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Abstract

MPEG-7 is a very promising standard for the description of multimedia content. Cer-

tainly, means for the adequate management of large amounts of MPEG-7 media descrip-

tions are needed in the near future. Essentially, MPEG-7 media descriptions are XML

documents following media description schemes defined with an extension of XML Schema

named MPEG-7 DDL. However, XML database solutions available today are not suitable

for the management of MPEG-7 media descriptions. They typically neglect the type in-

formation available with media description schemes and represent the basic contents of

media descriptions as text. But storing non-textual multimedia data typically contained

in media descriptions such as melody contours and object shapes textually and forcing ap-

plications to access and process such data as text is neither adequate nor efficient. In this

paper, we therefore propose the Typed Document Object Model (TDOM), a data model

for XML documents that can benefit from available schema definitions and represent the

basic contents of a document in a typed fashion. Through these typed representations,

applications can access and work with multimedia data contained in MPEG-7 media de-

scriptions in way that is appropriate to the particular type of the data. Thereby, TDOM

constitutes a solid foundation for an XML database solution enabling the adequate man-

agement of MPEG-7 media descriptions.
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1 Introduction

Recently, there have been considerable efforts to standardize the description of multimedia

content. This has resulted in a variety of standards, such as the Dublin Core Metadata Ele-

ment Set [10], Learning Object Metadata [21], VRA Core Categories [47], and the Multimedia

Content Description Interface (MPEG-7) [24, 23, 36, 37]. Being an ISO standardization effort

which is backed by prominent broadcasting companies, consumer electronics manufacturers,

and telecommunication service providers and which has reached a mature state by the end

of 2001, MPEG-7 receives considerable attention in the multimedia community. What makes

MPEG-7 particularly attractive is that it is targeted at the description of multimedia content

on a technical, feature-oriented level as well as on a semantic level. For instance, it is not

only possible to describe the frequency spectrum of a song recording in an MPEG-7 media

description. It is also possible to refer to the lyrics and the musical score, all within the same

description.

The scope of standardization basically comprises two parts: a Description Definition Lan-

guage (MPEG-7 DDL) [25] with which schemes for the description of media can be specified,

and, defined via MPEG-7 DDL, a comprehensive set of media description schemes1 that are use-

ful for a variety of applications. The media description schemes standardized include schemes

for visual media [26] and audible media [27] as well as schemes of general use [28]. Applications

are not limited to these standardized media description schemes: new description schemes

can defined with MPEG-7 DDL, either from scratch, or by extending or combining existing

description schemes.

By the diversity of aspects with which content can be described and by the extensibility

of the standard with new description schemes, MPEG-7 is expected to face wide-spread use

1The terminology of MPEG-7 originally distinguishes between descriptors, which are basic descriptive mea-

sures for media, and description schemes, which hierarchically combine descriptors and other description schemes

to more complex descriptional units. However, descriptors do not just constitute simple, atomic measures but

can also bear a complex structure. As they are furthermore specified in the same way as description schemes

with MPEG-7 DDL, the distinction between both terms seems rather arbitrary. For the sake of simplicity, we

therefore just talk about media description schemes in this paper but mean description schemes and descriptors

at the same time.
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in a broad range of applications: media archives, journalism, education, entertainment, etc.

Therefore, means for the effective management of large amounts of MPEG-7 media descriptions

are certainly needed.

Basically, MPEG-7 media descriptions are XML documents that are valid to a media de-

scription scheme expressed in MPEG-7 DDL. Thus, it seems natural to employ XML database

solutions for the management of MPEG-7 media descriptions. Closer examination of current

XML database solutions for their suitability for MPEG-7, however, reveals difficulties. One of

the main problems with current solutions is that they typically represent the basic contents

of XML documents, i.e., simple content of elements and the content of attribute values, as

text. But textually representing multimedia data such as melody contours and object shapes

often contained in MPEG-7 media descriptions is inadequate: textual representations of non-

textual data consume unnecessary storage space, do not preserve the meaning of the data (e.g.,

with respect to indexing), and are inefficient and cumbersome to handle such that applications

are forced to constantly translate the textual representations to data structures better suiting

the particular data type at the cost of considerable processing power. Clearly, more adequate

database solutions are required for MPEG-7.

In this respect, we make several substantial contributions in this paper: we motivate and

present several basic but nevertheless essential requirements for the management of MPEG-7

media descriptions. Along these requirements, we analyze existing XML database solutions –

native XML database solutions as well as extensions for relational systems, commercial systems

as well as research prototypes – fortifying the demand for more suitable MPEG-7 database so-

lutions. As a solid foundation for such a solution, we then propose the Typed Document

Object Model (TDOM). TDOM is an object-oriented data model for XML documents specifi-

cally designed bearing the requirements for the management of MPEG-7 media descriptions in

mind. The model’s outstanding feature is that type information contained in media description

schemes written in MPEG-7 DDL can be exploited to represent the basic contents of an XML

document in a typed fashion and not just as text. In typed representation, simple element

content and the content of attribute values is kept in data structures that are appropriate for

the the respective content type and that come with type-specific operations to reasonably work

with the content. Thereby, applications can process the multimedia data contained in MPEG-7
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media descriptions more adequately and efficiently.

The remainder of the paper is organized as follows: Section 2 derives essential requirements

for the adequate management of MPEG-7 media descriptions. Section 3 evaluates existing

XML database solutions according to these requirements. Section 4 introduces and gives a

thorough definition of TDOM. Section 5 concludes the paper with a summary and an outlook

to current and future work.

2 Requirements for the management of MPEG-7 media

descriptions

In this section, we briefly illustrate the nature of MPEG-7 media descriptions (2.1). We then

derive a set of fundamental requirements for the management of such descriptions (2.2).

2.1 MPEG-7 media descriptions

MPEG-7 is strongly committed to XML and related standards. MPEG-7 DDL, the language

used for the definition of media description schemes, is a superset of XML Schema [45, 2], a

schema definition language for XML documents recently standardized by the W3C. Certain

extensions to XML Schema were considered neccessary to better cope with the peculiarities of

multimedia data. In particular, support for array and matrix data types as well as additional

data types for time points and time durations were added to XML Schema. Regarded as an

extended XML Schema, MPEG-7 DDL is thus just another schema definition language for

XML documents. Since media description schemes are defined with MPEG-7 DDL, an MPEG-

7 media description complying to a given media description scheme is consequently an XML

document that is valid with respect to the schema definition given by the description scheme.

We would like to illustrate the concepts of media description schemes and media descrip-

tions with an example. The MPEG-7 Melody media description scheme [27] is a representative

description scheme that can serve as the basis for the realization of query-by-humming appli-

cations. A slightly simplified version of this description scheme expressed in MPEG-7 DDL is

shown in Figure 1.
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<schema xmlns="http://www.w3.org/2001/...”

xmlns:mpeg7="http://www.mpeg7.org/2001/...”

targetNamespace="http://www.mpeg7.org/2001/...”>

<complexType name=“MelodyType”>

<sequence>

<element name=“Meter”

type=“mpeg7:MeterType”

minOccurs=“0”/>

<element name=“MelodyContour”

type=“mpeg7:MelodyContourType”

minOccurs=“0”/>

</sequence>

<attribute name=“id” type=“ID”

use=“optional”/>

</complexType>

<complexType name=“MelodyContourType”>

<sequence>

<element name=“Contour”>

<simpleType>

<list itemType=“integer”/>

</simpleType>

</element>

<element name=“Beat”>

<simpleType>

<list itemType=“integer”/>

</simpleType>

</element>

</sequence>

</complexType>

<complexType name=“MeterType”>

<sequence>

<element name=“Numerator”>

<simpleType>

<restriction base=“integer”>

<minInclusive value=“1”/>

<maxInclusive value=“128”/>

</restriction>

</simpleType>

</element>

<element name=“Denominator”>

<simpleType>

<restriction base=“integer”>

<enumeration value=“1”/>

<enumeration value=“2”/>

<enumeration value=“4”/>

<enumeration value=“8”/>

<enumeration value=“16”/>

<enumeration value=“32”/>

<enumeration value=“64”/>

<enumeration value=“128”/>

</restriction>

</simpleType>

</element>

</sequence>

</complexType>

<element name=“Melody”

type=“mpeg7:MelodyType”/>

</schema>
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Figure 1: Simplified MPEG-7 Melody media description scheme

According to the media description scheme depicted, the melody of a song (see the decla-

ration of the element type Melody in the lower right column) can be described by its meter

and melody contour (element types Meter and MelodyContour declared in the complex type

MelodyType in the left column). The meter of a melody is a fraction number consisting of a

numerator and denominator (see element types Numerator and Denominator declared in the

complex type MeterType in the right column). There is the restriction that the numerator must

be an integer value in the interval from 1 to 128, while the denominator must be a power of two

in the same interval. The melody contour consists of a contour and a beat (see element types

Contour and Beat declared in the complex type MelodyContourType in the lower left column).

