
ViPIOS Islands: Utilizing I/O resources on distributed clusters

Erich Schikuta and Thomas Fuerle
Institut für Informatik und Wirtschaftsinformatik

University of Vienna
Rathausstr. 19/9, A-1010 Vienna, Austria

Abstract
Grid Computing aims to harness resources available

on a widely distributed computing infrastructure to
enable next generation collaboration frameworks and
solution approaches to a stimulating domain of new
challenges.

In this paper we present ViPIOS (Vienna Paral-
lel Input Output System) islands, which exploit I/O
resources available on the Grid for high performance
applications. ViPIOS is a client-server based system
tailored for cluster type systems to increase the band-
width of disk accesses by (re-)distributing the data
among available I/O resources and parallelizing the
execution scheme.

Secondly we introduce the xDGDL language, a
framework to express semantics for data stored on the
Grid.

1 Introduction

Two factors strongly influenced the research in high
performance computing in the last few years, the I/O
bottleneck and cluster systems. Firstly, for many su-
percomputing applications the limiting factor is not
the number of available CPUs anymore, but the band-
width of the disk I/O system. Secondly, a shift from
the classical, costly supercomputer systems to afford-
able clusters of workstations is apparent, which allows
problem solutions to a much lower price.

In the last few years Grid computing became
very popular. Approaches like Globus [1], NetSolve,
SETI@home attracted more and more people to join.
The basic idea behind these projects is to solve large
problems by harnessing the CPU cycles of partici-
pating machines over the internet. This approach
is followed in the small by so called Beowulf clus-
ter type systems. Off-the-shelf workstations are con-
nected by an affordable network interconnect (Fast-
Ethernet, Giganet), and suitable operating and pro-
gramming environments allow to exploit the cumula-

tive processing power to solve grand challenging prob-
lems. Due to their low price (compared to the clas-
sic supercomputers) these clusters became very popu-
lar and representatives can now even be found in the
list of the 500 worlds most powerful computer systems
(http://www.top500.org).

This situation stimulated the development of the
Vienna Parallel Input Output System (ViPIOS),
which represents a fully-fledged parallel I/O runtime
system focusing on cluster systems available on the
Grid. An introduction to ViPIOS can be found in [5].

This paper is an extension of [4] focusing onto the
Grid and its enabling infrastructure.

2 ViPIOS Islands: Extending ViPIOS
for I/O on distributed clusters

2.1 Introduction

The basic concepts of ViPIOS described thus far
need some extensions in order to harness I/O resources
distributed over the internet. The main challenges in
this context are

• The message protocol uses broadcasts in some sit-
uations. Since it is clearly impossible to broad-
cast across the internet some notion of locality is
needed, which ensures that broadcast messages
only have to be sent to a (small) well defined sub-
set of all the ViPIOS server processes running.

• Name spaces have to be provided to avoid file
naming conflicts.

• Client grouping ensures that collaborating client
processes can use shared filepointers or access
a file exclusively (i.e. only processes belonging
to a specific group can use the file concurrently,
whereas all other processes are denied access).

• Hard- and software environments across the In-
ternet are very inhomogenous. Hence the adapt-
ability of ViPIOS is a major issue. Administrators
should be able to tailor the system to their needs.

• Users accessing I/O resources over the Inter-
net generally are unable to overcome errors and
faults on the server side (for instance they do not
have the rights to restart the server process if it
crashes). Therefore some basic automatic failure
recovery has to be implemented in order to in-
crease the availability of ViPIOS services.

• To make persistent data accessible for a wide
range of possible users it is generally not sufficient
to just store the data alone. Meta information like
for instance the datatypes and file formats used
has to be supplied too. This is not only valuable
for human users it is also vital to enable automatic
post processing of the data using OLAP and data
warehousing techniques.

2.2 The ViPIOS Island

A ViPIOS island is defined to be a closed system
with its own name space consisting of a number of
ViPIOS servers and a connection controller, which as-
signs application processes to their buddy servers (a
ViPIOS server responsible for the respective connec-
tion) on request.

