
Technical Report

No Author

The Sile Model: An Abstract Model for the
Representation of Information Units in Desktop
Environments

September 2009TR-20090902

The Sile Model: An Abstract Model for the

Representation of Information Units

in Desktop Environments

Bernhard Schandl

September 2, 2009

Abstract

In this report we discuss a novel data model to represent personal data
by describing a number of design considerations and requirements. We
introduce, in an informal way, the basic concepts that we include in the
model, and give a formal specification of the model elements.

1 Design Considerations

Typically, hierarchical file systems provide relatively weak organizational meta-
phors. More sophisticated information processing middleware can either be
implemented as layers that entirely hide the file system structures from the
outside (i.e., applications or end users); an example for this class are relational
databases. Alternatively, they can establish data structures (for instance, triple
stores) that coexist with file systems; we denote the latter as hybrid approaches.
There, applications or end users simultaneously operate directly on both the file
system and the additional structures. Such approaches for semantic enrichment
of files are widely found, either providing very specific functionality (cf. Kante
[MH07] or Punakea [Cor]), or constitute an all-embracing generic semantic layer
that presents an integrated view on all user data (cf. NEPOMUK [GHM+07] or
Haystack [KBH+03]). Without doubt such extended semantic desktop systems
increase the data quality and experience for end users [SH08], they suffer from
a number of fundamental problems:

• Identiscription problem. Hierarchical file systems intermingle the func-
tions of identification and description of files [OG92]. In the context of
a physical device, a file is uniquely identified by the combination of its
path and its file name. However, the path and file name are also used to
describe the file, and to relate it to other files (by putting them into a com-
mon directory). Consequently, when the description of a file is changed
(e.g., when a directory is renamed), references to the file become invalid.
As a further consequence, it is not possible to attach multiple descrip-
tions to a file, since this would require storing it into multiple directories.
This problem is only partially solved by using symbolic links or similar
techniques.

1

• Mapping problem. File systems provide a minimal level of descriptive
metadata in the form of file names and directories. If a semantic compo-
nent is established in addition to a file system, it is desirable to include or
reflect this information within the semantic layer; e.g., by mapping direc-
tory names to ontology classes. Often, such a mapping is not straightfor-
ward: since file names and directories usually have no formal semantics
[DB99], their meaning cannot directly be captured and mapped to formal
constructs.

• Update problem. Even if a mapping for a meaningful translation between
a hierarchical file system and a semantic layer can be established, there
remains the danger of inconsistencies that result from changes in one layer
that are not propagated to the other one. To solve this, propagation
mechanisms have to be integrated into file system implementations. This
constitutes potential performance and security flaws because it requires
hooking or modifying code on the operating system level.

• Portability problem. Nearly all native file systems support the storage of
some form of metadata, e.g., extended attributes, alternate data streams,
or resource forks. Since there exists no widely accepted standard for file
metadata, this information is often lost when files are transfered across
platforms. This may be one reason why such extended metadata facilities
are rarely used by applications. A hybrid semantic system operating in
parallel to a file system can either ignore platform-specific metadata man-
agement facilities (and thus loose the benefit of a tighter integration into
the operating system), or use them and provide mappings to the semantic
layer, which again raises the Mapping and Update problems.

Any hybrid approach that coexists with hierarchical file system must deal
with these issues, which potentially leads to increased complexity and error
proneness. Many of these problems could be solved if hierarchical file systems
could be disbanded in favor of a commonly accepted semantic file system that
allows one to store, annotate, and retrieve arbitrary data objects. Such a sys-
tem could serve as the common infrastructure for a semantic desktop and its
applications.

In the following we discuss requirements and design considerations for a data
model of an integrated semantic file system. We emphasize the term integrated
since many of the problems outlined in the previous section can be avoided
by tightly coupling data with descriptive metadata. We outline the different
aspects that we considered during the development of the abstract model and
the definition of a concrete digital manifestation.

1.1 Identification

To overcome the identiscription problem described above, each file must have an
unique, immutable identifier. Such a global unique id can serve as the reference
for annotation and linkage of files. In order to support interoperability across
sytems the identifier must be unique not only in the context of a single system,
but on a global level. URIs [BLFM05] provide a powerful generic mechanism
to globally identify resources, and they are designed to be minted without a
central authority. As the generic specification for URIs also defines hierarchical

2

URIs it is additionally straightforward to convert directory and file names to
URIs.

1.2 Level of Abstraction

One major strength of file systems is their high level of abstraction: files can be
used to store any kind of data and allow for arbitrary formats. It is important
for a semantic file system that users and applications are not forced to fit their
data into heavily constrained structures. On the other hand, semantics can only
be derived from structure, therefore any semantic storage must impose a certain
level of rigidness. From observing a variety of applications and systems both in
the desktop and the Web domain, we can infer a need for the following structure
elements:

• Concrete and abstract resources. Current file systems are based on the
assumption that every thing has a digital representation (although files can
have a content with zero length). This assumption is valid in file system-
based environments since the representation of non-digital objects would
make sense only if they can be further described, or if they can be brought
into relationship with other (digital) objects—both features are, however,
not offered by current hierarchical file systems. To facilitate the expression
of information about non-digital real-world objects a personal information
management system should also be able to represent e.g., persons, events,
locations, etc. A semantic file system that supports digital and non-digital
objects as well as relationships between them could significantly increase
the potential expressivity of desktop applications. Additionally, sharing
of data between applications could be improved if common classes of user
data (e.g., contacts or appointments) were represented in an application-
independent manner.

• Ontological knowledge. Semantic annotations, or annotations based on
description logic, help to improve the automated processing and retrieval
of information. Classes (or concepts) are regarded the basic structure
element in many knowledge organization systems and ontology languages.
To apply them to file systems, and to derive conclusions about files with
similar properties, a semantic file system should be able to represent files as
class instances and allow to perform reasoning over these data structures.
Moreover, ontology classes could be represented as files themselves and
could therefore be directly managed by the user, if this functionality is
desired in a concrete application scenario.

• Attributes. Attributes can be used to describe files in structured form.
They allow applications to store information that is not inherent to a
file’s content. If the meaning of a file’s attribute is defined in an ontology
it can be used consistently across different applications. However, it would
also be possible to attach user-defined attributes in an ad-hoc style; in this
case the attributes cannot be automatically processed but still may help
the user to organize and retrieve information.

• Relationships. Many types of information cannot be attributed to a single
file, but are represented by relationships between them; a fact also ob-
served by end users [RSK04]. The World Wide Web is the best example

3

of a knowledge base that gains its power mainly from links between web
resources. The way that files are related to each other can be described in
more detail by typed relations or by attaching additional information (at-
tributes, other relationships) to them. Therefore, a semantic file system
should support (annotated) relationships.

