

native XML database solutions or XML database extensions just as traditional database man-

agement systems (DBMSs) – largely neglect available schema definitions for XML document

management. Many XML database solutions completely ignore them; and those solutions that

are capable of processing some form of schema definitions – be they Document Type Definitions

(DTDs) [4] or, becoming increasingly prevalent, XML Schemas [58, 1] – mainly restrict their

use to document validation as a means of ensuring database consistency.

But the structure and type information contained in schema definitions can be exploited for

an effective management of XML documents in more ways than mere document validation:

• Modern schema definition languages such as XML Schema provide rich sets of simple

types which can be used to precisely specify the nature of element or attribute value

content within a schema definition, covering not only strings but also various kinds of

non-textual types like numbers, date and time values, and even binary data. An XML

database solution can exploit such type information to derive the types of basic document

contents and store these contents appropriately [60, 62]. Compared to the alternative of

simply treating all these contents as text regardless of their type, such a typed storage

allows applications to access and process non-textual content in an adequate and efficient

way and also permits an appropriate indexing of this content.

• The information about the allowable structure of XML documents contained within

schema definitions permits sophisticated query optimizations promising faster query eval-

uation times [2, 15, 65]. Queries can be pruned to simplify evaluation by identifying

subexpressions that – according to a schema definition – can never yield a result or are

redundant. Based on a schema definition, queries can also be equivalently rewritten so
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that their evaluation can profit from potentially existing indexes.

• A schema definition itself can serve as an effective path index for the XML documents

complying to that definition [21, 15, 45]. If a database solution interconnects the element

types and attributes declared in a schema definition with the elements and attribute

values which instantiate them inside the XML documents contained in a database, large

portions of path traversals in queries can be evaluated directly on top of the schema

definition without the need of touching and traversing a potentially large number of

documents again promising reduced query evaluation times.

In this paper, we give a system overview of the Persistent Typed DOM (PTDOM), a native

XML database solution we have developed in need for an adequate, generic database solution

for the management of MPEG-7 media descriptions [40, 39, 26]. A schema catalog capable of

managing schema definitions indited in MPEG-7 DDL [27], a superset of XML Schema, forms

the heart of PTDOM. Aware of the benefits to be gained from schema information, PTDOM

makes use of the schema definitions maintained by this catalog in a variety of contexts. Not only

are these definitions employed to validate XML documents during document import and after

updates in order to ensure database consistency as well as to infer and construct appropriate

typed representations of the basic contents of XML documents in order to give applications

adequate access to even non-textual data. Also, PTDOM’s schema catalog acts as a highly

effective path index that associates the element types and attributes of a schema definition

with those elements and attribute values which validly instantiate them within the documents

complying to that definition. Finally, PTDOM implements a specialized query algebra for the

evaluation of XPath expressions [8] which is tailored to the exploitation of the schema catalog’s

path indexing capabilities, the typed representation of basic document contents, as well as

PTDOM’s extensive value indexing support. Though not yet providing a dedicated query

optimizer, PTDOM features an optimized translator which transforms XPath expressions to

the query algebra employing heuristics that base on the information provided by the schema

catalog.

Such an extensive schema-awareness in combination with a profound extensibility compa-

rable to modern object-relational DBMSs permitting the seamless integration of arbitrary new
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simple types, user defined functions, as well as value index structures into the system makes

PTDOM a flexible and effective XML database solution – not only for the management of

MPEG-7 media descriptions but also for the management any kinds of XML documents for

which schema definitions written in XML Schema are available.

The remainder of the paper is organized as follows: Section 2 illustrates and elaborates the

manifold benefits of considering and exploiting available schema definitions for the management

of XML documents. Section 3 analyzes whether or to what extent current XML database

solutions make use of schema definitions for XML document management fortifying our claim

that available schema information is largely lying idle today. Section 4 gives an overview of

the components of the PTDOM system. Section 5 presents some performance evaluations and

experimental results. Section 6 concludes the paper and gives an outlook to current and future

work.

2 Applications of schema definitions for XML document

management

In this section, we discuss the various applications of available schema definitions and illustrate

their benefits for the management of XML documents in a database in more detail. For the

discussion, we make use of a motivating example schema definition from the domain of metadata

management for digital media which constitutes the background of our research work.

Figure 1 provides this example definition. It gives a slightly simplified excerpt of the so-called

Melody media description scheme [29] as defined by the MPEG-7 standard [40, 39, 26]. MPEG-

7 is an ISO standardization effort aiming at establishing a common metadata framework for the

extensive description of multimedia content at different levels and from different perspectives

that is of use for a broad spectrum of applications, including multimedia archives, search

engines, media production support, education and entertainment.

Not only for the purpose of defining the plenitude of ready-to-use media description schemes

shipping with the standard [28, 29, 30] but also for giving applications means to create their own

or extend existing description schemes, MPEG-7 provides the Description Definition Language

(MPEG-7 DDL) [27]. MPEG-7 DDL is a general-purpose schema definition language for XML
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…

<complexType name=“MelodyType”>
<complexContent>

<extension base=“mpeg7:AudioDSType”>
<sequence>

<element name=“Meter”    
type=“mpeg7:MeterType”
minOccurs=“0”/>

<element name=“MelodyContour”   
type=“mpeg7:MelodyContourType”
minOccurs=“0”/>

</sequence>
</extension>

</complexContent>
</complexType>

<complexType name=“MelodyContourType”>
<complexContent>

<extension base=“mpeg7:AudioDSType”>
<sequence>

<element name=“Contour”>
<simpleType>

<list itemType=“integer”/>
</simpleType>

</element>
<element name=“Beat”>

<simpleType>
<list itemType=“integer”/>

</simpleType>
</element>

</sequence>
</extension>

</complexContent>
</complexType>

<complexType name=“MeterType”>
<complexContent>

<extension base=“mpeg7:AudioDType”>
<sequence>

<element name=“Numerator”>
<simpleType>

<restriction base=“integer”>
<minInclusive value=“1”/>
<maxInclusive value=“128”/>

</restriction>
</simpleType>

</element>
<element name=“Denominator”>

<simpleType>
<restriction base=“integer”>

<enumeration value=“1”/>
<enumeration value=“2”/>
<enumeration value=“4”/>
<enumeration value=“8”/>
<enumeration value=“16”/>
<enumeration value=“32”/>
<enumeration value=“64”/>
<enumeration value=“128”/>

</restriction>
</simpleType>

</element>
</sequence>

</extension>
</complexContent>

</complexType>

<element name=“AudioDescriptionScheme”
type=“mpeg7:AudioDSType”/>

…

…

<complexType name=“MelodyType”>
<complexContent>

<extension base=“mpeg7:AudioDSType”>
<sequence>

<element name=“Meter”    
type=“mpeg7:MeterType”
minOccurs=“0”/>

<element name=“MelodyContour”   
type=“mpeg7:MelodyContourType”
minOccurs=“0”/>

</sequence>
</extension>

</complexContent>
</complexType>

<complexType name=“MelodyContourType”>
<complexContent>

<extension base=“mpeg7:AudioDSType”>
<sequence>

<element name=“Contour”>
<simpleType>

<list itemType=“integer”/>
</simpleType>

</element>
<element name=“Beat”>

<simpleType>
<list itemType=“integer”/>

</simpleType>
</element>

</sequence>
</extension>

</complexContent>
</complexType>

<complexType name=“MeterType”>
<complexContent>

<extension base=“mpeg7:AudioDType”>
<sequence>

<element name=“Numerator”>
<simpleType>

<restriction base=“integer”>
<minInclusive value=“1”/>
<maxInclusive value=“128”/>

</restriction>
</simpleType>

</element>
<element name=“Denominator”>

<simpleType>
<restriction base=“integer”>

<enumeration value=“1”/>
<enumeration value=“2”/>
<enumeration value=“4”/>
<enumeration value=“8”/>
<enumeration value=“16”/>
<enumeration value=“32”/>
<enumeration value=“64”/>
<enumeration value=“128”/>

</restriction>
</simpleType>

</element>
</sequence>

</extension>
</complexContent>

</complexType>

<element name=“AudioDescriptionScheme”
type=“mpeg7:AudioDSType”/>

…

Figure 1: Example of an XML schema definition

documents that constitutes a superset of XML Schema, mainly extending XML Schema with

support for matrix types, vector types, and some additional temporal types to better cope with

the peculiarities of multimedia content description.1 As a consequence, an MPEG-7 media

description scheme is nothing else than a schema definition for XML documents; a conforming

MPEG-7 media description is nothing else than a document valid to that definition.

Briefly explained, the schema definition of Figure 1 serves to describe a song’s melody and

can be used as a basis for the realization of, e.g., query-by-humming applications. The entry

1Note that the example media description scheme depicted by Figure 1 does not make use of any of MPEG-7

DDL’s extensions. Thus, it is perfectly valid XML Schema as well.
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point to the schema definition is given by the complex type MelodyType to the upper left of

the figure. By extending the predefined type AudioDSType, it is expressed that MelodyType

actually defines an MPEG-7 media description scheme for the description of audio content.

The declaration of MelodyType states that a melody can be described by its meter and its

melody contour using optional elements of type Meter and MelodyContour. The meter of a

melody, according to the complex type MeterType to the upper right of the figure defining the

permissible content for Meter elements, is a fraction consisting of numerator and denominator

(element types Numerator and Denominator). The numerator must be an integer value in the

interval from 1 to 128, while the denominator must be a power of two in the same interval.

A melody contour is divided into a contour and a beat. This is expressed with the element

types Contour and Beat given by the complex type MelodyContourType in the lower left column

which defines the allowable content for MelodyContour elements. The contour of a melody is

a list of integer values giving a measure for the distance between every two consecutive notes

of a melody while the beat is a list of integer values associating every note of the melody with

its position in the beat.

Finally, the figure shows the declaration of the element type AudioDescriptionScheme to

the lower right which can serve as the root element type for any description of audio con-

tent. The content valid for elements of that type is given by the complex type AudioDSType.

Since every MPEG-7 audio description scheme is ultimately derived from AudioDSType,

AudioDescriptionScheme elements can hold descriptions complying to any audio description

scheme as long as the xsi:type attribute predefined by XML Schema is employed to declare

the particular subtype of AudioDSType used, such as MelodyType.

Figure 2 shows an example XML document (taken from [29], page 101) that constitutes

a conforming MPEG-7 Melody media description valid to the schema definition of Figure 1.

The document describes a small fraction of the melody of the song “Moon River” by Henry

Mancini. An AudioDescriptionScheme element constitutes the entry point to the description

whose content is marked to be compliant to the complex type MelodyType by means of an

xsi:type attribute value.

Having an example schema definition at hand, we now proceed with the illustration of the

various uses and benefits of schema definitions for XML document management:
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<!-- Melody description of 8 notes taken from “Moon River” by Henry Mancini -->

<AudioDescriptionScheme xmlns=“http://www.mpeg7.org/...”
xmlns:xsi=“http://www.w3.org/...”
xsi:type=“MelodyType”>

<Meter>
<Numerator>3</Numerator>
<Denominator>4</Denominator>

</Meter>
<MelodyContour>

<!-- Distance between two notes -->

<Contour>2  -1 -1 -1 -1 -1 1</Contour>

<!-- Beat position of notes -->

<Beat>1 4 5 7 8 9 9 10</Beat>
</MelodyContour>

</AudioDescriptionScheme>

<!-- Melody description of 8 notes taken from “Moon River” by Henry Mancini -->

<AudioDescriptionScheme xmlns=“http://www.mpeg7.org/...”
xmlns:xsi=“http://www.w3.org/...”
xsi:type=“MelodyType”>

<Meter>
<Numerator>3</Numerator>
<Denominator>4</Denominator>

</Meter>
<MelodyContour>

<!-- Distance between two notes -->

<Contour>2  -1 -1 -1 -1 -1 1</Contour>

<!-- Beat position of notes -->

<Beat>1 4 5 7 8 9 9 10</Beat>
</MelodyContour>

</AudioDescriptionScheme>

Figure 2: Example of a complying XML document

1. Document validation.

A central task of a DBMS is to ensure the consistency of database contents. Similarly, it should

be in the area of an XML database solution’s responsibility to warrant the consistency of the

XML documents stored with it. Since XML schema definitions like our example MPEG-7

Melody media description scheme precisely specify the available element types and attributes

for a family of XML documents as well as their permissible content, the utilization of schema

definitions is indispensible for an XML database solution to serve this responsibility. On the

one hand, an XML database solution can utilize available schema definitions to prevent that

inconsistent documents are inserted into a database. During the import of an XML document

into the database, the solution can validate that the document does not offend its schema

definition. The validation of XML documents has been heavily investigated in literature [6, 43,

49, 35, 33] and is generally well-understood. Moreover, the ability to validate XML documents

not only against DTDs but also against schema definitions indited in more expressive languages

such as XML Schema already comes for free with most modern XML parsers.
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On the other hand, an XML database solution can exploit available schema definitions to

ensure that documents already contained in a database cannot be brought to an inconsistent

state. During an update of an XML document, the solution can validate that the update

operations do not lead to a violation of the document’s schema definition. While this can be

achieved by simply revalidating the whole document after the update again as during document

import, research has recently started to think about more efficient incremental approaches

[62, 44] that try to limit the revalidation effort to just those document parts that have been

affected by the update. For example, it would be indeed ineffective to validate the whole

document of Figure 2 against the schema definition of Figure 1 again, just because an update

has validly changed the list of integer values making up the content of the Contour element

by appending further numbers: if the document was known to be valid before the update, it

would be sufficient to check that the affected element still complies to the specification of the

element type Contour in the schema definition.