The idea is to segment the distributed I/O services
into domains (islands). To reach such an island the
client needs to know the hostname (or IP-address) of
the connection controller responsible for that island.

2.2.1 The Connection Controller

At any given time, a client or a group of clients can
connect/disconnect to/from a ViPIOS island. To con-
nect the client calls an interface function and speci-
fies the hostname (or IP-address) of the targeted is-
land’s connection controller. The ViPIOS interface
then sends a connect message to that connection con-
troller, which in turn selects a buddy server for the
client process (based on information about network
topology, data layout and so on). The address of the
buddy server is sent back to the ViPIOS interface. The
interface converts this address into a buddy handle and
returns this handle to the calling client process. The
client has to use this handle for further requests to the
respective ViPIOS island.

A client process may connect to an arbitrary num-
ber of ViPIOS islands concurrently (like indicated in
Figure 1). Since there is a different buddy server to the

ViPIOS interface

application

foe X1buddy foe X1 foe X3buddy X2

Figure 1: ViPIOS islands

application in each island the many-to-one relationship
between applications and buddy server holds no more.
Each application has exactly one buddy server in each
island it is connected to.

With the standardization of OGSA (Open Grid
Service Architecture) [3] we will change our connec-
tion model to the standardized service architecture of
OGSA.

2.2.2 Name Space of ViPIOS

Each ViPIOS island has its own name space, i.e a file
name is unique within an island, but on the other hand
the same file name can occur in different islands.

All parts of a single file are stored on one dedicated
island. Therefore it is not possible that for any file
some bytes have to be retrieved from one island and
other bytes have to be retrieved from another island.
If a part of the file is located on an island, the rest
can be found on the same island. This simple rule
restricts the range of broadcast messages to one single
island. Whenever a server process searches a part of
a file, which can neither be found locally nor by the
directory controller, it suffices to broadcast the request
to all the other servers on the island. One of them has
to hold the data.

To distinguish between files on different islands with
the same name, the buddy handle must be specified
when opening a file. The call to the open function
returns a file handle, which is used by the application
to identify the file in all further I/O function calls.

We are working on integrating the name spaces of
ViPIOS with the file name lookup functionality of the
Datagrid architecture, which can free us from restrict-
ing a logical file to a single island.

2.3 Shared File Pointers and Exclusive
Access

The decentralized way ViPIOS handles I/O re-
quests minimizes synchronization overhead but poses
some problems for operations, which implicitly need
some knowledge about the global context. Assume for
instance a situation, where two applications with dif-
ferent buddy servers try to access a file exclusively.
The two requests to open the file are sent to different
servers but only one request may be successful. The
other must be rejected in order to guarantee exclusive
access. So the servers must somehow find out that
there are multiple exclusive requests and resolve the
situation.

A similar difficulty arises with shared file pointers.
The current state of the file pointer must be stored
in some central position, which can be accessed by
all the different server processes receiving requests for
that file.

To overcome all these trouble each file is assigned a
specific ViPIOS server process which is called the sync
controller of that file. Each file has exactly one sync
controller but a sync controller can serve multiple files.
Generally the sync controller is chosen to be the same
server process that is also the directory controller for
that file. If no directory controller exists for the file
then the sync controller is the server process, which
holds the first byte of the file on its local disks. (Even
if the file is empty the distribution strategy chosen by
the fragmenter at file creation determines the server
which will hold the fist byte of the file and thus the
sync controller.)

Now each open request has to contact the sync con-
troller of the file to verify that there are no access
conflicts. The current state of a shared file pointer
is stored on the sync controller of the file and is thus
available to all the servers in the system.

2.4 Group tagging

In parallel computation it is quite common that a
number of application processes collaborate to com-
plete a certain task. Under that perspective exclusive
access means that only processes belonging to that
specific group may access the file but no other pro-
cesses. Since application processes are executed in-
dependently they connect to the ViPIOS system at
different points in time and there is no way for ViP-
IOS to find out, which processes belong together in a
group. Each application process therefore must specify
the group it belongs to when it connects to a ViPIOS
island.