The contour of a melody is a list of integer values giving a measure for the distance between

every two consecutive notes of the melody while the beat is a list of integer values associating

every note of the melody to its position in the beat.

A media description complying to the Melody media description scheme is an XML doc-

ument that is valid to the schema definition presented. Figure 2 gives an example of such a
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<!-- Melody description of 8 notes taken from “Moon River” by Henry Mancini -->

<Melody xmlns=“http://www.mpeg7.org/2001/MPEG-7_Schema”
id=“moonRiver”>
<Meter>

<Numerator>3</Numerator>
<Denominator>4</Denominator>

</Meter>
<MelodyContour>

<!-- Distance between two notes -->

<Contour>2  -1 -1 -1 -1 -1 1</Contour>

<!-- Beat position of notes -->

<Beat>1 4 5 7 8 9 9 10</Beat>
</MelodyContour>

</Melody>

<!-- Melody description of 8 notes taken from “Moon River” by Henry Mancini -->

<Melody xmlns=“http://www.mpeg7.org/2001/MPEG-7_Schema”
id=“moonRiver”>
<Meter>

<Numerator>3</Numerator>
<Denominator>4</Denominator>

</Meter>
<MelodyContour>

<!-- Distance between two notes -->

<Contour>2  -1 -1 -1 -1 -1 1</Contour>

<!-- Beat position of notes -->

<Beat>1 4 5 7 8 9 9 10</Beat>
</MelodyContour>

</Melody>

Figure 2: Example of an MPEG-7 media description

document describing a small fraction of the melody of the song “Moon River” by Henry Mancini

(taken from [27], page 101).

There are some general observations that can be made on MPEG-7 media descriptions:

• MPEG-7 media descriptions are XML documents.

• MPEG-7 media descriptions comply to media description schemes expressed in MPEG-7

DDL, a schema definition language for XML documents.

• The set of available media description schemes is not fixed by MPEG-7. The standard

ships with a multitude of predefined schemes such as our example Melody media descrip-

tion scheme but applications may create new description schemes with MPEG-7 DDL if

desired.

• Much of the information encoded in XML documents that constitute MPEG-7 media

descriptions is not of a textual nature. Large portions of the information consist of

numbers and mathematical structures such as lists, vectors, and matrices – usually to

describe rather technical aspects of media content. As a matter of fact, about 84% of the
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media description schemes predefined by the standard for visual and audible content in

[26] and [27] consist primarily of non-textual data.

2.2 Requirements

As we have observed, MPEG-7 media descriptions are XML documents. Thus, the problem of

adequately managing MPEG-7 media descriptions can be curtailed to the problem of managing

XML documents in principal. In literature, general requirements for XML database solutions

have already been identified [38]. Among the desired features of an XML database solution are

rich document modeling capabilities, the availability of a query language, support for document

updates, the availability of index structures, the management of access rights, support for

transactions as well as backup and recovery.

In the following, however, we want to specifically look onto the management of XML docu-

ments from the perspective of MPEG-7: we motivate and present four very basic but neverthe-

less critical requirements for the effective management of MPEG-7 media descriptions. Namely,

the requirements are fine-grained representation of description structure, typed representation

of description content, support for updates, and support for MPEG-7 DDL. As it will turn out

in Section 3, current XML database solutions fail in fulfilling all of these basic requirements.

Fine-grained representation of description structure. With MPEG-7 DDL, schemes

of arbitrary complexity for the description of media content can be defined, describing media

content from possibly very different points of view. However, not every application working

with media descriptions conforming to a complex description scheme can be expected to process

the full scope of a description. Rather, applications will access only those parts of a description

that are necessary to fulfil their particular tasks.

Enabling fine-grained access to the constituents of a media description is therefore essential

for the adequate management of MPEG-7 media descriptions. This calls for the fine-grained

representation of the structure of the media description. With a faithful reproduction of the

hierarchy of the various nodes, i.e., markups, of which the description consists, applications

can access exactly those parts that they are interested in. In contrast, if the description was

represented as a single unstructured object, an application would always have to access the
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complete description and decompose it into its constituents – even if the application is interested

in just a small fraction.

Typed representation of description content. As we have already noticed by the means

of the Melody media description scheme of Figure 1 as a typical representative of many descrip-

tion schemes predefined by MPEG-7, much of the information encoded in media descriptions

consists of non-textual data like numbers and rather complex structures like lists. Since MPEG-

7 media descriptions are XML documents and, as such, a form of text documents, these data

are encoded as text.

This might be adequate for the platform-independent exchange of media descriptions. It

is doubtful for several reasons, however, whether textual representation of non-textual data is

also reasonable for the management of media descriptions within a database: textual repre-

sentations of non-textual data typically consume more storage space than equivalent binary

representations. Moreover, they are less efficient and cumbersome to handle. A good example

for this point is the list of integer values being the content of the <Contour> element in the

media description of Figure 2. The effort necessary to retrieve the 4th element of the list on the

basis of the list’s textual representation, i.e., through string operations, is significantly higher

than the effort necessary for the same action on the basis of an adequate data structure, e.g.,

an array. Therefore, applications must usually translate textual representations of non-textual

data to internal data structures more appropriate to the particular type of data before they can

adequately work with the data – at the cost of considerable processing power. Finally, textual

encoding of non-textual data does not necessarily preserve the semantics, e.g., with respect to

ordering. For instance, the alphanumeric order of the textual representations of integer values

differs from their numeric order hindering reasonable indexing.

Given these problems, a suitable database solution should represent the basic contents of an

MPEG-7 media description – namely, simple content of elements and content of attribute values

– in a typed fashion and not as text. With typed representation, we mean that these contents

are kept in data structures that are adequate to the particular content type and come with

type-specific operations to reasonably work with the content. To that end, a database solution

should not only support the whole lot of simple data types predefined with MPEG-7 DDL
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[25, 2] but also the variety of derivation methods for simple types coming with the standard

– MPEG-7 DDL allows to flexibly derive new simple types from existing ones in a schema

definition. Examples of such derived simple types are the list type and the range-restricted

integer type defining the allowed contents of the Contour and Numerator element types in

Figure 1: both are based on the predefined type integer.

Fine-grained updates. It is unrealistic to assume that MPEG-7 media descriptions are

produced in one shot and then never touched again. Just like the media content they describe,

media descriptions evolve and are constantly subject to change during the different phases of the

content’s lifecycle. Acknowledging that media descriptions are subject to change, we demand

that a database solution should offer adequate means for updating media descriptions. Just

like it is necessary to offer applications fine-grained access to the nodes of a possibly complex

media description, applications should be allowed to perform fine-grained updates on any part

of the description – having to unload the complete description from the database, to modify

it outside the database, and to reinsert it into the database just to update a small fraction is

definitely not efficient and prevents concurrent access.

