
D I S S E R T A T I O N

Titel der Dissertation

An Infrastructure for the Development of
Semantic Desktop Applications

Verfasser

Bernhard Schandl

Angestrebter akademischer Grad

Doktor der technischen Wissenschaften (Dr. techn.)

Wien, im August 2009

Studienkennzahl lt. Studienblatt: A 786 881
Dissertationsgebiet lt. Studienblatt: Informatik
Betreuer: Univ.Prof. Dr. Wolfgang Klas
Zweitbetreuer: Univ.Prof. DDr. Gerald Quirchmayr

ii

Abstract

The extent to which our daily lives are digitized is continuously growing. Many of our every-
day activities manifest themselves in digital form; either in an explicit way, when we actively
use digital information for work or spare time; or in an implicit way, when information is in-
directly created or manipulated as a consequence of our action. A large fraction of these data
volumes can be considered as personal information, that is, information that has a certain class
of relationship to us as human beings.

The storage and processing capacity of the devices that we use to interact with these data
has been enormously increasing over the last years, and we can expect this development to
continue in the future. However, while the power of physical data storage is permanently
increasing, the development of logical data organization power of personal devices has been
stagnating since the invention of the first personal computers.

Still, hierarchical file systems are the de-facto standard for data organization on personal
devices. File systems represent information as a set of discrete data units (files) that are ar-
ranged as leaves on a tree of labeled nodes (directories). This structure, on the one hand, can
be easily understood by humans, since the separation into small information units supports
the manual manageability of the personal data space, in comparison to systems that employ
continuous data structures. On the other hand, hierarchical structures suffer from a number of
deficiencies which have negative impact on the quality of personal information management,
and it lacks of expressive mechanisms which in turn would help to improve information re-
trieval according to user needs.

Significant research effort has been invested in order to improve the mechanisms for per-
sonal information management. The resulting works represent potential alternatives or sup-
plements for systems in place, but sometimes run the risk of over-formalizing information
management; a problem that is especially apparent in situations where a non-expert end user
is the direct consumer of such services.

The contribution of this thesis is to present an alternative organizational model for man-
agement of personal data that strikes a balance between the unstructured nature of file systems
and the highly formal characteristics of logic-based systems. After a comparative analysis of
the current situation and recent research effort in this direction, it describes this organizational
metaphor on three levels: First, on a conceptual level, it discusses an abstract data model, a
corresponding query algebra, and a set of abstract operations on this data model. This for-
mal framework is suitable to represent common data structures and usage patterns that can be
found in personal information management, but on the same time does not enforce a complete
paradigm shift away from established systems. Second, on a representation level, it discusses
how this model can be efficiently processed, stored, and exchanged between different systems.
Third, on an implementation level, it describes how concrete realizations of this data model
can be built and used in various application scenarios.

iii

iv

Zusammenfassung

In einem permanent wachsenden Ausmaß wird unser Leben digital organisiert. Viele tag-
tägliche Aktivitäten manifestieren sich (auch) in digitaler Form: einerseits explizit, wenn digi-
tale Informationen für Arbeitsaufgaben oder in der Freizeit entstehen und verwendet werden;
andererseits auch implizit, wenn Informationen indirekt, als Konsequenz unseres Handelns,
erzeugt oder manipuliert wird. Ein großer Teil dieser Informationsbestände ist persönlicher
Natur, d.h., diese Information hat einen bestimmten Bezug zu uns als Person.

Die Speicher- und Rechenleistung der Geräte, mit denen wir üblicherweise mit solchen
persönlichen Daten interagieren, wurde in den letzten Jahren kontinuierlich erhöht, und es
besteht Grund zur Annahme, dass sich diese Entwicklung in der Zukunft fortsetzt. Während
also die physische Leistung von Datenspeichern enorm erhöht wurde, hat deren logische und
organisatorische Leistung seit der Erfindung der ersten Personal Computer praktisch stag-
niert.

Nach wie vor sind hierarchische Dateisysteme der de-facto-Standard für die Organisation
von persönlichen Daten. Solche Dateisysteme repräsentieren Daten als diskrete Einheiten
(Dateien), die Blätter eines Baums von beschrifteten Knoten (Verzeichnisse) darstellen. Die
Unterteilung des persönlichen Datenraums in kleine Einheiten unterstützt die Handhabung
solcher Strukturen durch den Menschen, allerdings können viele Arten von Organisationsin-
formation nicht adäquat in einer Baumstruktur dargestellt werden. Dies wirkt sich negativ
auf die Qualität der Datenorganisation aus.

Aktuelle Forschung im Bereich Personal Information Management liefert zwar mögliche
Ansätze, um hierarchische Systeme zu ersetzen, tendiert jedoch manchmal dazu, die Arbeit
mit Information überzuformalisieren. Dies ist insbesondere kritisch, weil der durchschnit-
tliche Anwender von PIM-Systemen über keine Erfahrung mit komplexen logischen Systemen
verfügt.

Diese Arbeit präsentiert ein alternatives Organisationsmodell für persönliche Daten, die
darauf abzielt, eine Balance zwischen der unstrukturierten Charakteristik von Dateisystemen
und den formalen Eigenschaften von logik-basierten Systemen zu finden. Nach einer ver-
gleichenden Studie der aktuellen Forschungssituation im Bereich Semantic Desktop und Per-
sonal Information Management wird dieses Modell auf drei Ebenen vorgestellt. Zunächst
wird ein abstraktes Modell sowie eine Abfrage-Algebra in Form von abstrakten Operationen
auf dieses Modell vorgestellt. Dieses Modell erlaubt die Abbildung von im Personal Informa-
tion Management gebräuchlichen Daten, aber erfordert keine völlige Umstellung auf Seiten
des Benutzers. Anschließend wird dieses abstrakte Modell in konkreten Repräsentationen
übergeführt, und es wird gezeigt, wie diese Repräsentationen effizient bearbeitet, gespeichert,
und ausgetauscht werden können. Schließlich wird die Anwendung dieses Modells anhand
von konkreten prototypischen Implementierungen gezeigt.

v

vi

Acknowledgements

I would like to thank my supervisor, Prof. Dr. Wolfgang Klas, who thoughtfully guided and
helped me throughout the work on this thesis, and my second advisor, Prof. DDr. Gerald
Quirchmayr, for his kind support and encouragement.

I gratefully thank my parents who supported me throughout my years of study in every
aspect of life, and who encouraged me to start this thesis.

I would like to express my special appreciation to my former colleagues Stefan, Diman,
and Arash, who did a great job in implementing parts of the work presented in this thesis,
and always provided a strong wall to reflect my ideas and fallacies. I would like to thank my
colleagues Stefan, Wolfgang, Bernhard, Niko, and Stefan, with whom I had the pleasure to
work with during the past years, and who provided not only excellent ideas and input, but
made work really fun. Equally I would like to thank Jan, Peter, Manuela, Diana, and Ramona
for keeping the department running.

Finally, from the deepest of my heart I thank my love Anna, who endured life with a PhD
researcher without any complaints throughout the years. I dedicate this work to my beloved
son Laurin, who constantly reminds me that there are much more important things in life than
a PhD thesis.

vii

viii

Contents

1 Introduction 1
1.1 Motivating Scenarios . 2
1.2 Research Methodology . 4
1.3 Contributions . 4
1.4 Organization . 5

I Background and Related Work 7

2 A Comparative Study on Technologies for Desktop Data Management 9
2.1 File Systems . 9
2.2 The Semantic Web: Expressing Knowledge about Resources 26
2.3 Semantic Technologies for the Desktop . 33

II Concepts 47

3 Siles: An Abstract Model for Semantic Representation of Data Assets on the Desktop 49
3.1 Design Considerations . 49
3.2 Data Model . 56
3.3 A Query Framework for Siles . 61
3.4 Summary . 67

4 An Application Programming Interface for Siles 69
4.1 API Specification . 69
4.2 Usage Examples . 81
4.3 Summary . 84

III Implementation 85

5 Digital Manifestation of Siles 87
5.1 A Core Ontology for the Sile Model . 87
5.2 Representation of Sile Data as RDF . 91
5.3 Transforming Sile Filters to SPARQL Queries . 95
5.4 Discussion of Alternative Representations . 104
5.5 Summary . 107

6 Serializing Sile Data 109

ix

6.1 Silepacks: Transportable Sile Containers . 110
6.2 Sile Systems as Part of the Web of Data . 113
6.3 Distributing Sile Systems via XML-RPC . 115
6.4 Enriching WebDAV with Sile Annotations . 127
6.5 Summary . 131

7 Case Studies of Sile Repository Implementations 133
7.1 The SemDAV Server: A Triple Store-based Sile Repository 133
7.2 silefiles: A Semantic File System Extension . 138
7.3 SileMail: Semantic Extensions to E-Mail . 140
7.4 Summary . 141

8 The Semplorer: A User Interface for Sile Management 143
8.1 Design Considerations . 144
8.2 Interface Design . 146
8.3 Summary . 152

IV Conclusions 153

9 Discussion and Experimental Results 155
9.1 Comparison and Differentiation . 155
9.2 Experimental Results . 158

10 Conclusions and Future Directions 163
10.1 Summary and Conclusions . 163
10.2 Future Research Directions . 164

x

Chapter 1

Introduction

The quality of an organization can never exceed the quality of the
minds that make it up. — Harold R. McAlindon

Personal computing devices are permanent companions in our daily lives, for both pri-
vate and professional activities. Many aspects of our lives involve the usage of such devices,
including personal desktop computers and notebooks, mobile phones, multimedia or naviga-
tion devices. Communication is largely done via e-mail or instant messaging; videos, audio,
and pictures are digitally recorded and stored; financial transactions are carried out online;
discussions are conducted via mailing lists or in web forums; work groups and projects are
coordinated using digital calendars; and so forth.

In addition to their original purpose, computing, storage has become a most important ser-
vice of said devices. With the increasing availability and decreasing cost of digital memory
capacity, a trend towards keeping every piece of information in digital form can be observed.
With the introduction of digital signatures and encryption it has become even more easy and
safe to transfer and store content in digital form, and the need to delete information is con-
stantly reduced.

In the field of personal information management, the effects of increased storage capac-
ity are even more obvious: the size of a typical digital music collection can easily go into the
thousands, quite often a mail account holds a 7-digit number of messages, and a typical home
directory of a research assistant contains up to 100,000 files. Facing such numbers, the need
emerges for management mechanisms that allow humans to cope with such amounts of data,
and to search and retrieve information if demanded. Metadata, i.e., descriptive information
about data, can be used to organize a person’s information space; however efficient metadata
management requires infrastructures in the form of data models, meta data models, and cor-
responding access algorithms.

Hierarchical file systems have been the de-facto standard for personal data management since
the invention of the first personal computers in the late 1970s. For decades, hierarchical direc-
tory structures have been used to organize, describe, and retrieve files, especially in the do-
main of personal information management. One reason for this wide spreading lies in the fact

1

that files are highly generic storage containers: they are capable of storing basically any kind
of data in any kind of format. However, current file systems do not provide means for repre-
senting the semantics of files, although such functionality would greatly increase the quality of
data organization and, consequently, usability of desktop systems.

There exist facilities to annotate files in all current file systems, but these suffer from their
lack of a common agreement on their syntax and semantics. This renders it difficult to ex-
change annotations between systems, and to implement applications that utilize these features
in a way that is helpful to end users. The recent development of Semantic Web technologies,
i.e., generalized mechanisms to convey meaningful information in distributed systems, is a
promising approach towards such information exchange. The main building block of the Se-
mantic Web, the Resource Description Framework (RDF), is a graph-based meta model to
represent arbitrary kinds of information, and a number of languages exist that can be used
to describe the vocabularies used in these representations. However, we identify two main
problems with respect to the applicability of Semantic Web technologies to the problem of in-
formation management on the desktop: (1) the inherent complexity of semantic technologies
requires application developers and users to adopt to new paradigms of information repre-
sentation; and (2) Semantic Web technologies do not comprise the representation of actual
content; instead they restrict themselves to the description of abstract resources whose actual
contents are not further specified. This leads to two main problems: first, desktop application
developers are forced to adopt new modeling paradigms; and second, desktop resources and
their semantic annotations cannot be seamlessly processed. Both problems put additional ef-
fort on developers, which hinders a widespread adoption of semantic technologies in desktop
environments.

In this thesis, we aim to solve these problems by considering storage and retrieval of con-
tent and descriptive metadata in an unified manner, and to integrate elements from semantic
technology and elements from file systems into a single information representation model.
Such an expressive data model may serve as a common basis for desktop applications to store
and manage their data. Similar to the currently observable extension of the World Wide Web
from a web of documents to a web of data, desktop systems will shift from heaps of unrelated
binary objects (e.g., hierarchical file systems) to miniature semantic webs; i.e., structurally rich
information meshes that are present on every computing device. It is the goal of this thesis
to discuss such a data model, to convey it to actual artifacts that can be used by application
developers, and to show the feasibility of these artifacts by the means of a number of example
implementations.

1.1 Motivating Scenarios

The potential application scenarios for semantic information systems are manifold: starting
from the possibility to exchange semi-structured information between heterogeneous applica-
tions and systems, via the integration of data from unknown sources, over modeling applica-
tion domains as ontologies and validating data structures, to the full exploitation of reasoning,
rules, and inference of implicit knowledge. Several works have described possible use cases
and scenarios where semantic technologies bring additional benefit in comparison to other
technologies1.

In the following we describe three application scenarios by which we indicate the need for,
and the benefits of a semantic infrastructure for the desktop, as outlined above. These scenar-
ios are neither complete nor representative for every possible situation: as the initial position

1A number of references can be found at http://www.w3.org/2001/sw/sweo/public/UseCases/.

2

http://www.w3.org/2001/sw/sweo/public/UseCases/

of computer users differs, so do their requirements, and so do the applications they are work-
ing with. However we think that this list covers a significantly large spectrum of applications,
ranging from non-expert end users, who are not willing or able to intensively engage in se-
mantics, to high-end knowledge workers who are able to define their own, highly complex
personal ontologies. Of course, none of these scenarios are realizable by only instantiating
the semantic infrastructure described in this thesis: in all cases, the infrastructure must be uti-
lized by specialized applications that are developed for specific usage scenarios, and must be
customized by appropriate domain ontologies.

1.1.1 Scenario 1: Enhanced Electronic Communication

An increasing extent of personal communication is carried out via electronic channels, the
most popular of which are e-mail and instant messaging (IM). Increasingly, Voice-over-IP
(VoIP) services integrate the formerly analogous world of telephony with other digital ser-
vices. A typical user of these services owns multiple mailboxes (professional and private),
several IM accounts for different providers, and regularly uses VoIP services. Most of these
services and applications are used via the personal computer or laptop; some of them may be
used on mobile devices. However, currently these services and applications do not integrate:
there exists no materialized digital connection between a received mail and a subsequently
issued phone call. Neither do these services connect themselves to other information already
present: current desktop infrastructure does not provide mechanisms to model that a doc-
ument has been discussed during an IM conversation, and thus it is not possible to easily
retrieve the transcript of this conversation when the document is revised.

A semantic infrastructure, if supported by the respective communication applications,
could allow the user to formulate such simple relationships and therefore create memory
hooks for later retrieval. Many such relationships could also be generated automatically: an
e-mail application could annotate files sent as attachments with the corresponding recipient
and subject, or it could send an updated version of a document via e-mail to all participants
of the previous conference call, where the document was discussed, with only a few mouse
clicks.

1.1.2 Scenario 2: Wiki-driven Personal Information Management

Wikis are powerful tools for knowledge capture. Large data sources have been created using
wiki technology (e.g., Wikipedia2), and different approaches how to merge the wiki world and
the semantic world have been proposed: DBpedia [ABK+07], for instance, exports contents
from Wikipedia as RDF and thus enables applications to use these data, and Semantic Wikis
[VS06] extend the structure and syntax of wikis so that articles can be semantically annotated
and related seamlessly within the editing process. Additionally, it has been shown that the
usage of (semantic) wikis can enhance not only collaborative, but also personal information
management [OVBD06].

A semantic personal wiki that uses a shared, desktop-wide infrastructure could help users
to manually annotate information items: for instance, unstructured items like images, videos,
or plain text notes that are stored in a semantic file system are accessible by the wiki instance
and can be further described within wiki articles. Also it allows the user to directly relate
textual artifacts (e.g., short notes or large documents) to other resources on her desktop.

2http://www.wikipedia.org

3

http://www.wikipedia.org

1.1.3 Scenario 3: Semantic Software Development

Software development is a complex process and involves large numbers of resources of dif-
ferent kinds. This includes design artifacts, source code documents, mock-ups, bug issues,
referenced libraries, team-internal communication, and so forth. During the development pro-
cess it is hard to track the relationship between these different information items: these may
be distributed across the members of the development team and across different services and
platforms, and it is often difficult to maintain different versions of artifacts and the relation-
ships between them.

A semantically enhanced suite of development tools could automatically relate and anno-
tate artifacts with corresponding information and thus help the team of developers to keep
track of the project progress. When stored in shared repositories, information becomes avail-
able to all project members. Developers could, based on a domain ontology, be notified about
new tasks, artifacts, or patches to be applied, and thus keep up-to-date with the co-developers.
Similarly, project management resources (e.g., deadlines, work package management, or re-
source planning) can be directly integrated into the development environment.

1.2 Research Methodology

In this thesis we apply the design-science research method as described in [HMPR04]:

The design-science paradigm seeks to extend the boundaries of human and organizational
capabilities by creating new and innovative artifacts. [...] IT artifacts are broadly defined as
constructs (vocabulary and symbols), models (abstractions and representations), methods
(algorithms and practices), and instantiations (implemented and prototype systems).

We build our model definition on the requirements derived from an analysis of current ap-
proaches in desktop information management. From this model, we derive further artifacts;
namely, a concrete application programming interface, a concrete representation of the model
using the RDF framework, and several methods to serialize the data model. We show the
feasibility of the model and its derived artifacts by discussing a number of reference imple-
mentations, which include data storage components based on different data backends, as well
as a prototypical user interface.

1.3 Contributions

To reach these aims, we make the following contributions in this thesis:

1. We carry out a comprehensive analysis on the existing mechanisms for data organiza-
tion on the personal desktop. The scope of considered subjects ranges from hierarchical
file systems, which are the predominant metaphor for personal data management, via
lightweight extensions to files and the Semantic Web technology family, which seeks to
enable the formulation and exchange of machine-meaningful information on the Web, to
a number of approaches that apply these semantic technologies to the desktop and the
personal information management domain.

2. From this analysis we draw a number of conclusions and requirements for a data model,
which we call the sile model, that is capable of representing a wide range of personal
information in a semantically enriched way. We present this model and a corresponding
query framework on an abstract, conceptual level.

4

3. To build a solid basis for implementations of our model, we specify a generic, language-
independent application programming interface that covers static and dynamic aspects
of our model and its query algebra. This specification allows for the implementation of
the envisioned data model in a number of common programming languages.

4. We further anticipate implementations of our models by defining rules that specify how
the elements of our data model can be mapped to concrete representations, namely, the
Semantic Web technology family around RDF and SPARQL. Through the application of
these rules, we provide directions for implementations of our data model, and we enable
sile data to seamlessly integrate with other data sources on the Web of Data.

5. We outline alternative serialization rules for our data model which can be used to dis-
tribute sile systems, and to transport data in the form of self-contained files. These se-
rialization rules help users to work with data represented as siles even if they are not
working with specialized, model-aware applications.

6. To show the feasibility of our approach, we discuss three prototypical implementations
that store data according to the sile model, using different storage back-ends and ex-
posing varying functionalities. These implementations also show how data sources that
are relevant for personal information management can be wrapped and interpreted as
semantically rich objects.