This is done by specifying two additional parame-
ters in the call to the connect function.

• A user defined group tag. The application
programmer defines a custom group tag, which is
a name unique for the ViPIOS island to which
the application connects. All the application pro-
cesses using the same group tag are considered to
be members of that group. It is the responsibil-
ity of the application programmer to avoid name
clashes with other application groups on the same
island. This can for example be done by using a
GUID as the group tag. Note that the range of
a group tag is only a single ViPIOS island. The
same tag may be used for different islands produc-
ing different and independent groups. Further-
more an application process can connect to dif-
ferent groups on different ViPIOS islands, though
it only can be a member of a single group on a
specific ViPIOS island at any point in time.

• The number of group members. To assure
correct handling of access rights the number of
the members in the group has also to be spec-
ified. Imagine two application processes build-
ing a group and having exclusive access to a file.
Clearly access for other applications can only be
granted after both processes have closed the file.
If the processes are not or only loosely synchro-
nized it can happen that the first one already
closes the file before the second one even has
opened it. In that case the ViPIOS system has to
know that there will be a second process that also
belongs to the group and will access the file. Or
else closing the file would allow other applications
to access the file before the group has completed
all its file operations.

To know the number of group members in advance
also facilitates some of the optimization tasks of
the ViPIOS system (like assigning the best buddy
server to each application process or finding the
data distribution for a specific file).

2.5 Customizing the System

ViPIOS offers the adjustment of system parameters
(like sizes of buffers, number of server processes etc.)
to the system administrator who can set these param-
eters in external configuration files.

These files are interpreted by ViPIOS in a hierar-
chical manner. A global configuration file is used to
specify the defaults for all the server processes of a

ViPIOS island. For specific servers these values can be
overridden in the local configuration file of that server.

If any parameter can not be found (because both
of the files are missing or there is no entry in either
of the files) ViPIOS uses some predefined parameter
values, which are hard coded into the system.

We are also thinking of using a LDAP server for
these parameters.

2.6 Failure Recovery

The aim of the failure recovery component of ViP-
IOS is to provide the stability needed to ensure the
availability of the I/O services in a distributed envi-
ronment. Users accessing the system remotely can not
kill or restart server processes that have failed for any
reason. In this context there is no intent to recover
from hardware failures like a head crash on the hard
disk or something similar severe. But the system is
designed to survive minor failures like temporary un-
availability of servers, network congestion, buffer over-
run or memory exhaustion.

2.6.1 Spawning of Server Processes

The connection controller plays the major role in fail-
ure recovery. It uses periodic keep alive requests to
ensure that all servers on the island are still running.
If any of the servers has terminated unexpectedly, the
connection controller tries to restart it. If the restart
fails some files may become inaccessible (i.e. the files
local to the server process, which can not be restarted).
The applications are informed of that fact and open
requests to those files are canceled gracefully.

The connection controller itself is monitored by a
watchdog process, which will restart it immediately, if
necessary.

2.7 Unified Messaging

ViPIOS is based on an unified messaging system,
which allows for changing the underlying messaging
system like PVM and MPI.

The main focus for this development was the ”best
bread” approach of combining basically the dynamic
features of PVM with the data structure features of
MPI transparent to the programmer, which we need
for the design of our internal APIs and external inter-
faces (see refsec interfaces).

3 Interfaces

ViPIOS offers a wide variety of (external) interfaces
for different purposes.

The main interfaces are:

• A native ViPIOS interface, which is function-
ally viewed a superset of the traditional Unix in-
terface, with extensions similar to MPI-IO and
PVFS. It is used internally, but can also be used
for application programming.

• ViMPIOS: a MPI-IO interface, which is an al-
most complete implementation of chapter 9 of the
MPI2 draft.