An XML database solution that does not make use of existing schema definitions for XML

document validation, in constrast, defers the responsibility of maintaining database consistency

to the applications working with that solution. Apart from that this can be cumbersome for

applications, leaving the valuable good of a consistent database state in the hands of application

is dangerous and error-prone.

2. Document typing.

XML, although originally intended as a basis for cross-media publishing allowing the develop-

ment of presentation-neutral structured document formats, has also become a widely adopted

foundation for exchange and file formats for non-document application data. A typical char-

acteristic of XML formats carrying non-document application data is that they consist to con-

siderable extents of non-textual data, like various kinds of numbers, time values, more complex

structures such as vectors, lists, and matrices, or even binary objects. The schema definition

of Figure 1 providing the MPEG-7 Melody media description scheme of is a prime example of

such a format as it consists solely of non-textual data: the meter of a melody is defined by

integer values, its beat and contour by lists of integer values. As a matter of fact, more than

80% of the schema definitions offered by the MPEG-7 standard for the description of visual
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and audio content in [28] and [29] cover primarily non-textual data.

But since XML is a text document format, all data within XML documents – be they

textual or not – are self-evidently encoded as text. While this might be appropriate for the

platform-independent exchange of XML documents, the textual representation of non-textual

data is certainly inadequate for the storage of XML documents within a database: textual rep-

resentations of non-textual data often not only consume more storage space than corresponding

binary representations; typically, they are also less efficient. It is rather obvious, for example,

that keeping the list of integer values making up the content of the Contour element in Figure 2

in the depicted textual representation, i.e., as a string, is inefficient compared to keeping the list

in a more adequate data structure such as an array. Furthermore, having to process non-textual

data like this list of integer values by means of string operations is not at all adequate. As a

consequence, applications will typically have to manually transform textually represented non-

textual data to more adequate data structures during each access – either by using self-written

string conversion routines, by performing explicit type casts within queries, or by exploiting

implicit type coercion rules of the operators of a query language – so that a more appropriate

processing is possible. This is cumbersome, error-prone, and time-consuming. Finally, the

textual representation of non-textual information is not always adequate to the semantics of

the data. For example, the alphanumeric order of the textual representation of integer values

differs from their inherent numeric order. This complicates, for example, meaningful indexing.

It would thus be of great benefit if an XML database solution stored and represented

basic document contents, i.e., simple element content and the content of attribute values, in

an appropriately typed manner. Typed representation means that these contents are kept in

data structures appropriate to the particular content type and that a rich set of type-specific

operators (e.g., as given by [38]) is available for their appropriate processing – just as it is the

case for the contents of table columns and object properties within traditional relational and

object-oriented DBMS.

But even though they convey rich structural information by means of their markup, XML

documents do not carry any type information concerning their basic contents that could be

used by a database solution for the construction of appropriate typed representations; this

information is contained within the schema definitions to which the documents comply. Without
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the schema definition of Figure 1, for instance, there is no indication for an XML database

solution that the content of our example Contour element consitutes a list of integer values

and not just an arbitrary text that happens to comply the textual representation of this list

by chance. Hence, in order to be able to provide the benefits of typed representation and

type-adequate processing of simple element content and the content of attribute values, it is

indispensible for an XML database solution to draw on available schema definitions for the

management of XML documents and use the type information contained therein to infer the

types of these basic contents.

3. Query optimization.

It is widely accepted that a DBMS should possess a query optimizer that is capable of auto-

matically rewriting queries issued by an application into an equivalent form so that they can be

evaluated efficiently. Apart from the pure comfort of such a query optimizer that relieves ap-

plication developers from the burden of constantly having to consider the structure of database

contents and their physical storage (e.g., structural constraints, defined indexes, etc.) for the

formulation of efficient queries, a query optimizer also to some extent protects applications from

subsequent changes to the structure and physical storage of database contents. Without a query

optimizer, changes to the indexes defined within a database can quickly leave an application’s

queries inefficient raising the need to modify the application to reformulate its queries.

The availability of a query optimizer is of course desirable for an XML database solution

as well. In this regard, it has been recognized quite early [2, 15, 65] that schema definitions

constitute a valuable information source and provide a precise and rich decision base for query

optimization within XML database solutions as they give accurrate summaries of the permissi-

ble structure and contents of XML documents. Without this information, the means available

for query optimization are limited: a query optimizer can at best rewrite queries according to

rewriting rules that are universally valid for any XML document complying to any potential

schema definition. Furthermore, it can base the decision to apply these rewriting rules solely

on heuristics or statistical information that might be gathered by a database solution.

An XML database solution that takes schema definitions into account for the management

of XML documents, in contrast, has the benefit of having more sophisticated options for query
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optimization at its disposal: one use of schema definitions for query optimization is to reduce

the complexity of query evaluation. For instance, the evaluation of subexpressions of a query

can be avoided if, according to the schema definition to which the documents of a database

comply, these are certain to never yield a result. An admittedly simple but nevertheless striking

example of this is point the evaluation of the XPath expression //Composer – which retrieves

all Composer elements contained in an XML document – on a database full of conformant

MPEG-7 Melody descriptions. With knowledge of the schema definition of Figure 1, an XML

database solution can conclude without touching any document that the expression can never

deliver a result because no element type Composer is declared in the schema definition and

every document containg an element of that type would be invalid; without this knowledge, the

solution instead is forced to access the potentially large number of documents in the database

and traverse all of their elements on the fruitless search for Composer elements.

The complexity of query evaluation can also be reduced by employing schema definitions

to identify and prune redundant subexpressions. For example, instead of evaluating the XPath

expression //Meter[Denominator/data() <= 128]/Numerator on the database with MPEG-

7 Melody descriptions on the search for all numerators of meters with a denominator less than

or equal to 128, it is perfectly sufficient to evaluate the simpler expression //Meter/Numerator:

with knowledge of the schema definition of Figure 1, it can be inferred that the denominator

of a meter never exceeds 128 and therefore checking the condition contained in the original

expression is unnecessary.

Another use schema definitions for query optimization is to equivalently rewrite queries into

a form in which they make use of operands that are cheaper to evaluate or existing indexes can

be exploited. For example, a notoriously expensive operand of the XPath language is the //

operand which traverses all direct and indirect child elements of an element. When performing

a search for all numerators of meters within the MPEG-7 Melody descriptions of our example

database by means of the XPath expression //Numerator, an XML database not considering

schema definitions is obliged to access each of the database’s documents and traverse all of its

elements because there might be a Numerator element lurking somewhere in the depths of a

document. With knowledge of the schema definition of Figure 1, however, an XML database so-

lution can equivalently rewrite the expression to /AudiodescriptionScheme/Meter/Numerator
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because, according to that definition, Numerator elements are only permissible as direct chil-

dren of Meter below AudioDescriptionScheme elements, the latter always forming the root

elements of conformant documents. The rewritten expression is obviously cheaper to evaluate:

though still each of the database’s documents has to be accessed, traversal is explicitly directed

into the meter part of Melody descriptions stopping there.

Furthermore assuming that a path index that precomputes and maintains all

elements reachable by the XPath expression /AudioDescriptionScheme/Meter

is defined on the example database, rewriting the expression //Numerator to

/AudiodescriptionScheme/Meter/Numerator has additional benefits: it is now obvious

to the query processor that this path index can be applied for query evaluation because the

expression for which the index is maintained constitutes a prefix of the rewritten expression.

Thereby, not only the traversal down to the Meter elements within the documents which

are accessed during evaluation is spared because these elements can be directly obtained

from the path index; also the overall number of documents accessed during evaluation can

be significantly reduced considering that the occurrence of Meter elements within MPEG-7

Melody descriptions is optional and the use of the path index avoids access to documents

containing no Meter elements at all.

4. Path indexing.

Apart from the optimization of queries, an XML database solution can utilize available schema

definitions for accelerating query evaluation in a further way: if a database solution’s schema

catalog not only manages the various element types and attributes that are declared within

schema definitions but also interlinks these declarations with those elements and attribute val-

ues which instantiate them inside a database’s documents, schema definitions can serve as

formidable path indexes [21, 15, 45]. With such an indexing at hand, a query’s path traversals

can be evaluated to large extents on top of comparatively small schema definitions; the poten-

tially large number of potentially large XML documents contained in a database only need to

be touched during the last phase of query processing when the element types and attributes

whose instantiating elements and attribute values potentially qualify as query results have been

localized as precisely as possible.
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<complexType name=“MelodyContourType”>
   <complexContent>
      <extension base=“mpeg7:AudioDSType”>
         <sequence>
            <element name=“Contour”>
               <simpleType>
                  <list itemType=“integer”/>
               </simpleType>
            </element>
            <element name=“Beat”>
               <simpleType>
                  <list itemType=“integer”/>
               </simpleType>
            </element>
         </sequence>
      </extension>
   </complexContent>
</complexType>

<complexType name=“MelodyType”>
   <complexContent>
      <extension base=“mpeg7:AudioDSType”>
         <sequence>
            <element name=“Meter”
               type=“mpeg7:MeterType”
               minOccurs=“0”/>
            <element name=“MelodyContour”
               type=“mpeg7:MelodyContourType”
               minOccurs=“0”/>
         </sequence>
      </extension>
  </complexContent>
</complexType>

<complexType name=“MeterType”>
   <complexContent>
      <extension base=“mpeg7:AudioDType”>
         <sequence>
            <element name=“Numerator”>
               <simpleType>
                  <restriction base=“integer”>
                     <minInclusive value=“1”/>
                     <maxInclusive value=“128”/>
                  </restriction>
               </simpleType>
            </element>
            <element name=“Denominator”>
               <simpleType>
                  <restriction base=“integer”>
                     <enumeration value=“1”/>
                     <enumeration value=“2”/>
                     <enumeration value=“4”/>
                     <enumeration value=“8”/>
                     <enumeration value=“16”/>
                     <enumeration value=“32”/>
                     <enumeration value=“64”/>
                     <enumeration value=“128”/>
                  </restriction>
               </simpleType>
            </element>
         </sequence>
      </extension>
   </complexContent>
</complexType>

<element name=“AudioDescriptionScheme”
   type=“mpeg7:AudioDSType”/>

Schema definition in schema catalog:

<AudioDescriptionScheme xmlns=“http://www.mpeg7.org/...”
                                           xmlns:xsi=“http://www.w3c.org/...”
                                           xsi:type=“MelodyType”>

<Meter>
<Numerator>3</Numerator>

<Denominator>4</Denominator>
</Meter>

<MelodyContour>

<Contour>2  -1  -1  -1  -1  -1
1</Contour>

<Beat>1  4  5  7  8  9  9  10</Beat>

</MelodyContour>

</AudioDescriptionScheme>

<AudioDescriptionScheme xmlns=“http://www.mpeg7.org/...”
                                           xmlns:xsi=“http://www.w3c.org/...”
                                           xsi:type=“MelodyType”>

<Meter>
<Numerator>3</Numerator>

<Denominator>4</Denominator>
</Meter>

<MelodyContour>

<Contour>2  -1  -1  -1  -1  -1
1</Contour>

<Beat>1  4  5  7  8  9  9  10</Beat>

</MelodyContour>

</AudioDescriptionScheme>

<AudioDescriptionScheme xmlns=“http://www.mpeg7.org/...”
                                           xmlns:xsi=“http://www.w3c.org/...”
                                           xsi:type=“MelodyType”>

<Meter>
<Numerator>3</Numerator>

<Denominator>4</Denominator>
</Meter>

<MelodyContour>

<Contour>2  -1  -1  -1  -1  -1
1</Contour>

<Beat>1  4  5  7  8  9  9  10</Beat>

</MelodyContour>

</AudioDescriptionScheme>

<AudioDescriptionScheme xmlns=“http://www.mpeg7.org/...”
                                           xmlns:xsi=“http://www.w3c.org/...”
                                           xsi:type=“MelodyType”>

<Meter>
<Numerator>3</Numerator>

<Denominator>4</Denominator>
</Meter>

<MelodyContour>

<Contour>2  -1  -1  -1  -1  -1
1</Contour>

<Beat>1  4  5  7  8  9  9  10</Beat>

</MelodyContour>

</AudioDescriptionScheme>

Instantiating documents in database:

<AudioDescriptionScheme xmlns=“http://www.mpeg7.org/...”
                                           xmlns:xsi=“http://www.w3c.org/...”
                                           xsi:type=“MelodyType”>

<Meter>
<Numerator>3</Numerator>

<Denominator>4</Denominator>
</Meter>

<MelodyContour>

<Contour>2  -1  -1  -1  -1  -1 1</Contour>

                                                    <Beat>1  4  5  7  8  9  9  10</Beat>

</MelodyContour>

</AudioDescriptionScheme>

et1

et2

et3

et4

et5

et6

et7

Figure 3: Employing a schema definition as a path index

Consider, for instance, once more the evaluation of the XPath expression //Meter searching

for all meters within the example database full of MPEG-7 media descriptions complying to the

schema definition of Figure 1. Without path indexing support, an XML database solution will
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have to wade through every document within the database for the evaluation of that expression

and traverse each contained element on the search for query results, if we assume that no query

optimization takes places. However if, as illustrated by Figure 3, the database solution’s schema

catalog maintains for each of the element types declared within the example schema definition

(labeled et1-et7 in the figure) by which elements it is instantiated in the documents of the

database (as indicated by arrows), the same query can be evaluated more efficiently, especially

on a large database: the query processor just has to look up all element types bearing the name

Meter within the schema definition – there could be more than one because MPEG-7 DDL

just like XML Schema permits the declaration of homonymous element types within the scopes

of different complex types. In our example, the only qualifying type is the one labeled et3.

