
B2B Integration - 
Aligning ebXML and Ontology Approaches

Birgit Hofreiter & Christian Huemer
Institute for Computer Science and Business Informatics

University of Vienna, Liebiggasse 4, 1010 Vienna, Austria
{birgit.hofreiter,christian.huemer}@univie.ac.at

Abstract. In B2B e-commerce, XML provides means to exchange data between applica-
tions. It does not guarantee interoperability. On the syntactic level, this requires an agree-
ment on an e-business vocabulary. Even more important, on the semantic level, business
partners must share a common view unambiguously constraining the generic document
types. In this paper, we present a framework that brings together work in the area of
ontologies and work in the area of XML-based data interchange, namely ebXML. The
framework uses an ontology based on ebXML corecomponents expressed in RDF to
allow for bridging between different e-business vocabularies. Since a bridging mecha-
nism is required, but not specified within ebXML, our approach complements ebXML.
The integration of the ontology-based approach into ebXML is realized in four major
steps. In this paper we exactly identify the requirements and the architecture of each step.
This provides exact guidelines for future research towards implementing these steps.

1 Introduction
XML is said to overcome the most significant obstacles of traditional electronic data
interchange (EDI) standards. After the first hype, people realized that XML provides
means to exchange data between applications, but does not guarantee interoperability.
XML only provides a syntax that could be used for data transfer in B2B, which is only
one level of interoperability that must be met in B2B. Fig. 1 gives an overview of all
B2B levels that must be agreed upon, or that a mapping between different protocols
must be realized for. On the lowest level, interoperability on the level of the transport
protocol (e.g. HTTP, SMTP, X.400) must be reached. Using a message-oriented mid-
dleware approach in a B2B setting requires reliable messaging and additional messag-
ing envelope mechanisms, e.g. SOAP. It should be noted that even if both business
partners use SOAP, interoperability is not guaranteed, since they might use incompati-
ble SOAP variants, e.g. ebXML SOAP vs. BizTalk SOAP. 

The third level has to ensure interoperability on the syntax used to encode business
documents, like XML or UN/EDIFACT. In this paper, we only consider XML-based
middleware and ignore all other syntaxes as well as the document transport on the
lower levels. XML provides syntax, not semantics, since tags have no predefined
meaning [2]. The meaning of XML languages is defined by the document designer.
This resulted in a proliferation of XML-based e-business vocabularies within the first
few years of XML in existence [12]. Although we expect vocabularies disappearing
and merging, a certain number of well known “standard” vocabularies will co-exist.
This means that on the fourth level business partners must either agree on a certain e-
business vocabulary, or a mapping between their preferred vocabularies must be real-
ized. We expect that companies will prefer a single interface that automatically maps to
the different e-business vocabularies over implementing an interface to the in-house
information system for each e-business vocabulary. Therefore, this paper emphasizes
interoperability between different e-business vocabularies. 



However, document types of e-busi-
ness vocabularies are much too ambigu-
ous including a lot of optionality and
covering much more semantics than an
involved application is able to process.
In other words, a valid XML business
document does not guarantee that the
business partner is able to process the
document. It has to follow the shared
view of the business partners on the
business content. This shared view on a
document’s semantics is an agreement to be met on the fifth level of interoperability.
Implementing and maintaining these agreements - called message implementation
guidlines (MIGs) in EDI - makes EDI expensive [10].

Instead of standardizing voluminous and vague business document types, ebXML
is based on unambiguous business collaborations that represent an agreement on the
sixth level of interoperability. For this purpose, a clear choreography of business activ-
ities including an unambiguous and context-specific definition for the business content
exchanged in each activity is defined. In other words, this paper concentrates on a
framework for context-specific views into the core components-based ontology for
each single business activity. Furthermore, the framework aims to automatically trans-
form a corresponding view into various e-business vocabularies, provided an existing
core component binding for the respective vocabulary.

The remainder of the paper is structured as follows: In Section 2 we give a brief
introduction into the concepts we have adopted from related work, namely e-business
vocabularies, ontologies, Open-edi, UMM, and ebXML. The main contribution of our
work is elaborated in Section 3, where we present the necessary steps to integrage the
basic ideas on ontologies into the ebXML framework. These steps are the following:
definition of a document ontology, languange binding for e-business vocabularies, def-
inition of contex-specific views into documents to support a specific business activity,
and representing these views in different e-business vocabularies. Each of these steps is
presented in its own subsection. The paper concludes with a short summary.