7. Finally, we present a user interface implementation that allows users to work with our
data model using interaction metaphors similar to these found in typical file browsers.
With this prototype we enable end users to experience the benefits of semantic infor-
mation modelling without the need to cope with the exact details of the data model, its
physical representation, or storage implementations.

1.4 Organization

This thesis is structured as follows. In Chapter 2 we give a comprehensive analysis on the
current state of the art in the field of organization mechanisms for desktop data. We ana-
lyze the capabilities of the currently predominant storage structure, the file system, as well as
approaches that aim to enrich file system with semantic features. Finally, we analyze recent
research effort in the area of the semantic desktop.

From this analysis, we derive a number of requirements and design goals for our envi-
sioned data model (Chapter 3). We propose a formal model for the representation of personal
information that is sufficiently generic to represent content together with structured, semi-
structured, and unstructured annotations. In addition to the static data model, we describe an
abstract framework for modelling queries on this data model, which can be used to retrieve
information objects that fulfill certain criteria.

Chapter 4 introduces a concrete manifestation of this data model in the form of an applica-
tion programming interface (API). This API establishes a common language for developers of
desktop applications and represents the elements of the sile data model in a way that allows
them to easily implement it in common programming languages.

One of our goals is to enable data interoperability between the desktop and the Semantic
Web; thus Chapter 5 describes how sile data can be represented by the lingua franca of the web
of data, RDF. Using this representation, sile data can be published on the Semantic Web and
can be queried using standardized query languages like SPARQL, for which transformation
rules for filter expressions are discussed. This chapter also introduces a formal ontology that

5

represents the core model elements of the sile model, and gives directions for the mapping
between the sile model and other modelling paradigms.

Chapter 6 describes three methods how sile data can be serialized in order to exchange sile
data between agents, each of which targets different application scenarios and requirements.

Prototypical implementations of the sile model are discussed in Chapter 7, while in Chap-
ter 8, we present the requirements for, and the design and implementation of a generic user
interface for sile data. Preliminary experience with this user interface, as well as a discus-
sion regarding the quantitative performance of our system implementation can be found in
Chapter 9.

Finally, in Chapter 10 we conclude our work with a qualitative analysis of our approach
and discuss future research directions based on the results of this thesis.

6

Part I

Background and Related Work

7

Chapter 2

A Comparative Study on
Technologies for Desktop Data
Management

Honest criticism is hard to take, particularly from a relative, a
friend, an acquaintance, or a stranger. — Franklin P. Jones

In this section we analyze the current state of the art in the field of data management for
desktop data. We start this analysis by discussing the capabilities of current desktop file sys-
tems, as well as typical file system user interfaces. Second, we introduce the Semantic Web
technology family and discuss its suitability for the representation of personal information.
Finally, we give an overview and a comparative analysis of recent research projects that apply
semantic technologies to the problem of personal information management.

2.1 File Systems

File systems, as they are available in common desktop operating systems, provide the under-
lying foundation for data management on the user desktop. Files and file systems are highly
generic which makes them applicable for a manifold of usage scenarios. In the following
we analyze the data management mechanisms that typical file systems provide, and discuss
proposed extensions in terms of data models and user interfaces that aim to increase the ex-
pressivity and usability of file collections.

2.1.1 Nomenclature

In the following we will give definitions of terms to clarify the meaning that we assume in this
work. These terms are often used in literature although they are only weakly defined. The

9

IEEE Standard 1003.1 [JCS+04] (informally called Portable Operating System Interface, POSIX)
gives an informal definition of files and file systems that serve as common agreement on file
interoperability, and many desktop operating systems are fully or mostly compliant to this
standard.

However this standard does not cover aspects of file metadata management. Thus we give
our own definitions in the following, for which we restrict ourselves to the context of this
chapter, management of file metadata on the user desktop. Hence we skip all terms that deal
with the physical layer (e.g., distribution of file system data on physical storage devices) and
concentrate on the parts of the file system that are visible to end users.

File A file is a collection of contextually related data or information, expressed in machine-
processable digital form, and read- and/or writeable by applications. Usually, a file is
considered as a single, self-contained unit by a processing entity, e.g., an application or a
human user.

File Type A file usually adheres to a file type which describes a schema for its internal data
structure, i.e., it describes how the file content is to be interpreted and processed. The
file type may be formally specified (e.g., by a published standard like XHTML or JAR)
or implicitly defined through the applications that create, read, and modify such files, as
it is often the case with proprietary file types.

File Contents The data that are stored within a file, in a format that conforms to the structure
and rules alleged by the file type. File systems do not cope with the inner structure of
file contents, since files are treated as atomic data units. As there may exist an arbitrary
number of file types, processing functionalities for file contents is however often pro-
vided through a system-wide plugin framework, e.g., for content analysis and metadata
extraction.

File Metadata The set of information that is associated with a file but not represented within
the file contents. Typical representatives of file metadata are the file name, its path, its
type, the date of creation and last update, and access permissions. Mostly, the file meta-
data is used by the file system to manage files and directories. Many file systems provide
designated mechanisms for handling user- and application-defined metadata.

File System A file system consists of a collection of files that are organized within a single
organizational entity, as well as the logical and physical methods used to read and write
files and their associated metadata on this medium. Usually the services of file systems
are exposed to applications via defined interfaces that are part of the operating system’s
API, and make use of services provided by drivers for physical devices.

Overlay File System A layer that extends the upper interface of a file system with additional
services, e.g., for the management of additional metadata. Often these additional ser-
vices are implemented by reusing or adapting facilities that are present in the underlying
file system and are therefore dependent on its features.

File System User Interface (File System UI) The paradigms and concepts that render the el-
ements of file systems to the user (i.e., a human being) and allow her to access the data
stored in the file system, in particular the file metadata. Typical file system user in-
terfaces are graphical file browsers and command line interfaces. Often, graphical file
system user interfaces are referred to as file browsers or file managers.

10

File System Application Programming Interface (File System API) The means and methods
that a file system provides to applications, enabling them to make use of files, file con-
tents, and file metadata. The file system API may provide more sophisticated features
than the file system UI because the latter must be oriented towards the human being,
which makes it more difficult to reflect and manipulate complex data structures.

2.1.2 Metadata Support in Current File Systems

The file system is an integral part of every operating system for desktop computers. In the
file system the most relevant components for information management are those that deal
with file metadata. The numerous other file system components (e.g., basic I/O management,
distribution of data blocks onto physical devices, and so forth) are of secondary relevance
in the context of this paper; consequently we describe only file systems that provide explicit
support for semantic features or file metadata. We also restrict ourselves to general-purpose
file systems that can be found on consumer desktops; an overview of all analyzed file systems
is given in Table 2.1.

File Allocation Table (FAT)

The standard file systems of MS-DOS-based operating systems (FAT) supports file metadata
only in a very restricted manner. Files are identified by the combination of the hierarchical
path name and a name, plus an extension. In the FAT system the file system metadata struc-
ture consists of directory entries that are 32 bytes long. In the original version, file names can
have a length of up to 8 characters plus a 3-character extension. FAT was later extended to
support longer file names: depending on the implementation, long file names may be stored
in additional directory entries, and an additional mechanism links them to the file system en-
try they actually belong to. File metadata are limited to a fixed set of attributes (including
archived, hidden, read-only, and time and date of creation and last modification), and there
exists no search index and no system-wide means of breaking the strictly hierarchical struc-
ture. With FAT32, an extension to FAT introduced in 1996, larger files can be managed than
with FAT, but no additional features with respect to file metadata are provided.

New Technology File System (NTFS)

The NT File System was introduced together with Windows NT in 1993 and has since become
the standard file system of the Windows operating system, including the recent XP and Vista
releases. Besides many improvements in comparison to FAT (including advanced security,
support for quotas, compression, sparse files, and encryption) the storage strategy for files
was fundamentally changed: NTFS stores all file data and metadata, as well as the file system
structure itself, in the form of file attributes, and it also provides means to attach user- or
application-defined attributes to files. Alternate Data Streams (ADS) [BB04] are a special form
of such attributes: each file in NTFS may have—in addition to its primary data stream that
holds the file contents—an arbitrary number of such alternate streams. These may be used to
store additional, application- or operating-system-specific metadata, and are invisible when
the actual file content is accessed. In principle, an ADS is a file that is attached to another file.
To access an alternate data stream, the file name of the primary stream is extended by adding
an arbitrary sub-file name.

However, there are no restrictions or formalisms on the syntax and semantics of the naming
and contents of attributes and alternate data streams, and no system-wide index for their con-

11

FAT / FAT32 NTFS HFS HFS+ ext3

File names and pathsFile names and paths

Year of Publication 1987 1993 1985 1998 1999

Native OS MS-DOS Windows NT Mac OS Mac OS Linux

File names and pathsFile names and paths

Max. File Name Length 255 254 31 255 255

Max. Path Length 80 / 260 (1) 32.767 unlimited (2) unlimited (2) unlimited (2)

Case Sensitive no no no optional yes

Case Preserving partial yes ? yes yes

Predefined MetadataPredefined Metadata

File Owner - ! - ! !

Creation Time ! ! ! ! -

Last Access Time ! ! - ! !

Last Modification Time ! ! - ! !

Extensible MetadataExtensible Metadata

Extended Attributes - ! - ! !

Multiple Streams / Forks - ! 2 forks ! !

Links - ! ! ! !

Other FeaturesOther Features

Encryption - ! - - -

Compression - ! - - -

(1) depending on OS implementation(1) depending on OS implementation

(2) drivers and OS implementations may impose limits(2) drivers and OS implementations may impose limits(2) drivers and OS implementations may impose limits

Table 2.1: Comparison of file system characteristics

12

tents exists. Moreover, the file system utilities of the operating systems using NTFS (including,
for example, Windows Explorer and Windows Task Manager) have not been designed to sup-
port ADS, thus they are hard to detect and use for the end user [BB04]. This fact may not be
the only reason for the non-usage of ADS in practice, but also for severe security problems:
for instance, private information that is stored in alternate data streams may be imparted to
others by accident.

WinFS

The announce of WinFS1 marked a change in paradigm for Windows-based operating systems:
with WinFS, Microsoft aimed to implement a purely database-based, semantically enriched file
system that should overcome the drawbacks of hierarchical systems. The original design for
WinFS incorporated a database-like architecture and access methods oriented towards rela-
tional query languages; examples for such queries are given, e.g., in [Gri04]. Instead of files,
WinFS was designed to operate with typed items that could be arranged in multiple folders
and exposed attributes according to their type schema. An application could register itself for
notifications on file system changes, and WinFS instances could synchronize themselves with
other instances [NHT+06]. It was also planned to include components into WinFS that analyze
the content of files and make the extracted metadata available to desktop search engines.

However, it is difficult to estimate how WinFS would have looked like, and whether it
would have paved the way for a new data management paradigm on Windows-based desktop
systems: the development of WinFS has been postponed or even cancelled, and it is currently
not clear which features will be implemented and when and how WinFS will be available. The
lack of a proper, stable implementation of WinFS makes it difficult to analyze possible impacts
on applications and its usability both for application developers and end users of this system.

HFS Plus (HFS+) / Mac OS Extended

HFS+ [App00], which is often referred to as Mac OS Extended, supports the concepts of mul-
tiple streams to various extents: in HFS, files are limited to one data fork that holds the actual
file contents, and one resource fork for additional, structured metadata [App93], while HFS+
theoretically supports an arbitrary number of forks for one single file. Originally, the GUI of
Mac OS stored metadata regarding the presentation of the file system to the user (e.g., icons,
positions, etc.) directly within the file. HFS+ additionally uses an attribute file in the form of
a B-tree to store additional descriptive information (e.g., the identifier of the application that
created a file) in the form of attribute/value pairs, which can also be accessed by applications
and users. Usage scenarios and further details about compatibility with other file systems
are given in [Sir05]. With Mac OS X version 10.4, Apple introduced a system-wide index of
file system contents called Spotlight2. Spotlight is able to index files using application-specific
metadata importer plugins and can therefore be extended to search previously unknown file
types and metadata records. Siracusa [Sir05] analyzes the indexing and search performance of
Spotlight, as well as potential sources of user confusion which originate from the inconsistent
integration of Spotlight’s user interface into the operating system and the file manager.

UNIX and Linux File Systems

Depending on the configuration of the respective operating system kernel, common UNIX und
Linux file systems provide support for file system metadata described in the POSIX standard

1WinFS Team Blog: http://blogs.msdn.com/winfs/
2http://developer.apple.com/macosx/spotlight.html

13

http://blogs.msdn.com/winfs/
http://developer.apple.com/macosx/spotlight.html

[JCS+04], including access rights and modification timestamps. Additionally, it is possible to
store extended attributes in implementations of ext2, ext3, and XFS systems. Extended attributes
are pairs of an attribute identifier and a value, where the attribute identifier is separated into
a namespace and a name part which allows the definition of attribute classes for various rea-
sons. Standard namespaces for extended attributes are user, trusted, and system. Beagle3 is
an example for a search engine tool that supports system-wide indexing of file contents and
extended attributes.

Reiser File System

Version 3 of the Reiser file system is the default file system in many UNIX/Linux based operat-
ing systems. It is based on a strictly object-oriented architecture, where interaction with objects
(i.e., files) is delegated to file plug-ins. ReiserFS 4 made major changes to the way the file system
manages metadata: while in ReiserFS 3 file attributes could be attached to a file, in ReiserFS
4 attributes are implemented as self-contained files, similar to Alternate Data Streams. This
allows for orthogonal handling of a variety of file metadata (permissions, timestamps, other
attributes): the same mechanisms that are also used to manage files are used to manage file
metadata.

Be File System

The Be File System [Gia99] is used as the native file system in the Be operating system (BeOS).
It is a hierarchical file system where files can have arbitrary numbers of attributes (i.e., pairs
of names and values). Attribute values may be data typed (int, float, double, string), or may
consist of raw data of any size. For typed attribute values, BeFS automatically indexes the val-
ues using B+-Trees; these values can subsequently be queried by applications using a variety
of operators.

2.1.3 Content-Inherent Metadata

Many file types define storage structures for metadata stored within the file contents. Al-
though this contradicts our definition of file metadata (cf. Section 2.1.1) which requires file
metadata to be stored distinct from the file contents, this has proved to be a passable strategy:
since the interpretation of file contents requires knowledge of its file type, metadata stored
by such a mechanism does not interfere with the file contents. Instead, file-inherent metadata
has the big advantage that is preserved when the file is stored in, or transmitted across, file
systems that are incompatible in terms of their metadata structures.

Specifications for inherent metadata fields exist for a variety of file types. A number of stan-
dards exist for image metadata: for instance, EXIF [JEI02] defines how to integrate metadata
about images (like the camera model, the date and time of taking, and illumination conditions)
into image formats like TIFF and JPEG. In the music domain, MP3 files can contain ID3 tags
describing a piece of music’s artist, song title, year, genre, and so forth. The standard format
for web pages, HTML, provides a facility to include describing information via special META
elements.

A significant effort towards integrating metadata descriptions into files is carried out by
Adobe with the eXtensible Metadata Platform (XMP) specification [Ado05]. Unlike the mecha-
nisms described before, XMP can be regarded as a generic framework for inclusion of metadata
in files of various types. The XMP data model is based on a subset of the RDF language (see

3http://beagle-project.org

14

http://beagle-project.org

Figure 2.1: Pseudo-ontological use of file names and directories in a media library

Section 2.2.1; thus every valid XMP document is also a valid RDF document. In addition to
its data model, XMP defines a number of metadata schemas for various file types, including
paged text, dynamic media (video), and images; and application scenarios, including rights
management and media management. Additionally guidelines describe how to include XMP
descriptions into files of different types, including TIFF, JPEG, PNG, HTML, PDF, and more.
XMP can be regarded as a cross-platform framework for the storage and transport of file-
inherent metadata, and it is currently supported by the majority of Adobe’s own products.
Because the standard is freely available and is built on top of RDF one can expect further
adoption within other products.

2.1.4 Ontological Use of File Systems

The limited expressivity of the file system can nevertheless be used to pseudo-classify files.
On the one hand, a user who creates folders and sub-folders, names them, and arranges their
files into them, performs a sort of classification task on the files. Although there exists no
formalized class vocabulary, there are often regularities found in such folder hierarchies: a
teacher may store lecture files in folders arranged per semester; or an account manager may
create a folder for each of her customers. Such pseudo-classification schemes are often not
appropriate for machine processing because they lack a formal definition, but are still of use
for direct, manual retrieval by the user. The same applies for file names: to the best of our
knowledge there exist no systematic studies about the structure of file names or how they
could be used; with the exception of domain-specific procedures like software engineering
[AL98].

On the other hand, applications may store internal data (i.e., data that is not directly ex-
posed to the user) by utilizing file system metaphors for annotation or organization. An ex-

15

H
ar

d
/
S
ym

bo
li
c

L
in

ks
T
ag

s
/
K

ey
w

or
ds

A
tt
ri

bu
te

s

O
rt

ho
go

na
l
C

at
eg

or
ie

s
In

te
rn

al
 R

el
at

io
ns

hi
ps

E
xt

er
na

l
R

el
at

io
ns

hi
ps

M
ul

ti
pl

e
S
tr

ea
m

s
/
F
or

ks

F
ul

l
R

ea
d+

W
ri

te
 S

up
po

rt
V

ir
tu

al
 F

il
e

H
ie

ra
rc

hy

A
P
I

S
tr

uc
tu

re
d

Q
ue

ry
 L

an
gu

ag
e

SFS ! - ! - - - - - ! - !

AttrFS ! ! ! - - - - ! ! - -

Presto - - ! - - ! - - ! ! !

LISFS - - ! ! - - - - ! - !

TagFS ! ! ! - - - - ! ! ! !

libferris - - ! - - - - ! ! ! !

LiFS ! - ! - ! - ! ! ! ! !

Table 2.2: Comparison of Semantic File Systems

ample of where such a pattern is applied to user data can be found in the audio domain: many
music library utilities use directories to organize audio files by artist and by album, and use
the file name to store the track title (cf. Figure 2.1). However, this usage may be partially
redundant with file-internal metadata (cf. Section 2.1.3).

Similar mechanisms can be found in operating systems: for example, the files and sub-
directories located under C:\WINDOWS on a Windows machine follow certain pre-defined con-
ventions and must be named correctly; otherwise the operating system will not be able to
locate them and hence will not work. The same applies to files and directories for application-
internal files: a Mac OS X application bundle, for example, consists of a directory hierarchy
wherein files and directories must follow specific naming conventions in order to be correctly
interpreted by the operating system.

2.1.5 Semantic File Systems

Many traditional file systems provide support for file annotations, but still rely on directory
hierarchies as their main method for file organization; hence the additional metadata mecha-
nisms do not overcome most of the problems of file hierarchies. Semantic file systems go one
step further and consider file metadata (in whatever form) as core instrument for file man-
agement; however they still are denoted as “file systems” because to the outside—i.e., to end
users and applications—they expose the same elements as known from really hierarchical file
systems: files and directories. Usually this is accomplished by algorithms that establish a
mapping between these elements and the metadata used to describe files.