The query processor can then directly obtain the query result without the need of any further

access to the documents of the database by simply returning the instantiating elements of et3

maintained by the schema catalog.

The proposed path indexing functionality for schema catalogs is also useful in cases of

more complex path traversals which cannot be fully evaluated on top of the schema definition.

An example of this is the XPath expression /AudioDescriptionScheme/MelodyContour/Beat

querying all beats of melody contours within an audio description. A reasonable strategie

for a database solution’s query processor that exploits the path indexing functionality of the

schema catalog could be to first look up all element types with the name Beat in the schema

definition, which would yield the element type labeled et2 in our example of Figure 3. Al-

though one might be tempted to think that the result of the query could now be immediately

obtained from the schema catalog by returning the elements that instantiate et2, this is not

the case however: as the complex type MelodyContourType in which et2 is defined is derived

from the complex type AudioDSType, a Beat element may also occur as a direct child of an

AudioDescriptionScheme element provided that element carries a corresponding xsi:type at-

tribute value set to MelodyContourType. Therefore, there would be the need for an additional

processing phase in that selects only those Beat elements which occur as direct children of

MelodyContour elements.

Despite the additional filtering required, the proposed evaluation strategy is nevertheless

likely to result in an accelerated query evaluation: one has to consider that the alternative is
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to access every document in the database and traverse down from the document’s root to the

Beat element which might actually fail since MelodyContour elements are declared optional.

In contrast, the elements instantiating et2 already constitute a good approximation of the

query result which can be obtained quickly and leaves out already those documents that do not

contain any Beat elements at all.

3 Analysis of schema support and utilization

Having illustrated the various uses and benefits schema definitions have for the management

of XML documents in a database, we now take a brief look at state-of-the-art XML database

solutions including research prototypes, commercial products, as well as open-source projects

and examine whether these solutions consider available schema definitions and how they make

use of them. For that purpose, the table of Figure 4 presents an extract from an extensive

survey we have conducted recently investigating the suitability of XML database solutions for

the management of MPEG-7 media descriptions that focuses on this question [63, 61].

In particular, the table summarizes for a representative set of prominent XML database

solutions categorized into native XML database solutions and XML database extensions for

traditional DBMS whether these solutions feature a schema catalog for the management of the

schema definitions to which a database’s documents comply, which schema definition languages

are supported by that catalog, and how these definitions are utilized: for document validation,

document typing, query optimization, or path indexing. In close accordance with definitions

like [68], we regard as the major distinctive feature between native XML database solutions

and XML database extensions that a native solution permits the modeling of data only by

means of XML documents whereas a database extension still offers the modeling primitives of

the extended DBMS – thus, it is possible to implement a native XML database on top of a

traditional DBMS as long as the data model of the backend is entirely hidden from applications.

The table fortifies our claim that existing XML database solutions – be they native solu-

tions or database extensions, be they commercial products, open-source projects, or research

prototypes – fall short of exploiting available schema definitions for an improved management

of XML documents although the applications and benefits of schema definitions in this regard
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Schema catalog Utilization of schema definitions in catalog 

 
available Supported schema 

definition languages 
Document 
validation 

Document 
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Query  
optimization 

Path  
indexing 

eXcelon XIS � DTD  
XML Schema � – – – 

GoXML DB � DTD  
limited XML Schema � – – – 

Infonyte-DB/ 
PDOM – – – – – – 

Tamino � TSD 
limited XML Schema � – � – 

TEXTML – – – – – – 

X-Hive/DB � DTD � – – – 

Xindice/ dbXML – – – – – – 

eXist – – – – – – 

Lore � DataGuides – – – � 

Natix – – – – – – 
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Timber – – – – – – 

IBM DB2 XML 
Extender � DTD � – – – 

Microsoft 
SQLXML – – – – – – 

Oracle XML DB � DTD 
XML Schema � – – – 

ozone/XML – – – – – – 

Monet XML – – – – – – 

Shimura et al. – – – – – – 

XML Cartridge – – – – – – 
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ns

 

Oracle XML DB/  
Structured 
Mapping 

� DTD 
XML Schema � � � – 

Figure 4: Schema definition support and utilization in XML database solutions, (� support, �

partial support, – no support)

are long since known. Quite a few of the examined database solutions – on the side of the

native solutions namely the commercial systems TEXTML [31] and Infonyte-DB [25] evolved

from the research prototype PDOM [23], the open-source projects Xindice [56] formerly known
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as dbXML [55] and eXist [41], and the research prototypes Timber [32] and Natix [16, 34];

on the side of the database extensions namely the commercial Microsoft SQLXML [42], the

open-source project ozone/XML [10], and the research prototypes Monet XML [48], Shimura

et al. [51], and XML Cartridge [18] – do not even feature schema catalogs but completely ignore

available schema definitions. These solutions rely on applications to use document validation

capabilities of XML parsers prior to inserting documents into a database to ensure database

consistency themselves and cannot treat basic document contents in a way appropriate to their

type. Though some of these solutions provide means for query optimization and path indexing

– e.g., Infonyte-DB features a signature index for path indexing and performs some universal,

schema-independent query rewriting based on heuristics – they leave the considerable oppor-

tunities opened by schema definitions with regard to these issues lying fallow.

If at all considered for document management, the examined solutions mainly employ

schema definitions for document validation as it is the case with the commercial native prod-

ucts eXcelon XIS [12], GoXML DB [67], and X-Hive/DB [66] and the commercial database

extensions IBM DB2 XML Extender [24] and Oracle XML DB [22]. Nevertheless, the central

role the management and utilization of available schema definitions plays for an adequate and

effective management of XML documents remains unrecognized by these systems as well: the

attractive opportunities offered by schema definitions for document typing, query optimization,

and path indexing remain unexploited.

Three of the examined solutions – notably Lore [20], Tamino [54], and the Oracle XML DB

with its Structured Mapping storage option – concede schema definitions a more important role

for XML document management than mere document validation. Lore automatically constructs

so-called DataGuides as schematic, graph-based summaries of the XML documents contained

in a database. These DataGuides serve path indexing purposes: a node of a DataGuide which

represents a class of common elements or attribute values maintains references to these ele-

ments or attribute values allowing to evaluate significant amounts of path traversals on top of

DataGuides as described in Section 2. However, DataGuides are neither used for document

validation and typing nor for query optimization.

Tamino maintains a schema catalog based on the proprietary schema definition language

TSD [53] capable of expressing a limited subset of XML Schema. Though Tamino does not
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exploit the schema definitions contained in this catalog for document typing and path index-

ing, they are at least not just utilized for document validation but also for an advanced query

optimization. Before evaluating a query written in the proprietary XPath-like query language

X-Query [52] against documents that comply to a given schema definition, the query is auto-

matically rewritten into a canonical form. In this form, subexpressions contained in the query

making use of wildcards and // traversals to direct and indirect child nodes are replaced by

the disjunction of all those paths that qualify for these expressions according to the schema

definition. Thus, the canonical form frequently relieves Tamino’s query processor from the need

of performing expensive full-document traversals in face of // operators and further helps the

query processor in deciding whether existing indexes can be employed for query evaluation.

When employing the Structured Mapping option for storing XML documents, the Oracle

XML DB database extension – comparable in approach to [50, 59, 9] – creates a dedicated

relational database schema for every schema definition to which the documents of a database

comply. After validation, document contents are fine-grainedly mapped to these relational

schemas during document import. Since elements with simple content and attribute values are

mapped to fields with SQL data types coming closest to the simple types definining their content

in the respective schema definitions, one can say that Oracle XML DB/Structured Mapping

exploits available schema definitions for document typing. Since a query processor is provided

that rewrites XPath expressions to equivalent SQL statements which are then evaluated on top

of the relational schemas specifically created for the schema definitions and which are subject

to optimization by Oracle’s relational query optimizer, one can also say that Oracle XML

DB/Structured Mapping employs available schema definitions for query optimization.

Closer inspection reveals, however, that this support for document typing and query op-

timization has considerable limitations. The mapping scheme employed by Oracle XML

DB/Structured Mapping does not support more complicated simple types like lists and matri-

ces but simply keeps such content as text. Moreover, the mapping scheme cannot reasonably

deal with elements of mixed and arbitrary content as well as with elements that make use

of the xsi:type attribute: the content of such elements is simply packed unstructuredly into

textual overflow stores. As an example, almost the whole MPEG-7 media description of Figure

2 would be assigned to such a textual overflow store because the root element makes use of the
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xsi:type attribute already. Finally, the rewriting of XPath expressions to SQL statements is

not possible when document contents are touched that are kept in textual overflow stores and

only works for a very limited subset of XPath. When encountering these restrictions, the XPath

query processor costly reassembles each document on which an XPath expression is evaluated

into its original textual format and then evaluates the expression in main memory.

Summarizing, one must recognize that even with more schema-aware XML database solu-

tions like Lore, Tamino, and Oracle XML DB/Structured Mapping the use of schema definitions

still remains selective and limited. We therefore definitely see a demand for new XML database

solutions that tightly incorporate the management of available schema definitions as a central

concept and extensively exploit them for the various aspects of XML document management.

4 The Persistent Typed DOM

In the light of the deficiencies of existing XML database solutions with regard to the utilization

of available schema definitions, we have developed the Persistent Typed DOM (PTDOM) – a

schema-aware native XML database solution that consequently and extensively uses available

schema definitions throughout the various facets of XML document management.

In the following, we present the object-oriented architecture of PTDOM whose primary

components and their interdependencies are identified by the UML component diagram of

Figure 5. The design of this architecture and its components is guided by several objectives:

• Extensive schema utilization. Section 2 has shown the high value schema definitions

have for XML document management: for ensuring database consistency by document

validation, for enabling adequate access to basic document contents by document typing,

for improving query performance by path indexing, and as a decision base for query

optimization. As a basis for the extensive exploitation of available schema definitions for

the mentioned purposes, a schema catalog forms the core of the PTDOM architecture.

• Fine-grained document management. To allow applications to reasonably deal with even

larger XML documents stored in a database, it proves helpful if an XML database solution

permits access to and updates of XML documents as well parts of XML documents at any
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Simple Type 
Framework

Document 
Manager

Query 
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Index 
Framework

Routine 
Framework

Schema 
Catalog

<<storage backend>>

ObjectStore

Figure 5: PTDOM architecture (UML component diagram)

level of granularity desired by an application. Therefore, PTDOM’s document manager

stores and represents XML documents in a fine-grained manner.

• Typed document management. Non-textual application data carried by XML document

should be stored and represented in a way that is appropriate to the content type declared

in the document’s schema definition. In combination with the simple type framework

and routine framework, the document manager provides typed representations of simple

element content and attribute values along with type-adequate routines for an efficient

and appropriate representation and handling of even non-textual document contents.

• Rich indexing capabilities. For an efficient handling of larger collections of XML doc-

uments, rich indexing facilities are indispensible. The architecture addresses this issue

not only by employing the schema definitions within the schema catalog as path indexes.
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Also, the index framework provides a broad array of value index structures for indexing

unordered, ordered, and even multidimensional document contents.

• Efficient querying. A high query performance is a natural goal of any database solution.

The architecture provides an XPath query evaluator implementing a specialized query

algebra that is tailored to the exploitation of PTDOM’s advanced features: the use of

schema definitions as path indexes, the rich set of value index structures available with

PTDOM, and the typed representation of basic document contents.

• Extensibility. Profound extensibility is a virtue for any database solution as it allows

to flexibly meet individual needs of applications. Similar to modern object-relational

DBMSs, the simple type, routine, and index frameworks permit to seamlessly integrate

new simple types, user-defined routines, as well new value index structures into PTDOM.

• Classic DBMS functionality. Transaction support, fine-grained concurrency and access

control, reliable backup and recovery are classic DBMS functionality that are nowadays

taken for granted and which we do not want to neglect with PTDOM either. But not

to be bothered too much with these complex issues and to permit a rapid prototyping of

the object-oriented PTDOM architecture, we have decided to employ the object-oriented

DBMS ObjectStore [11] as a storage backend inheriting this system’s mature implemen-

tations of classic DBMS functionality. Our prototype even gains flexibility as there exists

the PSEPro [13] small-scale in-process variant of ObjectStore making the prototype con-

figurable as both a server-based as well as an in-process database solution. In future,

we want to replace ObjectStore with a dedicated XML storage manager, like the ones

proposed by [34, 16] or [23].2

2Concerning potential objections with regard to the “nativity” of PTDOM when realized on top of Object-

Store, one should bear in mind that, according to Section 3, we regard PTDOM as a native XML database

solution as long as it completely encapsulates the ObjectStore storage backend. In a similar manner, the com-

mercial XML database solution eXcelon XIS that also founds on ObjectStore is commonly regarded as native.