Support for MPEG-7 DDL. For the suitable management of MPEG-7 media descriptions,

it is of advantage to be capable of processing media description schemes expressed in MPEG-7

DDL. The exploitation of the information available in these schema definitions is on the one

hand required to ensure the consistency of the database contents by validating whether an XML

document constitutes a correct media description with respect to a given media description

scheme. Typical occasions where such a validation is reasonable are during the import of a

media description into a database and during the update of a media description to decide

whether an update operation can be permitted without violating the description scheme. On

the other hand, processing of type information contained in schema definitions is necessary to

be able to infer the types and, by these types, appropriately typed representations of the basic

contents of a media description.

One might argue that the use of media description schemes to type the basic contents of a

media description could prohibitively increase the complexity of inserting new media descrip-

tions into a database and the complexity of database updates such that the benefits of typed
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representations are overweighed by performance problems. It is our experience, however, that

this does not constitute a problem for most applications. If one admits that it is a vital task of

a database solution to ensure the consistency of database contents, an MPEG-7 database solu-

tion must take the effort anyway to validate a media description against its associated media

description scheme whenever the description is newly inserted into a database or updated.

During validation, the database solution already has to verify whether the textual represen-

tation of the simple content of an element or the content of an attribute value matches the type

for the content as declared in the media description scheme. The additional effort necessary

to bring the content into an appropriate typed representation after a successful verification is

likely to be negligible for most applications, except for ones with very high update and insert

frequencies and with harsh real-time constraints.

But for such applications, a database solution will already have to abstain from the val-

idation of media descriptions after insertions and updates to noticeably save processing time

– a time saving, the applications will presumably pay for later when they must ensure the

consistency of media descriptions themselves and bring the basic contents of a description from

their textual representations to internal ones more suitable for further processing whenever

they access the description.

3 Analysis of XML database solutions

On the basis of the requirements elaborated in the previous section, we have examined current

XML database solutions with regard to their suitability for managing MPEG-7 media descrip-

tions. Figure 3 gives a summary of our analysis, showing whether or to what extent each of

the solutions meets each of our requirements.

In the figure, two coarse categories of database solutions for XML documents are distin-

guished: native database solutions specifically designed for the storage of XML documents and

solutions based on relational database management systems (DBMS). Both categories are fur-

ther subdivided into products – commercial ones as well as open source projects – and research

prototypes. In the following, we briefly discuss the results of Figure 3 for native XML database

solutions (3.1) and for relational XML database solutions (3.2) before concluding this section
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3.1 Native XML database solutions

Taking a look at Figure 3, we can see that the analyzed native XML solutions have strong

deficiencies with respect to the typed representation of the basic contents of a media descrip-

tion: most of the native solutions investigated represent simple content of elements and the

content of attribute values of XML documents as text – with all the incurring problems with

regard to the appropriate processing of non-textual data often contained in MPEG-7 media

descriptions. eXcelon XIS [12], TEXTML [29], and Tamino [42] somewhat alleviate the lack

of typed representations by allowing to manually specify whether the content of an element or

attribute value is to be interpreted as a string, number, or date for indexing purposes. Apart

from the fact that support for strings, numbers, and dates does not come even close to the

broad variety of elementary simple types and simple type derivation methods available with

MPEG-7 DDL, the content still remains represented as text.

To some extent, three of the examined native XML database solutions, the commercial

GoXML DB [50] and the research prototypes Lore [17] and Natix [31], address the issue of

typed representations. GoXML DB claims that the basic contents of an XML document are

represented in a typed fashion. Experiments with the current Version 2.0.2, however, have

revealed that this feature has apparently not been implemented yet. Content of attribute

values and simple content of elements is represented and interpreted as text. Compared to

that, Lore and Natix offer some elementary simple types for the typed representation of basic

document contents. However, both solutions support just small subsets of the simple types

predefined by MPEG-7 DDL. Simple type derivation methods, such as lists and matrices, are

not supported at all. Furthermore, Lore limits the use of typed representations to the content

attribute values; simple element content remains represented as text.

Even if the native solutions sufficiently supported the typed representation of the basic

contents of an XML document, they would not be able to infer adequate typed representations

for the contents of an MPEG-7 media description: no solution investigated can fully process

MPEG-7 DDL schema definitions. In fact, most systems do not make use of schema definitions

at all for XML document storage. Just eXcelon XIS, Tamino, and GoXML DB support more

or less limited subsets of XML Schema for the purpose of document validation not reaching the

expressive power of MPEG-7 DDL.
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3.2 Relational XML database solutions

Three principal approaches to storing XML documents in a relational DBMS can be distin-

guished. In the first approach, XML documents are directly stored in their textual format in a

character large object (CLOB). Special stored procedures are provided to access the contents

of a document from SQL, e.g., via XPath expressions [7]. Most XML database extensions of

the major relational DBMS vendors support this approach, such as Oracle XML DB [18], IBM

DB2 XML Extender [20], and Microsoft SQLXML [34]. With respect to the management of

MPEG-7 media descriptions, however, it is obvious from Figure 3 that this approach is not

adequate. As documents are stored as a whole in their textual format in a CLOB, there is

neither a fine-grained representation of the structure of a media description nor a typed repre-

sentation of the basic contents of a media description. Updates are only possible by replacing

complete documents and any existing schema definitions are not exploited for the storage of

XML documents.

The second approach to the management of XML documents in a relational DBMS keeps

the nodes of a document and the hierarchical relationships between them in tables. There has

been considerable research in this area (see [14] for an overview) and a lot of research prototypes

have been developed. For our analysis, we have focused on three representative systems: Monet

XML [39], Shimura et al. [41], and the XML Cartridge [16]. These systems have in common

that they represent the structure of XML documents with a fine granularity and that they also

allow fine-grained updates. Nevertheless, they are not suitable for the management of MPEG-7

media descriptions, since they do not make use of schema definitions to represent the basic

contents a document in a typed manner but rather represent all contents as text.

The third approach to the management of XML documents in a relational DBMS maps the

data conveyed in XML documents to application-specific database schemas. Even though this

would in principal place all modeling capabilities available with the relational DBMS at the

disposal for representing document content, we have decided to ignore this approach for the

management of MPEG-7 media descriptions. The definition of an application-specific database

schema as well as the specification of the mapping between an XML format to this schema are

elaborate manual tasks. Bearing in mind that MPEG-7 allows to define arbitrary description

schemes in excess to those predefined with the standard, the effort necessary to cope with
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a media description following a previously unknown media description scheme is prohibitive.

In literature, there are some approaches for the automatic derivation of relational database

schemas from schema definitions for XML documents [40, 46, 11] and the automatic mapping

between them. However, these are based on Document Type Definitions and whether they

scale to the far more complex MPEG-7 DDL remains to be proven.

3.3 Summary

As we have seen, none of the XML database solutions examined, native as well as relational,

is adequate for the management of MPEG-7 media descriptions. Their main limitations are

the lack of typed representations for the basic contents of an XML document and the inability

to process schema definitions expressed in MPEG-7 DDL to derive such typed representations.

For the suitable management of MPEG-7 media descriptions, we therefore certainly see a need

for a solution that focuses on exactly these points.

4 The Typed Document Object Model

As we have seen in Section 3, database solutions more suitable for the management of MPEG-7

media descriptions are needed. The heart of such a solution – just as with any other database

solution – is a data model. The purpose of this data model is to provide a detailed, accurate,

and adequate representation of the structure and contents of MPEG-7 media descriptions at

a logical level. On the basis of such a logical representation, applications can gain access

to the contents of media descriptions and process them more appropriately compared to the

alternative of constantly working on the original textual format through parsing operations.

Furthermore, the data model can serve as the foundation for the physical storage scheme

implemented by an MPEG-7 database solution. Closely orienting the physical storage scheme of

MPEG-7 media descriptions in a database along the data model has the advantage that exactly

those parts of a media description can be loaded from a database that are actually accessed

during the processing of a description on the basis of the data model thereby minimizing I/O

operations and main memory consumption. Storing media descriptions in their original textual

format – which requires to constantly load the entire description into main memory whenever

14



it is accessed in order to parse it and bring it into the data model representation for further

processing – is not very attractive as we could observe with relational XML database solutions

like Oracle XML DB and IBM DB2 XML Extender in Section 3.