The Semantic File System presented by Gifford [GJSJ91] extracts attribute/value pairs from
file contents; these attributes are then represented in a virtual directory hierarchy. Conjunc-
tive queries over attributes can be issued by navigating deeper into these hierarchy. Gifford’s
work is probably the first representant for a virtual file system based on metadata; similar
approaches are followed by AttrFS [WGM95], which extends attribute-based file access with

16

write operations, and LISFS [PSR06], where file paths are interpreted as logical formulas that
may contain boolean operators. libferris [Mar06] focuses more on the integration of resources:
it allows to mount a wide range of data sources (ranging from XML documents, over DOM
trees extracted from running web browser instances, to remote data accessed via sockets) and
describes them using extended attributes. An additional RDF store allows to add and retrieve
custom metadata for files. TagFS [BGSV06] exposes keywords that are attached to files via
virtual directory hierarchies; TagFS is built on top of a generic framework for semantic file
systems. Presto [DELS99], although not primarily designed as a file system replacement, com-
bines structural access as known from hierarchical file systems with attribute-based access.
LiFS [ABG+06] additionally considers links between files, which are represented as contents
of virtual directories; however it is a pure in-memory implementation and cannot be used for
persistence of files.

Table 2.2 gives an overview on the features of these systems, and also compare their access
mechanisms. This comparison shows that virtual file hierarchies, which represent the meta-
data attributes of files in the form of virtual directories and/or files, are supported by all ap-
proaches. Many of them provide access to file metadata via an Application Programming Inter-
face (API) and/or a structured query language that allows to express more complex queries.

2.1.6 User Interfaces for File Manipulation and Browsing

In addition to technologies for storing and representing file metadata, we analyze the two
main types of interfaces for file manipulation, Command Line Interfaces and the graphical WIMP
paradigm. These two approaches are present in every desktop operating system in use today
and can be considered as the de-facto standard for human-computer interaction. Finally, we
discuss approaches that go beyond the state of the art in browsing and manipulation and
describe extensions to the WIMP approach, as well as entirely novel approaches.

Command Line Interfaces (CLI)

The command line interface was the first metaphor for human-computer interaction that pro-
vided direct response to user input. Before, the use of batch-oriented punch cards caused delay
times between user input and the machine’s response. With a command line interface, a user
is able to directly issue commands to the computer, which are immediately processed.

Despite their long history—the first command line interfaces were in place in the 1950s—
the command line is still an important mechanism to interact with a computer and with file
systems. This is also emphasized by the fact that the power of command line shells is still
increasing, and new metaphors for command line shells are developed. For instance, Microsoft
PowerShell [Wat07] provides, in addition to traditional command line tools, a sentence-like
structure for commands in the form of verb-noun pairs, as well as an object oriented data model.

Considering this, command line interfaces are without doubt a powerful mechanism for
human-computer interaction. However, as outlined in [GN96], seldom they do provide assis-
tance or mnemonics for the user: although one can type arbitrary commands into a CLI, it is
hard to find out in advance which commands are understood by the machine. Considering
data management, CLIs usually do not provide assistance that goes beyond auto completion
of file and directory names. Interestingly, in some operating systems the command line inter-
face offers access mechanisms to file system metadata that are not available through graphical
interfaces: for instance, alternate data streams (cf. Section 2.1.2) can be accessed through the
command line interface of Windows XP, but not through the graphical file browser.

17

Figure 2.2: File management interface in Mac OS 1.1 and Mac OS X

Windows, Icons, Menus, Pointing (WIMP)

The WIMP paradigm [CW91, vD97] describes an interaction style that is mainly based on four
elements: windows, icons, menus, and pointing devices. The paradigm was developed by
Xerox PARC during the 1970s and has been made popular by the Apple Macintosh computer
in 1984. It has been exerted by other operating systems and is still the standard interface for
desktop operating systems and, consequently, for file management on the desktop.

Based on Douglas Engelbart’s invention of the mouse [Eng70], the WIMP paradigm em-
ploys usually rectangular areas (windows) to visually indicate certain data contexts, e.g., the
contents of one directory in the file system hierarchy. All windows share common elements
like a title bar, a resizeable border, and buttons to minimize and maximize the window.

Graphic symbols (icons) are used to represent entities and information objects like files
and directories. The impact of icon design on human search performance has been subject
to several studies [Byr93, EB04, FNB06], and it can be taken as proved that, when carefully
designed, icons are a practical representation of files and help users to recognize and relocate
them. In the context of file systems, icons often represent the file type or, if the file content can
be interpreted, a preview thereof. Additionally, file icons may be enriched by decorators that
display additional information about the file.

Actions that can be performed on files or directories are represented using menus (i.e., hi-
erarchical collections of commands that can be selected and executed by clicking them with
a pointing device), or by issuing keyboard commands. However, with increasing number of
commands, menus can get overloaded, and desired commands become hard to find. This is-
sue has been partially addressed by the usage of split menus [SS94], which have been in detail
analyzed in [FM04]. Other approaches aim at improving menu usage by automatic movement
of the mouse pointer [AAH06] or by dynamically adapting the screen estate that is used to se-
lect menu items [CG06]. However, file browsers found in standard operating systems usually
do not offer numbers commands that would require deep menu structures; usually, there are
five to seven menu items with at most one sub-level of commands.

Recent progress in the development of the WIMP paradigm was limited to graphical details
like three-dimensional buttons, shadowed menus, and more realistic icons. There have been
no major improvements in the basic interaction paradigms: consider Fig. 2.2, which shows a
comparison of the file browser of Apple Mac OS 1.1 from 1984 and Mac OS X 10.1 (2001).

There is no major difference in representing user files in various operating systems, as can

18

Figure 2.3: File management interface in Windows XP and Red Hat Linux

Figure 2.4: Folder icons in Windows XP, Windows Vista, Apple Mac OS X, and Linux/KDE

be seen in Fig. 2.3, which depicts file browsing utilities of Windows XP (with the “classic” skin
applied), and Red Hat Linux with the Nautilus file manager.

We can observe that in the context of file systems the WIMP paradigm is used mainly for
three tasks:

1. Browsing. Usually, one window is used to display the contents of one directory. Files are
depicted as icons, which indicate either the file type or show a thumbnail preview of the
file contents. Directories are displayed using stylized folder icons, cf. Figure 2.4.

The user navigates through the directory structure by clicking (or double-clicking) on
folder icons. Depending on the user settings and the implementation, this action either
opens a new window displaying the contents of the opened directory (this behavior is
sometimes referred to as spatial or object oriented metaphor), or displays the contents in
the same window (navigational metaphor).

In the former case the navigation history is reflected by an increasing number of open
windows, while in the latter case it is usually accessed through “back” and “forward”
buttons, known from web browsers. In either case, directory windows normally provide
a facility to navigate to the parent of the currently displayed directory. Some systems
accomplish this by including the virtual parent directory in the icon list; other provide a
designated “up” button for this task.

In both styles, the arrangement and order of displayed file icons can usually be config-
ured by the user. Icons can either be freely arranged within the directory window, which
allows for spatial organization of related files; however this information is often not per-
sisted, and is not interpreted by search engines although the arrangement of icons on the
desktop is a commonly used mechanism to express certain metadata [Mal83]. Alterna-
tively, icons are automatically arranged by the browser in a grid or a list, and are sorted

19

by user-selectable criteria, like file name, type, size, and modification date. The Cover-
Flow technique4 uses preview images of file contents that are arranged similar to album
covers in a shelf, which may probably be useful for visual content like pictures; however
to the best of the author’s knowledge there exist no studies that indicate whether this
design actually improves the search and navigation experience.

In the WIMP paradigm, files are accessed (opened) by a double click on their icon. The
application that is associated with this file type is opened, allowing to view or edit the
file. The file’s context menu5 provides a list of alternative applications and viewers to use,
as well as further operating system-specific actions.

The keyboard can be used to quickly access files by their name: most file browsers select
a file after the user enters the first few letters of its file name. This may increase the speed
of file and directory discovery if the directory list is long, and the exact beginning of the
file’s or directory’s name is known to the user.

2. Manipulation of files. We can identify the following actions of manipulation on the file
level: create, delete, copy, and move, although the latter can also be considered as manip-
ulation on the metadata level since a file’s path represents not only its physical location,
but also a kind of user annotation. Files are manipulated either by selecting commands
from a menu or by executing drag and drop gestures. In the first case, the command is
selected either from the directory window’s menu or from the file’s context menu. In the
second case, the pointing device is used to change the location of the file’s representation
on the screen, which is translated into a corresponding action.

The action that is carried out when the user executes a drag and drop action depends
not only on the pointing device gesture and its source and destination objects, but also
on modifiers like the selected mouse button or additionally pressed keys: for instance,
dragging a file icon from one file browser window to another one causes the file to be
moved, while a drag with a pressed Alt key may cause the file to be copied. Special icons
can be used to execute certain actions using drag and drop, e.g., the trash can icon for
deleting files.

3. Manipulation of file metadata. Only few file metadata fields can actually be directly changed
by a user. The most prominent one, the file name, is normally editable by selecting a file
and entering a new name. Most interestingly, the file extension, which is an essential
part of the file name in all researched systems, is often hidden from the user. On the one
hand, this avoids unintended changing of the file extension, but, on the other hand, may
cause confusion since the displayed file name is not equal to the actual file name.

Most other file metadata are either displayed in tabular form or, if this is not appropri-
ate, in textual form near the file name. All common systems allow the user to open a
window displaying more information using the file’s context menu. Mac OS Finder (in
the “column” view) and Windows Vista provide an area on screen where metadata for
the currently selected file(s) are displayed without the need for a designated window.
In Windows Vista, this pane can be used to manipulate metadata depending on the file
type: for instance, tags and comments of Microsoft Office documents can be directly
edited.

4cf. http://www.apple.com/macosx/leopard/features/finder.html
5The context menu is activated by clicking on the file with the secondary mouse button, or by pressing a special

key while the file is selected.

20

http://www.apple.com/macosx/leopard/features/finder.html

Other Approaches

The way user data is organized on the personal desktop, as described in the previous sections,
has been subject to critics for a long time. Barreau and Nardi [BN95] have summarized the
results of their independent studies on user behaviour and identified a preference of location-
based search (i.e., navigational browsing through the directory structure) over logical search (i.e.,
text-based search using a search engine). Their studies also showed that users preferred to
store their data into application-dependent locations instead of organizing them into their
personal directory structure; a fact we attribute to the relatively low number of files under
consideration (which might have changed since then because of the steadily increasing num-
ber of user data files). Additionally they have identified three types of information present
on user desktops: ephemeral, which is subject to immediate action; working, that is frequently
used; and archived information, which represents completed or historic work. Until today, file
systems do not consider the different requirements for these information categories. In their
critics to Barreau and Nardi’s work, Fertig et al. however accredit the apparent preference for
location-based search to the lack of proper search engines in the user study, and they point to
more advanced alternatives [FFG96] that we will discuss in Section 2.3.

Gentner and Nielsen [GN96] have identified potential restrictions in functionality and us-
ability that the WIMP interface puts on systems in their exemplary analysis of the Apple Mac-
intosh user interface. They precisely criticize several aspects of the WIMP paradigm, including
direct manipulation, the see-and-point principle, and the WYSIWYG (what you see is what you
get) idea. Instead, they propose to investigate on interfaces that are driven by the powerful-
ness of human language, more expressive internal representation of information (a strategy
that semantic file systems aim to utilize), and improvements of user interfaces—which are now,
more than 10 years later, have become reality because of improved hardware.

Van Dam [vD97] has described various drawbacks and shortcomings of WIMP interfaces.
As the most serious one, he identified the under-utilization of speech, hearing, and touch.
While the usage of speech and hearing may be inappropriate in situations where noise is im-
portant (e.g., in open-plan offices), the usage of touch may actually improve the quality of data
management, at least for certain application domains like digital audio libraries [LT07].

Under the assumption of the presence of a strictly hierarchical file system, several ap-
proaches that represent the contents of such a tree in ways different from those known from
desktop systems have been presented. Most of them aim to cope with large numbers of files
by not representing single files as information entities (as it is the case in the WIMP paradigm
where each file is represented as an icon), but to aggregate the file system and allow the viewer
to zoom in and out. Ordered and Quantum Treemaps [BSW02] are an extension to the treemap
visualization paradigm originally presented in [Shn92]. Both approaches flatten the hierarchi-
cal tree of the file system to a plane; thus another proposed extension to treemaps, beamtrees,
utilizes the third dimension to represent tree depth [vHvW02]. However, as the authors de-
scribe in their analysis of a user study, their approach does not always perform better than flat
treemaps. Consequently the authors extended their approach using a pseudo-realistic render-
ing, where they represent the directory levels not as abstract rectangles or cylinders, but simi-
lar to botanical trees [vWvHvdW03]. Certainly, the full power of such a visualization method
comes from interactions with the object, a question that has been investigated in numerous
works (see below). Nguyen et al. [NH04] identify four categories of representation methods
for hierarchies and give examples for each of them: listings, outlines, connections, and enclosures.
In their work (which is preceded by work presented in [NH02]), they combine enclosure and
connection to an interactive browsing metaphor.

Another presentation algorithm for tree structures has been presented in [BD04], where tree
elements are represented using interconnected bubbles residing on a flat layer. Although the

21

Figure 2.5: Three-dimensional user interfaces for file systems, from top left to bottom right:
Bumptop [AB06], Bubbles [BD04], 3DOSX [Chi02], 3D document worlds [DAK+06]

discussed target domain is the visual representation of software packages, this approach could
be applied to hierarchical file systems as well. Similarily, Wang et al. [WWDW06] demonstrate
how to apply a circle packing algorithm to the visualization of file system contents, which is
also used in a slightly modified way by the Grokker search engine6. Robertson et al. [RCCR02]
discuss an approach for representation of multiple overlapping hierarchies which could also
be of benefit for the current desktop situation (cf. Section 2.1.7). The work presented in [Wal05]
targets to improve search and browsing experience by using scatter plots to display files in
order to obtain an overview over a directory hierarchy based on multiple dimensions of meta-
data.

While all these approaches completely omit the WIMP (windows, icons, menus, point-
ing) interface paradigm, the work described in [Chi02] replaces the rectangular orientation
of traditional file browsers with a 3D interface, where files and directories are arranged on
interconnected circular layers. However, in all discussed interfaces interactive navigation is a
key issue. Thus we expect that the role of more advanced interaction devices like multi-touch
displays will increase; as shown, e.g., in [DH06].

Other approaches do not only represent the contents of the hierarchical file system, but
add more organizational and navigational dimensions to files. The following works can be
considered as predecessor of the Semantic Desktop (cf. Section 2.3) although they focus more on
visualization and navigation than on semantic expressivity.

6Grokker: http://www.grokker.com

22

http://www.grokker.com

Presto [DELS99], in addition to its document-based data model, provides mechanisms to
group documents using collections which are represented by ovals or piles, depending on their
state (open or closed). Such collections can be grouped into workspaces, and fluid collections
can be used to represent queries over the document space which are constantly populated—a
concept that has been adopted in many software products (e.g., Mac OS X Finder7 or Mozilla
Thunderbird8). A similar user interface has been presented in [DES03] where files are or-
ganized and visualized using Venn diagrams, and colors are used to represent temporal file
characteristics; e.g., the last accessed timestamp.

Agrawala et al. have studied the applicability of stacks (or piles) to the file system with the
aim to develop a realistic feel for the digital counterpart of a real desktop, and to be operable
by pen interaction in order to be used on Tablet PCs [Aga06, AB06]. However, they concen-
trate more on interaction required for manual organization and do not focus on semantic data
organization. [DAK+06] describes interaction techniques for data gloves that can be used to
manually annotate and relate files. Documents can be searched by issuing queries, and the re-
sulting collections and associated metadata are displayed in 3D worlds which can be browsed
and manipulated by gestures and postures issued through the data glove.

2.1.7 Challenges of Hierarchical File Systems

The file system serves as the backbone of all information that is processed by today’s com-
puters. Ultimately, every bit of information that is persisted is stored in files. However, ap-
plications make use of the file system in very different ways: we believe that the multiform
utilization of the file system is rooted in the drawbacks and vulnerabilities that today’s file
systems exhibit [RSK04], some of which we describe in this section.

Multiple Scattered Hierarchies

Hierarchical trees are a commonplace way of organizing information items, even if they often
are unsuitable to organize data according to the needs of various users and the demands of
different situations. Trees do not allow for more sophisticated ways of organizing files: the tree
of a file system may be considered as simplified classification scheme, and a file can be placed at
exactly one node within this scheme.

Computing environments allow us to use multiple hierarchies for different types of infor-
mation items; however these different hierarchies (which can be seen as disjunct information
spaces) are maintained in inconsistent ways, are often system- or application-dependent, and
are user-customizable to variable degrees (see Figure 2.6). For instance, in a standard desktop
environment we can observe disjunct hierarchies for files, web bookmarks, e-mail messages,
contacts, and applications, as well as application-specific hierarchies (cf. Section 2.1.4).

Such scattered hierarchies have both advantages and drawbacks. One advantage is that
users are given the option to organize the information objects according to different criteria in
different hierarchies. For example, they may arrange files based on temporal aspects, while
they arranges the start menu using alphabetical order, and e-mails based on project context.
However, these different hierarchies impose the restriction that information objects of differ-
ent data types may not be organized within one single structure [Boa01]. To overcome this,
Boardman et al. [BSS03] suggest a method to synchronize the different hierarchies in the user

7Mac OS X Finder Features: http://www.apple.com/macosx/features/finder
8Thunderbird Saved Search folders: http://alek.xspaces.org/2004/12/08/thunderbird-saved-

search-folder

23

http://www.apple.com/macosx/features/finder
http://alek.xspaces.org/2004/12/08/thunderbird-saved-
search-folder

Figure 2.6: Multiple scattered hierarchies on a user’s desktop computer

space, and Bergman et al. [BBMN06] propose to build an integrated hierarchy over all existing
user data.

Missing or Inconsistent Shortcuts

Modern file systems try to extend the tight tree structure concept by introducing shortcuts
(often also referred to as links or aliases), which are virtual tree nodes that refer to other nodes
in the tree. However, shortcuts are not universally accessible and are often handled differently
by file browsers and applications. On some systems, shortcuts are realized as simple files that
contain the name of the destination node, and are not transparently presented to the user.

Mixture of Identification and Description

In hierarchical file systems the functionalities of identification and description are inseparably
mingled. The combination of a file’s path, its file name, and its extension is used both as
system-wide unique identifier, as well as user-entered, descriptive attribute, since the path
and the filename can be interpreted as set of user-defined labels. Moreover, this descriptive
string is admixed with technical attributes (e.g., a letter that indicates the physical medium
where a file is stored, and the file type extension). As a consequence, changing any of these
user attributes (e.g., renaming one directory), intended to modify the file’s description, also
breaks its technical identifier and causes links to this file to become invalid.

Emphasis on File Types

As described above, organization hierarchies on typical desktops are often separated accord-
ing to data types: bookmarks for web pages, e-mail folders for e-mail messages, address books

24

Figure 2.7: Typical file preview: no actual content

for contact information, the start menu for applications, and so forth. Additionally, the user
interfaces of most file systems use only the file type (mostly indicated by the file extension)
to determine a visual representation for the file (e.g., an icon or a preview); see Figure 2.7 for
an example. In seldom cases, users have the possibility to adapt the displayed information to
their needs, e.g., by replacing the file icon or by attaching a color label. However, in terms of
user-oriented information retrieval, the file type is of secondarily importance.

Weak Support for Browsing and Searching

The file hierarchy imposes restrictions on the efficiency of searching and browsing: since the
user is only allowed to navigate along edges in the tree it is only possible to walk up and
down in the hierarchy, except by using the shortcuts mentioned before. Additionally, most
common file systems do not provide inherent indexing and searching capabilities that would
improve search performance; such functionality must be provided by external components.
Consequently, file systems do not provide the facilities to implement browsing and searching
services that are based on semantic annotations or relationships between files.