One should furthermore consider that ObjectStore is an object-oriented DBMS following a rather low-level page

server architecture not very different from storage managers like Shore [5] which constitutes the storage backend

of the native research prototype Timber [32].
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In the following subsections, we discuss the individual components of the PTDOM archi-

tecture and how they collaborate in more detail.

4.1 Simple type framework

One of the aims of PTDOM is to keep simple element content and the content of attribute

values contained in XML documents in a typed manner using data structures suiting the par-

ticular content types declared in the documents’ schema definitions, so that applications can

adequately and efficiently access and work with even non-textual data. The simple type frame-

work component, which forms the bottom of the PTDOM architecture, provides PTDOM with

such data structures. Not a fixed library with data structures for a predefined set of simple data

types, this component instead constitutes a framework that permits to integrate support for

arbitrary simple types which might be supported by a schema definition language like MPEG-7

DDL or needed for a certain application. Providing a type extensibility that is comparable to

object-relational DBMSs, the simple type framework considerably contributes to the flexibility

of the PTDOM architecture.

<<interface>>
SimpleTypeInstance

+equalTo()
+hash()
+getFactory()
+setFactory()

<<interface>>
SimpleTypeInstanceFactory

+fromString()
+toString()
+fromBinary()
+toBinary()

<<instantiate>>

<<interface>>
DerivedSimpleTypeInstance

Factory

+setBaseFactory()
+getBaseFactory()

<<interface>>
LengthSimpleTypeInstance

+getLength()

<<interface>>
DigitSimpleTypeInstance

+getTotalDigits()
+getFractionDigits()

<<interface>>
TimeIntervalSimpleTypeInstance

+getDuration()

<<interface>>
OrderedSimpleTypeInstance

+lessThan()
+greaterThan()

1

0..n

+baseFactory

SimpleTypeInstance
FactoryHome

+registerFactory()
+newFactory()
+unregisterFactory()

<<instantiate>>

Figure 6: Simple type framework overview (UML class diagram)

The class diagram of Figure 6 presents the overall structure of the simple type framework.
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In the framework, each value of a simple type is encapsulated by an object called simple type

instance. This object belongs to a class that implements suitable structures for an efficient and

adequate representation of the values of the given simple type. There are not much require-

ments for such a class: it merely has to implement at least the SimpleTypeInstance interface.

This interface primarily enforces basic support for comparison and hashing thus ensuring a

rudimentary handling and lookup of simple type instances in a database.

The simple type framework distinguishes different families of simple type instances that

are represented by corresponding specializations of SimpleTypeInstance. These demand ad-

ditional functionality from simple type instances belonging to such a family. The framework

provides specialized interfaces for simple type instances that have a duration, e.g., time pe-

riods, that possess a notion of length, e.g., lists, that have digits and fraction digits, e.g.,

decimals, and that are ordered, e.g., integers. This choice of simple type instance families –

further families can be easily integrated into the framework by introducing new specializations

of SimpleTypeInstance – is based on the consideration which functionality has to be offered

by simple type instances in order to be able to implement the various simple type derivation

methods supported by an expressive schema definition language like MPEG-7 DDL. For exam-

ple, to be able to implement the restriction of the element type Numerator to integer content

from 1 to 128 in our example schema definition of Figure 1 by means of MPEG-7 DDL’s simple

type derivation methods minInclusive and maxInclusive, the instances of the integer simple

type predefined by MPEG-7 DDL must be comparable according to notions of “less than” and

“greater than”, as ensured by the OrderedSimpleTypeInstance interface.

There must be a way to construct simple type instances out of their textual representation

in which they are encoded in XML documents. This is the task of simple type instance factories,

classes which implement the SimpleTypeInstanceFactory interface. It ensures that every such

factory can construct instances of a given simple type out of their textual representation and

serialize them back into that representation. Also, these factories are able to construct and

deconstruct simple type instances from and to a byte array representation which, e.g., can be

employed by PTDOM to store them onto disk pages. Every simple type instance keeps track of

the factory which created it, as demanded by the methods setFactory() and getFactory()

of the SimpleTypeInstance interface.
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The simple type framework is not only able to cope with elementary simple types but also

simple types which have been derived from other simple types within a schema definition apply-

ing simple type derivation methods offered by the language in which the definition is indited.

From the perspective of the framework, the major difference between a derived and an elemen-

tary simple type is that the construction of the instances of a derived type is not self-contained

but typically depends on the construction of the instances of the derived type’s base type.

The DerivedSimpleTypeInstanceFactory specialization of the SimpleTypeInstanceFactory

interface which should be implemented by factories for instances of derived simple types makes

this dependency explicit with an aggregation. Thus permitting to establish arbitrary chains of

simple type instance factories, the framework can even handle simple types which are derived

applying more than one simple type derivation method.

The final component of the simple type framework is the simple type instance factory home,

modeled by the class of the same name in the diagram. It serves as a registry for all simple type

instance factories in PTDOM. To make support for a certain simple type available, the class

providing the factory for the instances of that type needs to be registered with the simple type

instance factory home under the type’s name and namespace. When the method newFactory()

is called and passed the name and namespace of the simple type of which a factory is desired,

the simple type instance factory home dynamically instantiates the registered factory class.

Figure 7 exemplifies how the simple type framework can be applied in practice to inte-

grate support for simple types and simple type derivation methods into PTDOM. The class

diagram to the upper left (1) illustrates the integration of an elementary integer simple type

as predefined by MPEG-7 DDL. The class Integer is provided for the handling of integer

simple type instances along with an appropriate simple type instance factory class. As integers

are ordered and have digits, Integer implements both the OrderedSimpleTypeInstance and

DigitSimpleTypeInstance interfaces.

The diagram to the upper right (2) of Figure 7 sketches how support for the

minInclusive and maxInclusive simple type derivation methods offered by MPEG-7 DDL

can be accommodated. For both derivation methods, corresponding classes implementing

DerivedSimpleTypeInstanceFactory are provided as factories for instances of simple types

that have been derived via these methods. To satisfy this interface, both classes refer to the
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Figure 7: Applying the simple type framework (UML class/object diagrams)

factories used for the construction of the instances of the respective base types as well as to the

ordered simple type instances defining the boundaries to which the domains of the base types

are restricted. The implementations of the fromString() and fromBinary() methods would

call the corresponding methods of the base type factories and check whether the constructed

base type instances obey the specified boundaries. Calls to toString() and toBinary() would

be simply delegated to the base type factories without any further processing.

The object diagram to the bottom (3) illustrates how the simple type instance facto-

ries created so far can be chained together to set up a suitable factory for the content of

Numerator elements, closely mimicking the anonymous simple type derived from integer via
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the minInclusive and maxInclusive derivation methods defining that content in Figure 1.

The top of the diagram shows the simple type instance that would be constructed by this

factory for the content of the Numerator element in the example document of Figure 2.

The approach outlined to integrating simple type support into PTDOM via the simple type

framework can be systematically followed until all elementary simple types and simple type

derivation methods of a given schema definition language like MPEG-7 DDL are covered.

4.2 Schema catalog

As pointed out before, the major aim of PTDOM is to provide a schema-aware XML database

solution that extensively utilizes available schema definitions for the management of XML

documents. Consequently, the heart of the PTDOM architecture is made up of a schema

catalog that serves to accomodate the schema definitions to which the documents of a database

comply, to ensure the integrity of these definitions, and to fine-grainedly represent the schema

information contained therein as a basis for further exploitation.

The class diagram to the upper left (1) of Figure 8 gives an overview of the basic structure

of PTDOM’s schema catalog. The entry point to the catalog is formed by the so-called schema

home modeled in the diagram by the class of the same name. The schema home acts as a

container of all of a database’s schema definitions represented in the diagram by the class

Schema. Schema definitions – adressable by the URI pointing to their storage location and

organizable in an inclusion lattice permitting a flexible modularization of schema definitions – in

turn constitute containers of the schema components which are declared inside these definitions,

such as element types and attributes. The schema catalog subsumes all the different kinds of

schema components under one common abstract base class named SchemaComponent. This base

class defines that any schema component can bear a name and a namespace with which it can

be addressed – potentially scoped as some schema definition languages such as MPEG-7 DDL

allow the declaration of homonymous schema components like element types within different

scopes of a single schema definition – but leaves the representational details of the different

kinds of schema components to subclasses provided for these kinds.

Furthermore, SchemaComponent demands that its subclasses supply appropriate implemen-

tations of the abstract method checkIntegrity() which validate the consistency and integrity
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Figure 8: Schema catalog overview (UML class diagrams)

constraints associated with the respective kinds of schema components represented by these sub-

classes. For example, the implementation of this method in that particular subclass which rep-

resents attributes should ensure that a potentially declared default value matches an attribute’s

value type. In that manner, PTDOM’s schema catalog is enabled to ensure the consistency

and integrity of the schema definitions it manages by successively calling checkIntegrity()

on each of the schema components declared within a schema definition as it is done in the

checkIntegrity() method of the Schema class.

For the import and export of schema definitions to and from the schema catalog, handlers for
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schema definition languages, i.e., classes that implement the SchemaLanguageHandler interface,

can be registered with the schema home, in principle allowing the integration of support for

arbitrary schema definition languages into PTDOM again contributing to the flexibility of the

system. Whenever the methods importSchema() or exportSchema() of the schema home

are called in order to import or export a schema definition, the schema home looks up and

dynamically instantiates the particular handler which has been registered for the desired import

or export language and defers the task to the corresponding methods of that handler. Within

our implementation, we have realized an MPEG-7 DDL and an XDR [17] handler.

Up to this point, we have regarded schema definitions as mere collections of abstract schema

components. In order to permit the utilization of the schema catalog as a rich source of schema

information for further exploitation for the management of XML documents, a detailed model

for schema definitions must be provided that concretely defines the different kinds of schema

components available as well as their structure and interrelationships. This model should be

expressive enough to allow the representation of even complex schema definitions indited in a

modern schema definition language; in our particular research context, this especially means

the ability to cope with MPEG-7 DDL.

We have therefore decided to closely orientate the model for schema definitions used within

the schema catalog of PTDOM along the XML Schema Component Data Model [58] which

comes with the XML Schema standard and is able to capture the contents of XML Schema

definitions in detail. Slightly enhanced to cover the DDL-specific extensions, the model is

expressive enough to faithfully reproduce the different constituents of any MPEG-7 DDL schema

definition. Since comparisons of existing schema definition languages for XML documents show

that XML Schema (and thus MPEG-7 DDL as well) exceeds the expressiveness of most other

XML schema definition languages [37], PTDOM and its schema catalog can also be expected

to be of use in application domains in which other schema definition languages play dominant

roles – as long as only appropriate handlers for these languages are supplied.

The class diagram to the bottom (2) of Figure 8 gives a coarse overview of the model sum-

marizing the different kinds of schema components essentially distinguished and highlighting

major relationsships between them. The model differentiates – apart from notations and con-

straints such as uniqueness and key constraints – types, both simple and complex, element
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types, attributes, and content models. As the associations in the diagram indicate, the model

also faithfully reproduces the relationships between these kinds of schema components, for in-

stance, that the content of element types and attributes is defined using complex types and

simple types, that complex types can be derived from other simple and complex types, etc.

Being a central component, the schema catalog is closely connected with the other com-

ponents of the PTDOM architecture. The class diagram to the upper right (3) of Figure 8

illustrates the relation of the schema catalog to the simple type framework. It details how

simple type declarations are represented within the catalog’s model for schema definitions with

an excerpt of the subclass hierarchy below the abstract base class SimpleType which had been

omitted in Figure 8 (2). The model distinguishes elementary simple types coming with a

schema definition language – their occurrences in schema definitions are modeled by the class

ElementarySimpleType – and simple types that are derived from other simple types within

a schema definition – subsumed under the abstract base class DerivedSimpleType. For ev-

ery simple type derivation method supported by XML Schema and MPEG-7 DDL, the model

provides a subclass of DerivedSimpleType to represent simple types derived with that method.

To permit a comfortable construction of instances of simple types represented in this fashion,

SimpleType requires its subclasses to implement the abstract method newFactory() such that

it delivers a suitable simple type instance factory of the simple type framework for a given simple

type. The implementation of this method within the class ElementarySimpleType simply looks

up and returns that factory which has been registered with the simple type instance home for

the instances of the given predefined simple type. The implementations of newFactory() within

the subclasses of DerivedSimpleType likewise look up and deliver those factories which have

been registered with the simple type instance home for the instances of simple types that have

been derived via the methods corresponding to the respective subclasses. They additionally

look up, however, the factories for their respective base types and chain them to their own

factory in the manner we have already illustrated before in Figure 7 (3).

The schema catalog’s interplay with the other components of PTDOM will be treated in

the subsections to follow when these components are introduced.
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4.3 Document manager

Another essential component of the PTDOM architecture is its document manager. It consti-

tutes a central registry for all XML documents that are stored with PTDOM and facilitates

their adequate processing by applications: it faithfully captures the individual constituents of

each document allowing access to and updates of its content at any desired level of granularity

and – aware of and exploiting the schema information available with the schema catalog as

well as the simple type framework – keeps simple element content and the content of attribute

values in suitable data structures permitting type-adequate access to even non-textual content.