Since MPEG-7 media descriptions are XML documents, a suitable data model should be a

model for XML documents that considers the basic requirements for the management of these

descriptions that we have presented earlier in Section 2. In this section, we propose the Typed

Document Object Model (TDOM), a conceptual object-oriented model for XML documents

that we have created bearing exactly these requirements in mind. We begin by taking a brief

look onto existing data models for XML documents unveiling their limitations concerning the

representation of MPEG-7 media descriptions (4.1). Having thus fortified the need for a new

data model, we then illustrate and give a thorough definition of TDOM (4.2).

4.1 Data models for XML documents

A variety of data models for XML documents have been proposed in literature, e.g., [30, 17, 16,

41, 39, 31]. Concerning their application for the representation of MPEG-7 media descriptions,

however, these models suffer from mainly two weaknesses: firstly, they typically constitute

variations of rather simple edge-labeled tree and graph data models. Though they provide

fine-grained representations of the MPEG-7 media descriptions in principle, these models often

ignore more subtle aspects of the descriptions’ structure like the ordering the child nodes of an

element, markup different from elements and attribute values such as processing instructions

and comments, or the distinction between attribute values and elements. Secondly, they usually

do not support typed representations: simple element content and the content of attribute

values is typically represented as text hindering the reasonable processing of non-textual data

on the basis of these models. Those few models that support typed representations (e.g.,

[31, 17]) only offer limited subsets of the elementary simple types predefined with MPEG-7

DDL; none of the models to our knowledge supports the simple type derivation methods of

MPEG-7 DDL.

In addition to the models originating from research, several data models for XML documents

have appeared in the context of standardization efforts. Prominent representatives are the

XPath Data Model which constitutes the foundation for the XPath language [7], the DOM
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Structure Model which is specified along with the DOM API by the Document Object Model

(DOM) standard [32], and the XML Information Set [8]. These models generally offer detailed

and accurate representations of XML documents. But their applicability for the processing of

MPEG-7 media descriptions is limited, since they neglect the types of the basic contents of a

description representing them always as text.

There are two recent developments with regard to standard data models for XML documents

which are of particular interest for our aim to adequately represent MPEG-7 media descriptions,

namely DOM Level 3 [33] and the XQuery 1.0 and XPath 2.0 Data Model [13]. The current

DOM Level 3 standardization effort originally not only aimed at the fine-grained representation

of XML documents but also at the fine-grained representation of the schema definitions to which

the documents comply. In that context, Abstract Schemas [4] have been proposed as a schema-

dialect-neutral model for the representation of schema definitions. Hence, Abstract Schemas

might serve as a basis for the representation of media description schemes expressed in MPEG-

7 DDL. However, Abstract Schemas do not reach the expressiveness of MPEG-7 DDL. It is

furthermore noteworthy that work on Abstract Schemas has recently been canceled and that

they will not be included in the final version of DOM Level 3.2

The XQuery 1.0 and XPath 2.0 Data Model is currently being defined as the foundation

of the XQuery standardization effort for a common XML query language [3]. What makes the

model interesting with regard to the representation of MPEG-7 media descriptions is that it

supports the elementary data types predefined by XML Schema for the typed representation of

simple element content and the content of attribute values. Nevertheless, difficulties concerning

the use of the XQuery 1.0 and XPath 2.0 Data Model for MPEG-7 still remain: with the

exception of lists, the current working draft does not support the far majority of the simple

type derivation methods offered by XML Schema and MPEG-7 DDL for typed representations.

Furthermore, the model is still in a very unstable state. For example, the paradigm followed

for the specification of the data model has just been changed fundamentally compared to the

previous working draft issued in April 2002. Instead of an open structural definition, the model

is now opaquely defined similar to abstract data types. Finally, as the current abstract-data-

type-based specification of the model does not include operations for changing a document, the

2See http://lists.w3.org/Archives/Public/www-dom/2002JulSep/0010.html.
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data model can provide only a static view onto an MPEG-7 media description which does not

permit fine-grained updates.

4.2 TDOM in seven points

On the way to an adequate MPEG-7 database solution, the deficiencies of the existing data

models for XML documents fortify the need for a new model that pays more attention to

the basic requirements for the management of MPEG-7 media descriptions. With the Typed

Document Object Model (TDOM), we now propose a data model which does exactly that.

TDOM is an object-oriented model for XML documents that carries on traditional DOM

[32] to allow an appropriate representation of MPEG-7 media descriptions. In the following, we

provide a detailed and illustrated definition of TDOM which we present in seven points closely

oriented along our requirements for the management of MPEG-7 media descriptions.

Since TDOM is an object-oriented model, we employ UML class diagrams for the definition

of the various classes of the model and their interrelationships.3 Whenever it is necessary to

make formal statements about TDOM, we make use of the Object Constraint Language (OCL)

[1].

1. TDOM is fine-grained.

Similar to traditional DOM, TDOM faithfully and fine-grainedly reproduces the structure of

XML documents with an object-oriented model that allows access and manipulation at any

required granularity. We have opted for an object-oriented model because object-oriented

concepts are widely supported by potential implementation platforms for TDOM today, such

as most programming languages, object-oriented and object-relational DBMSs. This promises

a small gap between the model and its implementations.

The class diagram of Figure 4 introduces the classes of TDOM that are responsible for

the representation of an XML document and for the faithful reproduction of its structure.

The class Document represents XML documents. In the model, a document is identified by

its storage location addressed with an URL. A document can optionally be characterized by

3For the purpose of clarity, the classes in the diagrams do not show any methods for accessing and manipu-

lating attributes and associations.
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Comment

+ comment : String

ProcessingInstruction

+ target : String
+ data : String

Text

+ text : String
AttributeValueElement

0..n1 0..n1

{ordered}

DocumentNode

0..1

0..n

+parentNode0..1

+childNode
0..n

{ordered}

DocumentType

+ name : String
+ systemID : String
+ publicID : String
+ internalSubset : String

Document

+ location : String

0..1

1..n

0..1

+rootNode1..n

{ordered}

0..1 10..1 1

Figure 4: Representation of document structure (UML class diagram)

document type information (modeled by the class DocumentType) that might be conveyed in its

<!DOCTYPE> section. As an entry point to its contents, each document refers to the sequence of

root document nodes constituting the top level of its hierarchical structure, which is expressed

by the aggregation between the classes Document and DocumentNode.

Being an abstract base class, DocumentNode subsumes one class each for the representation

of the primal kinds of nodes of which an XML document may consist: Comment represents

comments, ProcessingInstruction represents processing instructions together with their as-

sociated source and target declarations, Text copes with text interspersed with other document

nodes in mixed content, and Element represents elements. Through elements, the hierarchical

structure of a document is established – elements are the only kind of document nodes that

may contain other nodes as their child nodes. This is expressed by the aggregation between

Element and DocumentNode. Since elements can be further described by attribute values,

TDOM introduces the class AttributeValue for their representation which is aggregated by

Element.

The UML object diagram of Figure 5 exemplifies the structural representation of an MPEG-7

media description with TDOM using the example melody description of Figure 2. The descrip-

18



melodyDescription:Document

:Comment melody:Element id:AttributeValue

meter:Element

numerator:Element denominator:Element

melodyContour:Element

contour:Element beat:Element

:Comment :Comment

rootNoderootNode

childNode childNode

childNode

childNode

childNode

childNode

childNodechildNode

parentNode

parentNode parentNode

melodyDescription:Document

:Comment melody:Element id:AttributeValue

meter:Element

numerator:Element denominator:Element

melodyContour:Element

contour:Element beat:Element

:Comment :Comment

rootNoderootNode

childNode childNode

childNode

childNode

childNode

childNode

childNodechildNode

parentNode

parentNode parentNode

Figure 5: Structural representation of the example MPEG-7 media description with TDOM

(UML object diagram)

tion itself is represented by the object of the class Document depicted at the top of the diagram;

the document nodes contained in the description are represented by objects of the TDOM-

classes corresponding to the particular kind of node. Via the references of the Document object

to its root nodes and the references of the Element objects to their child nodes and attribute

values, TDOM reconstructs the hierarchical structure of the example description. Outgoing

from the Document object, an application can thus traverse the structure of the example media

description and access and manipulate any desired document node at any granularity.