Insufficient Support for File Metdata

Common hierarchical file systems provide means to store additional metadata to files, which
have been described in Section 2.1.2. However, these possibilities are heavily under-utilized by
applications. A typical metadata record for a simple spreadsheet file, as presented to the user,
is depicted in Figure 2.8. Such metadata records are often not used because the interfaces for
manipulating them are not integrated into the user’s natural workflow, and the benefit of an-
notating files is not exposed by desktop systems; e.g., because they lack a facility to efficiently
retrieve files based on these annotations.

Loss of Contextual Information

Closely related to metadata, a file’s context is lost at the moment that it is saved to a storage
medium. A file is treated by the file system as a stand-alone object without any relationships
to other information units. This fact makes it difficult to localize files that are semantically
related to each other, but stored at different locations in the directory hierarchy. File relation-
ships can partially be modeled using the above-mentioned shortcuts, but shortcuts have no

25

Figure 2.8: Typical file metadata: no information available

predefined, machine-understandable semantics and can therefore not be used for enhanced
search or browsing mechanisms.

Many of the challenges and drawbacks discussed above are rooted in the missing support
for descriptive data in file systems. A similar situation can be faced on the World Wide Web:
the corpus of information in the Internet is mostly stored in the form of human readable doc-
uments, usually in the HTML format. The Semantic Web [BLHL01] is an approach to extend
the WWW with machine-interpretable information in order to allow for the creation of more
sophisticated services and applications. The technologies that have been developed in the
context of this approach are potentially suitable to enhance information on the desktop, too.
In the following, we introduce and discuss the Semantic Web technology family and its most
important building blocks.

2.2 The Semantic Web: Expressing Knowledge about Resources

One of the basic goals of the Semantic Web [BLHL01] is to make knowledge about resources
explicit, whereas the term “resource” stands for everything that can be described—physical
objects, people, digital documents, or abstract concepts. Its intention is not to replace the
traditional World Wide Web (or web of documents), which has been designed for content con-
sumption by humans. Instead it aims to enrich it with a machine-processable data layer: on
the Semantic Web, in addition to actual digital resources, descriptive metadata are published
using a special language, RDF [DMM00, MM04, Bec04], and the vocabularies used therefore
are defined by the means of ontology description languages (see below).

The Semantic Web today consists of a set of building blocks [SBLH06] that are inevitable
for a global machine-oriented information system, and it is still subject to change, research
and development. After a relatively long phase of being a purely scientific research topic,
Semantic Web research is today heavily influenced by recent developments in the World Wide
Web that are often subsumed under the label Web 2.0 [Gre07]: the Web shifts from collections
of static documents to rich, interactive applications that allow for easy user contribution and
annotation of data.

• Uniform Resource Identifiers. URIs are used to identify resources on the Semantic Web.

26

For a global information system it is crucial to provide a distributed way of naming that
avoids conflicts and does not impose usage restrictions. All information represented on
the Semantic Web must be mapped to URIs so that any authority can issue statements
about them. While there is consent about the principal feasibility of the URI concept, it
is still subject to debate [Cla02, PS03a, Boo03, PPS04, BL07] whether URIs should have
intrinsic semantics and how to create meaningful or useful URIs.

• Triples and triple stores. As mentioned before, the Semantic Web uses RDF as format for
the representation and the exchange of data. RDF represents all information in the form
of triples, each of which consists of a subject, a predicate, and an object, and hence consti-
tutes the atomic information unit on the Semantic Web. RDF documents consist of an
arbitrary number of such triples (also called statements), of which each one is indepen-
dent from the others.

A number of triple stores (i.e., systems that persist RDF triples) have been developed;
these differ greatly in their target domain and thus in their functionality and perfor-
mance9. As with many database systems, there is no clear recommendation which is
the best implementation, and which system will become a de facto standard for storage of
RDF. Jena [CDD+04] and Sesame [BKvH02] have for long been the lead of development,
but recently the OpenLink Virtuoso Server [EM07] has been getting more and more at-
tention because of its good performance and its direct integration of Semantic Web and
relational database technology.

• Data conversion. Shadbolt [SBLH06] indicates the extraction of RDF data from other data
sources (e.g., XML and XHTML) as important since there are huge amounts of data avail-
able in these formats on the World Wide Web. GRDDL [Con07] is a W3C Recommenda-
tion designed to provide such conversions. Efforts towards RDF-based representation of
datasets stored in relational databases [BS04], LDAP directories [Die05, DA07], or many
other data formats as done by the RDFizers project10 show that the RDF model has the
potential to be the common denominator for data exchange over the web.

• Ontologies, rules, and inference. The RDF semantics document states the following about
the meaning of RDF graphs:

“RDF is an assertional language intended to be used to express propositions using
precise formal vocabularies, particularly those specified using RDFS, for access and
use over the World Wide Web, and is intended to provide a basic foundation for more
advanced assertional languages with a similar purpose. The overall design goals em-
phasise generality and precision in expressing propositions about any topic, rather
than conformity to any particular processing model [...].
Exactly what is considered to be the ‘meaning’ of an assertion in RDF or RDFS in
some broad sense may depend on many factors, including social conventions, com-
ments in natural language or links to other content-bearing documents. Much of this
meaning will be inaccessible to machine processing and is mentioned here only to em-
phasize that the formal semantics described in this document is not intended to provide
a full analysis of ‘meaning’ in this broad sense; that would be a large research topic.
The semantics given here restricts itself to a formal notion of meaning which could be
characterized as the part that is common to all other accounts of meaning, and can be
captured in mechanical inference rules.” [Hay04]

9The World Wide Web Consortium maintains a list of such implementations at http://esw.w3.org/topic/

SemanticWebTools.
10http://simile.mit.edu/wiki/RDFizers

27

http://esw.w3.org/topic/SemanticWebTools
http://esw.w3.org/topic/SemanticWebTools

http://www.cs.univie.ac.at/
bernhard.schandl/foaf#me

http://www.cs.univie.ac.at/
bernhard.schandl/papers#survey

pub:author
foaf:name

"Bernhard Schandl"

"Information
Management on the
Desktop: A Survey"

pub:title

Figure 2.9: RDF graph example

Thus, it is intentionally necessary to extend the formal semantics of RDF with additional
constructs; usually these are called ontologies. While there have been ontology languages
developed to be used with RDF, OWL [DS04] has emerged as the de-facto standard for
ontology modeling on the Semantic Web. It is likely that the existence of the three sub-
languages of OWL (OWL Lite, OWL DL, and OWL Full) and the consequential freedom
of choice between expressivity and simplicity helped to spread the usage of this lan-
guage. Nevertheless, some problems and restrictions of OWL have been identified and
addressed in a workshop series which started in 200511, which will lead to the develop-
ment of OWL 2 [GHM+08].

2.2.1 Explicit Semantics

As mentioned above, RDF is the underlying meta model for data expressed on the Semantic
Web. The minimum information unit in RDF is the statement, a triple of the form < s, p, o >
(subject, predicate, object) [MM04]. The basic intention behind this design is that RDF should
enable to state facts about things (which are called resources), wheras—as in natural language—
the subject identifies the thing the statement is about. The predicate identifies the characteristic
or property that the statement refers to, and the object identifies one specific value of that
property for the given subject.

A simple example of an RDF graph is given in Figure 2.9. Two resources are depicted
(indicated by the ovals), each of which is identified by its URI. They are connected by a prop-
erty with the name pub:author and are further described by two properties (foaf:name and
pub:title, respectively). The three statements depicted in this figure can be written in Turtle
notation [Bec07] as shown in Figure 2.10.

This design formalizes simple sentences from natural languages: RDF is capable to express
facts. The Oxford Dictionary defines a fact as “a thing that is indisputably the case”. Thus, a
RDF graph represents a piece of knowledge that is regarded as true by its author. The strong
adhesion between the cited definition and the RDF model design is also reflected in the Open
World Assumption (OWA): it is not possible to express negated facts in RDF, and everything that
is not explicitly asserted to be true is considered to be unknown. Since in certain situations this
functionality may be needed, [TPM07] describes an approach for identifying negated triples
by a special type of reification. [PSH06] gives a comprehensive analysis of the implications
that this design—the authors call it the classical paradigm—has for data modeling, and they
give a number of examples where the classical approach allows for more realistic modeling in

28

<http://www.cs.univie.ac.at/bernhard.schandl/foaf#me>

pub:author <http://www.cs.univie.ac.at/bernhard.schandl/papers#survey> ;

foaf:name "Bernhard Schandl" .

<http://www.cs.univie.ac.at/bernhard.schandl/papers#survey>

pub:title "Information Management on the Desktop: A Survey" ;

Figure 2.10: RDF Turtle syntax example

comparison to meta models used e.g., in object-oriented databases.
It is important to note that although the technology family around RDF is called seman-

tic technology, RDF by itself does not make many assertions about the actual meaning of data
expressed in RDF. As described in [PSH06] (Section 4.1), RDF does not even require that the
same thing is identified by the same name (URI) in every context. Thus we can not really guess
the meaning of an RDF graph without considering external knowledge. An RDF graph is con-
nected to the real world only via the names (URIs) used in the graph; however, this connection
is not made explicit within the RDF model. Cregan [Cre07] describes this as the problem of
symbol grounding for the Semantic Web. Consequently the actual semantics of an RDF model
must be defined outside the graph structure. Ontologies (cf. Section 2.2.2) are one means to
express additional semantics albeit the core problems in matters of symbol grounding remain.

RDF by itself contains a minimum set of language constructs that have intrinsic seman-
tics12. Most of these constructs deal with the description of containers (sequences, unordered
lists, and lists of alternatives). Although RDF provides a straightforward and crisp vocabu-
lary and relatively simple formal semantics for these elements (cf. [Hay04], Section 3.3), their
meaning is not explicitly formalized:

“It is important to understand that while these types of containers are described using pre-
defined RDF types and properties, any special meanings associated with these containers,
e.g., that the members of an Alt container are alternative values, are only intended mean-
ings. These specific container types, and their definitions, are provided with the aim of
establishing a shared convention among those who need to describe groups of things. All
RDF does is provide the types and properties that can be used to construct the RDF graphs
to describe each type of container. RDF has no more built-in understanding of what a re-
source of type rdf:Bag is than it has of what a resource of type ex:Tent is. In each case,
applications must be written to behave according to the particular meaning involved for
each type.” [MM04]

The weak definition of container concepts in RDF may be a reason why they are used
relatively infrequently. The concept of reification adds a level of meta descriptions to RDF graphs:
using the reification vocabulary it is possible to assert facts about facts within the knowledge
base. However, reification modeling is often not straightforward (cf. [Pow03] Section 4.3 where
reification is called “the big ugly”) and requires special consideration in the design of RDF
storage systems [AR06].

As described before, the core element of the RDF data model is the resource. Interestingly,
the family of RDF specification documents gives no clear definition of this crucial concept. The

11http://www.webont.org/owled/
12At this point it is important to notice that the inclusion of these constructs into the RDF core model obliterated the

distinction between RDF as a meta model for data representation and RDF as minimal ontology language, although
the question remains whether the core semantics of RDF statements, as described above, constitute an ontology as
well.

29

http://www.webont.org/owled/

following statements about resources can be found in various parts of the RDF specification.

“The Resource Description Framework (RDF) is a language for representing information
about resources in the World Wide Web. [...] However, by generalizing the concept of a
“Web resource”, RDF can also be used to represent information about things that can be
identified on the Web, even when they cannot be directly retrieved on the Web.” [MM04]

“To facilitate operation at Internet scale, RDF is an open-world framework that allows
anyone to make statements about any resource.” [KC04]

“RDF properties may be thought of as attributes of resources and in this sense correspond
to traditional attribute-value pairs. RDF properties also represent relationships between
resources.” [BG04]

“All things described by RDF are called resources, and are instances of the class rdfs:Resource.
This is the class of everything.” [BG04]

“The things denoted are called ‘resources’, but no assumptions are made here about the
nature of resources; ‘resource’ is treated here as synonymous with ‘entity’, i.e., as a generic
term for anything in the universe of discourse.” [Hay04]

The notion of “everything” being an RDF resource imposes a lot of choice to the designer
of an information system. The structural indetermination of this term makes it hard for end
users who are not familiar with RDF to find a common understanding on the foundations
of RDF. The question of how to represent a resource (apart from displaying its URI) is also
hard to answer, since a RDF resource is nothing without its properties. One could compare
a RDF resource to a point in mathematics which has no dimension and can be made visible
and tangible only by approximating it with a small filled circle on paper or a filled pixel on
a computer screen. Nevertheless there exist generic browsers for RDF (mostly they present
RDF using a textual interface as in Tabulator [BLCC+06] where resources are displayed using
HTML hyperlinks, or a graph visualization [NL06] where resources are displayed as ovals
connected by lines) and generic display frameworks that allow the definition of visualization
rules based on ontologies, e.g., Fresnel [PBKL06] or RVL [MTCP04].

2.2.2 Ontologies and Conceptualization

As stated in the previous section, RDF does not specify the actual meaning of expressed state-
ments. With RDF, any kind of statement can be asserted using arbitrary identifiers (URIs) for
resources and predicates. Thus, one requires knowledge about the meaning of these identifiers
(often referred to as vocabulary) in order to allow for meaningful interpretation of the data.

Ontologies are designed towards this problem, with Web Ontology Language (OWL) [MvH04]
being the most prominent example of an ontology description language. The W3C OWL Spec-
ification document defines the term “ontology” as follows:

“OWL can be used to explicitly represent the meaning of terms in vocabularies and the
relationships between those terms. This representation of terms and their interrelationships
is called an ontology.” [MvH04]

But what is “meaning” in the context of digital information systems? What are the charac-
teristics that distinguish an ontology from a simple representation of facts? A good overview
of what the term “ontology” denotes is given in [GG95], where also the most popular defini-
tion in computer science is discussed: Gruber [Gru93] defines an ontology as “a specification

30

of a conceptualization”—this specification has been widely cited but leaves many questions
open. One of these question is the missing definition of what a conceptualization constitutes:
Guarino and Giaretta [GG95] propose to define conceptualization as “an intensional seman-
tic structure which encodes the implicit rules constraining the structure of a piece of reality”.
A comprehensive overview on other definitions and interpretations of “conceptualization” is
given in [LM99].

As described in [GG95], ontology as interpreted by the originators of the RDF family can be
regarded as synonym to vocabulary. As stated in the previous section and described in [Cre07],
the family of Semantic Web languages is a closed system of descriptions: resources and pred-
icates are described using only resources and predicates. This understanding of meaning is
reflected by the “RDF Semantics” part of the RDF specification:

“Exactly what is considered to be the ‘meaning’ of an assertion in RDF or RDFS in some
broad sense may depend on many factors, including social conventions, comments in nat-
ural language or links to other content-bearing documents. Much of this meaning will be
inaccessible to machine processing and is mentioned here only to emphasize that the formal
semantics described in this document is not intended to provide a full analysis of ‘meaning’
in this broad sense; that would be a large research topic. The semantics given here restricts
itself to a formal notion of meaning which could be characterized as the part that is com-
mon to all other accounts of meaning, and can be captured in mechanical inference rules.”
[Hay04]

This has serious consequences: to be understandable by humans, a formalized ontology
must always be accompagnied by a human-understandable description (e.g., in textual or
graphical form) of the intended meaning of the constructs used therein. To be processed by
machines, the human knowledge about the ontology’s meaning must be translated into pro-
cessing instructions that are applied to the data. This may lead to an extended interpretation
of the term “ontology”: it can be viewed as a set of formalized rules that can be mapped to a
combination of human interpretation and/or machine processing instructions.

Until now, the World Wide Web Consortium has defined two ontology languages in the
course of their Semantic Web activities, RDF Schema (RDFS) [BG04] and Web Ontology Lan-
guage (OWL) [MvH04]. The RDFS specification says:

“RDF [. . .] provides no mechanisms for describing [these] properties, nor does it provide
any mechanisms for describing the relationships between these properties and other re-
sources. That is the role of the RDF vocabulary description language, RDF Schema. RDF
Schema defines classes and properties that may be used to describe classes, properties and
other resources.” [BG04]

Thus, RDFS is an application of RDF that simultaneously extends RDF so that specific
vocabularies can be formalized. RDF Schema contains a small set of modeling primitives
for classes, literals and data types, as well as predicate restrictions (domain and range) and a
set of relations between these model elements (sub-class and sub-property). It also defines the
RDF vocabulary for collections and reification as described in Section 2.2.1. However, it is
of limited use if more complex issues are to be modelled (cf. an analysis of the availability
of ontology constructs in various ontology languages [DKD+05]). As a consequence, OWL
has been designed on top of RDF Schema. The OWL specification document starts with the
following statement:

“OWL is intended to be used when the information contained in documents needs to be
processed by applications, as opposed to situations where the content only needs to be pre-
sented to humans. [. . .] OWL has more facilities for expressing meaning and semantics

31

than XML, RDF, and RDF-S, and thus OWL goes beyond these languages in its ability to
represent machine interpretable content on the Web.” [MvH04]

RDF and RDFS allow, in principle, for a certain level of syntactic freedom [Gra04] which
makes it difficult to layer more advanced ontology languages on top of them. It had to be en-
sured that the model-theoretic semantics of OWL are retained when the ontology is expressed
using RDF, which led to the design of three OWL dialects. OWL Full is the only true extension
of RDF(S) and thus it is undecidable [Gra04], while OWL DL and OWL Lite allow only certain
combinations of RDF(S) triples. The potentially negative implications of these decisions for
the further development of Semantic Web technologies are discussed in [Gra04], where the
author also proposes to reorganize the stack of Semantic Web languages using a novel RDF
Schema language based on RDFS(A) [PH03].

Besides of complexity issues of the various ontology languages (an analysis on the com-
plexity of various ontology operations is given in [Gra06]), visualization and user interfaces for
ontology browsing and manipulation are still major open research issues. In principle, on-
tologies building upon RDF (including the OWL family [PSH07], DAML+OIL [HHPS01], and
SKOS [MB05]) can be visualized using the same techniques as for RDF since they can actually
be represented as RDF graphs. However, while methods for visualization of RDF instance data
sets often do not scale to large graph sizes, the visualization of ontology graphs is additionally
difficult because of the inherent complexity of ontology languages [TH06]. A comprehensive
comparative study of ontology visualization techniques is given in [KHL+07], and in [ABM04]
an analysis of related tool implementations is given.

Several works have studied which ontologies are most frequently used on the Semantic
Web. One of the first such studies is [DKD+05], where the authors counted the results re-
turned by the Swoogle Semantic Web search engine [DFJ+04] and identified Dublin Core, RSS,
MetaVocab, and FOAF as the most popular ontologies. Recently, statistics obtained from the
Sindice search engine index [ODC+08] and from Ping The Semantic Web13 show that FOAF,
the W3C WGS84 vocabulary14, and SIOC15 are amongst the most popular ontologies and vo-
cabularies. We can observe that all these ontologies are designed in a lightweight, easy-to-use
style.

The question of which ontologies to use is an important one especially in the personal
desktop environment. Ontologies tend to become complex, and it is critical that end users are
able to work with such complex ontologies. Jones [Jon04] proposes the definition of Personal
Unifying Taxonomies (PUT) for an ontological organization of personal information, and this
formalized model of a person’s information space can be enriched with semi-automated cate-
gorization or highlighting and summarization techniques. A similar proposal is described in
[XC05] where ontologies are treated as plug-ins that can be dynamically used in a layered se-
mantic desktop architecture. The authors use ontologies in the three layers application, domain,
and resource, and queries issued by applications (and expressed using application ontology
vocabulary) are mapped and translated to the corresponding domain and resource ontology
vocabularies. PIMO [FGSSB06, SDvE+06] is an ontology proposal for personal information
management based on research experience from a number of preceding projects [Roh05]. It
combines constructs from various ontology languages and extends them with constructs not
present in current ontology standards (e.g., a part-of relation) as well as Web 2.0 concepts like
tagging, wikis, and blogs.