• Tags. Tags have become enormously popular through their use in many
so-called Web 2.0 applications. Tags expose a different level of semantic
expressivity than classes and attributes, since the relationship between an
object and its associated tags, as well as the relationships between tags,
are not formally defined. Nevertheless, the popularity of tags shows that
they may support the organization of information in a user-centric way
and should therefore be supported by a file system targeted towards a
semantic desktop.

In addition to the possibility to store and manage these organizational mech-
anisms, a potential increase of semantic expressivity could be gained from al-
lowing one to define mappings between them. Such a mapping could provide
additional information hints to the user when searching, and ease the manual
annotation process, which often is cumbersome. For instance, one could map
a certain attribute value to a tag, and further only use the tag instead of the
attribute’s name/value pair. This would release users from the need to remem-
ber the exact name and value for this attribute and allow for a more intuitive,
human-centric application of formal semantics.

1.3 Compatibility with File Systems

Although the amount and complexity of data on a user’s desktop steadily in-
creases, the organizational metaphors for files have remained unchanged for
decades. Since hierarchical file systems are not sufficiently expressive to repre-
sent machine-processable annotations, application-dependent parallel structures
have been established. For instance, many tools for management of multimedia
data (e.g., audio files or photos) extend the file system with application-specific
semantics and thus face the same problems as hybrid semantic desktop ap-
proaches. These systems often use a mix of the hierarchical file system (e.g.,
MP3 files in directories named after artists), metadata embedded into files (e.g.,
ID3 tags), and data in application-specific databases (e.g., e-mail archive files).
Naturally, the latter remain hidden to the outside. For user data stored in hi-
erarchical file systems it is important that there exist smooth migration paths
that allow users to “glide” into the semantic desktop. When transferring a hier-
archical directory structure into a semantically enriched organization paradigm,
the following requirements must be considered:

• Organizational preservation. No information that was present in the hier-
archical system should be lost during the transition. This includes infor-
mation that is implicitly present in file names and directories.

• Navigational preservation. A hierarchical file system provides certain nav-
igation alternatives, and users are presumably familiar with them. For
semantic files it must be ensured that similar navigational behavior is
still supported. The main goal is that users can actually find objects in
locations where they expect them to be.

4

• Backwards compatibility. Although a certain level of backwards compat-
ibility can be achieved by inverting mapping algorithms that ensure or-
ganizational preservation, not all information contained in a semantic file
system can be translated to the tree model of the hierarchical file system
because a tree is not sufficiently expressive to represent certain aspects,
(e.g., relationships between files). Maximized backwards compatibility
can increase the acceptance of semantic systems on the desktop, espe-
cially when users are using legacy software that is not aware of the file
system’s semantic features. Thus, it is reasonable to invest research ef-
fort into the question of representing semantic networks by the means of
hierarchical file systems.

1.4 Compatibility with the Web

A large amount of relevant information is available on the World Wide Web
and, increasingly, the Semantic Web. Currently we can observe an information
gap between data stored on a user’s local machine on the one hand, and online
resources on the other hand. An information architecture that uses a unified
mechanism to identify information objects and makes them accessible regardless
of their physical location could help to bridge this gap. This bridging could take
place in two directions; first, it should allow users to semantically interconnect
(and, consequently, retrieve and use) local and web resources, and second, it
should be possible to selectively share local resources if needed without much
effort, and thus make local information resources a part of the web.

1.5 Why not Plain RDF?

The RDF data model [KC04] is sufficiently generic to represent different orga-
nizational elements (including the ones described in Section 1.2), and many of
them are already used in web applications. Many tools and libraries for ma-
nipulating RDF are available, and the performance of triple stores is steadily
increasing (cf., e.g., [AMMH07]), hence RDF seems to be a natural choice for
the representation of metadata in file systems.

RDF does not restrict the usage of relationship types; instead, ontology
languages are used to do this. This freedom fosters the publication of data on
the World Wide Web (as demonstrated, e.g., by the Linked Data initiative1)
but, on the other hand, imposes restrictions on the applicability of RDF as
information exchange format: when different applications access a shared data
set they must agree on a common vocabulary, or define potentially complex
schema mappings.

Moreover, the RDF data model does not contain the concept of self-contained
information units. Instead, RDF data can be seen as a continuous stream of
relationships between arbitrary resources. This paradigm is fundamentally dif-
ferent from what we can observe in file systems, where information is stored in
discrete units, and is also different to the object-oriented modeling paradigm,
in which a large share of applications are implemented, and with which many
developers are familiar. We also suspect that the flat graph model stands—
to a certain extent—in contradiction to the way humans perceive the world:

1http://linkeddata.org

5

http://linkeddata.org

commonly, objects and their properties are mentally aggregated and treated
as integral units. Thus we envision a data model that is as generic and in-
teroperable as RDF but simplifies the representation of object-oriented model
elements.

1.6 Conclusions and Design Decisions

The issues discussed in the previous sections have lead us to the specification of
a data model for a semantic file system that incorporates aspects from Seman-
tic Web technology (usage of URIs, graph-based metadata structures, usage of
ontology elements like classes and properties), object-oriented modeling (inte-
grated view on objects and their properties), Web 2.0 (tags), and file systems
(discrete content units).

As an atomic information element we choose to extend the file with semantic
annotations of different kinds, and call such objects siles. A sile is a discrete
unit of information; the content of a sile is—similar to a file—self-contained
and does neither depend on any other entity, nor does it make any statements
on other entities. To guarantee a unique identity for these discrete information
units, we choose to identify a sile by a URI. URIs can take the form of simple
names that carry no further semantics (like, for example, a UUID), or can imply
mechanisms and protocols for accessing the resource that is identified by a URI
(in the case of, e.g., http: or mailto: URIs). For the sile model we do not
establish any constraints on the format of URIs or require a specific URI scheme.
Since from our perspective URIs are used as opaque identifiers, we can safely
leave the choice of a suitable URI scheme and URI minting algorithm to the
concrete implementation.

This design implies that, in contrast to file systems, no intrinsic semantics is
imposed on sile identifiers. In file systems, the full path of a file is composed of a
series of directory names, each of which is chosen by a user and carries implicit
or explicit meaning. We unhinge all kinds of contextual meaning from the sile
identifier (the URI); instead we define a number of annotation metaphors that
can be used to express the extrinsic semantics of a sile. We have chosen the
following set of annotation metaphors to be included in the sile model:

• Tags. Tags are simple keywords that consist of a string of arbitrary length
and arbitrary format. Tags are usually not chosen from a predefined formal
vocabulary, hence the interpretation of a tag is entirely left to the end
user. Certain problems arise in systems that use tags: for instance, it
is not possible to resolve homonym or synonym conflicts without further
analysis. Moreover, tags are always bound to a certain natural language
which makes them unfeasible for end users not aware of this language.
Nevertheless tags can help to classify and retrieve information in situations
where end users follow a common understanding of tags. This is both the
case when tags are applied in a single person’s data space—we can assume
that the person who issues a tag will be able to understand the meaning
of this very tag later on—, or in cases where a user group shares a certain,
informal vocabulary and has, to a certain extent, a common understanding
of its meaning; as it is the case, for instance, in work groups or projects.