• ViPFS: a file system interface, which implements
a file system with its common tools on top of ViP-
IOS delivering persistence and a canonical view
for the distributed files.

A novel approach in ViPIOS is the introduction of a
XML based language to express data semantics within
the stated interfaces.

4 Data Semantics

New and stimulating problems in biology, physics,
etc. arise, which bring new high performance applica-
tions with the need to store, administer and search in-
telligently gigantic data set distributed over local and
global storage medias.

We will face a similar situation as in the well-known
area of database systems, where data represents a
model of the reality. It can be searched, analyzed,
easy administered and is efficiently at hand for arbi-
trary applications. This makes necessary means to
express semantics in the data and consequently the
need for mechanisms expressing semantics. Data has
to be attributed with meta information describing the
specific semantics of the information in a standardized
and processable way. This meta data allows applica-
tions to search the stored information intelligently.

However meta information in the context of high
performance applications has to describe not only the
logical knowledge within the data (semantic informa-
tion) but also specific structural problem information
of the parallel and/or distributed execution (syntac-
tical information). Thus we developed a XML based
language, xDGDL (XML Data Grid Description Lan-
guage), which provides a homogenous framework for
describing data on all interpretative levels (from phys-
ical representation to logical information). In our

framework physical files are consequently augmented
by interpretative information specified in the proposed
language.

To allow full flexibility for the programmer and the
administration methods, we propose an architecture
with three independent layers in the parallel I/O ar-
chitecture (similar to the three-level-architecture of
database systems):

• Problem layer. Defines the problem specific data
distribution among the cooperating parallel pro-
cesses.

• File layer. Provides a composed (canonical) view
of the persistently stored data in the system.

• Data layer. Defines the physical data distribution
among the available disks.

Consequently it is our goal to propose a framework,
which allows to express the information on all layers
of the presented file hierarchy. This led to the design
of the xDGDL, which acts in the system in two ways;
on one hand it provides a user interface allowing to
specify the layout of the file, on the other hand it is the
expressive mechanism within the system to administer
the distribution information of the files stored in the
file system across several sites on the Grid.

Due to paper limitation we can only give a short
description of xDGDL. A typical xDGDL description
consists of the following elements:

• Document Root The root of the document
specifies the version and timestamp of the file of
the XML description.

• Island Defines a logical unit with several servers
distributed worldwide.

• Servers Servers are physical machines identified
by their host name.

• Devices Devices are the disks holding the data
on the specific server.

• View The View element allows a specific distri-
bution on the available devices.

• Block The Block element specifies the number of
bytes to write to the specific disk.

4.0.1 Document Root.

The root of the document is described by the ele-
ment PARSTORAGE. The root element can contain sev-
eral child elements:

• PROCESSORS describes the named processor ar-
rays.

• TYPE describes the data types and variables stored
in the logical file.

• ALIGN describes the alignments of the variables.

• ISLAND describes the physical view of the file.

4.0.2 Island.

The ISLAND describes several servers interconnected.
These servers can be distributed across the Grid. The
island is identified by an island name. The ISLAND
consists of one or more servers.

4.0.3 Servers.

The SERVER element is identified uniquely on a node.
It has an attribute called HOST which mirrors the do-
main name of the server.

The SERVER element consists of one or more DEVICE
elements.

4.0.4 Devices.

Devices are the disks holding the data on the spe-
cific server. The devices need not be physical, even
a mounted NFS device on another server can be a de-
vice which can be accessed from a ViPIOS server. To
describe the structure of file parts to be written to
disk, a VIEW is used.

4.0.5 View.

The VIEW element is the link between logical, physical
and application view. It is responsible for transform-
ing the internal structure of the data layout to appli-
cation programs. The VIEW element consists of one or
more BLOCK elements.