In close cooperation with the schema catalog, the document manager is furthermore in

charge of ensuring database consistency by validating XML documents against their schema

definitions whenever they are imported into the document manager or updated. The elements

and attribute values within the document manager’s documents are tightly coupled to the

element types and attributes in the schema catalog they validly instantiate, making the catalog’s

schema definitions usable as path indexes to XML document content.

In the following, we first give an overview of the general structure of the document manager

and the way it represents XML documents (4.3.1). We then illustrate how, on the basis of the

schema definitions in the schema catalog, the document manager validates the consistency of

its documents and types their contents (4.3.2). Finally, we explain how the document manager

can perform document validation and typing in an improved manner after updates (4.3.3).

4.3.1 Document storage and representation

The class diagrams of Figure 9 give an overview of the document manager component. As one

can see from the upper diagram (1), the basic organization of the document manager closely

resembles the schema catalog. Just as the schema home acting as a container for all schema

definitions stored with PTDOM forms the entry point to the schema catalog, a document home

that serves as a container for all the documents stored with PTDOM forms the entry point to

the document manager; just as schema language handlers can be registered with the schema

home to integrate support for new schema definition languages for the import and export of

schema definitions, document format handlers can be registered with the document home to

integrate support for other storage formats than the traditional text format defined by the XML
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Figure 9: Document manager overview (UML class diagrams)

standard [4] with PTDOM for the import and export of XML documents, e.g., the MPEG-7

binary exchange format BiM [26].

For the representation of the contents of the documents within the document home, the

document manager applies the Typed DOM (TDOM) [64, 60], an object model in the tradition

of DOM [36] which fine-grainedly captures the hierarchical structure of XML documents and

permits navigational access to and manipulation of their contents at any desired level of gran-

ularity. As indicated by the different subclasses of the abstract base class DocumentNode in the

diagram, TDOM, very similar to traditional DOM, reproduces the different kinds of nodes (i.e.,

markups) of which an XML document consists and their interrelationships, distinguishing ele-

ments and their attribute values, comments, processing instructions, document type sections,
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as well as text interspersed in mixed element content.

However, TDOM notably differs from DOM in that it tightly couples the representation of

XML documents to their schema definitions. On the one hand, this is reflected by the fact that

each XML document in PTDOM’s document manager refers to that schema definition in the

schema catalog to which it complies (if there is any), expressed in the diagram by the association

between the classes Document and Schema. This association is bidirectional allowing not only

to navigate from a document to its schema definition in the catalog, but also to immediately

obtain all complying documents kept by the document manager for a given schema definition.

On the other hand, the tight coupling of XML documents to their schema definitions in

TDOM manifestates itself in the way elements and attributes are represented. In typed repre-

sentation, which is illustrated by the class diagram to the lower left (2) of Figure 9, an element is

explicitly linked to the element type it instantiates, i.e., it is valid to, expressed in the diagram

by the association between the classes Element and ElementType. Being again a bidirectional

association, this not only opens up access to schema information by allowing to navigate from

an element to the declaration of its type in the schema definition in PTDOM’s schema catalog

of the document carrying the element. Also, this association makes schema definitions usable

as path indexes as it allows to directly obtain all elements that instantiate a given element type

in one of the catalog’s schema definitions in all the documents within the document manager.

If an element in typed representation has simple content, this content, as another difference

to traditional DOM, is not just kept as mere text but instead as a simple type instance provided

by PTDOM’s simple type framework. Thereby, even non-textual element content is available in

data structures that suit the particular type of the content and can be accessed and processed in

a adequate fashion. Compared to this, classic DOM’s textual representation of simple element

content typically requires a manual transformation of non-textual content to internal data

structures as an additional step before a reasonable processing can take place. TDOM also

supports typed representations for attribute values. Similar to elements in typed representation,

attribute values in typed representation refer to the attributes they instantiate and their content

is represented by means of simple type instances.

Despite the advantages typed representation of elements and attribute values offers with

regard to access to schema information, path indexing, and the representation of non-textual
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content, TDOM still offers the concept of untyped representation for cases where the construc-

tion of typed representation is not possible: a document might not refer to a schema definition

at all or a schema definition might make use of constructs that prohibit the determination of the

element types and attributes instantiated by parts of a document’s elements or attribute values.

For example, the content model any supported by MPEG-7 DDL allows elements of arbitrary

types originating from a certain namespace to appear as valid content of another element, even

elements of types for which no further declarations exist in the schema definition. Moreover,

it might be desirable to intentionally loosen the tight coupling of a document’s elements and

attribute values to the document’s schema definition that exists in typed representation to be

able to perform larger updates that might temporarily violate that definition.

The class diagram to the lower right (3) of Figure 9 shows the structure of elements and

attribute values in untyped representation. Like traditional DOM and with all the problems in-

volved concerning the handling of non-textual content, elements and attribute values in untyped

representation are decoupled from schema definitions and carry the name and namespace of

their respective element types or attributes as well as their (simple) content in string properties.

It is noteworthy that elements and attribute values in typed representation can coexist with

elements and attribute values in untyped representation in a single document: just because

the creation of typed representation might not be possible for a few elements or attribute

values in a document, there is no reason to prevent other elements and attribute values from

being represented in this more advantageous representation. The rule wich has to be obeyed

here is that elements in untyped representation are not permitted to have elements in typed

representation among their child elements or to have attribute values in typed representation:

if the type of an element is uncertain, the types of its child elements and attribute values are

uncertain as well. Given its advantages of typed representation, it is of course the intention of

PTDOM make use typed representation wherever possible.

4.3.2 Document validation and typing

While typed representations offer considerable benefits, untyped representations of elements and

attribute values have one indisputable advantage: they can be immediately constructed from

an XML document whereas the construction of corresponding typed representations requires
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the document manager’s collaboration with schema catalog to know whether the document

is valid to its schema definition and to which element types and attributes in particular the

individual elements and attribute values of the document comply. Especially during the im-

port of XML documents to the document manager, it is very straightforward to construct a

TDOM representation of the document that keeps elements and attribute values in untyped

representation only in a first processing step. But whether this document is valid to its schema

definition and how corresponding typed representations for its elements and attribute values

can then be constructed using the document’s schema definition in the schema catalog in a

further processing step are more complicated questions.

For this problem, the adoption of a common artifice in the discipline of compiler construc-

tion lies close at hand. In compiler construction, grammars are typically translated to various

forms of formal automata which serve as executable intermediary representations of grammars

for the purpose of parsing. Similarly, the schema definitions within PTDOM’s schema catalog

could be translated to an executable intermediary representation for the purpose of validating

a document and inferring the element types and attributes validly instantiated by its elements

and attribute values and constructing appropriate typed representations. Several such exe-

cutable intermediary representations have been proposed in the literature. Proposals include

approaches that translate schema definitions to XSLT stylesheets [7], to LL(1) grammars [35],

and to different kinds of formal automata with varying degrees of expressiveness such as finite

state automata [49], pushdown automata [49], and regular tree automata [6, 43, 46].

For PTDOM, we have developed an intermediary executable representation for schema def-

initions called typing automata [62] which constitute an adoption of regular tree automata

seamlessly applicable to TDOM. Regular tree automata provide an intuitive executable repre-

sentation of schema definitions that is able to validate XML documents and infer the element

types the elements of these documents instantiate by consecutively evaluating string regular

expressions – a problem which is well-understood and for which many efficient libraries are

available. Going beyond regular tree automata, typing automata are also able to construct cor-

responding typed representations of elements in untyped representation afterwards. Moreover,

typing automata have been designed to be extensible so that the basic mechanism can reach

the expressiveness of MPEG-7 DDL.
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Figure 10: Typing automaton structure (UML class diagram)

The class diagram of Figure 10 presents the general structure of typing automata. As

indicated by the association between the classes Schema and TypingAutomata, each schema

definition in PTDOM’s schema catalog caches a typing automaton representation of itself used

by the document manager for document validation and the construction of corresponding typed

representations. The schema catalog is able to automatically compile typing automata from

its internal representation of schema definitions and maintains the consistency between schema

definitions and their associated typing automata.

A typing automaton consists of a set of transition rules which represent the element type

declarations of the original schema definition that is captured by the automaton. A transition

rule has two parts: a result state, which is the element type of the schema definition whose

declaration is represented by the rule, and a condition, which the content of an element validly

instantiating this element type’s declaration has to satisfy. Conditions are subsumed under the

abstract interface Condition which demands two methods to be available with each condition:

the evaluate() method which accepts an element in untyped representation as its parameter

and determines whether the element’s content satisfies the condition and the type() method

which takes an element in untyped representation satisfying the condition as its parameter and

transforms its content to typed representation in a suitable manner.

The diagram identifies the two kinds of conditions that form the backbone of the typing au-
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tomaton mechanism: simple content conditions and complex content conditions represented by

the corresponding classes implementing Condition. Simple content conditions serve to capture

element type declarations which require elements to have simple content of a certain simple type.

As modeled by the association between the classes SimpleType and SimpleContentCondition,

a simple content condition essentially consists of a reference to this simple type.

Complex content conditions serve to represent element type declarations with a complex

content model. The idea here is to capture a complex content model by means of a Perl 5

string regular expression kept within the regExp within the ComplexContentCondition class.

Thereby, the problem of evaluating the content of an element against a complex content model

is reduced to the problem of evaluating a string regular expression – a task easy and efficient

to achieve with one of the many mature regular expression libraries available. In order to be

able to express complex content models as string regular expressions, it is necessary to have

unique string identifiers for the element types occurring in a complex content model; most

constructs offered by a schema definition language to create a complex content model out

of these element types such as sequences, choices, minimum and maximum occurrences, etc.,

quite naturally translate to corresponding regular expression operators. Therefore, the class

ElementType provides the method etID() which mangles the name, namespace, and scope of

a given element type into a unique string ID.

With the Condition interface abstracting from the concrete condition of a transition rule, it

is possible to extend typing automata up to the expressiveness of a schema definition language

by providing additional classes implementing that interface to cope with constructs of that

language not coverable by simple and complex content conditions. In [62], it is illustrated how

typing automata can be extended with additional conditions to cope with attribute declarations,

complex type derivation, mixed content, etc., so that they become sufficiently expressive to

represent MPEG-7 DDL schema definitions.

The object diagram of Figure 11 demonstrates how the example schema definition of Fig-

ure 1 can be translated to a typing automaton. Essentially, every element type declaration is

mapped to a corresponding transition rule with the element type declared serving as the rule’s

result state and complex content or simple content condition as appropriate.3 The typing au-

3For a clear presentation, we use the notation ‘et.etID‘ as a placeholder to denote the string ID of an
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Figure 11: Example typing automaton (UML object diagram)

tomaton faithfully reproduces all the element type declarations of the original schema definition,

except the declaration of the AudioDescriptionScheme element type. The problem is that the

allowable content of AudioDescriptionScheme is defined by the complex type AudioDSType

from which other complex types are derived. But typing automata as introduced so far with

simple and complex content conditions do not yet provide an adequate handling of complex

type derivation and the permissible use of xsi:type attribute values within XML documents

to announce compliance of an element to a derived type. For simplicity, we therefore assume

for the construction of transition rule tr7 that AudioDescriptionScheme elements are always

element type et within the regular expressions of complex content conditions. For example, the content model

of the element type MelodyContour consisting of a sequence of elements of types Contour and Beat represented

by the objects et1 and et2 in the figure is translated to the complex content condition c4 bearing the regular

expression ‘et1.etID‘ ‘et2.etID‘.
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filled according to the complex type MelodyType with a sequence of optional elements of types

Meter and MelodyContour and never according to a derived type such as MeterType. We refer

the reader again to [62] for a discussion of how typing automata can be extended to cope with

this situation more adequately.
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Figure 12: Typing automaton behavior (UML object diagrams)

The object diagrams of Figure 12 illustrate the behavior of typing automata by showing how

the typing automaton of Figure 10 reacts when fed by the document manager via the method
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typeDocument() with the example document of Figure 2 in a TDOM representation where

all of the documents elements are kept in untyped representation. As mentioned before, this

might happen as a second step during the import of the document. The behavior of the typing

automaton can be divided into two phases. During the validation phase which is covered by the

upper diagram (1), the automaton tries to validate the document by inferring the element types

which the document’s elements correctly instantiate. The automaton initiates this phase by

trying to determine the valid element types for the document’s root element using its method

validElementTypes(). This method recursively tries to determine the valid element types of

the root’s direct and indirect child elements thereby descending down to the leaf elements as

indicated in the diagram by dashed arrows heading down the document.

On the way back up from the recursion (again indicated in the diagram by dashed arrows

heading up the document), the automaton attempts to apply each of its transition rules to each

element. A transition rule is applicable to an element if and only if (1.) the name and namespace

of the element type forming the rule’s result state match the corresponding properties of the

element and (2.) the rule’s condition evaluates to true for the element’s content. If a transition

rule is applicable to an element, the element is considered valid to the element type declaration

represented by the rule and the automaton memorizes the rule’s result state as a valid type of

the element. In the diagram, the valid element types of the elements are shown as labels of the

dashed arrows heading upwards along with the respective rules which decided validity.