• Categories. The use of ontologies significantly extends the analysis pos-
sibilities that can be applied to documents in general and tags in special

6

(e.g., full text search, string similarity metrics, natural language process-
ing, and statistical methods). Ontologies establish frameworks of formal
rules that can be used by reasoners to validate descriptions and to gen-
erate new, implicit knowledge out of existing information. Classes are
a core concept in most ontology languages; however we can observe that
non-expert users have difficulties in understanding the idea of classes and
in perceiving the potentially high complexity of ontology instances. We
suspect that one part of this problem is caused by naming: we can ob-
serve that the term “category” is often better understood by non-expert
users than “class”. For our data model we introduce categories as a way
to annotate siles but we do not define rules on how categories are to be
interpreted by a machine, or which reasoning rules can be applied to them.

• Attributes. Attributes are a basic modeling element in many information
systems. An attribute describes a specific characteristic of an individual
and usually consists of two parts: a name part that indicates which char-
acteristic is described by an attribute, and a value part that represents
the concrete occurrence of this characteristic with respect to the individ-
ual. Attributes are a highly generic mechanism for expressing information
about individuals and can additionally be used in ontologies to indicate,
for instance, class membership or to verify instance equality. As with
categories, we do not impose such rules in our data model but leave the
definition of such rules up to concrete implementations and applications.

• Relationships. Relationships can be considered as attributes whose value is
an instance of similar characteristic as the described object. In our model
we consider siles as first-class objects, and thus relationships are the subset
of a sile’s attributes whose value is a sile. By introducing relationships as
a separate class of annotations, we emphasize the web-style character of
our data model: using relationships, interdependencies between discrete
information units are made explicit.

We do not predefine types or processing rules for categories, attributes, or
relationships, but leave this to the concrete applications that make use of siles;
an example of such such an application is described in [Sch06]. However we
want to give our system the possibility to express interdependencies between
different types of sile annotations, because we see the need of information man-
agement systems to maintain a certain level of data integrity. There exist a
magnitude of mechanisms to express such information (e.g., ontologies, schema
descriptions, or abstract modelling languages like UML). Similar to our vision
of siles as generalized view on personal information, we use the term spect2 to
denote collections of interdependency rules between categories, attributes, and
relationships.

We deliberately choose not to include a representation of any kind of hier-
archies (like file system directories) in the model, since we are interested in the
applicability and impact of the metaphors mentioned above in the absence of
directories. Additionally, hierarchical structures can be simulated using rela-
tionships between objects, as shown e.g., in [SH09]. We are aware of the fact

2The name “spect” is derived from the term “spectacles”, i.e., a means to provide the user
with a clearer view on things.

7

that this decision is contradictory to the requirement of compatibility with hier-
archical file systems (cf. Section 1.3), thus hierarchical collections may be added
to the data model at a later point in time.

By making information semantics extrinsic and representing them in a uni-
fied manner, a storage system for semantically annotated objects can act as a
shared information infrastructure for different applications and services. Usu-
ally, applications will operate on a limited set of objects; e.g., ones that are avail-
able on a user’s local machine, or ones that are stored on the working group’s file
server. In the following we use the term repository to denote a logically closed
context of information interpretation. Such a context consists of a set of siles,
including their associated content and annotations. The interpretation of the
siles’ annotations is only valid within the context of a given repository; a differ-
ent repository may make completely different statements about siles and apply
different rules on how annotations may be combined. The connections between
such distinct repositories are established using referenced siles, i.e., pointers that
refer to siles within an external repository. The identity of (and therefore, the
connection to) a sile is established by a unique opaque identifier, the sile URI.

In terms of a physical unit, a repository can be regarded similar to the
concept of a volume in a file system, or the concept of a host on the World
Wide Web. In terms of a logical unit, it can be regarded as a collection of siles
that share a logical context, e.g., the siles that have been created by a specific
user, or the siles that are of relevance in the context of a research project. We do
not define constraints on the inner structure of a repository; instead we define a
set of operations that a repository must be able to execute and treat it in other
respects as a black box.

2 Data Model

In the previous section we have informally introduced the concepts of a sile, its
characteristics, and the various annotation classes that can be applied to siles.
In the following we give a formal notion of siles and annotations by defining
them in terms of sets. We start this by introducing a number of symbols that
we use throughout this section.

Definition 1 [Symbols]
Let Σ denote the set of all siles in the university of discourse. Let LIT denote

the set of all string literals which are finite sequences of characters from an
literal alphabet α, and B the set of all content literals which are finite sequences
of characters from an content alphabet β. Further, let URI denote the set of all
Uniform Resource Identifiers (URIs)3. Let T denote the set of all tags, T ⊆ LIT,
Let C denote the set of all categories, C ⊆ URI, and let A denote the set of
all attributes, A = URI × LIT × URI. and let L denote the set of all slinks,
L = URI×URI. Let ANN denote the set of annotations, ANN = T∪A∪C∪L,
and let SP denote the set of all spects, as described in Section 1.6. Finally, let
ENT = Σ ∪ ANN ∪ SP denote the set of all entities. Using this vocabulary, we
can describe the data structures, constraints, and operations that constitute our
data model.

3URIs are treated as opaque identifiers and should be formatted according to [BLFM05].

8

Definition 2 [Siles]
A sile s ∈ Σ is a six-tuple s = (us, bs, Ts, Cs, As, Ls). us ∈ URI denotes the

URI (Uniform Resource Identifier) of sile s, bs ∈ B ∪ ⊥ denotes the sile’s binary
content, Ts ⊆ T is the set of the sile’s associated tags, Cs ⊆ C is the set of the
sile’s associated categories, As ⊆ A the set of the sile’s associated attributes, and
Ls ⊆ L is the set of the sile’s associated slinks. The set ANNs = Ts∪As∪Cs∪Ls

subsumes all annotations that are associated to s.
A sile s ∈ Σ is uniquely identified by its URI us, hence the sile’s URI us is

a functional property of the sile:

∀si, sj ∈ Σ : usi = usj ←→ si = sj

This equality is the sole criterion that allows one to decide whether two given
sile entities actually are equal. Especially does the sile model neither state that
siles that share the same annotations (as described below) are considered equal,
nor that siles are considered equal if they have equal content.