2 Related Work
The work presented in this paper does not by itself create any new B2B technology,
rather does it interlink and coordinate already existing technologies to ensure B2B
interoperability. This section introduces the key concepts the paper refers to.

E-business vocabularies: XML became the preferred way to exchange business
data over the Internet. A lot of organizations developed their own vocabulary. Lacking
guiding standards for interoperability, those solutions use different data structures and
tagging to encode the same business concept. Although some of the vocabularies have
become the first choice within a vertical, there are still some competing efforts. Popular
e-business vocabularies include languages of market place providers, like Commerce
One’s xCBL and Ariba’s cXML, the Open Application Group’s OAGI to interconnect
ERP systems, and domain-specific solutions like RosettaNet in the IT sector. Getting
them all to interoperate is still a challenge for the B2B community. An overview of E-
business vocabularies is provided in [13].

Ontologies: An ontology is defined by Gruber as a “formal, explicit specification of
a shared conceptualization” [7]. According to this definition, even a DTD or an XML
schema for a business document type can be regarded as a very primitive ontology.

Fig. 1.   Levels of Interoperability in B2B

Business Process Semantics

Document Semantics           

E-Business Vocabulary
(incl. generic document types) 

Transfersyntax 

Messaging Envelope            

Transport Protocoll              

order management

purchase order

xCBL order       

XML 

SOAP 

HTTP 

Level 6

Level 1

Level 2

Level 3

Level 4

Level 5



However, both DTDs and XML schemas are basically just a set of terms and do not
define relationships between different terms (cf. [6]). More advanced applications
require more expressive ontology languages, like RDF/RDF schema [3], DAML+OIL
[4], SHOE [8], or OML [15]. A lot of ontology approaches are directed towards the
semantic web [1]. It is the goal to define rules and meanings of web data that precisely
enough that machines can correctly interpret them. Similar to the problem of web data
is that of e-business vocabularies. For interoperability of different vocabularies a
shared set of terms and their interrelationships with a common understanding is
needed. An approach to develop an ontology for business documents based on reverse
engineering existing e-business vocabularies is described in [14]. 

Open-edi: The idea of separating the business semantics and its representation in a
certain e-business vocabulary was alreay a key concept of the Open-edi initiative
started in 1988. Open-edi distinguishes between a business operational view (BOV)
and a functional service view (FSV). The BOV is defined as ´a perspective of business
transactions limited to those aspects regarding the making of business decisions and
commitments among organizations, which are needed for the description of a business
transaction’, while the FSV focuses on implementation-specific technological aspects
of Open-edi. The Open-edi reference model [11], which became ISO standard 14662,
guides B2B standard works to ensure the coherence and integration of related standard-
ized modeling and descriptive techniques, services, service interfaces, and protocols.

UMM: UN/CEFACT’s Modelling Methodology (UMM) is a modeling technique to
describe the BOV aspects of Open-edi. The UMM meta model describes the business
semantics that allows trading partners to capture the details for a specific business sce-
nario using a consistent modeling methodology that utilizes UML [17]. A business pro-
cess describes in detail how trading partners take on shared roles, relationships and
responsibilities to facilitate interaction with each other. An interaction between roles
follows a choreographed set of business transactions, whereby each transaction is
expressed as an exchange of electronic business documents. Business partners will be
able to communicate with each other if they support the same unambiguously defined
choreography of transactions using unambiguously defined business document types.