To evaluate the applicability of a transition rule with a simple content condition during

the validation phase, the evaluate() method of the class SimpleContentCondition examines

whether the element passed to this method has simple content and whether an instance of the

simple type referenced by the simple content condition can be constructed successfully from the

textual representation of this content employing the simple type’s instance factory. To evaluate

the applicability of a transition rule with a complex content condition, the evaluate() method

of the class ComplexContentCondition checks whether the element passed to this method has

complex content and whether there exists a sequence of valid element types for the element’s

child elements such that the concatenation of the string IDs of these element types satisfies the

string regular expression of the complex content condition.

When the typing automaton again reaches the root element of the document and finds that
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this element is valid to at least one unscoped, globally visible element type, the automaton

considers the document to be valid against its schema definition and enters its second processing

phase: the typing phase in which the automaton brings all elements to typed representation.

As illustrated by the lower diagram (2), the automaton initiates this phase by picking one

of the globally visible element types to which the root element is valid and calls its method

typeElement() passing the element as well as the element type. This method then switches

the element to typed representation by interlinking it with the element type (not shown in the

figure). It further looks up the transition rule which decided the validity of the element to this

type and calls the type() method of the condition of that rule to bring the element’s content

to typed representation as well. In case of a complex content condition, type() takes that

sequence of valid element types for the element’s child elements which satisfied the condition

during the validation phase and recursively brings the child elements to typed representation

calling the typeElement() accordingly as indicated by the dashed arrows in the diagram. In

case of a simple content condition, type() produces a simple type instance from the element’s

simple content and attaches it to the element (again not shown in the figure).

The computational complexity of a typing automaton’s behavior is moderate: it can be

shown that the running time of a deterministic typing automaton4 never grows more than

linear with the number of elements in a document and transition rules in the automaton [62].

4.3.3 Document updates

On the basis of TDOM, applications cannot only fine-grainedly access the structure and contents

of the XML documents maintained by the document manager; also, they can modify and update

these documents at any desired level of granularity. Thereby, as mentioned previously, TDOM’s

ability to mix typed and untyped representations in a single document provides a high degree

of flexibility as it allows to relieve elements that are to be modified during an update from

the yoke of schema correctness for the duration of the update by transforming them from

typed to untyped representation. When it comes to validate the correctness of the updates and

4A typing automaton is deterministic if any element in a document can be valid to at most one element

type. Like regular tree automata [6], non-deterministic typing automata can be algorithmically transformed

into equivalent deterministic ones in an additional processing step.
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to bring the updated elements back to typed representation after the update, it is often not

advisable to transform all the document’s elements to untyped representation only to apply

the typing automaton for the document’s schema definition to the whole document as seen

before: the update might just have concerned small fractions of the document and those parts

not updated might still be valid to the same element types as before. Throwing away the typed

representations of these elements would thus be a waste of precious processing power invested

in previous runs of the typing automaton.

It is therefore a more viable strategy try to limit the application of a typing automaton to

only those parts of a document that were actually changed by an update [62, 44]. The boundary

to those parts is marked by the topmost of those elements which have been brought to untyped

representation during the update, i.e., those elements brought to untyped representation whose

parent elements are still in typed representation. The document manager can keep track of

these elements throughout an update with relatively little effort; it can also memorize the

element types these elements had before they were turned to untyped representation.

For each of the topmost elements in untyped representation, the document manager can

then use the validElementTypes() method of the typing automaton to determine whether

the type the element had before the update is still among the element’s valid types. If this is

the case, the document manager can invoke the automaton’s typeElement() method to bring

the element (and with it its child elements) back to typed representation on the basis of this

element type without the need of having to revalidate and retype further parts of the document:

the typed representation of the element’s parent element is still correct. If this is not the case,

the document manager can memorize the type of element’s parent element, bring the parent

element to untyped representation (and with it all of its child elements), treat it as a new

topmost element in untyped representation, and relaunch processing as before.

In the worst case, this might result in a cascading untyping of parent elements until the

root element of the document is reached. This is basically the same as if the all the document’s

elements had been brought to untyped representation prior to the application of the typing

automaton. In many practical cases where updates make only local changes to documents

without modifying their overall structure and validity, however, the outlined approach can

be expected to perform substantially better because it preserves existing typed representation
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wherever possible.

4.4 Routine framework

With the simple type framework, PTDOM is able to keep basic document contents – even those

of non-textual nature – in data structures that are adequate and efficient for the particular

content type. But so far, routines are lacking that provide the functionality to work with

these contents in a reasonable and type-adequate manner. The routine framework component

of the PTDOM architecture allows to seamlessly integrate arbitrary such routines: not just

type-specific functions and procedures of general use for the processing of contents of a certain

type but also custom functions and procedures providing functionality addressing individual

application or user needs. With the routine framework, PTDOM becomes thus extensible with

new functionality in a way that is comparable to object-relational DBMSs with their concept

of user-defined routines, again contributing to the architecture’s overall flexibility.

RoutineHome

+addRoutine()
+delRoutine()
+getRoutine()

<<interface>>
RoutineImplementation

+ execute()

Routine
+name
+call()
+registerRoutineImplementation()

Type

SimpleTypeComplexType

+returnValue   0..1
0..n

0..n 0..n
+parameter

{ordered}1 0..n

   <<instantiate>>

Figure 13: Routine framework overview (UML class diagram)

The class diagram of Figure 13 gives an overview of the routine framework. The routine

home (modeled by a corresponding class in the diagram) keeps track of all routines existing

within PTDOM. As expressed by the class Routine, each of these routines is characterized

by its name and signature: its allowable input parameters described by a sequence of simple

or complex types taken from a schema definition within the schema catalog and its return

value described by a further type in case that the routine constitutes a function. If an input

parameter or the return value is specified via a simple type, the routine expects to be passed

as this parameter or delivers as its return value an instance of that simple type (or one of its
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derived types); if a parameter or the return value is specified by means of a complex type,

the routine expects to be passed as this parameter or delivers as its return value an element

in typed representation whose content is filled according to that complex type (or one of its

derived types).

The behavior of a routine is provided by a dedicated implementation class which is regis-

tered with the routine. The routine framework demands the implementation class to realize

the RoutineImplemenation interface enforcing the existence of the method execute(). This

method takes an array of objects as its input parameters, performs the functionality expected

from a given routine, and delivers the routine’s return value as an object. A routine is invoked

via the method call() of the class Routine which like execute() is passed an array of objects

as the input parameters to the routine. After typechecking these parameters against the rou-

tine’s signature, call() dynamically instantiates an object of the registered implementation

class and delegates processing to this object’s execute() method. The result delivered by

execute() is again typechecked and given back as the the routine call’s return value.

The separation of routines from the implementations of their behavior has the advantage

that similar routines can share implementations. It would be indeed tedious if dozens of very

similar implementation classes had to be provided to integrate equals() functions into PT-

DOM, each of which compares two instances of a given simple type for equality. Instead, it

can be exploited that the SimpleTypeInstance interface of the simple type framework already

ensures that every instance of a simple type is able to compare itself against another via the

method equalTo(). Therefore, a single generic implementation class on the basis of equalTo()

can be provided that can then be shared among all equals() functions. One still has the option

to replace this generic implementation class with a more specific one should this be desirable

for a certain equals() function.

Given this overall organization of the routine framework, the integration of a new routine

into PTDOM thus requires the provision of an appropriate implementation class that realizes

the routine’s functionality, the creation of an appropriate Routine object that captures the

name as well as the signature of the routine, the registration of the implementation class with

that object, and the registration of the Routine object with the routine home applying the

method addRoutine(). In this manner, a comprehensive set of routines, e.g., the XQuery and
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XPath functions and operators [38], can be systematically integrated into PTDOM.

To retrieve routines registered with the routine home, the class RoutineHome offers the

method getRoutine() which is passed the name of the routine and the signature desired,

i.e., the desired types of the input parameters and the desired type of the return value. If a

routine with that name and signature has been registered, this routine is returned. If not, all

compatible routines are looked up. Obeying the contravariance rule, a routine is considered

compatible if it has the desired name, the types of its input parameters either match the types

desired for the input parameters or are base types of these types, and the type of its return

value either matches the type desired for the return value or is derived from this type. Out of

these compatible routines, getRoutine() similar to CLOS [57] returns the most specific one.

4.5 Index framework

The availability of value index structures for indexing elements and attribute values along their

content is an important prerequisite for an efficient querying of large collections of XML docu-

ments. In order to quickly retrieve all melody descriptions covering songs with a meter of 3
4

from

a collection of XML documents complying to the schema definition of Figure 1, for example, it

would definitely be of help if suitable value index structures such as B-Trees were available to

index the content of Numerator and Denominator elements. The index framework component

of the PTDOM architecture with hash tables, B-Trees, and R-Trees not only provides a rich set

of such value index structures; it also facilitates the seamless integration of arbitrary further

value index structures – unordered, ordered, as well as spatial ones – into PTDOM. The index

framework is thus comparable in function to interfaces such as the Oracle Extensible Indexing

API [19] that allow the integration of new value index structures into object-relational DBMSs

and similarly contributes to the extensibility and overall flexibility of the PTDOM architecture.

The class diagram of Figure 14 gives more insight into the index framework which closely

collaborates with the schema catalog and document manager. Within the framework, value

index structures are represented by the interface IndexStructure. A value index structure

is attached to either an element type or an attribute within one the schema catalog’s schema

definitions. The framework gathers these indexable schema components under the common

interface IndexableSchemaComponent. The value index structure then indexes all the docu-
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0..n

0..n   +indexedNodes

RoutineHome

Routine
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Figure 14: Index framework overview (UML class diagram)

ment nodes along their content which validly instantiate the indexable schema component it is

attached to within the documents maintained by the document manager, namely, the attribute

values or elements in typed representation based on the schema component. The framework

subsumes these indexed document nodes under the interface IndexedDocumentNode.

As indicated by the methods offered by IndexStructure and IndexableSchemaComponent

and the bidirectional association between both interfaces, each value index structure not only

knows the indexable schema component it is attached to; also, each indexable schema compo-

nent in the schema catalog vice-versa keeps track of all the value indexes attached to it. This is

exploited by PTDOM for the maintenance of index consistency: whenever elements or attribute
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values in a document are changed in a way that affects value index structures associated with

element types or attributes in the schema catalog, the affected index structures are updated by

removing and/or inserting the elements or attribute values in question via the removeNode()

and insertNode() methods that are provided by every value index structure. For instance,

when an element in untyped representation is brought to typed representation during document

import, the value index structures attached to the element type on which the newly constructed

typed representation is based are updated by inserting the element via insertNode().

The index framework distinguishes unordered, ordered, and spatial value index structures.

These categories are represented by corresponding specializations of the IndexStructure inter-

face. The framework can be straightforwardly extended with support for further categories of

values index structures such as text index structures by providing further specializations of the

IndexStructure interface. Each specialized interface defines the methods that are supported

by the given category of value index structures for the retrieval of indexed document nodes. For

example, spatial value index structures offer methods that allow to, being passed an instance

of the content type5 of the respective indexable schema component they are attached to (which

can be obtained via the method getContentType() of IndexableSchemaComponent), retrieve

all the document nodes they index whose content is equal to, overlapping with, meeting with,

disjoint to, contained by, or containing the passed instance of the content type.

To integrate a concrete value index structure into the index framework, one has to sup-

ply a class that implements the index structure and supports the respective subinterface of

IndexStructure for the category to which the value index structure belongs. This class must

then be registered under a unique name with the framework’s index structure home (represented

by the corresponding class in the diagram) which serves as a registry of all value index structures

available with PTDOM. Using that name, applications can then dynamically instantiate that

index structure via the method newIndexStructure() offered by the index structure home

and attach the structure to an indexable schema component. The index framework already

ships with classes that implement hash tables, B-Trees, and R-Trees as ready-to-use examples

5Just like routine parameters in the routine framework, an instance of the content type of an indexable

schema component constitutes an appropriate simple type instance if the content type is given by a simple type.

If it is given by a complex type, a suitable instance is an element in typed representation filled according to

that complex type.
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of unordered, ordered, and spatial value index structures.

It is noteworthy that the implementations of the value index structures coming with the in-

dex framework are tied to the routine framework. The R-Tree implementation, for instance, ex-

pects that the functions intersects(), meets(), contains(), interSectionArea(), union(),

and area() are registered with the framework’s routine home for the content type of the index-

able schema component to which an R-Tree is going to be attached. The R-Tree implementation

employs these functions to organize the document nodes instantiating the schema component

along their content in an R-Tree structure as well as to realize the retrieval functionality of the

SpatialIndexStructure interface.

Founding the implementation of value index structures on routines of the routine framework

is generally a good strategy as it broadens their applicability: applications can provide special-

ized implementations of these routines that consider the semantics of the application data to

be indexed. For example, a song retrieval application based on MPEG-7 melody descriptions

could provide implementations of the routines required by PTDOM’s R-Tree implementation

for the complex type MelodyContourType of Figure 1 considering the semantics of melody con-

tours. When applying an R-Tree index structure to index the elements of type MelodyContour

whose content is defined by means of MelodyContourType, this index structure could then be

exploited to quickly and meaningfully retrieve all melody contours from the document manager

which contain the contour of a melody fragment hummed by a user.