Within the sile model, we do not impose constraints on the structure or the
nature of a sile’s binary content. Especially we do not define rules that state
how the content is to be interpreted, or how one can deduce annotations from
analyzing the content. Sile content may also be of arbitrary length, including
zero.

Two examples of siles, an email message and a file, are depicted in Figure 1.

Definition 3 [Tags]
As annotations we denote the organizational metaphors of the sile data

model that describe siles and bring them into context. As described above,
annotations can be of four types: tags, categories, attributes, and slinks.

A tag is described and identified by a string literal and carries no further
machine-processable semantics. Hence a tag associates a sile with a plain literal
string, and it is sufficient to describe a tag t ∈ T by such a simple literal:
T ⊆ LIT.

We consider two tags ta and tb as equal if their plain literal strings are
equal, which in turn is the case if (i) they are of the same length, length(ta) =
length(tb), and (ii) each character on position i of tag ta is equal to the character
on position i of tag tb, char(ta, i) = char(tb, i), 1 ≤ i ≤ length(ta).

Definition 4 [Categories]
As described before, a category annotation is a reference to an abstract

concept entity that may carry machine-processable semantics, which in turn
may be used to validate a data model or to enrich a set of annotations with
implicit (derived) annotations. To ensure uniqueness, a category c is identified
by a URI: c ∈ C, C ⊂ URI.

It is obvious that categories are considered as equal if their URIs are equal4.
We externalize any further details regarding the nature of categories, including
semantic relationships to other categories, attributes and slinks, and annotation
aspects, like e.g., human-readable labels or comments, from categories; instead,
spects (see below) and domain-specific extensions can be employed for this pur-
pose.

4According to [BLFM05], URI equality is defined as string equality applied to the URIs’
absolute forms

9

Example. A number of email messages on a personal desktop computer can
be regarded as siles. By default, email messages carry unique message-ids which
constitute the respective sile URIs. The bodies of the messages can be regarded
as sile contents; the mail folder where the message is stored and its read/unread
status can be attached to the message as tag. Metadata about the message (like
the subject, sender and recipient, and the date of delivery) can be represented as
attributes and slinks.
Such mail messages may be represented as followsa:

s1 = (msg:0BBF7468-7C34-4587-97E0-D8DB9E8CBDD9@univie.ac.at,

"Sehr geehrte Damen und Herren, [...]",

{"INBOX", "unread"},
{nmo:Email},
{(nmo:subject, "LV-Evaluierung SS 2009", xsd:string),
(nmo:receivedDate, "2009-04-05T16:54", xsd:dateTime)},
{(nmo:from, mailto:wolfgang.klas@univie.ac.at),
(nmo:to, mailto:bernhard.schandl@univie.ac.at)})

Similarly, a file in a file system may be represented using the sile model, whereas
its URI is constructed using its absolute pathb. In this example, no tags or slinks
are attached, and the set of attributes is restricted to the file name and its creation
date:

s2 = (urn:uuid:c6b18466-eab4-4943-8699-62eb6dc229d9,

"\documentclass{report} [...]",

{},
{nfo:FileDataObject},
{(nfo:fileName, "file:///Users/bs/work/phd/phd.tex", xsd:string),
(nfo:fileCreated, "2008-11-07T12:41", xsd:dateTime)},
{})

aFor the examples we use prefixed QName notation ([BHLT06], Section 4) for URIs; annotation
URIs refer to the NEPOMUK Semantic Desktop ontologies [MSSvE07].

bNote that we consider the usage of mutable file paths as URIs (which are meant to be im-
mutable) as harmful practice [SH09].

Figure 1: Representation of mail messages and files using the sile model

10

Definition 5 [Attributes]
In contrast to tags and categories, attributes are tuples of three elements: the

attribute name identifies the characteristic that is described by the attribute.
The attribute value represents the actual manifestation of the attribute with
respect to the sile, and the attribute data type identifies a rule set that describes
the lexical value space (i.e., the set of literal strings that are valid for this
attribute) as well as the intended interpretation of the value literal.

We use URIs to describe the attribute name and the attribute data type;
hence the set of all possible attributes is A = URI×LIT×URI, and an attribute
a can be written as 3-tuple: a = (ana, ava, ata), with ana ∈ URI, ava ∈ LIT,
and ata ∈ URI.

Again, we do not associate to attributes formal rules regarding the interpre-
tation and restriction of attribute names or attribute values and data types. For
the former we outsource this description to spects and application-specific ex-
tensions of the data model; for the latter we follow the RDF semantics regarding
data types which are defined in Section 5 of [Hay04].

Definition 6 [Slinks]
A slink l ∈ L relates a sile to another sile, whereas the nature of the slink is

identified by the slink name. A slink can be regarded as a directed labeled edge
in a graph, where siles form the graph nodes. Each slink leads from a source
sile to a target sile, whereas the slink is attached to the source sile and carries
a reference URI to the target sile. We use a URI for the name (the label) of the
slink. Therefore, the set of all slinks L is the cartesian product of the set of all
URIs and the set of all siles: L = URI × URI, and a slink l can be written as
l = (lnl, ldl), with lnl, ldl ∈ URI.

As mentioned in the previous section, slinks and attributes share some com-
mon properties. Slinks can be seen as a special case of attributes whose value is
a URI that references a sile. For this reason consider slinks first-class annota-
tions, since they help to construct a web of siles and allow—in a metaphorical
sense—to interconnect the otherwise separate data units.

Definition 7 [Spects]
Spects are used to define applicability rules for annotations. Applicability

rules restrict the set of possible relationships between siles and annotations,
and define when a given constellation can be regarded as consistent. Such
consistency rules can be employed by a repository implementation (1) to ensure
the internal consistency of its data model, (2) to infer new (implicit) annotations
from existing ones, and by a client application in order (3) to restrict the set of
possible annotation opportunities presented to the end user.

A spect spi ∈ SP defines four classes of applicability rules; Category Hierar-
chy Rules, Attribute Applicability Rules, Slink Domain Applicability Rules, and
Slink Range Applicability Rules.