4.0.6 Block.

The BLOCK element can have two types of child nodes.
It can have a BYTEBLOCK element, which means, that
either there are no more VIEW elements or it can con-
sist of VIEW elements which have one or more BLOCK
elements themselves. This leads to a recursive struc-
ture which allows arbitrary distribution. The BLOCK
element consists of the following attributes:

• OFFSET describes how many bytes should be
skipped from the starting point of the current
BLOCK.

• REPEAT describes how often the BLOCK should be
read/written.

• COUNT number of bytes to read/write at each
BLOCK operation.

• STRIDE describes the number of bytes to skip at
each BLOCK operation.

As an example, a file distributed onto two-server
within ViPIOS can be described by the following
xDGDL specification:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE PARSTORAGE SYSTEM "XDGDL.dtd">
<PARSTORAGE VERSION="1.0"
TIMESTAMP="testfile_regular">
<ISLAND NAME="island1.pri.univie.ac.at">
<SERVER HOST="vipios1.pri.univie.ac.at">
<DEVICE DEVICE_ID="/dev/vda1">
<VIEW SKIP_HEADER="0" SKIP="7">
<BLOCK OFFSET="0" REPEAT="3"

COUNT="5" STRIDE="7">
<BYTEBLOCK/>

</BLOCK>
</VIEW>

</DEVICE>
</SERVER>
<SERVER HOST="vipios2.pri.univie.ac.at">
<DEVICE DEVICE_ID="/dev/vda1">
<VIEW SKIP_HEADER="0" SKIP="0">
<BLOCK OFFSET="5" REPEAT="3"

COUNT="7" STRIDE="5">
<BYTEBLOCK/>

</BLOCK>
</VIEW>

</DEVICE>
</SERVER>
</ISLAND> </PARSTORAGE>

More in-depth information on the xDGDL can be
found in [2].

5 Conclusions and future work

We presented ViPIOS and its extensions for ad-
dressing the needs of distributed I/O on the Grid.
Work on a final implementation of the ViPIOS island
is on the way. Due to the challenging situation of
the the Grid research with every day new proposal for
standards we are thoroughly evaluating the different
approaches and are eager to integrate novel Grid stan-
dards into ViPIOS.

Further we introduced in this paper xDGDL, a
XML language for storing meta information for dis-
tributed files, which allows to express semantic infor-
mation on various levels. This language is our con-
tribution to the standardization process on the Grid.
We think that the semantic description of data en-
ables new ways administrating, searching, analyzing
and computing information on the Grid.

Acknowledgement

On this occasion we thank Andras Belokosztolszki,
Rene Felder and Helmut Wanek, who helped on var-
ious aspect developing ViPIOS. The work described
in this paper was partly supported by the Special Re-
search Program SFB F011 AURORA of the Austrian
Science Fund.

References

[1] Joseph Bester, Ian Foster, Carl Kesselman, Jean
Tedesco, and Steven Tuecke. GASS: A data move-
ment and access service for wide area computing
systems. In Proceedings of the Sixth Workshop on
Input/Output in Parallel and Distributed Systems,
pages 78–88, Atlanta, GA, May 1999. ACM Press.

[2] Rene Felder and Erich Schikuta. Towards a XML
based data grid description language. submitted
for publication.

[3] Ian Foster, Carl Kesselman, Jefferey Nick, and
Steven Tuecke. The physiology of the grid: An
open grid services architecture for distributed sys-
tems integration.
http://www.globus.org/research/papers/ogsa.pdf,
2002.

[4] Thomas Fuerle, Oliver Jorns, Erich Schikuta,
and Helmut Wanek. Meta-ViPIOS: Harness dis-
tributed i/o resources with vipios. Iberoamerican
Journal of Research ”Computing and Systems”,
Special Issue on Parallel Computing, 4(2):124–142,
December 2000.

[5] Erich Schikuta, Thomas Fuerle, and Helmut
Wanek. ViPIOS: The Vienna Parallel In-
put/Output System. In Proc. of the Euro-Par’98,
Lecture Notes in Computer Science, Southampton,
England, September 1998. Springer-Verlag.