There are some limitations on the allowable structure of XML documents. There is the re-

striction that the attribute names and attribute namespaces of the attribute values associated

with an element must be unique. This is formally expressed in OCL by Contraint 1. The con-

straint employs the shorthands attNamespace and attName to refer to the attribute namespace

and attribute name of an attribute value. These shorthands will be defined later under point

3.

Constraint 1 (Unique attribute values)

context Element

inv: attributeValue -> forAll(av1, av2 |
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av1.attNamespace = av2.attNamespace and

av1.attName = av2.attName implies

av1 = av2)

There is the further limitation that there must be exactly one element among the root nodes

of a document. Also, there must not be a text node among the root nodes. These restrictions

are formally expressed by Constraint 2.

Constraint 2 (Root nodes)

context Document

inv: rootNode -> one(e | e.oclIsTypeOf(Element))

inv: not(rootNode -> exists(t | t.oclIsTypeOf(Text)))

The single element among the root nodes is called the root element of the document. The

term root element is formalized by Definition 1.

Definition 1 (Root element)

context Document def:

let rootElement : Element =

rootNode -> any(e | e.oclIsTypeOf(Element))

2. TDOM is typed.

Traditional DOM represents the basic contents of an XML document as text prohibiting appro-

priate access to non-textual data. With TDOM, in contrast, it is our primary goal to exploit

type information contained in media description schemes to which MPEG-7 media descriptions

comply. The idea is to keep simple content of elements and the content of attribute values in a

way that is appropriate for the particular content type. For this reason, we have made typed

representations a central concept of TDOM.

In typed representation, elements and attribute values are tightly coupled to the element

types and attributes declared in the schema definition accompanying an XML document. Ac-

cording to the class diagram of Figure 6 which unveils more details regarding the representation

of elements and attribute values with TDOM, an element or attribute in typed representation
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+attribute

SimpleTypeInstance

+ equalTo()
+ getSimpleType()

<<Interface>>

Attribute

+ name : String
+ namespace : String
+ scope : String

AttributeValue

+ typed : Boolean
+ name : String
+ namespace : String
+ content : String

0..1

0..1

0..1

+typedContent 0..1

0..1

0..n

0..1

0..n

ElementType

+ name : String
+ namespace : String
+ scope : String

Element

+ typed : Boolean
+ namespace : String
+ simpleContent : String
+ name : String

0..1
0..1

0..1
+typedSimpleContent 0..1

0..n

1

0..n

1

{ordered}

0..10..n

+elementType

0..10..n

Figure 6: Representation of elements and attribute values (UML class diagram)

(indicated by the boolean attribute typed of the classes Element and AttributeValue) is ex-

plicitly associated with the respective element type or attribute it instantiates, i.e., it is valid

to. This is expressed by the associations between the classes Element and ElementType and

AttributeValue and Attribute respectively. Element types and attributes are characterized

by their names and namespaces and an optional scope.

Furnishing the classes ElementType and AttributeValue with the scope attribute is a

tribute to the fact that MPEG-7 DDL, just like other schema definition languages for XML

documents, not only allows to declare element types and attributes that are globally visible

but also those that are only visible within a certain scope, e.g., a complex type. In order to

distinguish different element types and attributes with identical names and namespaces that

might exist within different scopes of one and the same schema definition, the attribute scope

contains a string uniquely describing the scope in which the element type or attribute is visible.

The explicit association of elements and attribute values in typed representation with their

element types and attributes declared in the schema definition not only provides an index

allowing to efficiently look up all instances of a certain element type or attribute in a document.

It also opens up type information that is used to acquire an adequate representation of the

content of elements and attribute values: elements with simple content and attribute values in

typed representation do not keep their content as text, but rather encapsulate their content

within an object. This is captured in Figure 6 by the aggregations between the classes Element
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and AttributeValue and the interface SimpleTypeInstance, which the objects holding the

content have to implement as a minimum (we will describe this interface in detail later under

point 5). Inside these objects, the content is kept in a way adequate to the content type declared

for the element type or attribute in the schema definition. The objects offer methods specific

to the content type that allow applications to appropriately access and operate on the content.

:List

equalTo()
getSimpleType()
addElement()
elementAt()
size()
...

:Integer

value=2

equalTo()
getSimpleType()
lessThan()
...

value=2

equalTo()
getSimpleType()
lessThan()
...

...

value=1

equalTo()
getSimpleType()
lessThan()
...

:Integer

value=1

equalTo()
getSimpleType()
lessThan()
...

value=1

equalTo()
getSimpleType()
lessThan()
...

:Integer

element

element

contour:Element

typed=true

typedSimpleContent

namespace=‘http://...’
name=‘Contour’
scope=‘MelodyContourType’

:ElementType

elementType

< Contour > 2 -1 -1 -1 -1 -1  1 </Contour>

Figure 7: Typed representation of the example <Contour> element (UML object diagram)

In Figure 7, we give an example for a better understanding of typed representations. At the

top of the Figure, the <Contour> element of our example MPEG-7 media description of Figure

2 is shown. Below the <Contour> element, the objects used for its representation are depicted

in UML object diagram notation. A dashed arrow between an object and the <Contour>

element indicates which part of the element is represented by the object. TDOM represents

the whole element by an object of the class Element. In typed representation, an element is

explicitly associated with the element type it instantiates. This is captured in the example

by the reference from the Element object to the ElementType object representing the element

type Contour that has been declared within the complex type MelodyContourType in the media

description scheme of Figure 1. It is known from this element type declaration that the valid

contents for elements of the type Contour are lists of integer values. As the example element is
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kept in typed representation, its content is thus encapsulated within an object of a class that

offers an implementation for lists with reasonable methods to work with them – the class List.

Since the elements of the list are known to be integer values, they are encapsulated in objects

of the class Integer providing an implementation for integer values.

With this representation of the <Contour> element at hand, an application can now reason-

ably operate on the element. E.g., an application can query the size of the list making up the

content of the element and access its single elements, all by invoking the appropriate methods

size() and elementAt() offered by the class List.

There are some constraints that have to be obeyed with regard to typed representations

though. It must be ensured that the content of an element in typed representation is either

simple, i.e., it is represented by an object implementing the interface SimpleTypeInstance, or

complex, i.e., its content consists of further child nodes via the aggregation between Element

and DocumentNode given in the class diagram of Figure 4, both not both. This is expressed by

Constraint 3.

Constraint 3 (Typed element content)

context Element

inv: typed implies

(typedSimpleContent -> notEmpty() implies

childNode -> isEmpty()) and

(childNode -> notEmpty() implies

typedSimpleContent -> isEmpty())

Moreover, it must be assured that the element type associated with a root element in typed

representation is globally visible, i.e., it may not be scoped. This is expressed by the subsequent

Constraint 4.

Constraint 4 (Typed root element)

context Document inv:

rootElement.typed implies

rootElement.elementType.scope = null
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3. TDOM needs not to be typed.

Even though it is the central goal of TDOM to exploit type information available in schema

definitions to infer an adequate, typed representation of elements and attribute values for

appropriate access, there are nevertheless situations in which type information is not available.

This might be the case, for example, if a media description scheme makes use of constructs

that prohibit type inference for parts of an MPEG-7 media description. As an example, the

constructs <any> and <anyAttribute> of MPEG-7 DDL state that an arbitrary element or

attribute value is valid as the content of a certain element type respectively. This includes

elements and attribute values for which no further schema information is available. Obviously,

it will prove difficult to create a typed representation of such elements and attribute values.