4.6 Query evaluator

The architectural components introduced so far provide a rich foundation for an efficient evalu-

ation of queries on XML documents stored with PTDOM. Query evaluation can take advantage

of the fine-grained and typed representation of XML document contents within the document

manager for fine-grained and typed access to document contents, of the detailed representation

of schema definitions within the schema catalog not just as a basis for query optimization but

also – due to the coupling of elements and attribute values in typed representation in the docu-

ment manager’s documents to their respective element types and attibutes – for path indexing,

of the routines provided by the routine framework for type-adequate processing of document

contents, and of the rich set of value indexes offered by the index framework for speed-up
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of query evaluation. PTDOM’s query evaluator component constitutes a first step towards a

query processor that uses these opportunities.

QueryTranslatorHome

+addTranslator()
+delTranslator()
+getTranslator()

<<interface>>
QueryTranslator

+ translate()

AlgebraOperator

+execute()
+nestOperator()
+unnestOperator()
+getNestedOperators()

NaiveXPathTranslator

0..1

0..n

{ordered}

+nestedOperator

   <<instantiate>>

OptimizedXPathTranslator

   <<instantiate>>

Documents ChildNodes

ElementsByType  . . .

Figure 15: Query evaluator component overview (UML class diagram)

Essentially, the query evaluator component (an overview of which is given by the class di-

agram of Figure 15) provides an implementation of the PTDOM query algebra [47]. We have

specifically developed this algebra to efficiently evaluate XPath expressions on all documents

within the document manager that are valid to a given schema definition in the schema cata-

log exploiting PTDOM’s specifics.6 The query evaluator component implements the different

operators of the algebra – each of which takes one or more sets of document nodes7 and yields

a set of document nodes as its result – as individual subclasses of the class AlgebraOperator.

Within these subclasses, the behavior of the operators is realized by appropriate implementa-

6Although not explicitly treated in this paper, the algebra allows to limit the evaluation of XPath expressions

to single documents as well.
7For compatibility with the XPath data model for XML documents [14], not just the different kinds of

document nodes distinguished by TDOM are considered as eligible document nodes for the operators of the

PTDOM query algebra - i.e., elements, comments, processing instructions, doctypes, and text nodes - but also

attribute values and documents themselves. For the purpose of path traversal, a document’s root nodes are

considered as its child nodes and attribute values are regarded as child nodes of the elements they belong to.
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tions of the abstract method execute() which returns the set of document nodes produced

by an operator as an iterator to avoid the full materialization of these potentially large sets

in memory. The sets of document nodes to which an operator’s behavior is applied are either

given by the result sets of other operators – the operators of the PTDOM query algebra can

be nested to form operator trees as it is expressed by the ordered reflexive aggregation to the

top right of the diagram – or taken from a queue of document node sets that has been passed

to execute() in case an operator constitutes a leaf of the operator tree.

The query evaluator component further supplies a query translator home (modeled by a

corresponding class) with which arbitrary query translators can be registered, classes support-

ing the QueryTranslator interface that are capable of producing equivalent PTDOM query

algebra operator trees out of XPath expressions. The query evaluator component already ships

with a translator which naively translates XPath expressions to the algebra as well as an opti-

mized translator that exploits the path indexing abilities of schema definitions and value index

structures to more likely generate more efficient operator trees.

Figure 16 gives an overview of the major operators of the PTDOM query algebra. Roughly,

these can be divided into two groups. The first group consists of general operators that con-

stitute more or less direct mappings of the various location steps supported by the XPath

language. These operators – although operators like filterByConstPredicate benefit from

the fact that (simple) content of elements and attribute values in typed representation is kept

in type-adequate and efficient data structures and not just as text and that arbitrary, even

user-defined functions registered with the routine framework can be employed as predicates

for comparison – do not rely on any specific characteristics of PTDOM. Employing only these

operators, most XPath expressions can be straightforwardly expressed in the PTDOM query

algebra, as it is actually done by the naive query translator.

The object diagram to the upper left (1) of Figure 17 illustrates how the XPath expression

//Meter[Denominator/data() = 128] can be evaluated on the XML documents within PT-

DOM’s document manager that are valid to the Melody description scheme of Figure 1 using

the query algebra’s general operators. Outgoing from the document nodes of those documents

that comply to the schema definition selected via the documents operator at the bottom, the

depicted operator tree expensively traverses all direct and indirect child nodes of these docu-
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PTDOM query algebra 

General operators 

documents(ns, s) Delivers all documents in the 
document manager valid to 

Schema Definition s in the schema 

catalog ignoring the Node Set ns.

childNodes(ns) Delivers the direct child nodes of all 

the nodes contained in Set ns.

descendantNodes 

(ns) 

Delivers all direct and indirect child 

nodes of the nodes in Set ns.

parentNodes(ns) Delivers all parent nodes of the 

nodes in Set ns.

ascendantNodes 

(ns) 

Delivers all direct and indirect 
parent nodes of the nodes in Set 

ns.

union(ns1, ns2) Calculates the union of the two sets 

of nodes ns1 and ns2.

Intersection 

(ns1, ns2) 

Calculates the intersection of the 

two sets of nodes ns1 and ns2.

difference(ns1, 

ns2) 

Calculates the difference between 

the two sets of nodes ns1 and ns2.

filterByParent-

Nodes(ns1, ns2) 
Selects all nodes from Set ns1 

which have a direct parent node in 

Set ns2.

filterByAscendant-

Nodes(ns1, ns2) 
Selects all nodes from Set ns1 which 

have a direct or indirect parent node 

in Set ns2.

filterByChild-

Nodes(ns1, ns2) 

Selects all nodes from Set ns1

which have a direct child node in 

Set ns2.

filterByDescendant-

Nodes(ns1, ns2) 

Selects all nodes from Set ns1 which 

have a direct or indirect child node in 

Set ns2.

filterByName(ns, 

name, namespace) 

Select all nodes from Set ns which 

have name name and namespace 

namespace.

filterByKind(ns, k) Delivers all nodes from Set ns that 

are of the given class (=document, 
element, root element, attribute 
value, processing instruction, 
comment, text, doctype). 

filterByPosition 

(ns, p) 

Select all nodes from Set ns which 

are the p-th child node (p=1,..., 

n, last) of their parent nodes. 

filterByExistence 

(ns, operatortree) 

Selects all nodes n from Set ns for 

which holds that 

operatortree({n}) returns at 

least one node in the same 
document. 

filterByConst-

Predicate(ns, 

operatortree, c, 

p) 

Selects all nodes n from Set ns for 

which holds that the binary boolean 

predicate function p taken from 

the routine framework being 

passed the content of one node n1

from  operatortree({n})

(elements and attribute values of 

the same document than n only) 

and constant c (simple type 

instance or element) yields true. 

filterByPredicate 

(ns, operatortree1,  

operatortree2, p) 

Selects all nodes n from Set ns for 

which holds that the binary boolean 

predicate function f taken from the 

routine framework being passed the 

content of one node n1 (elements 

and attribute values of the same 

document than n only) from 

operatortree1({n}) and  one 

node n2 (elements and attribute 

values  of the same document than n

only) from  operatortree2({n})

yields true. 

Specialized operators 

elementsByType 

(ns, et) 

Delivers all elements within the 
document manager’s documents 
which instantiate the given Element 

Type et declared in one of the 

schema catalog’s schema 
definitions, ignoring the Node Set 

ns.

valuesByAttribute 

(ns, at) 

Delivers all attribute values within the 
document manager’s documents 
which instantiate the given Attribute 

at declared in one of the schema 

catalog’s schema definitions, 

ignoring the Node Set ns.

elementsByConst-

Index(ns, et, rm, 

c) 

Retrieves indexed elements from a 
value index defined on Element 

Type et supporting the retrieval 

method rm by passing constant c

(simple type instance or element) 

to rm, ignoring the Node Set ns.

valuesByConstIndex 

(ns, at, rm, c) 

Retrieves indexed attribute values 
from a value index defined on 

Attribute at supporting the retrieval 

method rm by passing constant c

(simple type instance or element) to 

rm, ignoring the Node Set ns.

elementsByIndex 

(ns, et, rm) 

Retrieves indexed elements from a 
value index defined on Element 

Type et supporting the retrieval 

method rm by successively 

passing the content of each node 

in Set ns (elements and attribute 

values only) to rm.

valuesByIndex(ns, 

at, rm) 

Retrieves indexed attribute values 
from a value index defined on 

Attribute at supporting the retrieval 

method rm by successively passing 

the content of each node in Set ns

(elements and attribute values only) 

to rm.

Figure 16: PTDOM query algebra overview

ment nodes via the descendantNodes operator on the search for Meter elements. Out of all

these Meter elements, the filterByConstPredicate operator forming the root of the operator

tree selects those elements employing an appropriate equals() function registered with the

routine framework’s routine home that have a Denominator element among their child nodes

with an integer simple content of 128.

The second group of operators of the PTDOM query algebra consists of specialized oper-
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Figure 17: Query algebra example (UML object diagrams)

ators designed to utilize the path indexing capabilities of schema definitions within PTDOM

as well as the value index structures offered by PTDOM’s index framework. The operators

elementsByType and valuesByAttribute exploit that elements and attribute values in typed

representation are tightly coupled to the element types and attributes they instantiate to imme-

diately obtain all elements and attribute values inside the document manager’s documents that
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instantiate a given element type or attribute of one in the schema catalog’s schema definitions.

The upper right (2) object diagram of Figure 17 shows an alternative operator tree for the ex-

pression //Meter[Denominator/data() = 128] which, assuming that all Meter elements are

kept in typed representation, employs an elementsByType operator to avoid the costly search

for Meter elements over all nodes of the documents valid to the Melody description scheme by

directly obtaining all elements instantiating the element type Meter.

Furthermore, the second group features operators that allow to obtain elements and at-

tribute values from a value index that might be attached to an element type or attribute within

a schema definition. Instead of explicitly navigating from every Meter element to its child

elements in order to perform the (possibly fruitless) check whether there is an Denominator

element with a simple content of 128, the object diagram to the bottom left (3) of Figure 17

employs an elementsByConstIndex operator to obtain all Denominator elements with a simple

content of 128 from a value index that has been attached to the element type Denominator.

The root of the operator tree consists of an filterByChildNodes operator that lets pass only

those Meter elements which are parent elements of one of the Denominator elements retrieved

from the index. As shown by the object diagram to the bottom right (4), this operator tree can

even be further simplified. To avoid the filtering of potentially many Meter elements which do

not have child nodes among the Denominator elements retrieved from the index, one can di-

rectly navigate from the retrieved Denominator elements to their parent elements and select all

those with the element type Meter (if it is known from the schema definition, that Denominator

elements always appear as children of Meter elements, the latter step is even unnecessary).

The optimized query translator shipping with the query evaluator component – albeit not

performing query optimization in the traditional sense – tries to produce more efficient operator

trees compared to the naive translator by applying an heuristic translation function that makes

intensive use of the second group of operators of the PTDOM query algebra. An excerpt of this

translation function is given by Figure 18. The function avoids, if possible, expensive access

to all documents valid to the schema definition on which the XPath expression is evaluated

via documents operators as well as full document traversals via descendantNodes operators.

Essentially, this is achieved by picking named element types and attributes that form the be-

ginning of XPath expressions or the beginning of subexpressions starting with //, translating
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Heuristic translation function hs() for an optimized transformation of 

XPath expressions to PTDOM query algebra operator trees on the basis of Schema Definition s.

Navigational expressions 

Note: ets is an element type declared in Schema Definition s.

1. hs(/)= 

     

   documents(ns,s) 

2. hs(/*)= 

     

   filterByKind( 

    childNodes( 

     documents(ns,s)), 

    ”element”) 

3. hs(//*)= 

   filterByKind( 

    descendantNodes( 

     documents(ns,s)), 

    ”element”) 

4. hs(/ets)=

     

   filterByKind( 

    elementsByType( 

     ns,ets),

    ”root element”) 

5. hs(//ets)= 

   elementsByType(ns,ets)

6. hs(E/*)= 

    

   filterByKind( 

    childNodes(hs(E)), 

    ”element”) 

7. hs(E//*)= 

    

   filterByKind( 

    descendantNodes( 

     hs(E)), 

    ”element”) 

8. hs(E/ets)= 

     

   filterByKind( 

    filterByName( 

     childNodes(hs(E)),

     ets), 

    ”element”) 

9. hs(E//ets)=

   filterByAscendant-   

    Nodes( 

     elementsByType(ns, 

      ets), 

     hs(E)) 

. . . . . . . . . 

Conditions (normal translation) 

Note: § serves as a marker to indicate that a condition relative to the condition’context node in the XPath expression is being translated.

10. hs(E1[E2])= 

      

    filterByExistence( 

     hs(E1),hs(§E2)) 

11. hs(E1[E2/data() p c])= 

      

    filterByConst-   

     Predicate(hs(E1), 

      hs(§E2),c,p) 

12. hs(E1[E2/data() p  

         E3/data()])= 

     

    filterByPredicate( 

     hs(E1),hs(§E2), 

     hs(§E3),p) 

13. hs(§/E)= 

      

    hs(/E)

14. hs(§//E)= 

      

    hs(//E)

15. hs(§*)= 

     

    filterByKind( 

     childNodes(ns), 

     ”element”)     

16. hs(§ets)=

     

    filterByKind( 

     filterByName( 

      childNodes(ns),ets),

     ”element”)     

. . . 