ebXML: In order to provide an FSV layer that takes full advantage of the Open-edi
concept and UMM, UN/CEFACT joined with OASIS in the ebXML initiative [5].
ebXML offers a modular suite of specifications. These specifications provide a stan-
dard method to exchange business messages, conduct trading relationships, communi-
cate data in common terms, and define and register business processes [9]. In the
context of this paper the ebXML specifications for business processes and core compo-
nents are of particular relevance. The ebXML business process specification schema
(BPSS) adopts a subset of UMM needed to configure ebXML-compliant software. An
ebXML-compliant software will then be able to control a business process from the
corresponding business partners view by monitoring state changes resulting from docu-
ment exchanges. In ebXML, a document type does not correspond to the union set of
all possibly required data structures needed for anyone's version of a given transaction
type. A document is defined by an unambiguous data structure exactly meeting the
business requirements to reach the business goals of a single activity in a business pro-
cess. However, ebXML does not use its own e-business vocabulary to describe busi-
ness documents. Instead, ebXML document types are assembled from so-called core
components which are syntax-neutral descriptions of semantically meaningful business
concepts. Currently, ebXML does not specify any methododology to represent syntax-
neutral core components in targeted e-business vocabularies. Thus, the framework pre-
sented in this paper will complement the ebXML approach.



3 ebXML Core Component-based Ontology Framework
In this section we present our framework to extend ebXML by ontology concepts. In
order to develop a document ontology, two main approaches are introduced by Onto-
prise’s Semantic B2B Broker [16]: a top-down and a bottom-up approach. In a top-
down approach business experts will first define a document ontology that describes
their shared understanding of a business document type. The conceptual model of this
document ontology builds the foundation to develop a new e-business vocabulary (rep-
resented as DTD or XML schema). Vice versa, a bottom-up approach takes DTDs or
XML schemas from existing e-business vocabularies to analyze their semantic content.
The result is an harmonized ontology of all considered e-business vocabularies have to
be harmonized in order to define a unified document ontology. 
The ebXML initiative is currently the strongest supported initiative by industry with
respect to development of vocabulary-independent components, so-called core compo-
nents. It is our goal to take advantage of a future pool of core components. Hence, our
ontology layer is not defined by reverse engineering of existing e-business vocabular-
ies like in the bottom-up approach. Instead, our ontology layer is based on ebXML core
components. However, we do not use a pure top-down approach, because we will not
develop a new e-business vocabulary. We have to mediate the ebXML-based ontology
layer with existing e-business vocabularies. Since we are coming from top as well as
from bottom, we call our approach “meet in the middle”.

The presented framework is based
on 4 major steps depicted in Fig. 2. The
building of a document ontology start-
ing from ebXML core components con-
stituting the first one. The second step
covers the definition of language bind-
ings for various e-business vocabular-
ies. The third step requires the
definition of a view into the ontology
that exactly meets the requirements of
the document exchange supporting an
ebXML business activity. Finally, the
fourth step, which can be done automat-
ically, takes on the language binding
and the view specification and derives an implementation guideline in a certain e-busi-
ness vocabulary. Each of these steps is introduced in the following subsections. 
3.1 Definition of a Core Components-based Document Ontology
In the first step we develop an ontology that follows the latest draft of the ebXML core
components specification [18]. For this purpose we have developed an RDF schema
(RDFS) [3] for the core components meta model that is depicted as a graph in Fig. 3.
Note that all boxes with solid lines are of the RDFS type Class and those with broken
lines are of type Property.

A core component is defined as a semantic building block that is used as a basis to
construct all electronic business messages. There exist 3 different types of core compo-
nents. A basic core component represents a singular business concept with a unique
business-semantic definition. Each basic core component is of a certain core compo-
nent type. A core component type (e.g. amount type) consists of a content component
that carries the actual content (e.g. 12) plus one or more supplementary components
giving an essential extra definition to the content component (e.g. Euros). Note, that

Fig. 2.   ebXML Core Component-based 
Ontology Framework

Ontology
ebXML CC

Ontology
ebXML BIE

BOVBOV

FSVFSV

Semantic Mapping

Subset

DEFINED

AUTOMATICALLY

GENERATED„meet in the middle“

XSD/
DTD

XSD/
DTD

generate

1

2

3

4



content and supplementary components are nothing else than core components. Core
component types do not have business meaning. An aggregate core component is a bag
of core components that convey a distinct business meaning. 

In the RDF Schema in Fig. 3 the three dif-
ferent types AggregateCoreComponent, Basic
Core Component, and CoreComponentType are
represented as subclasses of the class Core-
Component. The property elementType is used
to assign a core component type to a basic core
component. The composition of a core compo-
nent type is defined by the properties content-
Component and supplementaryComponent,
referencing basic core components. The prop-
erty coreComponentChild is used to reference
the components within an aggregate.