As a fallback for such situations, TDOM offers the notion of untyped representations. In

untyped representation, elements or attribute values are decoupled from the schema definition,

not being explicitly associated with the definition’s element types or attributes. They maintain

the name and namespace of their respective element type or attribute as well as their content

in the corresponding textual attributes of the classes Element and AttributeValue that are

depicted in the class diagram of Figure 6 – with all the problems involved related to the

appropriate access to the content.

< Contour > 2 -1 -1 -1 -1 -1 1 </Contour>

contour:Element

typed=false

namespace=‘http://…’

name=‘Contour’

content=‘2 -1 -1 -1 -1 -1 1’

< Contour > 2 -1 -1 -1 -1 -1 1 </Contour>

contour:Element

typed=false

namespace=‘http://…’

name=‘Contour’

content=‘2 -1 -1 -1 -1 -1 1’

contour:Element

typed=false

namespace=‘http://…’

name=‘Contour’

content=‘2 -1 -1 -1 -1 -1 1’

Figure 8: Unyped representation of the example <Contour> element (UML object diagram)

The UML object diagram of Figure 8 illustrates the concept of untyped representations.

The diagram once more depicts the <Contour> element taken from our example MPEG-7

media description of Figure 2 – this time, however, in untyped representation. Again, dashed

arrows indicate which parts of the object diagram correspond to which part of the element
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shown at the top of the figure. The encoding of the list of integer values constituting the

content of the element in the textual attribute content is especially noteworthy. There is no

indication for an application that this string represents a list. Without further knowledge, the

content of the element can thus only be processed as a string with doubtable usefulness. Even

if the application had that knowledge, it would always have to parse the string and cast it to

an appropriate internal representation before adequate access to the list of integer values could

take place.

There are some contraints with regard to untyped representations. Just as with elements

in typed representation, it must be assured that the content of an element in untyped repre-

sentation is either simple or complex. This is the purpose of Constraint 5.

Constraint 5 (Untyped element content)

context Element

inv: not(typed) implies

(simpleContent <> null implies

childNode -> isEmpty()) and

(childNode -> notEmpty() implies

simpleContent = null)

Moreover, elements and attribute values must be created in a consistent manner: an element

or attribute value has to be either in typed or in untyped representation but not in an odd

mixture of both. I.e., an element or attribute value in typed representation should not make

use of the attributes of the classes Element and AttributeValue that are intended for untyped

representations and vice versa. This is covered by Constraint 6.

Constraint 6 (Consistency of representations)

context AttributeValue

inv: typed implies

attribute -> notEmpty() and

typedContent -> notEmpty() and

name = null and namespace = null and content = null

inv: not(typed) implies
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attribute -> isEmpty() and

typedContent -> isEmpty() and

name <> null and namespace <> null and content <> null

context Element

inv: typed implies

elementType -> notEmpty() and

name = null and namespace = null and

simpleContent = null

inv: not(typed) implies

elementType -> isEmpty() and

typedSimpleContent -> isEmpty() and

name <> null and namespace <> null

Finally, we are now able to provide the reader with the definition of the formal short-

hands attName and attNamespace that we have used in Constraint 1 to address the name and

namespace of the attribute to which an attribute value belongs:

Definition 2 (Attribute name and namespace)

context AttributeValue def:

let attName : String =

if typed then

attribute.name

else

name

endif

let attNamespace : String =

if typed then

attribute.namespace

else

namespace

endif
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4. TDOM can be typed and untyped at the same time.

We have already mentioned before that MPEG-7 DDL offers constructs, e.g., <any> and

<anyAttribute>, which permit the inclusion of elements and attribute values in an MPEG-7

media description for which no further schema information is available that could be used for

the construction of typed representations. As a consequence, TDOM has to keep these elements

and attribute values in untyped representation. Considering the advantages of typed represen-

tations, however, it is undoubtedly unattractive to keep all the description’s other elements and

attribute values for which schema information is available in untyped representation as well,

just because of the existence of a few untypeable elements and attribute values.

For this reason, we explicitly allow elements and attribute values in typed and untyped

representation to coexist in a single document. We leave it very well possible that an element in

typed representation has attribute values and child elements in untyped representation among

its constituents: the declaration of the element type to which the element refers in typed

representation might allow arbitrary child elements and attribute values including those for

which typed representations cannot be inferred due to the lack of type information.

On the contrary, we do not allow an element in untyped representation to contain child

elements and attribute values in typed representation. In untyped representation, the exact

element type of an element is not known (only its name and namespace) and with it the type’s

declaration. Without the declaration, the exact element types and attributes of the child

elements and attribute values of the element are not known as well and therefore the child

elements and attribute values cannot be in typed representation. This restriction is captured

by Constraint 7.

Constraint 7 (Untyped representation of elements)

context Element

inv: not(typed) implies

not(childNode -> exists(e : Element | e.typed)) and

not(attributeValue -> exists(av | av.typed))

5. TDOM supports arbitrary simple types.

From the perspective of MPEG-7 DDL, an object representing the simple content of an element
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or the content of an attribute value in typed representation constitutes an instance of a simple

type. MPEG-7 DDL predefines a comprehensive set of elementary simple types whose instances

may occur as the content of elements and attribute values in MPEG-7 media descriptions, as

well as a variety of derivation methods for the definition of new simple types.

For the handling of simple types and their instances, TDOM provides a generic simple type

framework. Using that framework, support for arbitrary simple types and their instances can

be smoothly integrated with TDOM which keeps the model simple and extensible and relieves

us from the need to anticipate and to hardwire all supported simple types into the model.

SimpleTypeInstance

+ equalTo()
+ getSimpleType()

<<Interface>>

SimpleTypeInstanceFactory

+ fromString()
+ toString()
+ getSimpleType()

<<Interface>>

SimpleType

+ name : String
+ namespace : String
+ scope : String10..n 10..n

1

1

1

1

<<instantiate>>

Figure 9: Simple type framework (UML class diagram)

The simple type framework of TDOM is presented in the class diagram of Figure 9. As

shown in the diagram, the framework represents simple types by the class SimpleType. A

SimpleType object serves to represent either an elementary simple type predefined by MPEG-

7 DDL or a simple type specific to a certain schema definition that has been derived from a

predefined simple type using the constructs for type derivation available with MPEG-7 DDL.

TDOM attributes a simple type with its name, namespace and an optional scope in which it is

visible in a schema definition.

TDOM represents the instances of a simple type as objects of a class offering a meaningful

implementation for the instances of that type. Each of these objects encapsulates a suitable

representation of the simple type instance and offers type-specific functionality that can be

used by applications to appropriately operate on the instance. The simple type framework,

however, abstracts from the concrete classes implementing a certain simple type. Instead, it

28



demands a minimal functionality that they have to provide which is specified by the interface

SimpleTypeInstance. The interface SimpleTypeInstance consists of the methods equalTo(),

which provides basic lookup functionality for simple type instances as it can be used to compare

two simple type instances for equality, and getSimpleType(), which delivers simple type of the

instance. Each simple type keeps track of its instances which is expressed by the association

between SimpleType and SimpleTypeInstance.

Having provided a way to represent simple types and their instances, it must be possible

to construct simple type instances from the textual representation in which they are conveyed

in XML documents as well as to reconstruct that textual representation from a given sim-

ple type instance. For that purpose, each simple type references a factory for the production

of its instances. TDOM demands a minimum functionality for each of these factories which

is collected by the interface SimpleTypeInstanceFactory. The interface provides the meth-

ods fromString(), which produces an instance of the simple type to which the factory is

related from the textual representation in which the instance is conveyed in an XML doc-

ument, toString(), which returns a textual representation of a simple type instance, and

getSimpleType(), which delivers the simple type whose instances are produced by the factory.