13Ping the Semantic Web: http://www.pingthesemanticweb.com
14W3C Basic Geo Vocabulary: http://www.w3.org/2003/01/geo/
15Semantically-Interlinked Online Communities: http://sioc-project.org

32

http://www.pingthesemanticweb.com
http://www.w3.org/2003/01/geo/
http://sioc-project.org

2.2.3 Query Languages

To actually make use of data expressed in RDF, data sets have to be queried. Similar as in
relational databases, queries express which data is needed, and leave the details of processing
the data and collecting results to a query engine. The requirements for RDF query languages
are similar to those for RDBMS query languages like SQL and are described in a document
by the W3C RDF Data Access Working Group [Cla05]. Many query languages for RDF have
been proposed; a good overview on them is given in [HBEV04]. However, efforts of the World
Wide Web Consortium have lead to the design of a query language that is not represented in
said study, SPARQL [PS08], which is a successor of the RDQL language [Sea04]. SPARQL is
now supported by most RDF storage and querying systems (including Jena, Sesame, Virtuoso,
and Joseki), and an exchange protocol for transmitting SPARQL queries and results via HTTP
and SOAP is part of the SPARQL specification [Cla06]. However, currently SPARQL has no
commonly accepted, well-defined formal semantics: [PAG06a] describes works towards a for-
mal specification of the semantics of core fragments of SPARQL. Similar works are presented
in [GHM04] where the authors define a notion of formal semantics for RDF graphs and a RDF
query language. Update functionality is still missing in SPARQL; thus [SM07a] proposes such
an extension which also considers Named Graphs [CBHS05b]. Finally, [AMS07] proposes ex-
tensions to SPARQL that provide functionality to query for arbitrary path structures, e.g., to
find paths that connect resources within a graph.

2.3 Semantic Technologies for the Desktop

2.3.1 Introduction

The term Semantic Desktop [SBD05] describes a system that extends the personal computing en-
vironment of end users (the desktop) with Semantic Web technology in order to (a) strengthen
the expressive power of desktop data management facilities to improve information search
and retrieval, and (b) to connect the separate information spheres of the web and the desktop
by a unified data model and common interfaces. One of the main motivations for research in
this field is to improve personal information management [TJB06]; i.e., the ways users cope with
the set of digital information they need in their professional and private contexts. Depend-
ing on the user’s current context, data from various sources can become relevant for personal
information management: a phone call from one’s child, a photo sent to a work colleague, a
meeting appointment in the customer’s office, a letter written to the local tax authority, and
last month’s telephone bill are examples of items in the space of personal information.

Vannevar Bush described an universal device for personal information management in
a broader sense, called the Memex [Bus45]. In principle, the Semantic Desktop follows the
same objectives as the Memex: to relate and annotate items so that they can, if needed, be
found more easily, or be found at all. The Memex uses associative trails to interconnect and
relate information units, which is a simplified imitation of how we think the brain works.
Consequently, one of the main characteristics of a semantic desktop is the ability to interrelate
information objects in order to constitute a personal data web.

Although Bush’s idea of the Memex is impressive, he could not foresee the substantial
implications that the emergence of a global information network has imposed on personal in-
formation management. Today we can observe that more and more personal information is
spread across multiple devices, making it even harder to interlink, find, and remember rel-
evant information bits. The World Wide Web is an example of a distributed system where
heterogeneous devices interoperate and constitute a global information space: data and ser-

33

vices are connected by hyperlinks which allow the user (and, in a limited manner, machines)
to navigate from node to node in this network. The Semantic Web continues this metaphor
by enriching the traditional Web with machine-processable vocabularies used to describe re-
sources (cf. Section 2.2.1). Applying this metaphor to the personal desktop could be one path
to a unified view on information, for instance by seamlessly enriching personal desktop data
with information from the web, or by improving the usage of web resources with context in-
formation derived from the user’s desktop.

A semantic desktop most likely will follow certain design paradigms that—in the author’s
opinion—made the World Wide Web and, to a certain extent, the Semantic Web successful,
and that most desktop systems in place today lack:

• Shared information infrastructures. URLs, HTTP, XML and (X)HTML form the basic tech-
nology corpus for information that is available on the World Wide Web. In the Semantic
Web, URIs, RDF, and ontology languages (cf. Section 2.2.2) complete this infrastructure.
These building blocks are understood by a wide range of software and tools, and web
applications adhere to them, e.g., by accepting HTTP requests as input (or commands)
and by returning results formatted as XML or XHTML. Desktop systems currently lack
such a rich structural basis, which hardens exchange and interoperability of data and
creates barriers between applications (cf. Section 2.1.7).

• Distributed unified naming. The Web uses URLs and URIs to identify resources of all kinds.
Alongside the most prominent URI types, http and mailto, there exist URI schemes for
a magnitude of resource types, and the Domain Name System ensures that, in practice,
every entity that registers for a name can use it without having to fear conflicts. Addi-
tionally it enables the creation of persistent names since it hides the physical location of
a resource (e.g., an IP address) behind the logical location (its URI or URL). On the desk-
top, the file URI scheme can be used to identify file resources. However, a file URI is
only valid within the context of the local system, and there exist no authority that avoids
naming conflicts across systems.

• Unified view on information. Besides applications for special types of information (e.g.,
E-Mail or Instant Messaging), the Web browser has become the default user interface for
humans to the World Wide Web. In contrast, the Semantic Web is still searching for its
standard interface, as the activity in the research community indicates16. Although there
exists a de-facto standard interface for file systems on the desktop (cf. Section 2.1.6), inter-
faces for the usage of concrete information objects are heterogeneous and differ greatly,
even on the same platform.

The Semantic Desktop aims to bring characteristics of the Semantic Web onto personal
devices (i.e., desktop computers, notebooks, mobile devices, etc.). In the following, we will
describe criteria and dimensions by which we can analyze and classify approaches towards
this direction.

2.3.2 Dimensions of the Semantic Desktop

A desktop system is a complex system in terms of both hardware and software: modern oper-
ating systems consist of hundreds of components, and the degree and quality of their cooper-
ation has significant impact on the user’s experience. The diversity and versatility of desktop

16Semantic Web User Interaction workshop series: http://swui.semanticweb.org

34

http://swui.semanticweb.org

systems is one of the success factors of personal computers, and many of our daily tasks, es-
pecially in personal information management both in the private and in the business domain,
have now become unimaginable to be performed without computer support.

However this versatility made it harder to understand the dimensions that influence the
design of desktop systems, and the way users use and interact with them. A desktop system
can be regarded as a highly connected mesh of components, where one component’s character-
istics influence many other parts, with possibly a number of intermediate steps. For instance,
the input devices present on a laptop influence the usability of applications running on this
machine, and the presence (or absence) of a certain communication protocol may have effects
on the way information is shared between collaborators. In this section, we define dimensions
of semantic desktop systems that may influence the way users work with them.

Data Model

The data model of an information system determines the conditions under which data can be
processed and interpreted by the system. There exists no precise definition of what a data model
constitutes [PS03b]; however it can be regarded as the language of a system, as it defines the
constructs with which data can be expressed, and the rules that determine which constructs
are correct; i.e., which data can be interpreted by the system. Together with its meta data model
(i.e., the data model that is used to describe the system data model) the data model has direct
and indirect implications on the capabilities that a system exposes and the operations one can
perform on a given data instance.

Tightly coupled with the selection of a data model is the question of storage. For different
data models, different storage mechanisms exist which differ in performance and scalability.
Since storage capacity and computing power are potentially limited on personal computing
devices, the designer of a Semantic Desktop system must find a tradeoff between functionality
and performance, and mutual effects between them should be considered.

External Data Source Support

In a highly connected world, a personal information system cannot be considered without
enabling relationships to other systems, especially sources of data that are relevant for personal
information management. Integration of external data sources (both read-only and read-write)
is possible only if the participating systems’ data models are structurally and semantically
compatible, i.e., data sets can be converted according to a system’s needs. Especially the level
on which data is integrated must be considered, since this influences the necessary conversion
steps to establish interoperability [HK08].

Application Integration

The majority of personal information and descriptive data are created and consumed during
work with specific applications. These applications make use of various aspects of a desktop
system, including read and write operations on stored data and metadata. The characteristics
of the data model and the underlying storage infrastructure influence the design and imple-
mentation of applications (cf. Section 2.1.4): any logic and expressivity that is provided by
the storage system needs not to be re-implemented within specific applications. On the other
hand, the right balance of expressivity must be found since from expressivity comes rigid-
ness, and the more elements and constraints a data model defines, the higher is the probability
that the data model required by an application is incompatible with the one provided by the
Semantic Desktop system.

35

As described before, one goal of Semantic Desktop systems is to provide a unified view on
semantically enriched information across applications. Usually such a view is implemented
through an Application Programming Interface (API) or through services that can be used by
applications. However, the large number of applications in place today makes it necessary
to provide background-compatible transition paths so that information stored on a Semantic
Desktop can also be accessed with legacy, “non-semantic” applications.

Operating System Integration

It is inevitable for a Semantic Desktop system to tightly cooperate with the operating system.
Even more, a Semantic Desktop system may replace certain components of the operating sys-
tem, or may render some of them uncecessary. As Semantic Desktop systems mostly deal with
the management of personal data, the primarily relevant components of the operating system
include file systems and communication infrastructure. As described in Section 2.1.6, this may
require to enrich or even replace the operating systems’s user interface in order to make its
features accessible to the user.

A major question is whether a Semantic Desktop system is able to deal with the diverging
characteristics of different operating systems and their special components; especially the wide
variety of options found in different file systems (cf. Section 2.1.2) may cause considerable
adaption overhead.

User Interface

The user interface, as the communication point between a Semantic Desktop system and the
end user, is a determining factor for the design of such an information system. Naturally, the
user interface design must strongly consider the intended target audience of the system to
be successful. Rohmer [Roh05] states that “Semantic Desktop Computing is about people, more
than about machines, architecture and protocols” and emphasises the necessity of careful user
interface and interaction design. Gentner and Nielsen [GN96] have identified shortcomings
of the traditional WIMP (windows, icons, mouse, pointer) desktop interface (cf. Section 2.1.6)
and discuss possible alternatives that aim to enhance system usability. Users vary in their
experience, their expectations and their requirements, and these variables must be reflected
when considering a user interface for a user-centric system.

Multi-User and Collaboration Support

In a highly networked world, collaboration between users is a crucial factor. People are col-
laborating on different levels of institutionalization, starting from preassigned project teams to
ad-hoc collaboration across continents. Collaboration implies communication; however cur-
rent desktop systems do only insufficiently support users with integrating communication
tasks into their workflow. Instead, specialized utilities for communication are provided that
cover certain communication technologies (e.g., e-mail or instant messaging) instead of commu-
nication goals (e.g., reaching a consensus decision, or collaborative meeting agenda planning).
Semantic desktop systems should consider the infrastructural needs that emerge from collab-
oration, and enable such by adjusting their interfaces and workflows.

2.3.3 Light-Weight Extensions of Existing Infrastructure

As described in Section 2.1.7, common desktop systems and their file system do often not
provide sufficient means to express semantically rich annotations and relationships. An ap-

36

proach to overcome this is the implementation of light-weight components that target specific
functionality without abandoning the basic principles and paradigms already in place. Such a
light-weight solution does not force the user to adopt completely new management paradigms
and thus has significant advantages in terms of user acceptance.

Files

There exist lots of tools that attempt to overcome the limitations of hierarchical file systems.
Files can be annotated with tags, which—if applied systematically—can also be semantically
interpreted and queried. Tagging is supported by a variety of commercial products that are
available for different platforms (e.g., Punakea17 or Ultrafolder18). Some of these tools use
infrastructure provided by the operating system or the file system (e.g., Spotlight comments19

on Mac OS X), others employ application-specific databases or directories to store annotations.
While the former allows for a certain level of interoperability at least on the specific platform,
information stored by the latter class of tools seldomly can be used by any other tool. To
the best of the author’s knowledge, none of such tools uses a widely accepted, standardized
format to represent their metadata.

A collection of such tools has been presented in [MH07]; these tools store links between
files, expressed using RDF, by a combination of spotlight importers (cf. Section 2.1.2) and ex-
tended attributes (cf. Section 2.1.2) using simple user interfaces. Web ontologies can be im-
ported, and selected concepts are represented as files, making them available for spotlight
search.

More specialized approaches exist that deal only with certain file types, e.g., office docu-
ments: [IAD06] gives an overview on systems for integrating semantic annotations into word
processor documents. As an example, Semantic Word [Tal03] employs a combination of man-
ual annotation and content-based information extraction to store DAML+OIL annotations to
text areas within a Microsoft Word document.

E-Mail

E-Mail has become one of the main applications of desktop computers during the last years,
and thus it is clear that annotation mechanisms for e-mail messages and related information
(e.g., contacts) have emerged. Many e-mail applications store e-mail messages as files, hence
tools as described above could be used also with mail messages. However e-mail messages
follow a certain inner structure and carry partially structured information (like sender or sub-
ject) that can be utilized by annotation tools.

Mail messages additionally possess inherent structured relationships to other entities: each
mail message carries a globally unique id, issued by the mail server used for sending the
message. The message’s sender and recipient are referenced by their mail addresses, and
preceding mail conversation can be tracked by message references. For these data, designated
mail header fields are defined by the Internet Message Format Specification [Res01], and to the
best of the author’s knowledge these metadata can be regarded as the most frequently used
on desktops.

Mail headers can also be used to store user annotations for messages. Although there
are three defined header fields—Subject:, Keywords:, and Comments: [Res01]—, only Subject:

is frequently used. Instead, non-standardized headers like, for example, X-Keywords or
X-Mailtags, can often be seen, causing incompatibilities between systems when mail messages

17Punakea: http://nudgenudge.eu/punakea
18UltraFolder: http://www.ultrafolder.com
19Spotlight: http://developer.apple.com/macosx/spotlight.html

37

http://nudgenudge.eu/punakea
http://www.ultrafolder.com
http://developer.apple.com/macosx/spotlight.html

are stored on shared infrastructure, e.g., an IMAP server [Cri03], and are accessed via different
machines running different software; e.g., MailTags20, a plugin for Apple Mail. To a certain
extent, tagging of mail messages is possible in other products like Mozilla Thunderbird or
Microsoft Outlook.

Another approach is taken by online mail services like Google Mail21: instead of a folder
hierarchy this service purely relies on tags and annotations that are attached to mail messages,
and the relationships of messages and their replies (conversions). Such tags can be generated
either manually or automatically by analyzing the textual content of mail messages.

Web Resources

On the web it is more commonplace to annotate resources than on the desktop. Collaborative
tagging services for different media like web pages (e.g., del.icio.us22), images (e.g., Flickr23),
or videos (e.g., YouTube24) have emerged together with their underlying core task: storage
and distribution of user-generated content. Because of their large user numbers these services
increasingly become a significant knowledge corpus, and many approaches and technologies
how to semantically enrich the mostly unstructured annotations found in these systems have
been presented [SM07b]. However it is unclear whether these technologies can be applied
also to desktops since the large numbers of users and media objects that can be found on web
services are not given in desktop environments.

2.3.4 Comparison of Semantic Desktop Approaches

Based on the criteria described in the previous section, we analyze a number of projects car-
rying out work toward a Semantic Desktop. When selecting projects we focused on such ones
that aim to develop comprehensive infrastructures, instead of such ones that focus on specific
functionalities and aspects of desktop data management, as described in Section 2.3.3.

Table 2.3 gives an overview on the projects and the applied criteria. Our selection includes
pure research projects of various sizes as well as community-driven projects. In the following,
we give a short introduction to the eight selected projects.

• Nepomuk25 is a project that integrates the efforts of approximately fifteen european part-
ners, including research institutes as well as industrial representatives. The main goal of
the project is to develop standards and reference architectures for semantic desktop sys-
tems, and to integrate effort carried out by individual partners on an European level. A
Java-based reference implementation of the Nepomuk framework is available for down-
load; moreover, some core components of Nepomuk have been integrated into the K
Desktop Environment (KDE26).

• Haystack27 subsumes research work carried out by the MIT Computer Science and Arti-
ficial Intelligence Laboratory and can be regarded as one of the first projects that aimed
to improve data management on the user desktop with semantic technologies. A num-
ber of different sub-projects are subsumed under the label “Haystack”; in this analysis

20http://www.indev.ca/MailTags.html
21http://mail.google.com
22http://del.icio.us
23http://flickr.com
24http://www.youtube.com
25http://nepomuk.semanticdesktop.org
26K Desktop Environment: http://www.kde.org
27http://freshmeat.net/projects/haystack/

38

http://www.indev.ca/MailTags.html
http://mail.google.com
http://del.icio.us
http://flickr.com
http://www.youtube.com
http://nepomuk.semanticdesktop.org
http://www.kde.org
http://freshmeat.net/projects/haystack/

we focus on the Haystack Universal Information Client28 which is a universal management
tool for personal data and can be downloaded from the project web site.

• Chandler29. The Open Source Applications Foundation is a non-profit organization working
on the Chandler project. Chandler focuses on supporting tasks that people carry out in
their daily work, especially in team constellations. The Chandler system consists of a
server (Chandler Hub) and a client application, both of which are released under an open
source license.

• Semex30. The main focus of the Semex project is to create a platform for personal in-
formation management by integrating data from various sources and overlaying them
with a personalized schema that can be modified by the user according to her needs. A
prototype of Semex is available for download from the project web site.

• DeepaMehta31. In the DeepaMehta project the user desktop is entirely modelled as topic
map, and the user is able to directly manipulate this map through a graph-based inter-
face, instead of having to deal with different applications and file directories. It is the
goal of the project to reflect the user’s mental model in a visual adaequate style. Deep-
aMehta can be downloaded from the project web site or used online via the web browser.

• OpenIRIS32 is a framework for the creation of personal knowledge maps and applica-
tions, developed and maintained by SRI International. It is part of the CALO research
project33 and bundles a set of standard PIM applications, including mail, calendar, and
web and file browsers. Similar to the projects mentioned before, OpenIRIS is available
for download under a LGPL license.

• DBin34. The main focus of DBin is peer-to-peer based exchange of knowledge and col-
laboration between multiple desktop within so-called Semantic Web Communities. Thus it
can be seen as a complement to other approaches that concentrate mainly on the extrac-
tion and organization of data on single desktops. DBin is developed by the Universita’
Politecnica delle Marche, and several prototypes are available for download from the
project web site.

• iMeMex35, developed at ETH Zurich, provides a unified data model and search and
query mechanisms for personal information. It follows the goal of ad-hoc integration
(or pay-as-you-go integration [FHM05]) in order to derive an integrated view on all data
present on the desktop. Started in 2005, the project is still under development; yet, com-
ponents of the framework are available for download via the project web site.

In the following we discuss the dimensions of semantic desktop systems, as outlined in
Section 2.3.2, and describe how these are addressed by the presented approaches. The purpose
of this analysis is not to give a benchmark, but to give a reference overview and to give starting
points for the interested reader.