Each ebXML core component contains the
following dictionary information: A dictionary
entry name is the unique official name of the
core component. It corresponds to the RDFS
property label. The definition of the unique
semantic business meaning of the core compo-
nent is given in the RDFS property comment.
The property remark is used to further clarify the definition, to provide examples and/
or to reference a recognized standard. If there exist further synonym terms under which
the core component is commonly known and used in the business, the property busi-
nessTerm is used to define them. We assign the properties objectClass, representation-
Term, and propertyTerm to core components as defined in the ebXML specification.

Fig. 3.   RDFS meta model for CC

subClassOf

subClassOf

range

BasicCoreComponent

CoreComponent

AggregateCoreComponent

CoreComponentType

domain

domain

domain

domain

subClassOf

contentComponent

supplementaryComponent

elementType

domain range

domain range

coreComponentChild

domain
range

Class

PropertyStatement
Legend:

Literal

range

range

range

propertyTerm
domain

Literal

range

remarkrange domain

domain

objectClass

domain

range

range representationTerm

businessTerm

comment

label

Class

subClassOf

Fig. 4.   RDF-Model for the Aggregate Core Component “Postal Address Details”

PostalAddress.Details

„ The collection of information
Which locates and identifies a
Specific address as defined by
Postal services “

„ ... “

Address

Location

label

comment

remark

businessTerm

businessTerm

AggregateCoreComponent type

#000027

Street.Name

BasicCoreComponent type

coreComponentChild

coreComponentChild

„The name of a street or throughfare “

„ ... “

Road

label

comment

remark

businessTerm

#000090 Text.TypelabelCoreComponentType type

supplymentary
Component

content
Component

elementType

„A character string with or 
without a specified language“comment

Text

#000075

coreComponentChild

coreComponentChild

#000024

Address.Type.Code
label

#000026

Street.Building.Identifier
label

#000028

District.Name
label

#000029

Town.Name
label

#000030

State.Identifier
label

#000031

PostCode.Identifier
label

#000032

Country.Code
label

#000033

PostOfficeBox.Identifier
label

#000034

Building.Identifier
label

#000035

Building.Name
label

#000036

Suite.Identifier
label

#000037

MailDelivery.Sub-loc.Identifier
label

#000038

Floor.Identifier
label

#....-43

..................
label

#000024

Address.Type.Code
label

#000026

Street.Building.Identifier
label

#000028

District.Name
label

#000029

Town.Name
label

#000030

State.Identifier
label

#000031

PostCode.Identifier
label

#000032

Country.Code
label

#000033

PostOfficeBox.Identifier
label

#000034

Building.Identifier
label

#000035

Building.Name
label

#000036

Suite.Identifier
label

#000037

MailDelivery.Sub-loc.Identifier
label

#000038

Floor.Identifier
label

#....-43

..................
label

#000024

Address.Type.Code
label

#000024

Address.Type.Code
label

#000026

Street.Building.Identifier
label

#000026

Street.Building.Identifier
label

#000028

District.Name
label

#000028

District.Name
label

#000029

Town.Name
label

#000029

Town.Name
label

#000030

State.Identifier
label

#000030

State.Identifier
label

#000031

PostCode.Identifier
label

#000031

PostCode.Identifier
label

#000032

Country.Code
label

#000032

Country.Code
label

#000033

PostOfficeBox.Identifier
label

#000033

PostOfficeBox.Identifier
label

#000034

Building.Identifier
label

#000034

Building.Identifier
label

#000035

Building.Name
label

#000035

Building.Name
label

#000036

Suite.Identifier
label

#000036

Suite.Identifier
label

#000037

MailDelivery.Sub-loc.Identifier
label

#000037

MailDelivery.Sub-loc.Identifier
label

#000038

Floor.Identifier
label

#000038

Floor.Identifier
label

#....-43

..................
label

#000005

coreComponentChild

coreComponentChild

coreComponentChild

coreComponentChild

coreComponentChild

coreComponentChild

coreComponentChild

coreComponentChild

coreComponentChild

coreComponentChild

coreComponentChild

coreComponentChild

Street

Name

Name

objectClass

propertyTerm

representationTerm

Text.Content

Language.Code

label

label

objectClass#000094

Details

PostalAddressobjectClass

representation
Term



The RDF library of core components must be populated with all core components
currently being developed by UN/CEFACT. Each core component will be expressed as
a RDF model that follows the RDF (meta) schema of the core components’ meta
model. Fig. 4 demonstrates the population of the RDF library by the means of the
aggregate core component PostalAddress.Details. Due to space limitations, the
resource representing this aggregate core component is marked #000005 in Fig. 4. This
represents only the fragment identifier of a URI uniquely identifying core components.
The unique identifications (UID) assigned to core components by ebXML are used as
fragment identifier. The label of the resource is equal to the data dictionary entry name
PostalAddress.Details. The comment states the definition of the PostalAddress.Details.