Category Hierarchy Rules define subsumption rules between categories; in
this sense, categories can be interpreted as classes from set theory. A category
hierarchy rule chr ∈ spi defines a relationship between two categories; thus it
can be written as two-tuple chr ∈ C × C. The semantic interpretation of a
category hierarchy rules is as follows: if a sile s is annotated with category c1,
and the category hierarchy rule chri = {c1, c2} exists in any known spect spi,

11

sile s is also annotated with category c2:

∀s ∈ Σ, spi ∈ SP : c1 ∈ Cs ∧ {c1, c2} ∈ spi −→ c2 ∈ Cs

Category hierarchy rules are transitive:

∀spi ∈ SP : {c1, c2}, {c2, c3} ∈ spi −→ {c1, c3} ∈ spi

Attribute Applicability Rules establish formal relationships between cate-
gories and attribute names: an Attribute Applicability Rule between an at-
tribute name an and a category c states that a sile that is annotated with
attribute an is also annotated with category c:

∀s ∈ Σ, spi ∈ SP : (an, av, at) ∈ As ∧ {an, c} ∈ spi −→ c ∈ Cs

A Slink Domain Applicability Rule between a slink name ln and a category c
defines that a sile that is annotated with a slink with name ln it is also annotated
with category c:

∀s ∈ Σ, spi ∈ SP : (ln, ld) ∈ Ls ∧ {ln, c} ∈ spi −→ c ∈ Cs

A Slink Range Applicability Rule between a slink name ln and a category c
defines that a sile that is the destination of a slink with name ln is also annotated
with category c:

∀s, s ∈ Σ, spi ∈ SP : (ln, s) ∈ Ls ∧ {ln, c} ∈ spi −→ c ∈ Cs

Examples for all classes of rules in the context of email messages are given
in Figure 2.

Definition 8 [Repositories]
As described in Section 1.6, a repository is a closed context of interpretation,

within which a set of entities (siles, annotations, spects) are considered to be
valid. A repository indicates thus a set of entities that are considered as a
separate, self-contained, and logically consistent knowledge corpus.

A repository R ∈ ρ (where ρ denotes the set of all repositories) can be
written as a 7-tuple R = (ΣRh,ΣRr,TR,CR,AR,LR,SPR). It consists of a set
of hosted siles ΣRh and a set of referenced siles ΣRr, which together form the
set of the repository’s known siles ΣR = ΣRh∪ΣRr. It further consists of sets of
tags (TR ⊆ T), categories (CR ⊆ C), attributes (AR ⊆ A), and slinks (LR ⊆ L).
Additionally, it consists of a set of spects SPR ⊆ SP that define the applicability
rules that this repository applies to annotations, as described before.

A sile may be hosted in a given repository, or it may be referenced which
means that it is interpreted as a pointer to a sile that is hosted in a different
repository. We distinguish these two classes of siles based on the presence or
absence of content: in the case of hosted siles, a content is present (although
it may be of zero length); in the case of referenced siles, no content is present.
Instead, the content may be retrieved by dereferencing the sile URI5.

5The procedure of dereferencing URIs is out of the scope of the abstract sile model, and
depends on the format of the sile URI: for http URIs, dereferencing means to establish a
connection to a remote HTTP server and to retrieve the content using e.g., a HTTP GET call.
imap URIs may be dereferenced by establishing a connection to the respective IMAP server,
and so forth. More details on the process of dereferencing in the context of the World Wide
Web are given in [JW05], Section 3.1.

12

Example. A spect SPmail describing the annotation vocabulary for e-mail com-
munication may define the following rules. It defines a number of category hierarchy
rules, amongst them the relationship between abstracts messages, email messages,
and attachments:

CHRmail = {(nmo:Email, nmo:Message),
(nmo:Message, nie:InformationElement),
(nfo:Attachment, nie:InformationElement), . . .}

Using the following attribute applicability rules, attribute names are related to
category names:

AARmail = {(nmo:sentDate, nmo:Message),
(nmo:receivedDate, nmo:Message),
(nmo:messageSubject, nmo:Message), . . .}

Slink domain and range applicability rules define the relationship between category
names and slink names:

SDARmail = {(nmo:from, nmo:Message),
(nmo:to, nmo:Message),
(nmo:hasAttachment, nmo:Message),
(nmo:cc, nmo:Email), . . .}

SRARmail = {(nmo:from, nco:Contact),
(nmo:to, nco:Contact),
(nmo:hasAttachment, nfo:Attachment),
(nmo:cc, nco:Contact), . . .}

The complete spect consists of all the following definitions:

SPmail = CHRmail ∪AARmail ∪ SDARmail ∪ SRARmail

Figure 2: A spect defining rules for the relationship between email categories
and attributes

13

Thus, the set of all siles that exist within a given repository R (denoted by
ΣR, ΣR ∈ Σ) can be separated into two subsets, the set of all siles that are
hosted by this repository ΣRh and the set of all siles that represent references
to siles hosted in other repositories ΣRr. Thus, the following rules hold for all
siles stored within a repository:

∀s ∈ ΣR : bs 6=⊥←→ s ∈ ΣRh, s /∈ ΣRr

∀s ∈ ΣR : bs =⊥←→ s ∈ ΣRr, s 6∈ ΣRh

The sets of hosted and referenced siles are disjunct,

∀R ∈ ρ : ΣRh ∩ ΣRr = ∅

and no siles other than hosted or referenced ones exist in a repository:

∀R ∈ ρ : ΣR \ (ΣRh ∪ ΣRr) = ∅

We interpret the term “repository” in a broad manner: every system whose
information can be represented within the sile model can be referred to as repos-
itory. Since siles are identified by URIs, every piece of information that can be
identified by an URI can potentially become a sile, and its physical location can
be regarded as sile repository.

The design of the sile model and the concept of repositories provide the
possibility to make assertions about the same information on different places:
while repository R1 may hold the actual content of a sile, repository R2 may
hold annotations that have been extracted by analyzing the sile content, and
repository R3 may store user-defined annotations (e.g., tags) for the sile. While
these data may share no common semantics, and their repositories may ap-
ply different storage technologies, these different pieces of information are still
connected through the unique identifier of the sile, its URI.

3 A Query Framework for Siles

The definitions given in the previous section describe the static data model for
siles. This model represents a framework that structures siles, their contents,
and their annotations for further processing. In the following we describe generic
abstract operators that use the elements from the sile data model. These op-
erators are designed to be simple to understand and use, but can be combined
and nested in order to formulate complex operations and queries.

In the following, we define three operator types:

• Entity Extraction Operators extract information parts out of entities; i.e.,
they provide access to the parts of entity tuples;

• Entity Existence Operators indicate whether a specific information entity
exists; i.e., whether a tuple (or a combination of tuples) exists that repre-
sents a specific information constellation; and

• Sile Selection Operators select, from a set of siles, a subset that fulfils
certain criteria.

14

The combination of these operators allows us to model complex expressions
over the sile data model that can be used to retrieve information, decide whether
siles fulfil certain required information constellations, and restrict sets of siles
based on these decisions.

3.1 Prerequisites

Definition 9 [Basic Definitions]
Let BOOL = {true, false} denote the Boolean set, and let P(A) = {x | x ⊆

A} denote the powerset (i.e., the set of all subsets) of A.