28http://groups.csail.mit.edu/haystack/home.html
29http://chandlerproject.org/
30http://data.cs.washington.edu/semex/semex.html
31http://www.deepamehta.de/
32http://www.openiris.org
33http://www.ai.sri.com/project/CALO
34http://dbin.org
35http://imemex.ethz.ch/

39

http://groups.csail.mit.edu/haystack/home.html
http://chandlerproject.org/
http://data.cs.washington.edu/semex/semex.html
http://www.deepamehta.de/
http://www.openiris.org
http://www.ai.sri.com/project/CALO
http://dbin.org
http://imemex.ethz.ch/

Nepomuk Haystack Chandler Semex DeepaMehta OpenIRIS DBin iMeMex

Data ModelData Model

Meta Model RDF / NRL (1) RDF (7)
Items,

Collections
RDF

Topic Maps (+
extensions),

RDF
RDF RDF

iDM (graph-
based) (23)

Storage Layer
RDF2Go /
Sesame2

In-memory DB
BerkeleyDB,

Lucene

Jena in-
memory DB

(10)
MySQL, HSQL Jena DB (16) Sesame2

Apache Derby
(RDBMS)

Metadata ModelMetadata Model

Ontologies

Four level
model (2) with

predefined core
ontologies

Predefined
specific

ontologies

Predefined
ontology

Predefined
domain model

Predefined
high-level

concepts (13)

Predefined
high-level
concepts

(subset of CLIB)
(14, 15)

Predefined
ontology

No predefined
schema

Extensibility
Based on NIE

(3)
Adenine (9)

Python data
structures (21,

22)

Malleable
Schemas (12)

Base Java class
OWL

Ontologies
Brainlets (27)

iDM Resource
View Classes

(23)

Integration / InteroperabilityIntegration / InteroperabilityIntegration / Interoperability

External Data
Sources

Data wrapper/
crawler

framework

Data Extractors
(defined by

demonstration)
(26)

IMAP, iCal File System
SQL, IMAP,
SMTP, IMAP

Harvester for
file system, e-

mail

RDF import and
export

File system,
XML, IMAP,
RDBMS, RSS

Data Mapping

Alignment
engine with

user feedback
(5)

- -
Reference

reconciliation
(11)

-
Bayesian
classifier

Resource
matching

Incremental
integration

(planned) (24)

Application
Programming
Interface

Access via
SOAP/REST,
application

plugins

-
CalDAV,

WebDAV, HTTP
- SOAP, EJB XML-RPC -

HTTP, WebDAV
(25)

Operating
System

Integration in
KDE Core

- - - - - -
File events
(planned)

User InterfaceUser Interface

Interface
Metaphor

Knowledge
Workbench

View
Prescriptions,
Lenses (7,8)

Tree- and list-
based item

browser

Tree-based
search and
navigation

Graph-based
resource
browser

Tree-based
item browser

Tree-based
topic browser

Tree-based
resource
browser

Implementation
Standalone

(RCP)
Standalone

(RCP)

Standalone
(Python) + Web

interface

Standalone
(Java)

Standalone
(Java) + Web

interface

Standalone
(Java)

Standalone
(RCP)

AJAX Web
interface

UI Extensibility
RCP plugins

(GnoGno
framework)

Declarative
(Adenine) (9)

Python classes
(21)

-
Java classes +

Java Server
Pages

Application
plugin

framework
(Java Beans)

Brainlets (RCP
Plugins)

-

CollaborationCollaboration

Data Sharing
P2P

Infrastructure
(GridVine) (4)

-

Client/Server
Publish/

Subscribe
Mechanism

-
Shared

workspaces
(13)

(planned)
RDFGrowth

(17) / Semantic
Web Pipes (19)

(planned)

Access Control RMU-Cube (6) - Item-based - Type-based -
Restricted P2P
Groups (20)

-

Synchronization
P2P-based

replication (2)
-

Via dedicated
server

- -
Jabber-based
Sync Protocol

P2P-based
resource

exchange (18)
(planned)

(1) Sintek et al, 2007 (15) http://www.cs.utexas.edu/users/mfkb/RKF/treehttp://www.cs.utexas.edu/users/mfkb/RKF/treehttp://www.cs.utexas.edu/users/mfkb/RKF/tree

(2) Reif et al, 2007 (16) http://www.openiris.org/downloads/IRIS-nightly/doc-current/doc/http://www.openiris.org/downloads/IRIS-nightly/doc-current/doc/http://www.openiris.org/downloads/IRIS-nightly/doc-current/doc/http://www.openiris.org/downloads/IRIS-nightly/doc-current/doc/

(3) http://www.semanticdesktop.org/ontologies/niehttp://www.semanticdesktop.org/ontologies/niehttp://www.semanticdesktop.org/ontologies/nie dev/pdf/iris-developer-guide.pdfdev/pdf/iris-developer-guide.pdf

(4) Aberer et al, 2004 (17) Tummarello et al, 2006Tummarello et al, 2006

(5) http://dev.nepomuk.semanticdesktop.org/wiki/LocalDataAlignmenthttp://dev.nepomuk.semanticdesktop.org/wiki/LocalDataAlignmenthttp://dev.nepomuk.semanticdesktop.org/wiki/LocalDataAlignment (18) Tummarello et al, 2004Tummarello et al, 2004

(6) Ioannou et al, 2007 (19) Morbidoni, 2008

(7) Karger et al, 2005 (20) Tummarello et al, 2007bTummarello et al, 2007b

(8) Quan and Karger, 2004Quan and Karger, 2004 (21) http://chandlerproject.org/Projects/PluginsTutorialhttp://chandlerproject.org/Projects/PluginsTutorialhttp://chandlerproject.org/Projects/PluginsTutorial

(9) http://groups.csail.mit.edu/haystack/developers/adenine.htmlhttp://groups.csail.mit.edu/haystack/developers/adenine.htmlhttp://groups.csail.mit.edu/haystack/developers/adenine.html (22) http://chandler.osafoundation.org/docs/0.7/parcel-schema-guide.htmlhttp://chandler.osafoundation.org/docs/0.7/parcel-schema-guide.htmlhttp://chandler.osafoundation.org/docs/0.7/parcel-schema-guide.htmlhttp://chandler.osafoundation.org/docs/0.7/parcel-schema-guide.html

(10) http://data.cs.washington.edu/semex/download/download.htmhttp://data.cs.washington.edu/semex/download/download.htmhttp://data.cs.washington.edu/semex/download/download.htm (23) Dittrich and Salles, 2006Dittrich and Salles, 2006

(11) Dong et al, 2005 (24) Blunschi et al, 2007

(12) Dong and Halevy, 2005Dong and Halevy, 2005 (25) Dittrich et al, 2005

(13) Richter andPoelchau, 2008Richter andPoelchau, 2008 (26) Hogue and Karger, 2004Hogue and Karger, 2004

(14) Cheyer et al, 2005 (27) Tummarello et al, 2006aTummarello et al, 2006a

Table 2.3: Comparison of Semantic Desktop projects

40

Data Model Most of the analyzed projects and approaches use graphs as meta model for
data. With the exception of Chandler, DeepaMehta, and iMeMex, all projects use RDF (cf.
Section 2.2.1) as graph representation format; thus we can consider RDF as a de-facto stan-
dard for the Semantic Desktop. DeepaMehta is based on a subset of Topic Maps36—which
are conceptually similar to RDF [Gar03]—and extend them with an system-specific typing
system [RVH05]. Chandler uses an object based data structure with a defined set of object
types, while iMeMex defines an abstract data model that is sufficiently expressive to represent
directed graphs [DS06] and uses an RDBMS to store its data instances.

It is important to note that all of these systems use a graph-based data model instead of the
hierarchical data model common on desktop systems today. There seems to exist a common
understanding that a graph structure is better suited to represent data on the desktop than
strict hierarchies, and we expect graph storage structures to be present in the core of different
operating systems during the next years, as is already demonstrated by the Nepomuk-KDE
project37.

Although most of the presented approaches have been developed and tested against spe-
cific storage layers, storage abstraction layers often hide the details of physical storage from the
system logic. This seems reasonable in terms of portability and distribution, and the perfor-
mance of such systems is approaching the requirements of desktop environments [SH09].

Meta Data Model Analogically, the meta data models of approaches under examination also
follow a typical model: all systems—with the exception of iMeMex—define a core ontology that
models the basic information units of the system. In most cases this core ontology, or domain
model, contains generic classes like Person, Document, or Message, and corresponding properties
or relationship types, like author of or recipient. iMeMex does not predefine such types but
allows data to conform to arbitrary schemas, where a schema consists of a set of attributes that
can be applied to resources. Nepomuk defines its meta data model as a four-level ontology,
where a representational layer and a set of core ontologies establish the foundation for the
definition of application- and user-specific specialized models [RGH+07].

From the author’s point of view, the similarity of the core ontologies in use may eventually
lead to an agreement on a desktop standard ontology. Such agreement has already been reached
on the web, where certain models enjoy great popularity (e.g., FOAF [GEP04]). If such a
consensus could be reached, semantic interoperability between desktops could increase and
thus the effort for manual information management could be significantly reduced.

However the uses of desktop data are manifold, which requires the possibility to extend
the meta data model one uses. The analyzed projects differ significantly in the approaches
they provide for this requirement. While some approaches focus on the static modelling of user
ontologies (e.g., NIE38 in Nepomuk, Brainlets [TMNP06] in DBin), the process of modelling an
user ontology is only actually addressed by the concept of malleable schemas [DH05], which are
used in Semex. We consider this an important contribution, since end users are often neither
willing nor able to model complex, expressive schemas for their information space, and thus
mechanisms which allow for semi-automatic, simplified creation and representation of such
models are required.

Integration and Interoperability The issues of data integration and interoperability with
other systems and applications are addressed differently by the analyzed approaches. Most
of the presented approaches employ extensible crawling and harvesting frameworks which are

36http://www.topicmaps.org/
37http://nepomuk-kde.semanticdesktop.org
38http://www.semanticdesktop.org/ontologies/nie

41

http://www.topicmaps.org/
http://nepomuk-kde.semanticdesktop.org
http://www.semanticdesktop.org/ontologies/nie

populated by exemplary implementations, mostly in order to import file system contents, mail
messages, and calendar information. However, harvesting mechanisms cannot provide live
updates: modifications to data sources are reflected in the desktop data model only after the
next crawling iteration. Live integration, i.e., translation of queries and result sets on-the-fly
during query time is possible in some implementations (e.g., in the Nepomuk platform), but
can cause performance problems when large data amounts have to be handled. While most
approaches concentrate on the static definition of extractors and crawlers, Haystack presents a
methodology where extractors for web data can be created by demonstration, without requiring
programming skills from the user [HK04].

The alignment of such imported data towards the predefined meta data model or already
existing user-defined models is done using a variety of mechanisms in addition to manual
annotation. Nepomuk proposes the usage of an alignment engine with a user feedback mech-
anism39, similar to a recommendation engine. In Semex, a reference reconciliation algorithm
is used to detect references that differ in expression, but refer to the same entity [DHM05].
OpenIRIS uses bayesian classifiers to assign ontology classes to imported resources, and
in iMeMex a framework for incremental integration similar to the algorithms described in
[FHM05] is currently under development [BDG+07].

Vice versa, many systems provide interfaces through which external applications can ad-
dress the system and use its services and data sets. Different technologies are employed for
this, including SOAP/REST, HTTP, and XML-RPC. However all these interfaces require the
client application to be specifically designed; only Chandler and iMeMex [DSKB05] expose
their data structures via WebDAV [GWF+99], for which certain support is integrated into
every desktop operating system and many applications. By doing so these systems allow a
desktop user to browse through the data inventory as if she was browsing a hierarchical file
system. We believe that it is neccessary for any semantic desktop system to provide such
transition paths from existing systems and metaphors, both for applications and users.

A similar question is the one how a semantic desktop system can be integrated with an op-
erating system already in place. The considered systems do, in general, not integrate with the
operating system core; in contrast, most of them are implemented in programming languages
that abstract from the details of operating systems, like Java. However, as long as the operating
system (or their data storage sub-systems) do not provide sufficiently expressive metaphors
for data management (which was only recently done by the Nepomuk-KDE project), the in-
stantiation of such bridges will be neccessary in order to increase the feasibility of the Semantic
Desktop approach.

User Interface Although their data model is graph-based, most considered systems rely on
traditional metaphors (trees and lists) for their graphical user interface (cf. Figure 2.11). In
some systems an additional graph browser can be opened if demanded. Mostly this view can
be focused on the items of interest, e.g., the relationship a selected resource participates in. In
these systems, the tree view gives an overview on the available information items, and details
for selected resources (including attributes and relationships to other items) are displayed in a
designated screen area.

Only DeepaMehta chooses a graphic representation of its data set as main navigational
concept. Topics are depicted as icons and are connected by colored edges; detailed information
for selected topics is displayed in a designated screen area. The need to browse large graph
structures is avoided by representing queries as topic icons that can be opened (i.e., executed)
or refined by adding further criteria [RP08].

39http://dev.nepomuk.semanticdesktop.org/wiki/LocalDataAlignment

42

http://dev.nepomuk.semanticdesktop.org/wiki/LocalDataAlignment

Figure 2.11: Semantic Desktop user interfaces (from top left to bottom right): Haystack
[KBH+03], OpenIRIS [CPG05], DeepaMehta [RP08], DBin [TMN06]

An interesting approach is taken in Haystack, where user interface elements (including
actions that can be executed from the views) are defined using a combination of RDF and
Python; the actually displayed interface is hierarchically composed from renderings of then
visible information items [QHSK02, Kar07]. One great strength of this approach is that the
rendering code can be reused in different contexts, e.g., an e-mail address can be displayed
equally in different contexts without the need to re-define the interface description.

Most of the presented projects’ user interfaces are implemented as standalone applications
(mostly in Java), some of them using the Eclipse Rich Client Platform (RCP)40. In the author’s
opinion, the latter causes user interfaces to become more technology oriented than user ori-
ented, since the core UI elements of the RCP (perspectives and views) are derived from the
needs of software development but their usability for non-expert end users is questionable.

Extensibility in terms of data model and meta data model (see above) most often entails
extensibility of the user interface. Here, different approaches can be observed: in many cases, a
developer can extend the user interface by extending and implementing base classes provided
by the system. In Haystack, user interface extensions can be defined using Adenine [QHSK02],
a language combining elements from RDF and Python. DBin Brainlets [TMNP06] integrate
the description of user ontologies and UI elements, which are actually implemented as RCP
plugins; however both Haystack and DBin lack a simple user interface editor thus editing of
source code is required.

40http://wiki.eclipse.org/index.php/Rich_Client_Platform

43

http://wiki.eclipse.org/index.php/Rich_Client_Platform

Collaboration Support for collaboration tasks, including communication and information
sharing, is addressed variably. The implementations range from simple integration of stan-
dard communication facilities like e-mail or instant messaging to dedicated infrastructures
that allow fine-grained control of shared information and access.

Nepomuk employs a combination of a network event system and a peer-to-peer infras-
tructure [ACMHP04] to publish information relevant for other users and thus interconnecting
desktop systems [GHM+07]. This infrastructure is used to replicate information across the
network; whereas access restrictions are defined by a 3-dimensional resource/metadata/user
cube [ICK+07].

In Chandler, a client/server based publish/subscribe infrastructure is established, where
users can publish information items to a server, and other clients can register themselves for
notification upon data changes. Access control rules are defined on a per-item basis and can
be restricted to read only or read+write access for certain user groups.

DeepaMehta currently does not provide dedicated collaboration features, although such
ones are envisioned for future versions [RP08]. Currently DeepaMehta workspaces can be
shared between users who are notified by e-mail whenever a workspace is changed, and access
control is currently limited to resource type-level.

DBin’s main focus is exchange of information items within collaborative groups of interest.
DBin used the concept of P2P Information Groups [TMN06] in previous versions, and is now
experimenting with Semantic Web Pipes [TPM07, TM07]. The former is a peer-to-peer based in-
frastructure for exchange of RDF data where data is selectively replicated within user groups,
while the latter is a modelling approach for the combination of RDF-based data sources that
can be integrated using a set of operators. DBin provides access control to published databased
on its group principle: data published to a group of interest is available to all members of this
group.

In some projects (e.g., Haystack and Semex), collaboration is not considered at all since it
is not in their research focus. However, the importance of collaboration is acknowledged and
it is a common understanding that one cannot treat data management on the desktop without
developing strategies how such data can be collaboratively used, either on a small scale (like
a university department) or on a large (web) scale.

Conclusions

The projects analyzed in this section have different backgrounds, aims, and objectives, and
are therefore comparable only in a restricted manner. However, results from these projects are
partly complementary, and we can derive the following lessons learned from their consolidated
analysis.

1. The graph data model has established as de-facto standard for semantic desktop systems. With the
exception of one system, all presented approaches make use of graphs to represent per-
sonal information. From these, all but one use RDF to exchange and internally represent
information graphs. In the future, compatibility with web technology will become even
more important as the boundaries between the local desktop and the web increasingly
disappear.

2. External data sources need to be considered. All presented architectures provide mechanisms
to semi-automatically integrate data from external data sources; mostly such ones that
are related to personal information, like e-mail or calendar data. Many systems are in
place that are well designed for such specific kinds of data, and we conclude that data
management on the desktop cannot be considered without building bridges to these.

44

3. Adaequate user interfaces are still to be developed. Although graphs are the predominant data
model, user interfaces for browsing, searching, navigating, and manipulating graph data
sets often map graph data to “traditional” interface metahpors, like trees and lists. While
the backend components of the analyzed approaches often follow a radical approach
and aim to entirely replace structures in place today, this claim does not hold for user
interfaces.

4. Consensus and cooperation between operating system developers is required. Desktop com-
puters are driven by operating systems, and their underlying storage structures, like
hierarchical file systems, constitute an integral part of the them. In order to foster new,
semantically enriched storage structures, operating system developers must agree on a
core set of models, algorithms, and formats, to allow information interchange between
different systems, as it is the case today with files and hierarchical folder structures.

5. Collaboration and social interaction must be supported. Exchange of information and com-
munication consume a large share of knowledge workers’ time. Although the desktop
is continuing to be considered as a personal space, connections to other instances can
increase productivity and work quality. A majority of analyzed approaches incorporate
collaborative mechanisms; the ones that do not, nevertheless, agree on their necessity.

45

46

Part II

Concepts

47

Chapter 3

Siles: An Abstract Model for
Semantic Representation of Data
Assets on the Desktop

It is a very sad thing that nowadays there is so little useless
information. — Oscar Wilde

In the previous section we have discussed the current state of the art in desktop data man-
agement, ranging from the analysis of capacities of hierarchical file systems that are in place
today, over approaches that extend file systems in a lightweight fashion, to full semantic desk-
top projects. In the following section, we discuss our novel data model to represent personal
data by describing a number of design considerations and requirements. We introduce, in an
informal way, the basic concepts that we include in the model, and give a formal specification
of the model elements.

3.1 Design Considerations

Typically, hierarchical file systems provide relatively weak organizational metaphors. More
sophisticated information processing middleware can either be implemented as layers that en-
tirely hide the file system structures from the outside (i.e., applications or end users); an exam-
ple for this class are relational databases. Alternatively, they can establish data structures (for
instance, triple stores) that coexist with file systems; we denote the latter as hybrid approaches.
There, applications or end users simultaneously operate directly on both the file system and
the additional structures. Such approaches for semantic enrichment of files are widely found,
either providing very specific functionality (cf. Kante [MH07] or Punakea [Cor]), or constitute
an all-embracing generic semantic layer that presents an integrated view on all user data (cf.
NEPOMUK [GHM+07] or Haystack [KBH+03]). Without doubt such extended semantic desk-

49

top systems increase the data quality and experience for end users [SH08], they suffer from a
number of fundamental problems:

• Identiscription problem. Hierarchical file systems intermingle the functions of identification
and description of files [OG92]. In the context of a physical device, a file is uniquely
identified by the combination of its path and its file name. However, the path and file
name are also used to describe the file, and to relate it to other files (by putting them into
a common directory). Consequently, when the description of a file is changed (e.g., when
a directory is renamed), references to the file become invalid. As a further consequence,
it is not possible to attach multiple descriptions to a file, since this would require storing
it into multiple directories. This problem is only partially solved by using symbolic links
or similar techniques.