The business terms Address and Location which are commonly used to refer to Postal-
Address are assigned to the aggregate core component. Each of the components aggre-
gated within PostalAddress.Details is assigned as coreComponentChild. Owing to
space limitations we have detailed only the basic core component #00027 Street.Name.
In addition to label, comment, remark and business term (Road), the basic core compo-
nent gets assigned an object class (Street), property term (Name), and a presentation
term (Name). More important is the fact that a basic core component is of exactly one
core component type. Street.Name is of type #000090 Text.Type. This core component
type includes the content component Text.Content (which includes at one instance the
name of the street) and the supplementary component Language.Code.

So far we have been considering the meta model of core components to capture the
content of an ebXML core component library by the means of RDFS. A document
ontology will use identified core components and their interrelationships as basic
semantic building blocks for document types. The document ontology is also expressed
in RDFS. Consequently, document instances are valid RDF models of the document’s
RDFS. Fig. 5 depicts an example of a document instance that is a valid fragment of a
postal address representing the German (ISO Code 936: DE) name of the street Liebig-
gasse. For a better understanding, we have marked the anonymous resources in the
grey boxes with a meaningful name. Each of these resources is an instance of a core
component. The corresponding core component is referenced as the resource’s type.
This allows to identify the semantic context of the resource. Consequently, the seman-
tic relationship between core component instances is comprehended even using an
anonymous referencing mechanism via the property “references” between all instances
of any types of core components.

3.2 Language Binding for e-Business Vocabularies
Having defined a document ontology, the next step is to provide language bindings
between the document ontology and the corresponding document type of an e-business
vocabulary. Since our “meet-in-the-middle” approach and a bottom-up approach only
differ in the way the ontology is built, the problem of defining a language binding
remains the same. Thus, our framework considers the language binding defined in the
bottom-up approach by Omelayenko and Fensel [14]. 

Fig. 5.   RDF Instantiation using Aggregate Core Component “Postal Address Details”

#000094

MyTextContent „Liebiggasse“

Literal

type

MyLanguageCode

#000075

„DE“

Literal

type

#000005 #000027

references

#000090

MyPostalAdress MyStreet MyText

type

typetypetypetype

references

references references

referencesreferences



The basic concept of this language binding is depicted in [6] It is based on the defi-
nition of a common conceptual model for document types of different e-business
vocabularies. The conceptual models are described in RDFS. Thus, a mapping between
the vocabulary’s DTD or XML schema on the one side and the conceptual data model
on the other side is required. This mapping on the schema level is defined by the means
of XSLT. On the instance level, an incoming document is abstracted from its XML seri-
alization and translated into its RDF data model. Vice versa, in order to create an out-
going document, the RDF data model of the target vocabulary is serialzed according to
the target XML format.

Furthermore, the conceptual data model of an e-business vocabulary’s document
type (expressed in RDFS) must be mapped to the document ontologies data model of
the same document type (also expressed in RDFS). This means that the equivalence
mapping between the terminologies requires a transformation from one RDFS model to
the other. The mapping must be described by the means of a RDFS mapping lan-
guage.The mappings must be automatically translated into an RDF transformation lan-
guage. This transformation language is applied to translate the conceptual RDF model
of an incoming document into an instance of the document ontology and, vice versa, to
translate an instance of the document ontology into the conceptual RDF model of an
outgoing document. It follows that all mappings between different vocabularies will
also be managed via mapping each standard to the core components-based document
ontology. Unfortunately, there neither does exist a standard for the RDFS mapping lan-
guage nor for the RDF transformation language. The specification of these languages
to support the overall framework is an essential future work item.
3.3 Context-specific View Definitions
If business partners were able to process all the semantics that are usually included in a
business document type of a standard vocabulary, step 2 would already be the final
step. Consider the fact that e.g., flattening an xCBL purchase order will result in about
16,000 data element types covering most probably a similar number of semantic con-
cepts. Then it becomes evident that a company usually supports only a subset of the
concepts or in other words a specific view of the general standard document. 