Conditions (exploitation of value index structures) 

Note: it is assumed that a value index structure offering retrieval method rmp equivalent to predicate  

function p is attached to element type ets.

17. hs(E[ets/data() p c])= 

      

    filterByChildNodes( 

     hs(E), 

     elementsByConst-   

      Index(ns,ets,rmp,c)) 

18. hs(E1[ets/data() p  

         E3/data()])= 

     

    filterByChildNodes( 

     hs(E1), 

     elementsByIndex( 

      hs(E1/E3),ets,rmp)) 

19. hs(E1[ets/data() p  

         /E3/data()])= 

     

    filterByChildNodes( 

     hs(E1),elementsBy-   

      Index(hs(/E3),ets,

       rmp))

. . . 

Figure 18: Heuristic XPath translation overview

them to corresponding elementsByType and valuesByAttribute operators, and using these

operators as anchor points tree relative to which the rest of the expression is being translated.

Furthermore, the translation function makes use of value index structures for the transla-

tion of conditions via elementsByConstIndex, elementsByIndex, valuesByConstIndex, and

valuesByIndex operators if possible.
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As an illustration of how the heuristic translation function works, the optimized query trans-

lator will transform the example XPath expression //Meter[Denominator/data() = 128] to

operator tree (2) of Figure 17 by applying rules 11, 16, and 5 of Figure 18 if no value index

structures are attached to the element type Denominator. If they are, the optimized query

translator will produce operator tree (3) via rules 17 and 5.

From the fact that in case a value index structure is attached to element type Denominator,

operator tree (3) will be produced instead of operator tree (4) which is likely to be more

efficient, it can be easily seen that the optimized query translator can only be regarded as a

first step towards an optimized query evaluation and definitely constitutes no subsitute for a

dedicated query optimizer which exploits the rich schema information available with PTDOM’s

schema catalog to transform operator trees to more efficient representations. Future work should

therefore be directed at integrating a query optimizer into the query evaluator component.

5 Experimental results

So far, we have been emphasizing the conceptual benefits of PTDOM’s schema-aware approach

to XML document management with regard to database consistency, treatment of non-textual

document contents, path indexing, and opportunities for query optimization. Compared to

schema-ignoring approaches like Xindice, TEXTML, eXist, etc., the obvious drawback of PT-

DOM’s approach is – apart from its inherent dependency on the availability of schema defini-

tions – its higher complexity resulting from the efforts required for document validation, the

typing of basic document contents, and the linking of elements and attribute values to their

element types and attributes in schema definitions for path indexing.

In this section, we present initial experimental results providing evidence that this complex-

ity should be acceptable for many XML database applications in practice and that PTDOM

offers not just purely conceptual but also directly noticable benefits in terms of query perfor-

mance. The experiments are based on a working Java prototype that almost fully implements

the PTDOM architecture as described in Section 4 and that employs PSEPro as its storage

backend. We are considering to make a public release of this prototype in the near future.

An Athlon XP 3000+ 2.12 GHz PC with 512 MB DDR RAM and a Western Digital 180GB

54



hard disk running Windows XP served as the computional platform for the experiments. All

experiments were conducted five times, dropping the highest and lowest numbers and reporting

the average of the middle three.

Schema definition import 

Size 342,292 bytes 

Parsing and integrity check 1,182 msec 

Compilation to typing 
automaton 4,463 msec 

Persistent storage 1,261 msec 

Total 6,906 msec 

Figure 19: Results of schema definition import

The first experiment measures the effort required to import a complex MPEG-7 DDL schema

definition into the schema catalog of an empty PTDOM database. As a veritable stress test

for our prototype, we have compiled all media description schemes predefined by the MPEG-7

standard [28, 29, 30] into a single schema definition consisting of more than 370 complex type

declarations organized in a deeply nested derivation hierarchy and exceeding 300KB in size.

The table of Figure 19 presents the outcome of this experiment. The table breaks down

how much of the total duration required for the import of the schema definition was spent on

parsing the schema definition into the catalog’s internal model and checking the integrity of its

schema components, on compiling the schema definition into an equivalent typing automaton,

and on storing both schema definition and typing automaton via the PSEPro storage backend.

The effort spent on compiling the typing automaton is about four times larger than the

effort spent on parsing and checking the integrity of the schema definition, both consuming

about 80% of the total import time of 6.9 sec. Assuming that in typical application scenarios

the import of schema definitions can be expected to happen rather infrequently compared to

the import of documents and considering the high complexity of the imported definition, the

measured total import time is an acceptable result for an expectedly one-time effort.

The second experiment measures the effort required for importing XML documents follow-
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Document import 

DB 1 DB 2 DB 3 

Number of 
documents 50 100 200 

Smallest
document

Document
average

Largest
document

Smallest
document

Document
average

Largest
document

Smallest
document

Document
average

Largest
document

Size 794
bytes

22,323
bytes

104,157
bytes

1,910
 Bytes 

21,195
bytes

102,146
bytes

495
bytes

22,328
bytes

106,037
bytes

Parsing and 
validation 15 msec 254 msec 1,578 msec 16 msec 218 msec 1,687 msec 16 msec 239 msec 1,641 msec 

Typing 15 msec 201 msec 781 msec 16 msec 221 msec 1,328 msec 16 msec 278 msec 1,109 msec 

Persistent
storage 15 msec 367 msec 1,953 msec 47 msec 369 msec 2,000 msec 15 msec 509 msec 1,594 msec 

Total 45 msec 822 msec 4,312 msec 79 msec 808 msec 5,015 msec 47 msec 1,026 msec 4,344 msec 

Figure 20: Results of document import

ing the schema definition of the first experiment into PTDOM’s document manager. For this

purpose, we prepared three test sets of 50, 100, and 200 randomly generated MPEG-7 media

descriptions each consisting of possibly up to 500 melody descriptions complying to the descrip-

tion scheme of Figure 1. For each of these test sets, we prepared a dedicated database with the

schema definition of the first experiment already imported into the schema catalog. Into these

databases, we then successively imported the documents of the corresponding test sets.

The table of Figure 20 shows the outcome of the second experiment. For each database,

the table summarizes how much of the total duration required for the import of a document

was spent on parsing and validating the document against the schema definition of the first

experiment using the typing automaton compiled from that definition, on typing the document’s

contents – i.e., constructing corresponding typed representations of the document’s elements

and attribute values linking them to the element types and attributes they instantiate in the

schema catalog and creating appropriate simple type instances for their content – again using

the typing automaton, and on making the document persistent via PSEPro. Numbers are given

for the smallest and largest document in each test set as well as for the document average.

Not going into the exact numbers (considering the complexity of the schema definition,

we think that the the efforts for document validation and typing are reasonable for the given

document sizes), the interesting observation that can be made on this experiment is that the

56



effort required for document typing is fairly equal to the effort required for document validation

and parsing (for larger documents even less), on the average consuming about 25% of the total

import time. Thus, if an application is already willing to take the effort of validating XML

documents when importing them into a database as a means of ensuring database consistency,

it should mostly be able to afford the additional effort of document typing as well. In such

scenarios, PTDOM’s schema-aware approach proves viable. If, however, an application has so

harsh time constraints not allowing to spend the additional typing effort or even to validate a

document before importing it into a database (with all incurring problems such as delegating

the responsibility for a consistent database state to applications), PTDOM certainly cannot be

the XML database solution of choice.

Document querying 

DB 1 DB 2 DB 3 

Naive
translator

Optimized
translator

Naive
translator

Optimized
translator

Naive
translator

Optimized
translator

1.   //Meter 5,359 msec 
(5,363 hits) 

844 msec 
(5,363 hits) 

9,812 msec 
(9,905 hits) 

1,344 msec 
(9,905 hits) 

22,609 msec 
(21,100 hits) 

2,719 msec 
(21,100 hits) 

2.  //Meter[Denominator 
/data()=4]

(Hashtable attached to 
Denominator)

8,906 msec 
(674 hits) 

2,812 msec 
(674 hits) 

16,375 msec 
(1,270 hits) 

6,984 msec 
(1,270 hits) 

37,468 msec 
(2,659 hits) 

15,301 msec 
(2,659 hits) 

3. //Meter[Denominator 
/data()=4]
(No indexing) 

8,906 msec 
(674 hits) 

5,422 msec 
(674 hits) 

16,375 msec 
(1,270 hits) 

10,110 msec 
(1,270 hits) 

37,468 msec 
(2,659 hits) 

21,859 msec 
(2,659 hits) 

4. //Meter/Denominator 5,265 msec 
(5,363 hits) 

2,390 msec 
(5,363 hits) 

9,953 msec 
(9,905 hits) 

4,234 msec 
(9,905 hits) 

23,266 msec 
(21,100 hits) 

8,171 msec 
(21,100 hits) 

5. //AudioDescription- 
Scheme/*//Beat

5,922 msec 
(6,144 hits) 

1,672 msec 
(6,144 hits) 

11,422 msec 
(11,833 hits) 

2,953 msec 
(11,833 hits) 

23,890 msec 
(24,786 hits) 

6,438 msec 
(24,786 hits) 

Figure 21: Results of document querying

So far, we have been mainly concerned with the costs of choosing PTDOM for XML docu-

ment management. We now want to highlight the benefits to be earned. The third experiment

measures the time required by the query evaluator component to evaluate five XPath expressions

on the three databases created in the second experiment. The experiment opposes optimized

query translation, which makes intensive use of the specialized operators of the PTDOM query

algebra tailored to exploit the path indexing abilities of the schema catalog and the value index

structures of the index framework, and naive query translation, which utilizes the algebra’s

general operators only.
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The table of Figure 21 presents the outcome of this experiment. As one would expect,

optimized query translation outruns naive query translation considerably. For Queries 1 to 4,

the elementsByType operator which exploits the path indexing abilities of PTDOM’s schema

catalog can be brought into play to avoid the evaluation of costly // document traversals.

Queries 2 and 3 further show that respectable performance gains can be achieved from available

value index structures when using optimized query translation, even in spite of the suboptimal

utilization of these structures that has already been explained before in Section 4.6.

Significant increase in performance is also achieved for Query 5. Despite the fact that there

is at least one Beat element below an AudioDescriptionScheme element in every document

of our test sets and even though the optimized translator produces a quite complicated oper-

ator tree (which selects all AudioDescriptionScheme and Beat elements via elementsByType

operators and filters all those Beat elements which have one of the AudioDescriptionScheme

elements in the same document among their ancestors) naive query translation (which sim-

ply traverses down all elements in every document on the search for Beat elements below

AudioDescriptionScheme elements) still cannot compete.

The third experiment shows once more the desirability of a dedicated query optimizer. With

knowledge of the schema definition in the catalog, an optimizer could, as already illustrated in

Section 4.6, not just get even more out of the value index structure for the evaluation of Query

2. It could further simplify Query 5 to //Beat which optimized translation could execute in a

time comparable to Query 1. While not yet possessing such a query optimizer, the PTDOM

architecture with the rich schema information available in its schema catalog at least provides

an ideal ground for its realization.

6 Conclusion

In this paper, we have emphasized the importance of schema definitions for the management of

XML documents in a database and illustrated the various roles these definitions can play for that

purpose. We have performed an analysis of a broad spectrum of current XML database solutions

– ranging from native solutions to database extensions, from commercial products to research

prototypes – concerning the ways in which they make use of available schema definitions and
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uncovered remarkable deficiencies: many XML database solutions do not at all take account

of schema definitions for XML document management; and those who do typically restrict

the usage of schema definitions to mere document validation. None of the XML database

solutions examined also exploits available schema definitions for profound document typing,

path indexing, and query optimization.

We have then presented the system architecture of PTDOM, a highly extensible native

XML database solution which, motivated by the deficiencies of current solutions, we have

developed with a special focus on utilizing available schema definitions for XML document

management. The central component of PTDOM is an MPEG-7 DDL/XML Schema-compliant

schema catalog whose schema definitions are employed not just for mere document validation

but also for the production of appropriately typed representations of basic document contents,

for path indexing, and, though still in a rudimentary fashion, for an optimized evaluation of

XPath expressions. Apart from conceptual benefits of such a schema-aware approach to XML

document management concerning issues such as database consistency, treatment of non-textual

document contents, indexing, and query optimization, we have provided in this paper initial

experimental results indicating that the approach should also be viable in practice for many

XML database applications and bring noticable benefits with regard to query efficiency.

We are currently developing PTDOM into several directions. We are applying the simple

type and routine frameworks to integrate support for all the elementary simple types offered by

MPEG-7 DDL [39, 1] and the basic functions and operators proposed for the XQuery 1.0 and

XPath 2.0 standards [38] with PTDOM. Furthermore, we are investigating how the PTDOM

query algebra can be extended to reach the expressiveness of the XQuery language and how a

sophisticated query optimizer that exploits the rich and detailed schema information available

within PTDOM’s schema catalog can be integrated with the query evaluator component. Fi-

nally, we are exploring the application of PTDOM for the development of an MPEG-7-based,

database-driven multimedia metadata tool suite.
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