• Mapping problem. File systems provide a minimal level of descriptive metadata in the
form of file names and directories. If a semantic component is established in addition
to a file system, it is desirable to include or reflect this information within the semantic
layer; e.g., by mapping directory names to ontology classes. Often, such a mapping is
not straightforward: since file names and directories usually have no formal semantics
[DB99], their meaning cannot directly be captured and mapped to formal constructs.

• Update problem. Even if a mapping for a meaningful translation between a hierarchical
file system and a semantic layer can be established, there remains the danger of incon-
sistencies that result from changes in one layer that are not propagated to the other one.
To solve this, propagation mechanisms have to be integrated into file system implemen-
tations. This constitutes potential performance and security flaws because it requires
hooking or modifying code on the operating system level.

• Portability problem. Nearly all native file systems support the storage of some form of
metadata, e.g., extended attributes, alternate data streams, or resource forks. Since there
exists no widely accepted standard for file metadata, this information is often lost when
files are transfered across platforms. This may be one reason why such extended meta-
data facilities are rarely used by applications. A hybrid semantic system operating in
parallel to a file system can either ignore platform-specific metadata management facili-
ties (and thus loose the benefit of a tighter integration into the operating system), or use
them and provide mappings to the semantic layer, which again raises the Mapping and
Update problems.

Any hybrid approach that coexists with hierarchical file system must deal with these is-
sues, which potentially leads to increased complexity and error proneness. Many of these
problems could be solved if hierarchical file systems could be disbanded in favor of a com-
monly accepted semantic file system that allows one to store, annotate, and retrieve arbitrary
data objects. Such a system could serve as the common infrastructure for a semantic desktop
and its applications.

In the following we discuss requirements and design considerations for a data model of
an integrated semantic file system. We emphasize the term integrated since many of the prob-
lems outlined in the previous section can be avoided by tightly coupling data with descriptive
metadata. We outline the different aspects that we considered during the development of the
abstract model and the definition of a concrete digital manifestation.

50

3.1.1 Identification

To overcome the identiscription problem described above, each file must have an unique, im-
mutable identifier. Such a global unique id can serve as the reference for annotation and link-
age of files. In order to support interoperability across sytems the identifier must be unique not
only in the context of a single system, but on a global level. URIs [BLFM05] provide a powerful
generic mechanism to globally identify resources, and they are designed to be minted without
a central authority. As the generic specification for URIs also defines hierarchical URIs it is
additionally straightforward to convert directory and file names to URIs.

3.1.2 Level of Abstraction

One major strength of file systems is their high level of abstraction: files can be used to store
any kind of data and allow for arbitrary formats. It is important for a semantic file system that
users and applications are not forced to fit their data into heavily constrained structures. On
the other hand, semantics can only be derived from structure, therefore any semantic storage
must impose a certain level of rigidness. From observing a variety of applications and systems
both in the desktop and the Web domain, we can infer a need for the following structure
elements:

• Concrete and abstract resources. Current file systems are based on the assumption that ev-
ery thing has a digital representation (although files can have a content with zero length).
This assumption is valid in file system-based environments since the representation of
non-digital objects would make sense only if they can be further described, or if they can
be brought into relationship with other (digital) objects—both features are, however, not
offered by current hierarchical file systems. To facilitate the expression of information
about non-digital real-world objects a personal information management system should
also be able to represent e.g., persons, events, locations, etc. A semantic file system that
supports digital and non-digital objects as well as relationships between them could sig-
nificantly increase the potential expressivity of desktop applications. Additionally, shar-
ing of data between applications could be improved if common classes of user data (e.g.,
contacts or appointments) were represented in an application-independent manner.

• Ontological knowledge. Semantic annotations, or annotations based on description logic,
help to improve the automated processing and retrieval of information. Classes (or con-
cepts) are regarded the basic structure element in many knowledge organization systems
and ontology languages. To apply them to file systems, and to derive conclusions about
files with similar properties, a semantic file system should be able to represent files as
class instances and allow to perform reasoning over these data structures. Moreover,
ontology classes could be represented as files themselves and could therefore be directly
managed by the user, if this functionality is desired in a concrete application scenario.

• Attributes. Attributes can be used to describe files in structured form. They allow appli-
cations to store information that is not inherent to a file’s content. If the meaning of a
file’s attribute is defined in an ontology it can be used consistently across different appli-
cations. However, it would also be possible to attach user-defined attributes in an ad-hoc
style; in this case the attributes cannot be automatically processed but still may help the
user to organize and retrieve information.

• Relationships. Many types of information cannot be attributed to a single file, but are rep-
resented by relationships between them; a fact also observed by end users [RSK04]. The

51

World Wide Web is the best example of a knowledge base that gains its power mainly
from links between web resources. The way that files are related to each other can be
described in more detail by typed relations or by attaching additional information (at-
tributes, other relationships) to them. Therefore, a semantic file system should support
(annotated) relationships.

• Tags. Tags have become enormously popular through their use in many so-called Web
2.0 applications. Tags expose a different level of semantic expressivity than classes and
attributes, since the relationship between an object and its associated tags, as well as the
relationships between tags, are not formally defined. Nevertheless, the popularity of
tags shows that they may support the organization of information in a user-centric way
and should therefore be supported by a file system targeted towards a semantic desktop.

In addition to the possibility to store and manage these organizational mechanisms, a po-
tential increase of semantic expressivity could be gained from allowing one to define mappings
between them. Such a mapping could provide additional information hints to the user when
searching, and ease the manual annotation process, which often is cumbersome. For instance,
one could map a certain attribute value to a tag, and further only use the tag instead of the
attribute’s name/value pair. This would release users from the need to remember the exact
name and value for this attribute and allow for a more intuitive, human-centric application of
formal semantics.

3.1.3 Compatibility with File Systems

Although the amount and complexity of data on a user’s desktop steadily increases, the
organizational metaphors for files have remained unchanged for decades. Since hierarchi-
cal file systems are not sufficiently expressive to represent machine-processable annotations,
application-dependent parallel structures have been established. For instance, many tools
for management of multimedia data (e.g., audio files or photos) extend the file system with
application-specific semantics and thus face the same problems as hybrid semantic desktop
approaches (cf. Section 2.3.3). These systems often use a mix of the hierarchical file system
(e.g., MP3 files in directories named after artists), metadata embedded into files (e.g., ID3
tags), and data in application-specific databases (e.g., e-mail archive files). Naturally, the latter
remain hidden to the outside. For user data stored in hierarchical file systems it is important
that there exist smooth migration paths that allow users to “glide” into the semantic desktop.
When transferring a hierarchical directory structure into a semantically enriched organization
paradigm, the following requirements must be considered:

• Organizational preservation. No information that was present in the hierarchical system
should be lost during the transition. This includes information that is implicitly present
in file names and directories.

• Navigational preservation. A hierarchical file system provides certain navigation alterna-
tives, and users are presumably familiar with them. For semantic files it must be ensured
that similar navigational behavior is still supported. The main goal is that users can ac-
tually find objects in locations where they expect them to be.

• Backwards compatibility. Although a certain level of backwards compatibility can be
achieved by inverting mapping algorithms that ensure organizational preservation, not
all information contained in a semantic file system can be translated to the tree model of
the hierarchical file system because a tree is not sufficiently expressive to represent cer-
tain aspects, (e.g., relationships between files). Maximized backwards compatibility can

52

increase the acceptance of semantic systems on the desktop, especially when users are
using legacy software that is not aware of the file system’s semantic features. Thus, it is
reasonable to invest research effort into the question of representing semantic networks
by the means of hierarchical file systems.

3.1.4 Compatibility with the Web

A large amount of relevant information is available on the World Wide Web and, increasingly,
the Semantic Web. Currently we can observe an information gap between data stored on a
user’s local machine on the one hand, and online resources on the other hand. An information
architecture that uses a unified mechanism to identify information objects and makes them
accessible regardless of their physical location could help to bridge this gap. This bridging
could take place in two directions; first, it should allow users to semantically interconnect
(and, consequently, retrieve and use) local and web resources, and second, it should be pos-
sible to selectively share local resources if needed without much effort, and thus make local
information resources a part of the web.

3.1.5 Why not Plain RDF?

The RDF data model [KC04] is sufficiently generic to represent different organizational ele-
ments (including the ones described in Section 3.1.2), and many of them are already used in
web applications. Many tools and libraries for manipulating RDF are available, and the per-
formance of triple stores is steadily increasing (cf., e.g., [AMMH07]), hence RDF seems to be a
natural choice for the representation of metadata in file systems.

RDF does not restrict the usage of relationship types; instead, ontology languages are used
to do this. This freedom fosters the publication of data on the World Wide Web (as demon-
strated, e.g., by the Linked Data initiative1) but, on the other hand, imposes restrictions on
the applicability of RDF as information exchange format: when different applications access
a shared data set they must agree on a common vocabulary, or define potentially complex
schema mappings.

Moreover, the RDF data model does not contain the concept of self-contained information
units. Instead, RDF data can be seen as a continuous stream of relationships between arbitrary
resources. This paradigm is fundamentally different from what we can observe in file sys-
tems, where information is stored in discrete units, and is also different to the object-oriented
modeling paradigm, in which a large share of applications are implemented, and with which
many developers are familiar. We also suspect that the flat graph model stands—to a cer-
tain extent—in contradiction to the way humans perceive the world: commonly, objects and
their properties are mentally aggregated and treated as integral units. Thus we envision a
data model that is as generic and interoperable as RDF but simplifies the representation of
object-oriented model elements.

3.1.6 Conclusions and Design Decisions

The issues discussed in the previous sections have lead us to the specification of a data model
for a semantic file system that incorporates aspects from Semantic Web technology (usage of
URIs, graph-based metadata structures, usage of ontology elements like classes and proper-
ties), object-oriented modeling (integrated view on objects and their properties), Web 2.0 (tags),
and file systems (discrete content units).

1http://linkeddata.org

53

http://linkeddata.org

As an atomic information element we choose to extend the file with semantic annotations
of different kinds, and call such objects siles. A sile is a discrete unit of information; the content
of a sile is—similar to a file—self-contained and does neither depend on any other entity, nor
does it make any statements on other entities. To guarantee a unique identity for these discrete
information units, we choose to identify a sile by a URI. URIs can take the form of simple
names that carry no further semantics (like, for example, a UUID), or can imply mechanisms
and protocols for accessing the resource that is identified by a URI (in the case of, e.g., http: or
mailto: URIs). For the sile model we do not establish any constraints on the format of URIs or
require a specific URI scheme. Since from our perspective URIs are used as opaque identifiers,
we can safely leave the choice of a suitable URI scheme and URI minting algorithm to the
concrete implementation.

This design implies that, in contrast to file systems, no intrinsic semantics is imposed on sile
identifiers. In file systems, the full path of a file is composed of a series of directory names,
each of which is chosen by a user and carries implicit or explicit meaning. We unhinge all
kinds of contextual meaning from the sile identifier (the URI); instead we define a number of
annotation metaphors that can be used to express the extrinsic semantics of a sile. We have chosen
the following set of annotation metaphors to be included in the sile model:

• Tags. Tags are simple keywords that consist of a string of arbitrary length and arbitrary
format. Tags are usually not chosen from a predefined formal vocabulary, hence the
interpretation of a tag is entirely left to the end user. Certain problems arise in systems
that use tags: for instance, it is not possible to resolve homonym or synonym conflicts
without further analysis. Moreover, tags are always bound to a certain natural language
which makes them unfeasible for end users not aware of this language. Nevertheless
tags can help to classify and retrieve information in situations where end users follow a
common understanding of tags. This is both the case when tags are applied in a single
person’s data space—we can assume that the person who issues a tag will be able to
understand the meaning of this very tag later on—, or in cases where a user group shares
a certain, informal vocabulary and has, to a certain extent, a common understanding of
its meaning; as it is the case, for instance, in work groups or projects.

• Categories. The use of ontologies significantly extends the analysis possibilities that can
be applied to documents in general and tags in special (e.g., full text search, string sim-
ilarity metrics, natural language processing, and statistical methods). Ontologies estab-
lish frameworks of formal rules that can be used by reasoners to validate descriptions
and to generate new, implicit knowledge out of existing information. Classes are a core
concept in most ontology languages; however we can observe that non-expert users have
difficulties in understanding the idea of classes and in perceiving the potentially high
complexity of ontology instances. We suspect that one part of this problem is caused
by naming: we can observe that the term “category” is often better understood by non-
expert users than “class”. For our data model we introduce categories as a way to anno-
tate siles but we do not define rules on how categories are to be interpreted by a machine,
or which reasoning rules can be applied to them.

• Attributes. Attributes are a basic modeling element in many information systems. An
attribute describes a specific characteristic of an individual and usually consists of two
parts: a name part that indicates which characteristic is described by an attribute, and
a value part that represents the concrete occurrence of this characteristic with respect to
the individual. Attributes are a highly generic mechanism for expressing information
about individuals and can additionally be used in ontologies to indicate, for instance,
class membership or to verify instance equality. As with categories, we do not impose

54

such rules in our data model but leave the definition of such rules up to concrete imple-
mentations and applications.

• Relationships. Relationships can be considered as attributes whose value is an instance
of similar characteristic as the described object. In our model we consider siles as first-
class objects, and thus relationships are the subset of a sile’s attributes whose value is a
sile. By introducing relationships as a separate class of annotations, we emphasize the
web-style character of our data model: using relationships, interdependencies between
discrete information units are made explicit.

We do not predefine types or processing rules for categories, attributes, or relationships,
but leave this to the concrete applications that make use of siles; an example of such such
an application is described in [Sch06]. However we want to give our system the possibility to
express interdependencies between different types of sile annotations, because we see the need
of information management systems to maintain a certain level of data integrity. There exist a
magnitude of mechanisms to express such information (e.g., ontologies, schema descriptions,
or abstract modelling languages like UML). Similar to our vision of siles as generalized view
on personal information, we use the term spect2 to denote collections of interdependency rules
between categories, attributes, and relationships.

We deliberately choose not to include a representation of any kind of hierarchies (like file
system directories) in the model, since we are interested in the applicability and impact of the
metaphors mentioned above in the absence of directories. Additionally, hierarchical structures
can be simulated using relationships between objects, as shown e.g., in [SH09]. We are aware of
the fact that this decision is contradictory to the requirement of compatibility with hierarchical
file systems (cf. Section 3.1.3), thus hierarchical collections may be added to the data model at
a later point in time.

By making information semantics extrinsic and representing them in a unified manner, a
storage system for semantically annotated objects can act as a shared information infrastruc-
ture for different applications and services. Usually, applications will operate on a limited set
of objects; e.g., ones that are available on a user’s local machine, or ones that are stored on the
working group’s file server. In the following we use the term repository to denote a logically
closed context of information interpretation. Such a context consists of a set of siles, including
their associated content and annotations. The interpretation of the siles’ annotations is only
valid within the context of a given repository; a different repository may make completely dif-
ferent statements about siles and apply different rules on how annotations may be combined.
The connections between such distinct repositories are established using referenced siles, i.e.,
pointers that refer to siles within an external repository. The identity of (and therefore, the
connection to) a sile is established by a unique opaque identifier, the sile URI.

In terms of a physical unit, a repository can be regarded similar to the concept of a volume
in a file system, or the concept of a host on the World Wide Web. In terms of a logical unit, it
can be regarded as a collection of siles that share a logical context, e.g., the siles that have been
created by a specific user, or the siles that are of relevance in the context of a research project.
We do not define constraints on the inner structure of a repository; instead we define a set of
operations that a repository must be able to execute and treat it in other respects as a black
box.

2The name “spect” is derived from the term “spectacles”, i.e., a means to provide the user with a clearer view on
things.

55

3.2 Data Model

In the previous section we have informally introduced the concepts of a sile, its characteristics,
and the various annotation classes that can be applied to siles. In the following we give a
formal notion of siles and annotations by defining them in terms of sets. We start this by
introducing a number of symbols that we use throughout this section.

Definition 1 [Symbols]
Let Σ denote the set of all siles in the university of discourse. Let LIT denote the set of all

string literals which are finite sequences of characters from an literal alphabet α, and B the set of
all content literals which are finite sequences of characters from an content alphabet β. Further,
let URI denote the set of all Uniform Resource Identifiers (URIs)3. Let T denote the set of all
tags, T ⊆ LIT, Let C denote the set of all categories, C ⊆ URI, and let A denote the set of all
attributes, A = URI×LIT×URI. and let L denote the set of all slinks, L = URI×URI.
Let ANN denote the set of annotations, ANN = T ∪A ∪C ∪L, and let SP denote the set of
all spects, as described in Section 3.1.6. Finally, let ENT = Σ∪ANN∪ SP denote the set of all
entities. Using this vocabulary, we can describe the data structures, constraints, and operations
that constitute our data model.

Definition 2 [Siles]
A sile s ∈ Σ is a six-tuple s = (us, bs, Ts, Cs, As, Ls). us ∈ URI denotes the URI (Uniform

Resource Identifier) of sile s, bs ∈ B ∪ ⊥ denotes the sile’s binary content, Ts ⊆ T is the set of
the sile’s associated tags, Cs ⊆ C is the set of the sile’s associated categories, As ⊆ A the set
of the sile’s associated attributes, and Ls ⊆ L is the set of the sile’s associated slinks. The set
ANNs = Ts ∪ As ∪ Cs ∪ Ls subsumes all annotations that are associated to s.

A sile s ∈ Σ is uniquely identified by its URI us, hence the sile’s URI us is a functional
property of the sile:

∀si, sj ∈ Σ : usi = usj ←→ si = sj

This equality is the sole criterion that allows one to decide whether two given sile entities
actually are equal. Especially does the sile model neither state that siles that share the same
annotations (as described below) are considered equal, nor that siles are considered equal if
they have equal content.

Within the sile model, we do not impose constraints on the structure or the nature of a
sile’s binary content. Especially we do not define rules that state how the content is to be
interpreted, or how one can deduce annotations from analyzing the content. Sile content may
also be of arbitrary length, including zero.

Two examples of siles, an email message and a file, are depicted in Figure 3.1.

Definition 3 [Tags]
As annotations we denote the organizational metaphors of the sile data model that describe

siles and bring them into context. As described above, annotations can be of four types: tags,
categories, attributes, and slinks.

A tag is described and identified by a string literal and carries no further machine-
processable semantics. Hence a tag associates a sile with a plain literal string, and it is suf-
ficient to describe a tag t ∈ T by such a simple literal: T ⊆ LIT.

We consider two tags ta and tb as equal if their plain literal strings are equal, which in turn
is the case if (i) they are of the same length, length(ta) = length(tb), and (ii) each character on

3URIs are treated as opaque identifiers and should be formatted according to [BLFM05].