Hence, exchanging valid XML documents is not enough to ensure interoperability,
because these documents might carry data representing business concepts not sup-
ported by the business partner. It is an indispensable requirement that business partners
share a common view on the semantic concepts included in a document type to collab-
orate in a B2B transaction. In the context of ontologies, a view setting approach as
defined by Ontoprise’s Semantic B2B Broker is required [16]. The view setting is used
if different users have to be provided with different views on the same information
source (= document type). In this case, the ontology of the information source may be
semanically restricted to the conceptual view shared by all business partners.

Fig. 6.   Language Binding between Ontology and e-business vocabulary

RDF
Transformation

XSLT
Mapping

e-business
vocabulary
document
type DTD/XSD

e-business
vocabulary
document
conceptual model
in RDFS

ebXML CC
document
ontology
in RDFS

abstract

serialize

Instance
document
in XML

Documents‘
data model
in RDF

transform

transform

Instance of
document
ontology
in RDFS In

st
an

ce
le

ve
l

Sc
he

m
a

le
ve

l



According to UMM, the information requirements of each business activity result-
ing in a document exchange are analyzed to support the overall business process. The
information requirements result in an unambiguous set of concepts that must be sup-
ported in the exchanged document type. Unambiguous means that there is no open
space for partner-specific views agreed on at run time. The semantic concepts to be
shared by all business partners supporting a business process are fixed at design time.

ebXML uses UMM artifacts to define a
corresponding conceptual data model based
on core components. When a core compo-
nent is used in the context of a business
activity, its refinement becomes a so-called
business information entity. A business
information entity is a piece of data or a group thereof with a unique business semantic
definition in a given context. Accordingly, a language to define refinements on a
semantic level is necessary. For this purpose, ebXML specifies a constraint language.
The scope of the constraint language is to refine an assembly as appropriate. As
depicted in Fig. 7, the document ontology representing the general document structure
based on core components (expressed in RDFS) must be refined into an activity-spe-
cific document structure based on business information entities (also expressed in
RDFS). Thus, a language allowing for a refinement of an RDFS must be devloped.
This language should follow the semantics captured by ebXML’s constraint language.
3.4 Representing Views in e-Business Vocabularies
The last step of the framework covers the definition of unambiguous document types in
the XML syntax of e-business vocabularies. The document ontology based on business
information entities to support a specific activity is more restrictive than the general
document ontology. Consequently, the DTD or XML schema for the e-business vocab-
ulary supporting a well-defined activity must be more restrictive than the general DTD
or XML schema of the corresponding document type. Taking the example of the previ-
ous subsection, a certain step in a well-defined business activity will use only a well-
defined subset of the 16,000 data elements in a general xCBL purchase order.

This time the mapping from the document ontology into the e-business vocabu-
lary’s DTD or XML schema should be done automatically. This will be enabled by the
information about the mapping of the gerneral document type (step 2) as well as the
information about the constraint language (step 3). We expect two major types of
refinements in regard to their consequences on the automatic mapping. Firstly, some
semantic concepts are not used at all. In this case applying the same RDF transforma-
tion language as in step 2 will result in the desired output. This is due to the fact that
missing input will simply be ignored. Secondly, a component is used differently in dif-
ferent situations according to more complex constraints. This can be expressed neither
in the document’s DTD nor XML schema. Thus, it does not have any consequences on
the output of an appropriate DTD or XML schema. However, these more complex con-
straints should be expressed as an declarative (XML-based) language which accompa-
nies the document type [10]. In order to check the validity of a document for a given
business activity, not only conformance to the document type, but also conformance to
the rules of an instance of the declarative constraint language is required.
4 Summary
In this paper we presented an ebXML core component-based ontology framework to be
used in B2B e-commerce. It is based on the idea of Open-edi to separate a business
operational view represented by the document ontologies and a functional service view

RDFS
Refinement

ebXML CC
document
ontology
in RDFS Sc

he
m

a
le

ve
lebXML BIE

document
ontology
in RDFS

based on ebXML
constraint language

Fig. 7.   Document ontology refinement



represented by the XML schemas or DTDs of business vocabularies. It specifyies four
major steps to describe semantically equivalent document types in different e-business
vocabularies for the same activity in a well defined business process. 