3.2 Entity Extraction Operators

Entity extraction operators extract specific information from an entity. As each
entity is described by several different characteristics, we need these extraction
operators to be able to process these individual items.

Definition 10 [Sile Extraction Operators]
As described before, a sile s can be written as 6-tuple s =

(us, bs, Ts, As, Cs, Ls). We define the following operators that extract the in-
dividual parts of these tuples as follows:

uri : Σ 7→ URI, uri(s) = us

content : Σ 7→ B, content(s) = bs

tags : Σ 7→ P(T), tags(s) = Ts

attributes : Σ 7→ P(A), attributes(s) = As

categories : Σ 7→ P(C), categories(s) = Cs

slinks : Σ 7→ P(L), slinks(s) = Ls

We additionally introduce one extraction operator that returns all sile an-
notations, regardless of which type they are:

annotations : Σ 7→ P(ANN), annotations(s) = Ts ∪As ∪ Cs ∪ Ls

Definition 11 [Annotation Extraction Operators]
For the atomic annotation types (tags and categories) we define two auxiliary

operators that return the annotation’s identifying characteristic (i.e., the tag
label or the category URI, respectively). Since tags and categories only consist
of one element, the definition of these extraction operators is straightforward:

text : T 7→ LIT, text(t) = t

catname : C 7→ URI, catname(c) = c

For the annotation types that are not atomic (attributes and slinks) we need
operators to extract their parts. For attributes we define the following extraction
operators:

attname : A 7→ URI, attname(a) = ana

15

attvalue : A 7→ LIT, attvalue(a) = ava

atttype : A 7→ URI, atttype(a) = ata

Similarily, for slinks we define:

slinkname : L 7→ URI, slinkname(l) = lnl

slinkdst : L 7→ URI, slinkdst(l) = ldl

Finally, we define a generic URI extraction operator uri : ANN 7→ URI∪{⊥}
that can be applied to all types of annotations:

uri(e) =


catname(e) if e ∈ C
attname(e) if e ∈ A
slinkname(e) if e ∈ L
⊥ otherwise

We can see that the uri operator returns a URI that can be used to identify
the nature of the annotation for all types of annotations except tags. The result
of this operator can, in general, not be used to compare annotations for equality,
since for this all characteristics of an annotation must be considered.

To accomplish this, we introduce the annotation generic comparison operator
equals : ANN × ANN 7→ BOOL that indicates whether two annotations are
equal:

equals(e1, e2) :=



true if e1, e2 ∈ T ∧ text(e1) = text(e2)
or e1, e2 ∈ C ∧ catname(e1) = catname(e2)
or e1, e2 ∈ A ∧ attname(e1) = attname(e2)∧

attvalue(e1) = attvalue(e2) ∧ atttype(e1) = atttype(e2)
or e1, e2 ∈ L ∧ slinkname(e1) = slinkname(e2)∧

slinkdst(e1) = slinkdst(e2)
false otherwise

We also introduce a generic comparison operator equalsIgnore : ANN ×
ANN 7→ BOOL that compares annotations without considering certain compo-
nents, i.e., the value and data type in the case of attributes, and the destination
sile in the case of slinks. For tags and categories, equalsIgnore returns the same
result as equals:

equalsIgnore(e1, e2) =


equals(e1, e2) if e1, e2 ∈ T ∪ C
true if e1, e2 ∈ A ∧ attname(e1) = attname(e2)

or e1, e2 ∈ L ∧ slinkname(e1) = slinkname(e2)
false otherwise

3.3 Entity Existence Predicates

In comparison to the entity extraction operators which return specific parts of
entities, i.e., siles or annotations, in the following we discuss existence predi-
cates. These predicates indicate whether a specific data constellation is given

16

in the context of interpretation, and correspondingly return a Boolean value
(true or false). The context of interpretation Γ depends on the application: it
may be a single repository R (Γ = R) or an arbitrary number of repositories
R1, R2, . . . , Rn, in which case the operators consider the union of all their an-
notations (Γ =

⋃n
i=1Ri). The context of interpretation can then be written as

7-tuple that subsumes all elements of the considered repositories Ri, i = 1 . . . n:

Γ = (ΣΓh,ΣΓr,TΓ,CΓ,AΓ,LΓ,SPΓ)

= (
n⋃

i=1

ΣRih,

n⋃
i=1

ΣRir,

n⋃
i=1

TRi
,

n⋃
i=1

CRi
,

n⋃
i=1

ARi
,

n⋃
i=1

LRi
,

n⋃
i=1

SPRi
)

In the following, a ·Γ index indicates that all operators are defined with
respect to a given context of interpretation Γ.

Definition 12 [Sile Existence Predicate]
We start with the very basic definition of a sile existence predicate, existsΓ :

Σ 7→ BOOL which returns whether a given sile exists in the context of interpre-
tation, either in the form of a hosted or a referenced sile:

existsΓ(s) =

{
true if ∃R,R ∈ Γ | s ∈ ΣR

false otherwise

Definition 13 [Annotation Existence Predicates]
We can now define predicates that indicate whether a specific combination

of entities (i.e., siles and annotations) is present in the context of interpretation.
As the most generic predicate, hasAnnotationΓ : Σ× ANN 7→ BOOL indicates
whether a sile is annotated with a specific annotation by using the annotations
operator:

hasAnnotationΓ(s, a) =

{
true if existsΓ(s) ∧ a ∈ annotations(s)
false otherwise

Also we define a predicate existsAnnotationΓ : ANN 7→ BOOL that in-
dicates whether there exists any sile in the context of interpretation that is
associated with a specific annotation:

existsAnnotationΓ(a) =

{
true if ∃s | existsΓ(s) ∧ hasAnnotationΓ(s, a) = true

false otherwise

Additionally, we can define such annotation existence predicates for specific
types of annotations. As tags and categories are atomic annotations, there is
no need for type-specific definitions; instead we can directly reuse the already
defined hasAnnotationΓ operator to define hasTagΓ and hasCategoryΓ,

hasTagΓ : Σ× T 7→ BOOL, hasTagΓ(s, t) = hasAnnotationΓ(s, t)

hasCategoryΓ : Σ× C 7→ BOOL, hasCategoryΓ(s, c) = hasAnnotationΓ(s, c)

as well as existsTagΓ and existsCategoryΓ:

existsTagΓ : T 7→ BOOL, existsTagΓ(t) = existsAnnotationΓ(t)

17

existsCategoryΓ : C 7→ BOOL, existsCategoryΓ(c) = existsAnnotationΓ(c)

For attributes and slinks, we must go into more detail since it should be
possible to query for siles based on each individual part of an annotation. Hence,
we define three variants of the hasAttributeΓ predicate:

• hasAttributeNameΓ : Σ × A 7→ BOOL indicates whether a sile is anno-
tated with an attribute that has given name, ignoring the attribute value
and the attribute data type:

hasAttributeNameΓ(s, a) =


true if ∃a′ | existsΓ(s) ∧ a′ ∈ As

∧ attname(a) = attname(a′)
false otherwise

• hasAttributeV alueΓ : Σ × A 7→ BOOL indicates whether a sile is anno-
tated with an attribute that has a given value and data type, ignoring the
attribute name:

hasAttributeV alueΓ(s, a) =


true if ∃a′ | existsΓ(s) ∧ a′ ∈ As

∧ attvalue(a) = attvalue(a′)
∧ atttype(a) = atttype(a′)

false otherwise

• hasAttributeNameV alueΓ : Σ × A 7→ BOOL indicates whether a sile is
annotated with an attribute whose name, value, and data type are equal
to the respective elements of the specified attribute. This operator is equal
to the hasAnnotationΓ operator when applied to an attribute:

hasAttributeNameV alueΓ(s, a) =

{
hasAnnotationΓ(s, a) if a ∈ A
false otherwise

As an alias, we also define the predicate hasAttributeΓ : Σ×A 7→ BOOL as
being equal to hasAttributeNameV alueΓ:

hasAttributeΓ(s, a) = hasAttributeNameV alueΓ(s, a)

Correspondingly, we can define three variants of the hasSlinkΓ predicate
that consider the separate parts of slink annotations:

• hasSlinkNameΓ : Σ × L 7→ BOOL indicates whether a sile is annotated
with a slink that has a given name, ignoring the destination sile:

hasSlinkNameΓ(s, l) =

{
true if ∃l′ | existsΓ(s) ∧ l′ ∈ Ls ∧ slinkname(l) = slinkname(l′)
false otherwise

• hasSlinkDestinationΓ : Σ×L 7→ BOOL indicates whether a sile is anno-
tated with a slink with a given destination sile, ignoring the slink name:

hasSlinkDestinationΓ(s, l) =

{
true if ∃l′ | existsΓ(s) ∧ l′ ∈ Ls ∧ slinkdst(l) = slinkdst(l′)
false otherwise

18

• hasSlinkNameDestinationΓ : Σ×L 7→ BOOL indicates whether a sile is
annotated with a slink that has a given name and destination sile:

hasSlinkNameDestinationΓ(s, l) =


true if ∃l′ | existsΓ(s) ∧ l′ ∈ Ls

∧ slinkname(l) = slinkname(l′)
∧ slinkdst(l) = slinkdst(l′)

false otherwise

In analogy to hasAttributeΓ we define the predicate hasSlinkΓ : Σ × S 7→
BOOL which is an alias for hasSlinkNameDestinationΓ:

hasSlinkΓ(s, l) = hasSlinkNameDestinationΓ(s, l)

Based on the slink existence predicates hasSlinkNameΓ and hasSlinkΓ, we
can define two predicates that indicate whether siles are slinked to each other.
We can define areDirectedRelatedΓ : Σ × Σ 7→ BOOL that indicates whether
a sile ss is annotated with a slink to another sile sd, whereas usd

denotes the
URI of sile sd:

areDirectedRelatedΓ(ss, sd) =


true if ∃l | existsΓ(ss) ∧ existsΓ(sd)

∧ l ∈ slinks(ss) ∧ slinkdst(l) = usd

false otherwise

In addition to the directed variant we also define an undirected variant
areRelatedΓ : Σ × Σ 7→ BOOL that indicates whether two siles are related,
regardless of the direction of the slink:

areRelatedΓ(sa, sb) =


true if areDirectedRelatedΓ(sa, sb) = true

∨ areDirectedRelatedΓ(sb, sa) = true

false otherwise

3.4 Sile Selection Operators

Based on the existence operators, we can define operators that select siles based
on specific criteria. Selection operators are always applied to a base set of siles
and return a subset of this set. This subset contains only siles that fulfill specific
criteria.

The definition of the selection operators based on the existence predicate
is straightforward; basically it is constituted by wrapping each annotation ex-
istence predicate by an operator that returns all siles si ∈ Σ for which the
respective existence predicate is true. Thus we give here only a list of all oper-
ators without further explanation.

19

TagSiles : P(Σ)× T 7→ P(Σ)
TagSiles(S, t) = {si ∈ S | hasTag(si, t) = true}

CategorySiles : P(Σ)× C 7→ P(Σ)
CategorySiles(S, c) = {si ∈ S | hasCategory(si, c) = true}

AttributeNameSiles : P(Σ)× A 7→ P(Σ)
AttributeNameSiles(S, a) = {si ∈ S | hasAttributeName(si, a) = true}

AttributeV alueSiles : P(Σ)× A 7→ P(Σ)
AttributeV alueSiles(S, a) = {si ∈ S | hasAttributeV alue(si, a) = true}

AttributeNameV alueSiles : P(Σ)× A 7→ P(Σ)
AttributeNameV alueSiles(S, a) = {si ∈ S | hasAttributeNameV alue(si, a) = true}

AttributeSiles : P(Σ)× A 7→ P(Σ)
AttributeSiles(S, a) = AttributeNameV alueSiles(S, a)

SlinkNameSiles : P(Σ)× L 7→ P(Σ)
SlinkNameSiles(S, l) = {si ∈ S | hasSlinkName(si, l) = true}

SlinkDestinationSiles : P(Σ)× L 7→ P(Σ)
SlinkDestinationSiles(S, l) = {si ∈ S | hasSlinkDestination(si, l) = true}

SlinkSiles : P(Σ)× L 7→ P(Σ)
SlinkSiles(S, l) = {si ∈ S | hasSlink(si, l) = true}

DirectedRelatedSiles : P(Σ)× Σ 7→ P(Σ)
DirectedRelatedSiles(S, src) = {si ∈ S | areDirectedRelated(src, si) = true}

RelatedSiles : P(Σ)× Σ 7→ P(Σ)
RelatedSiles(S, d) = {si ∈ S | areRelated(si, d) = true}

Each of these operators can be applied to a given base set of siles S and
returns a result set of siles. This base set could, for instance, be derived from
the given context of interpretation: based on the selection of the base set, either
only hosted siles (S = ΣΓh), referenced siles (S = ΣΓr), or the full set of siles
S = ΣΓ = ΣΓh ∪ ΣΓr can be used as base set. Alternatively, the operators can

20

be arbitrarily nested in order to form more expressive queries. The following set
of boolean operators can be used to state combinations of selection operators:

and : P(Σ)× P(Σ) 7→ P(Σ) and(S1, S2) = S1 ∩ S2

or : P(Σ)× P(Σ) 7→ P(Σ) or(S1, S2) = S1 ∪ S2

not : P(Σ) 7→ P(Σ) not(S) = {si | si ∈ Σ ∧ si /∈ S}

4 Summary

In this section we have discussed the abstract sile model. Its basic constituents
are siles, which are units of digital contents, and different types of annotations
that can be attached to siles: tags are plain, unstructured keyword strings;
categories are formally specified classes which are identified by a unique id; at-
tributes are typed name/value pairs, and slinks are labelled connections between
siles. Furthermore we have defined spects that are a lightweight notion for onto-
logical knowledge, and our understanding of a repository ; i.e., a logically closed
unit that hosts a set of siles.