Integer

+ equalTo()
+ getSimpleType()
+ lessThan()
+ greaterThan()
+ add()
+ sub()
+ mult()
+ div()
+ Integer()

IntegerFactory

+ fromString()
+ toString()
+ getSimpleType()
+ IntegerFactory()

<<instantiate>>

SimpleTypeInstance

equalTo()
getSimpleType()

<<Interface>>

List

+ equalTo()
+ getSimpleType()
+ addElement()
+ delElement()
+ size()
+ elementAt()
+ contains()
+ List()

0..n

0..n

+element
0..n{ordered}

0..n

SimpleTypeInstanceFactory

fromString()
toString()
getSimpleType()

<<Interface>>

<<instantiate>>

ListFactory

+ fromString()
+ toString()
+ getSimpleType()
+ ListFactory()

1

0..n

+elementFactory

1

0..n

<<instantiate>>

Figure 10: Example implementation of simple type support (UML class diagram)

Figure 10 gives an impression of how the simple type framework can be utilized to support
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a set of simple types. In our example, support for the simple type integer and its instances is

provided. This is achieved by defining the class Integer which, beyond type-specific methods,

e.g., for adding and substracting, implements the interface SimpleTypeInstance so that its

objects are usable as the content of elements and attribute values in typed representation. For

the construction of Integer objects from the textual representations in which integer values are

encoded in XML documents, the class IntegerFactory is supplied implementing the Interface

SimpleTypeInstanceFactory.

Likewise, TDOM can accommodate derivation methods for simple types. Figure 10 exem-

plifies the integration of a list type with TDOM. Similar to other simple types, the classes List

and ListFactory provide support for the instances of the list type and for their construction

by implementing the interfaces SimpleTypeInstance and ListFactory, respectively. In con-

trast to elementary simple types such as integer, however, the construction of instances of a

derived simple type typically includes the construction of instances of the base type. In our

example, the construction of a list includes the construction of instances of the simple type of

its elements. Therefore, the factory for the list type must refer to the factory of its base type,

modeled by the aggregation between ListFactory and SimpleTypeInstanceFactory.

With these classes, we are able to adequately represent lists of integer values in TDOM

and to construct them from the textual representation in which they are conveyed in XML

documents; we can thus already build the typed representation of the example <Contour>

element of Figure 7. The approach outlined for the implementation of simple types can be

systematically followed to the extent where all the elementary simple types and simple type

derivation methods coming with MPEG-7 DDL are supported.

In the following, we formally specify the semantics of the methods of interfaces

SimpleTypeInstance and SimpleTypeInstanceFactory introduced by the simple type frame-

work. Constraint 8 starts with the interface SimpleTypeInstance.

Constraint 8 (Simple type instance)

context SimpleTypeInstance::equalTo(SimpleTypeInstance sti) :

Boolean

post: sti = self implies

result = true
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post: result = true implies

self.getSimpleType() = sti.getSimpleType()

context SimpleType inv:

simpleTypeInstance -> forAll(sti |

sti.getSimpleType() = self)

The first postcondition of the method equalTo() ensures that a simple type instance is

always equal to itself. The second postcondition states that, in order to be equal, two simple

type instance must be of the same simple type. The invariant for the class SimpleType defines

that the result of the method getSimpleType() on a simple type instance is the simple type

associated with the simple type instance.

Constraint 9 describes the interface SimpleTypeInstanceFactory in more detail.

Constraint 9 (Simple type instance factory)

context SimpleTypeInstanceFactory::fromString(String s) :

SimpleTypeInstance

post: result <> null implies

result.getSimpleType() = self.getSimpleType()

post: result <> null implies

self.simpleType.simpleTypeInstance -> forAll(sti |

self.toString(sti) = s implies

sti.equalTo(result))

context SimpleType

inv: simpleTypeInstance -> forAll(sti1, sti2 |

simpleTypeInstanceFactory.toString(sti1) =

simpleTypeInstanceFactory.toString(sti2) implies

sti1.equalTo(sti2))

inv: simpleTypeInstanceFactory.getSimpleType() = self

The first postcondition of the method fromString() assures that an instance of a simple

type successfully constructed from a textual representation refers to the simple type associated
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with the factory. The second postcondition states that if an instance of a simple type is

successfully constructed from a textual representation that is the result of the call of the method

toString() on another instance of the same type, then both instances are equal. In other

words, fromString() constitutes the inverse method to toString().4 In general, we can say

that if calling toString() on two instances of the same simple type yields the same textual

representation, then both instances are also equal to each other. This is formally described by

the first invariant of the class SimpleType in the constraint above. Finally, the second invariant

of SimpleType defines that the result of the call of the method getSimpleType() on a simple

type instance factory is always the simple type to which the factory belongs.

6. TDOM facilitates flexible, fine-grained updates.

The basic characteristics of TDOM pave the way to sophisticated updates on MPEG-7 media

descriptions. The model’s fine-grained representation of an XML document’s structure allows

applications to access any part of the document and to perform modifications at any granularity.

Moreover, the combination of the concepts of typed and untyped representation of elements

and attribute values offer great flexibility with respect to updates.

To illustrate the benefit of having both typed and untyped representation available, we

consider an update on our example media description of Figure 2. An application might want

to replace the <Beat> element by a new one. A natural way to perform this task would be the

deletion the <Beat> element followed by the insertion of the new <Beat> element as a child of

the element <MelodyContour>.

Did TDOM only support typed representations, it would have to be ensured after every

single update operation that every element and attribute value affected by the update is valid

with respect to the declaration of the particular element type or attribute it is associated with

in typed representation. This is very rigid. In our example, the deletion the <Beat> element

already violates the validity of the <MelodyContour> element with respect to the element type

MelodyContour, since, according to the schema definition of Figure 1, an element of that type

4The opposite need not to be true. For example, one and the same float value might be constructed from

different textual representations (e.g., 123e-2 and 12.3e-1 represent the same float value 1.23). However,

calling toString() on the float value always yields just one of the possible textual representations which does

not need to be the one from which the value has been constructed.
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must contain exactly one element of type Beat. Thus, the deletion and thereby the whole

sequence of update operations would have to be refused – even though the subsequent insertion

of the new <Beat> element would restore schema consistency.

melodyContour:Element

contour:Element beat:Element

childNode

childNodechildNode

parentNode

1 …

melodyContour:Element

contour:Element beat:Element

childNode

childNodechildNode

parentNode

2 …

melodyContour:Element

contour:Element beat:Element

childNode

childNodechildNode

parentNode

3 …

beat‘:Element

childNode

melodyContour:Element

contour:Element beat‘:Element

childNode

childNodechildNode

parentNode

4 …

Legend:

xxx:Element
Element in typed 
representation

xxx:Element
Element in untyped 
representation

Deletion of elementxxx:Element

xxx:Element Insertion of element

melodyContour:Element

contour:Element beat:Element

childNode

childNodechildNode

parentNode

11 …

melodyContour:Element

contour:Element beat:Element

childNode

childNodechildNode

parentNode

22 …

melodyContour:Element

contour:Element beat:Element

childNode

childNodechildNode

parentNode

33 …

beat‘:Element

childNode

melodyContour:Element

contour:Element beat‘:Element

childNode

childNodechildNode

parentNode

44 …

Legend:

xxx:Element
Element in typed 
representationxxx:Element
Element in typed 
representation

xxx:Element
Element in untyped 
representationxxx:Element
Element in untyped 
representation

Deletion of elementxxx:Element Deletion of elementxxx:Element

xxx:Element Insertion of elementxxx:Element Insertion of element

Figure 11: Switching between corresponding representations for an update

But having the additional means of untyped representations at hand (see Figure 11), ap-

plications can transform elements and attribute values in typed representation (1) that are

affected by an update to a corresponding untyped representation (2). Thereby, they are decou-

pled from the element types and attributes of the schema definition. Any desired sequence of

update operations can then be performed without being concerned with schema validity (3).

After all update operations have been completed, the updated elements and attribute values

can be brought back to corresponding typed representations (4) as long as the document is still

valid with respect to the schema definition.

What do we mean exactly by the terms corresponding untyped representation and corre-

sponding typed representation? A corresponding untyped representation should reproduce an

element or attribute value that is kept in typed representation as faithful as possible with the

means of untyped representation. Likewise, a corresponding typed representation should faith-

fully reproduce an element or attribute value in untyped representation by the means of typed
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representation.