Each of these steps is described in this paper on a conceptual level and directs our
future research towards the implementations of these steps. In the first step the seman-
tics of ebXML core components are defined in a RDFS-based ontology. The second
step defines a mapping between the ontology and RDF representations of e-business
vocabularies as well as another one between the latter RDF representations and the
DTDs or XML schemas of the e-business vocabularies. Beyond traditional ontology
approaches, we take on the ebXML idea to further restrict a general document ontology
to the specific needs of a certain business activity. This refinement will lead to a certain
view of the general document ontology and must be specified by means of a constraint
language. Steps 1 to 3 have to be done manually, whereas the last step will be derived
automatically. Using the information of the previous steps a more restrictive and appro-
priated XML schema or DTD for a specific activity will be created. The XSDs and
DTDs are a subset of their corresponding general ones. Further restictions expressed in
a declarative language will accompany the document types. This framework focuses
both, a mapping between different e-business vocabularies and at the same time guar-
anteeing their semantical equivalence in support of a specific activity.
References
1. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic Web. Scientific American (2001)
2. Bosak, J.: Media-Independent Publishing: Four Myths about XML. IEEE Computer, Vol. 31,

No. 10 (1998)
3. Brickley, D., Guha, R.: RDF Vocabulary Description Language 1.0: RDF Schema, W3C

Working Draft. (2002), http://www.w3.org/TR/2002/WD-rdf-schema-20020430
4. DARPA: The DARPA Agent Markup Language Homepage. http://www.daml.org
5. ebXML: Homepage of the ebXML Initiative. http://www.ebXML.org 
6. Erdmann, M., Studer, R.: Ontologies as Conceptual Models for XML Documents.

12th Workshop on Knowledge Acquisition, Modeling and Management, Canada, (1999)
7. Gruber, T.R.: A Translation Approach to Portable Ontology Specifications. Knowledge

Acquisition Vol. 6, No. 2 (1993)
8. Heflin, J., Hendler J.: A Portrait of the Semantic Web in Action. IEEE Intelligent Systems,

Vol. 16, No. 2 (2001)
9. Hofreiter, B., Huemer, C., Klas, W.: ebXML: Status, Research Issues and Obstacles, Proc. of

12th Int. Workshop on Research Issues on Data Engineering (RIDE02), San Jose (2002)
10. Huemer, C.: <<DIR>>-XML² -Unambiguous Access to XML-based Business Documents in

B2B E-Commerce. Proc. of 3rd ACM Conference on Electronic Commerce, Tampa (2001)
11. ISO: Open-edi Reference Model. ISO/IEC JTC 1/SC30 ISO Standard 14662 (1995)
12. Kotok, A.: Extensible and More - A Survey of XML Business Data Exchange Vocabularies.

O’Reilly xml.com, http://www.xml.com/pub/2000/02/23/ebiz/index.html
13. Li, H.: XML and Industrial Standards for Electronic Commerce. Knowledge and Information

Systems, Vol. 2, No. 4 (2000)
14. Omelayenko, B., Fensel, D.: Scalable Document Integration For B2B Electronic Commerce.

submitted to Electronic Commerce Research Journal
15. Ontology Consortium: Ontology Markup Language Project. 

http://www.ontologos.org/OML/OML.html
16. Ontoprise, B³ Semantic B2B Broker, http://www.ontoprise.de, 2000
17. UN/CEFACT TMWG, UN/CEFACT Modelling Methodology, http://www.gefeg.com/tmwg
18. UN/CEFACT ebTWG, Core Component Technical Specification, Version 1.8, (2002)

http://www.ebtwg.org/projects/documentation/core/CoreComponentsTS1.80.pdf