The presented query framework for sile data covers all static elements of the
sile data model, which were introduced in the previous chapter. It allows one
to formulate expressions that evaluate the state of siles and their annotations,
i.e., tags, categories, attributes, and slinks. As such it is appropriate to model
information needs that arise in concrete applications, and it is suitable to retrieve
sile entities that fulfil certain criteria.

However, the model exposes the following limitations:

1. Restricted Domain — The query algebra can be only applied to siles,
not to other elements of the sile model. It can not be used to query for
annotations; e.g., it is not possible to retrieve a list of all tags, or to query
which rules are defined within a spect.

2. No Joins — The query algebra defines no possibility to join objects; e.g.,
it is not possible to query for siles that share common, equal annotations.

3. Unspecified Data Type Semantics — Attribute annotations contain a URI
that identifies the attribute’s data type, i.e., the way its value has to be
interpreted. Since the query algebra abstracts over concrete data types, it
does not define semantics for this interpretation; for instance, it does not
specify an ordering for data type values, or arithmetic operators.

4. No Aggregate Functions — The algebra does not specify aggregate func-
tions, thus it is not possible to e.g., count the number of siles that fulfil a
certain criterion.

We are aware of the fact that the lack of these features may cause problems
for certain information needs, and plan to further extend the query language in
the future in order to cover additional use cases. Nevertheless we do not want
to abandon our goal of providing a model and a query algebra that are simple to
understand and to use, and this goal must be considered when designing model
extensions.

21

References

[AMMH07] Daniel J. Abadi, Adam Marcus, Samuel Madden, and Katherine J.
Hollenbach. Scalable Semantic Web Data Management Using Ver-
tical Partitioning. In Proceedings of the 33rd International Confer-
ence on Very Proceedings of the 33rd International Conference on
Very Large Database (VLDB 2007), pages 411–422, 2007.

[BHLT06] Tim Bray, Dave Hollander, Andrew Layman, and Richard Tobin.
Namespaces in XML (Second Edition) (W3C Recommendation 16
August 2006). World Wide Web Consortium, 2006. Available at
http://www.w3.org/TR/REC-xml-names/.

[BLFM05] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource
Identifier (URI): Generic Syntax (RFC 3986). Network Working
Group, January 2005.

[Cor] NudgeNudge Corp. Punakea – Make Tags come True.

[DB99] John R. Douceur and William J. Bolosky. A Large-scale Study of
File-system Contents. In Proceedings of the 1999 ACM SIGMET-
RICS International Conference on Measurement and Modeling of
Computer Systems, pages 59–70, New York, NY, USA, 1999. ACM
Press.

[GHM+07] Tudor Groza, Siegfried Handschuh, Knud Moeller, Gunnar
Grimnes, Leo Sauermann, Enrico Minack, Cedric Mesnage, Mehdi
Jazayeri, Gerald Reif, and Rosa Gudjonsdottir. The NEPOMUK
Project - On the Way to the Social Semantic Desktop. In Tas-
silo Pellegrini and Sebastian Schaffert, editors, Proceedings of I-
Semantics’ 07, pages pp. 201–211. JUCS, 2007.

[Hay04] Patrick Hayes. RDF Semantics (W3C Recommendation 10 Febru-
ary 2004). World Wide Web Consortium, 2004.

[JW05] Ian Jacobs and Norman Walsh. Architecture of the World Wide
Web, Volume One (W3C Recommendation 15 December 2004).
World Wide Web Consortium, 2005. Available at http://www.
w3.org/TR/webarch/.

[KBH+03] David Karger, Karun Baksxhi, David Huynh, Dennis Quan, and
Vineet Sinha. Haystack: A Customizable General-Purpose Infor-
mation Management Tool for End Users of Semistructured Data.
In Proceedings of the 2nd Biennal Conference on Innovative Data
Systems Research (CIDR 2005), 2003.

[KC04] Graham Klyne and Jeremy J. Carroll. Resource Description Frame-
work (RDF): Concepts and Abstract Syntax (W3C Recommenda-
tion 10 February 2004). World Wide Web Consortium, 2004.

[MH07] Knud Möller and Siegfried Handschuh. Towards a Light-Weight
Semantic Desktop. In Siegfried Handschuh and Gerald Reif, editors,
Proceedings of the Semantic Desktop Design Workshop at ESWC
2007, pages 36–46, 2007.

22

http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/webarch/
http://www.w3.org/TR/webarch/

[MSSvE07] Antoni Mylka, Leo Sauermann, Michael Sintek, and Ludger
van Elst. NEPOMUK Ontologies. Technical report, NEPO-
MUK Project Consortium, 2007. Available at http://www.
semanticdesktop.org/ontologies.

[OG92] James W. O’Toole and David K. Gifford. Names Should Mean
What, Not Where. In Proceedings of the 5th ACM SIGOPS Euro-
pean Workshop on Models and Paradigms for Distributed Systems
Structuring, pages 1–5, New York, NY, USA, 1992. ACM Press.

[RSK04] Pamela Ravasio, Sissel Guttormsen Schär, and Helmut Krueger. In
Pursuit of Desktop Evolution: User Problems and Practices with
Modern Desktop Systems. ACM Transactions on Computer-Human
Interaction (TOCHI), 11(2):156–180, 2004.

[Sch06] Bernhard Schandl. SemDAV: A File Exchange Protocol for the
Semantic Desktop. In Proceedings of the Semantic Desktop and
Social Semantic Collaboration Workshop, volume 202, Athens, GA,
USA, November 2006. CEUR Workshop Proceedings.

[SH08] Leo Sauermann and Dominik Heim. Evaluating Long-Term Use of
the Gnowsis Semantic Desktop for PIM. In The Semantic Web —
ISWC 2008, volume 5318 of LNCS, pages 467–482. Springer, 2008.

[SH09] Bernhard Schandl and Bernhard Haslhofer. The Sile Model – A
Semantic File System Infrastructure for the Desktop. In Proceed-
ings of the 6th European Semantic Web Conference (ESWC 2009),
Heraklion, Greece, 2009.

23

http://www.semanticdesktop.org/ontologies
http://www.semanticdesktop.org/ontologies