Definition 3 formalizes a natural notion of correspondence for attribute values. An attribute

value av’ in untyped representation constitutes a corresponding untyped representation of an

attribute value av in typed representation (formally: av.CUR(av’)), if av’ refers to the name

and namespace of the attribute associated with av and if the textual content of av’ is a textual

representation of the simple type instance forming the content of av. Conversely, we can also

say that av constitutes a corresponding typed representation of av’ (formally: av’.CTR(av)).

Definition 3 (Corresponding representations of attribute values)

context AttributeValue def:

let CUR(AttributeValue av) : Boolean =

typed and not(av.typed) and

attribute.namespace = av.namespace and

attribute.name = av.name and

typedContent.simpleType.simpleTypeInstanceFactory.

fromString(av.content) <> null and

typedContent.simpleType.simpleTypeInstanceFactory.

fromString(av.content).equalTo(typedContent)

let CTR(AttributeValue av) : Boolean =

av.CUR(self)

Definition 4 formally introduces a notion of correspondence for elements.5 Following that

definition, an element e’ in untyped representation constitutes a corresponding untyped rep-

resentation of an element e in typed representation (formally: e.CUR(e’)), if e’ refers to the

name and namespace of the element type associated with e. If e has simple content, it is

furthermore demanded that e’ has simple content as well and the simple content of e’ is a

textual representation of the simple type instance forming the simple content of e. If e has

complex content, however, it is demanded that e’ also has complex content and the child nodes

of e’ are equal to the child nodes of e – with the exception of elements: the child elements of

e’ are expected to be corresponding untyped representations of the respective child elements

5In the definition, we assume the existence of the method deepEqualTo() to compare two objects for deep

equality.
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of e. Finally, every attribute value of e’ must appear among the attribute values of e or be

a corresponding untyped representation of an attribute value of e. With all these conditions

fulfilled, we can conversely say that e constitutes a corresponding typed representation of e’

(formally: e’.CTR(e)).

Definition 4 (Corresponding representations of elements)

context Element def:

let CUR(Element e) : Boolean =

typed and not(e.typed) and

elementType.namespace = e.namespace and

elementType.name = e.name and

(typedSimpleContent -> notEmpty() implies

e.simpleContent <> null and

typedSimpleContent.simpleType.simpleTypeInstanceFactory.

fromString(e.simpleContent) <> null and

typedSimpleContent.simpleType.simpleTypeInstanceFactory.

fromString(e.simpleContent).equalTo(typedSimpleContent)

) and

(childNode -> notEmpty() implies

childNode -> size() = e.childNode -> size() and

Sequence{1..childNode -> size()} -> forAll(i : Integer |

childNode -> at(i).deepEqualTo(e.childNode -> at(i)) or

(childNode -> at(i).oclIsTypeOf(Element) and

e.childNode -> at(i).oclIsTypeOf(Element) and

childNode -> at(i).CUR(e.childNode -> at(i))))

) and

(attributeValue -> notEmpty() implies

attributeValue -> size() = e.attributeValue -> size() and

attributeValue -> forAll(av1 |

e.attributeValue -> exists(av2 |

av1.deepEqualTo(av2) or av1.CUR(av2))))

let CTR(Element e) : Boolean =
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e.CUR(self)

The construction of a corresponding untyped representation of an element or attribute value

in typed representation is straightforward as the typed representation generally contains all the

information that must be included with the corresponding untyped representation. An attribute

value in typed representation keeps the name and namespace of the attribute with the attribute

referred to by the attribute value in typed representation. Moreover, a textual representation of

the content of the attribute value can be obtained from the simple type instance by employing

the method toString() of the associated simple type instance factory.

Likewise, an element in typed representation keeps the name and namespace of the ele-

ment type with the element type referenced. A textual representation of a potentially existing

simple content can be derived from the simple type instance representing that simple content

in typed representation via the associated simple type instance factory. Corresponding un-

typed representations of any child elements and attribute values of the element can be obtained

recursively.

In contrast to the construction of a corresponding untyped representation, the construction

of a corresponding typed representation of an element or attribute value in untyped represen-

tation is more complicated. This is due to the fact that elements or attribute values in untyped

representation do not, apart from the name and namespace of their respective element type or

attribute, convey type information that would allow the construction of a valid corresponding

typed representations solely on the basis of the untyped representation. Additional informa-

tion in form of a schema definition is needed. With the element types and attributes and the

associated type information contained in a schema definition, the respective element type or

attribute can be inferred to which an element or attribute value in untyped representation is

valid. Based on the inferred element type or attribute and the associated type information, a

corresponding typed representation can then be constructed straightforwardly.

For the inference of the respective element types and attributes of a schema definition to

which the elements and attribute values of a document are valid, we have developed a formal

mechanism called typing automaton. A typing automaton is an adaptation of a regular tree

automaton [35, 5] for use with TDOM. We have to refrain from the detailed treatment of typing

automata at this point, however, as this would exceed the scope of the paper.
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7. TDOM takes account of MPEG-7 DDL.

TDOM has been designed to take advantage of media description schemes written in MPEG-

7 DDL which accompany MPEG-7 media descriptions. These can be used to obtain typed

representations of elements and attribute values such that the document’s basic contents are

kept in a fashion appropriate to the respective content type. To facilitate extensive construction

of such typed representations for the basic contents that may occur in media descriptions,

TDOM furthermore is capable of embracing the plenitude of predefined simple types and simple

type derivation methods that come with MPEG-7 DDL via the simple type framework.

Since the purpose of TDOM is to effectively represent media descriptions and not the

description schemes to which they comply, however, the detailed representation of an MPEG-7

DDL media description scheme coming with a media description has been left out of the scope

of the model. Abstracting from the schema definition language, TDOM just presumes the

existence of element types, attributes, and simple types in a schema definition for the modeling

of typed representations.

The decision to abstract from the details of the schema definition language has the conve-

nient side effect that it leaves TDOM, though primarily intended for MPEG-7, applicable to

other application domains. In other domains, the typed representation of the basic contents

of an XML document might also be desirable, but schema definition languages different from

MPEG-7 DDL might play dominant roles. As an example taken from the domain of electronic

data interchange, the structure of business documents following the XML Common Business

Library (xCBL) [49] is defined with the schema definition languages SOX [9] and XDR [15].

In order to be able to construct typed representations of the basic contents of an MPEG-7

media description from a media description scheme expressed in MPEG-7 DDL, a database

solution using TDOM as its data model must, of course, be able to process the description

scheme and provide means for its detailed representation. These can base on data models for

XML schema definitions such as Abstract Schemas [4] or, as it is the case with typing automata,

on well-known formalisms for the validation and typing of XML documents such as regular tree

automata [35, 5].
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5 Conclusion

Starting out with essential requirements for the management of MPEG-7 media descriptions,

we have analyzed current XML database solutions for their suitability for use in the context of

MPEG-7. Facing the deficiencies of these solutions with respect to these requirements, we have

realized the need for more adequate database solutions for MPEG-7 media descriptions. As a

foundation of such a solution, we have introduced the Typed Document Object Model, a data

model for XML documents specifically designed with the requirements for the management of

MPEG-7 media descriptions in mind. We have highlighted TDOM’s key features and given a

thorough definition of the model.

We have fully implemented TDOM with Java on the basis of the object-oriented DBMS

ObjectStore. Our implementation comes with a schema catalog that manages media description

schemes expressed in MPEG-7 DDL in form of typing automata and uses these automata for

the validation of MPEG-7 media descriptions and the automatic construction of appropriate

typed representations of the contents of the descriptions. Furthermore, our implementation

includes an indexing component supporting a variety of secondary access methods for indexing

the basic contents of a media description including Hashtables, B-Trees, and R-Trees. We are

currently providing a processor for XPath expressions [7] that exploits schema information and

indexes available for an optimized query evaluation. The XPath processor forms the heart of

optimizing processors for XQuery [3] and XSLT [6] that we plan to implement in future.
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