56

Example. A number of email messages on a personal desktop computer can
be regarded as siles. By default, email messages carry unique message-ids which
constitute the respective sile URIs. The bodies of the messages can be regarded
as sile contents; the mail folder where the message is stored and its read/unread
status can be attached to the message as tag. Metadata about the message (like
the subject, sender and recipient, and the date of delivery) can be represented as
attributes and slinks.
Such mail messages may be represented as followsa:

s1 = (msg:0BBF7468-7C34-4587-97E0-D8DB9E8CBDD9@univie.ac.at,
"Sehr geehrte Damen und Herren, [...]",
{"INBOX", "unread"},
{nmo:Email},
{(nmo:subject, "LV-Evaluierung SS 2009", xsd:string),
(nmo:receivedDate, "2009-04-05T16:54", xsd:dateTime)},
{(nmo:from, mailto:wolfgang.klas@univie.ac.at),
(nmo:to, mailto:bernhard.schandl@univie.ac.at)})

Similarly, a file in a file system may be represented using the sile model, whereas
its URI is constructed using its absolute pathb. In this example, no tags or slinks
are attached, and the set of attributes is restricted to the file name and its creation
date:

s2 = (urn:uuid:c6b18466-eab4-4943-8699-62eb6dc229d9,
"\documentclass{report} [...]",
{},
{nfo:FileDataObject},
{(nfo:fileName, "file:///Users/bs/work/phd/phd.tex", xsd:string),
(nfo:fileCreated, "2008-11-07T12:41", xsd:dateTime)},
{})

aFor the examples we use prefixed QName notation ([BHLT06], Section 4) for URIs; annotation URIs
refer to the NEPOMUK Semantic Desktop ontologies [MSSvE07].

bNote that we consider the usage of mutable file paths as URIs (which are meant to be immutable)
as harmful practice [SH09].

Figure 3.1: Representation of mail messages and files using the sile model

57

position i of tag ta is equal to the character on position i of tag tb, char(ta, i) = char(tb, i), 1 ≤
i ≤ length(ta).

Definition 4 [Categories]
As described before, a category annotation is a reference to an abstract concept entity that

may carry machine-processable semantics, which in turn may be used to validate a data model
or to enrich a set of annotations with implicit (derived) annotations. To ensure uniqueness, a
category c is identified by a URI: c ∈ C, C ⊂ URI.

It is obvious that categories are considered as equal if their URIs are equal4. We externalize
any further details regarding the nature of categories, including semantic relationships to other
categories, attributes and slinks, and annotation aspects, like e.g., human-readable labels or
comments, from categories; instead, spects (see below) and domain-specific extensions can be
employed for this purpose.

Definition 5 [Attributes]
In contrast to tags and categories, attributes are tuples of three elements: the attribute name

identifies the characteristic that is described by the attribute. The attribute value represents the
actual manifestation of the attribute with respect to the sile, and the attribute data type identifies
a rule set that describes the lexical value space (i.e., the set of literal strings that are valid for
this attribute) as well as the intended interpretation of the value literal.

We use URIs to describe the attribute name and the attribute data type; hence the set of all
possible attributes is A = URI× LIT×URI, and an attribute a can be written as 3-tuple:
a = (ana, ava, ata), with ana ∈ URI, ava ∈ LIT, and ata ∈ URI.

Again, we do not associate to attributes formal rules regarding the interpretation and re-
striction of attribute names or attribute values and data types. For the former we outsource
this description to spects and application-specific extensions of the data model; for the latter
we follow the RDF semantics regarding data types which are defined in Section 5 of [Hay04].

Definition 6 [Slinks]
A slink l ∈ L relates a sile to another sile, whereas the nature of the slink is identified by

the slink name. A slink can be regarded as a directed labeled edge in a graph, where siles form
the graph nodes. Each slink leads from a source sile to a target sile, whereas the slink is attached
to the source sile and carries a reference URI to the target sile. We use a URI for the name (the
label) of the slink. Therefore, the set of all slinks L is the cartesian product of the set of all URIs
and the set of all siles: L = URI×URI, and a slink l can be written as l = (lnl , ldl), with
lnl , ldl ∈ URI.

As mentioned in the previous section, slinks and attributes share some common properties.
Slinks can be seen as a special case of attributes whose value is a URI that references a sile. For
this reason consider slinks first-class annotations, since they help to construct a web of siles
and allow—in a metaphorical sense—to interconnect the otherwise separate data units.

Definition 7 [Spects]
Spects are used to define applicability rules for annotations. Applicability rules restrict the

set of possible relationships between siles and annotations, and define when a given constel-
lation can be regarded as consistent. Such consistency rules can be employed by a repository
implementation (1) to ensure the internal consistency of its data model, (2) to infer new (im-
plicit) annotations from existing ones, and by a client application in order (3) to restrict the set
of possible annotation opportunities presented to the end user.

A spect spi ∈ SP defines four classes of applicability rules; Category Hierarchy Rules, At-
4According to [BLFM05], URI equality is defined as string equality applied to the URIs’ absolute forms

58

tribute Applicability Rules, Slink Domain Applicability Rules, and Slink Range Applicability Rules.
Category Hierarchy Rules define subsumption rules between categories; in this sense, cate-

gories can be interpreted as classes from set theory. A category hierarchy rule chr ∈ spi defines
a relationship between two categories; thus it can be written as two-tuple chr ∈ C× C. The
semantic interpretation of a category hierarchy rules is as follows: if a sile s is annotated with
category c1, and the category hierarchy rule chri = {c1, c2} exists in any known spect spi, sile
s is also annotated with category c2:

∀s ∈ Σ, spi ∈ SP : c1 ∈ Cs ∧ {c1, c2} ∈ spi −→ c2 ∈ Cs

Category hierarchy rules are transitive:

∀spi ∈ SP : {c1, c2}, {c2, c3} ∈ spi −→ {c1, c3} ∈ spi

Attribute Applicability Rules establish formal relationships between categories and attribute
names: an Attribute Applicability Rule between an attribute name an and a category c states
that a sile that is annotated with attribute an is also annotated with category c:

∀s ∈ Σ, spi ∈ SP : (an, av, at) ∈ As ∧ {an, c} ∈ spi −→ c ∈ Cs

A Slink Domain Applicability Rule between a slink name ln and a category c defines that a
sile that is annotated with a slink with name ln it is also annotated with category c:

∀s ∈ Σ, spi ∈ SP : (ln, ld) ∈ Ls ∧ {ln, c} ∈ spi −→ c ∈ Cs

A Slink Range Applicability Rule between a slink name ln and a category c defines that a sile
that is the destination of a slink with name ln is also annotated with category c:

∀s, s ∈ Σ, spi ∈ SP : (ln, s) ∈ Ls ∧ {ln, c} ∈ spi −→ c ∈ Cs

Examples for all classes of rules in the context of email messages are given in Figure 3.2.

Definition 8 [Repositories]
As described in Section 3.1.6, a repository is a closed context of interpretation, within which

a set of entities (siles, annotations, spects) are considered to be valid. A repository indicates
thus a set of entities that are considered as a separate, self-contained, and logically consistent
knowledge corpus.

A repository R ∈ ρ (where ρ denotes the set of all repositories) can be written as a 7-
tuple R = (ΣRh, ΣRr, TR, CR, AR, LR, SPR). It consists of a set of hosted siles ΣRh and a set of
referenced siles ΣRr, which together form the set of the repository’s known siles ΣR = ΣRh ∪
ΣRr. It further consists of sets of tags (TR ⊆ T), categories (CR ⊆ C), attributes (AR ⊆ A),
and slinks (LR ⊆ L). Additionally, it consists of a set of spects SPR ⊆ SP that define the
applicability rules that this repository applies to annotations, as described before.

A sile may be hosted in a given repository, or it may be referenced which means that it is
interpreted as a pointer to a sile that is hosted in a different repository. We distinguish these
two classes of siles based on the presence or absence of content: in the case of hosted siles, a
content is present (although it may be of zero length); in the case of referenced siles, no content
is present. Instead, the content may be retrieved by dereferencing the sile URI5.

5The procedure of dereferencing URIs is out of the scope of the abstract sile model, and depends on the format of
the sile URI: for http URIs, dereferencing means to establish a connection to a remote HTTP server and to retrieve
the content using e.g., a HTTP GET call. imap URIs may be dereferenced by establishing a connection to the respective
IMAP server, and so forth. More details on the process of dereferencing in the context of the World Wide Web are
given in [JW05], Section 3.1.

59

Example. A spect SPmail describing the annotation vocabulary for e-mail commu-
nication may define the following rules. It defines a number of category hierarchy
rules, amongst them the relationship between abstracts messages, email messages,
and attachments:

CHRmail = {(nmo:Email, nmo:Message),
(nmo:Message, nie:InformationElement),
(nfo:Attachment, nie:InformationElement), . . .}

Using the following attribute applicability rules, attribute names are related to cat-
egory names:

AARmail = {(nmo:sentDate, nmo:Message),
(nmo:receivedDate, nmo:Message),
(nmo:messageSubject, nmo:Message), . . .}

Slink domain and range applicability rules define the relationship between cate-
gory names and slink names:

SDARmail = {(nmo:from, nmo:Message),
(nmo:to, nmo:Message),
(nmo:hasAttachment, nmo:Message),
(nmo:cc, nmo:Email), . . .}

SRARmail = {(nmo:from, nco:Contact),
(nmo:to, nco:Contact),
(nmo:hasAttachment, nfo:Attachment),
(nmo:cc, nco:Contact), . . .}

The complete spect consists of all the following definitions:

SPmail = CHRmail ∪ AARmail ∪ SDARmail ∪ SRARmail

Figure 3.2: A spect defining rules for the relationship between email categories and attributes

60

Thus, the set of all siles that exist within a given repository R (denoted by ΣR, ΣR ∈ Σ)
can be separated into two subsets, the set of all siles that are hosted by this repository ΣRh and
the set of all siles that represent references to siles hosted in other repositories ΣRr. Thus, the
following rules hold for all siles stored within a repository:

∀s ∈ ΣR : bs 6=⊥←→ s ∈ ΣRh, s /∈ ΣRr

∀s ∈ ΣR : bs =⊥←→ s ∈ ΣRr, s 6∈ ΣRh

The sets of hosted and referenced siles are disjunct,

∀R ∈ ρ : ΣRh ∩ ΣRr = ∅

and no siles other than hosted or referenced ones exist in a repository:

∀R ∈ ρ : ΣR \ (ΣRh ∪ ΣRr) = ∅

We interpret the term “repository” in a broad manner: every system whose information can
be represented within the sile model can be referred to as repository6. Since siles are identified
by URIs, every piece of information that can be identified by an URI can potentially become a
sile, and its physical location can be regarded as sile repository.

The design of the sile model and the concept of repositories provide the possibility to make
assertions about the same information on different places: while repository R1 may hold the
actual content of a sile, repository R2 may hold annotations that have been extracted by an-
alyzing the sile content, and repository R3 may store user-defined annotations (e.g., tags) for
the sile. While these data may share no common semantics, and their repositories may apply
different storage technologies, these different pieces of information are still connected through
the unique identifier of the sile, its URI.

3.3 A Query Framework for Siles

The definitions given in the previous section describe the static data model for siles. This model
represents a framework that structures siles, their contents, and their annotations for further
processing. In the following we describe generic abstract operators that use the elements from
the sile data model. These operators are designed to be simple to understand and use, but can
be combined and nested in order to formulate complex operations and queries.

In the following, we define three operator types:

• Entity Extraction Operators extract information parts out of entities; i.e., they provide ac-
cess to the parts of entity tuples;

• Entity Existence Operators indicate whether a specific information entity exists; i.e.,
whether a tuple (or a combination of tuples) exists that represents a specific informa-
tion constellation; and

• Sile Selection Operators select, from a set of siles, a subset that fulfils certain criteria.

The combination of these operators allows us to model complex expressions over the sile
data model that can be used to retrieve information, decide whether siles fulfil certain required
information constellations, and restrict sets of siles based on these decisions.

6In this context we refer to Chapter 7 where a number of such implementations are discussed.

61

3.3.1 Prerequisites

Definition 9 [Basic Definitions]
Let BOOL = {true, f alse} denote the Boolean set, and let P(A) = {x | x ⊆ A} denote the

powerset (i.e., the set of all subsets) of A.

3.3.2 Entity Extraction Operators

Entity extraction operators extract specific information from an entity. As each entity is de-
scribed by several different characteristics, we need these extraction operators to be able to
process these individual items.

Definition 10 [Sile Extraction Operators]
As described before, a sile s can be written as 6-tuple s = (us, bs, Ts, As, Cs, Ls). We define

the following operators that extract the individual parts of these tuples as follows:

uri : Σ 7→ URI, uri(s) = us

content : Σ 7→ B, content(s) = bs

tags : Σ 7→ P(T), tags(s) = Ts

attributes : Σ 7→ P(A), attributes(s) = As

categories : Σ 7→ P(C), categories(s) = Cs

slinks : Σ 7→ P(L), slinks(s) = Ls

We additionally introduce one extraction operator that returns all sile annotations, regard-
less of which type they are:

annotations : Σ 7→ P(ANN), annotations(s) = Ts ∪ As ∪ Cs ∪ Ls

Definition 11 [Annotation Extraction Operators]
For the atomic annotation types (tags and categories) we define two auxiliary operators

that return the annotation’s identifying characteristic (i.e., the tag label or the category URI,
respectively). Since tags and categories only consist of one element, the definition of these
extraction operators is straightforward:

text : T 7→ LIT, text(t) = t

catname : C 7→ URI, catname(c) = c

For the annotation types that are not atomic (attributes and slinks) we need operators to
extract their parts. For attributes we define the following extraction operators:

attname : A 7→ URI, attname(a) = ana

attvalue : A 7→ LIT, attvalue(a) = ava

atttype : A 7→ URI, atttype(a) = ata

Similarily, for slinks we define:

slinkname : L 7→ URI, slinkname(l) = lnl

62

slinkdst : L 7→ URI, slinkdst(l) = ldl

Finally, we define a generic URI extraction operator uri : ANN 7→ URI∪ {⊥} that can be
applied to all types of annotations:

uri(e) =


catname(e) if e ∈ C

attname(e) if e ∈ A

slinkname(e) if e ∈ L

⊥ otherwise

We can see that the uri operator returns a URI that can be used to identify the nature of
the annotation for all types of annotations except tags. The result of this operator can, in
general, not be used to compare annotations for equality, since for this all characteristics of an
annotation must be considered.

To accomplish this, we introduce the annotation generic comparison operator equals :
ANN×ANN 7→ BOOL that indicates whether two annotations are equal:

equals(e1, e2) :=



true if e1, e2 ∈ T∧ text(e1) = text(e2)
or e1, e2 ∈ C∧ catname(e1) = catname(e2)
or e1, e2 ∈ A∧ attname(e1) = attname(e2)∧

attvalue(e1) = attvalue(e2) ∧ atttype(e1) = atttype(e2)
or e1, e2 ∈ L∧ slinkname(e1) = slinkname(e2)∧

slinkdst(e1) = slinkdst(e2)
f alse otherwise

We also introduce a generic comparison operator equalsIgnore : ANN×ANN 7→ BOOL

that compares annotations without considering certain components, i.e., the value and data
type in the case of attributes, and the destination sile in the case of slinks. For tags and cate-
gories, equalsIgnore returns the same result as equals:

equalsIgnore(e1, e2) =


equals(e1, e2) if e1, e2 ∈ T∪C

true if e1, e2 ∈ A∧ attname(e1) = attname(e2)
or e1, e2 ∈ L∧ slinkname(e1) = slinkname(e2)

f alse otherwise

3.3.3 Entity Existence Predicates

In comparison to the entity extraction operators which return specific parts of entities, i.e.,
siles or annotations, in the following we discuss existence predicates. These predicates indi-
cate whether a specific data constellation is given in the context of interpretation, and corre-
spondingly return a Boolean value (true or false). The context of interpretation Γ depends on
the application: it may be a single repository R (Γ = R) or an arbitrary number of reposi-
tories R1, R2, . . . , Rn, in which case the operators consider the union of all their annotations
(Γ =

⋃n
i=1 Ri). The context of interpretation can then be written as 7-tuple that subsumes all

elements of the considered repositories Ri, i = 1 . . . n:

Γ = (ΣΓh, ΣΓr, TΓ, CΓ, AΓ, LΓ, SPΓ)

= (
n⋃

i=1

ΣRih,
n⋃

i=1

ΣRir,
n⋃

i=1

TRi ,
n⋃

i=1

CRi ,
n⋃

i=1

ARi ,
n⋃

i=1

LRi ,
n⋃

i=1

SPRi)

63

In the following, a ·Γ index indicates that all operators are defined with respect to a given
context of interpretation Γ.

Definition 12 [Sile Existence Predicate]
We start with the very basic definition of a sile existence predicate, existsΓ : Σ 7→ BOOL

which returns whether a given sile exists in the context of interpretation, either in the form of
a hosted or a referenced sile:

existsΓ(s) =

{
true if ∃R, R ∈ Γ | s ∈ ΣR

f alse otherwise

Definition 13 [Annotation Existence Predicates]
We can now define predicates that indicate whether a specific combination of entities (i.e.,

siles and annotations) is present in the context of interpretation. As the most generic predicate,
hasAnnotationΓ : Σ×ANN 7→ BOOL indicates whether a sile is annotated with a specific
annotation by using the annotations operator:

hasAnnotationΓ(s, a) =

{
true if existsΓ(s) ∧ a ∈ annotations(s)
f alse otherwise

Also we define a predicate existsAnnotationΓ : ANN 7→ BOOL that indicates whether
there exists any sile in the context of interpretation that is associated with a specific annotation:

existsAnnotationΓ(a) =

{
true if ∃s | existsΓ(s) ∧ hasAnnotationΓ(s, a) = true
f alse otherwise

Additionally, we can define such annotation existence predicates for specific types of an-
notations. As tags and categories are atomic annotations, there is no need for type-specific
definitions; instead we can directly reuse the already defined hasAnnotationΓ operator to de-
fine hasTagΓ and hasCategoryΓ,

hasTagΓ : Σ×T 7→ BOOL, hasTagΓ(s, t) = hasAnnotationΓ(s, t)

hasCategoryΓ : Σ×C 7→ BOOL, hasCategoryΓ(s, c) = hasAnnotationΓ(s, c)

as well as existsTagΓ and existsCategoryΓ:

existsTagΓ : T 7→ BOOL, existsTagΓ(t) = existsAnnotationΓ(t)

existsCategoryΓ : C 7→ BOOL, existsCategoryΓ(c) = existsAnnotationΓ(c)

For attributes and slinks, we must go into more detail since it should be possible to query
for siles based on each individual part of an annotation. Hence, we define three variants of the
hasAttributeΓ predicate:

• hasAttributeNameΓ : Σ ×A 7→ BOOL indicates whether a sile is annotated with an
attribute that has given name, ignoring the attribute value and the attribute data type:

hasAttributeNameΓ(s, a) =


true if ∃a′ | existsΓ(s) ∧ a′ ∈ As

∧ attname(a) = attname(a′)
f alse otherwise

64

• hasAttributeValueΓ : Σ ×A 7→ BOOL indicates whether a sile is annotated with an
attribute that has a given value and data type, ignoring the attribute name:

hasAttributeValueΓ(s, a) =


true if ∃a′ | existsΓ(s) ∧ a′ ∈ As

∧ attvalue(a) = attvalue(a′)
∧ atttype(a) = atttype(a′)

f alse otherwise

• hasAttributeNameValueΓ : Σ×A 7→ BOOL indicates whether a sile is annotated with
an attribute whose name, value, and data type are equal to the respective elements of the
specified attribute. This operator is equal to the hasAnnotationΓ operator when applied
to an attribute:

hasAttributeNameValueΓ(s, a) =

{
hasAnnotationΓ(s, a) if a ∈ A

f alse otherwise

As an alias, we also define the predicate hasAttributeΓ : Σ×A 7→ BOOL as being equal to
hasAttributeNameValueΓ:

hasAttributeΓ(s, a) = hasAttributeNameValueΓ(s, a)

Correspondingly, we can define three variants of the hasSlinkΓ predicate that consider the
separate parts of slink annotations:

• hasSlinkNameΓ : Σ×L 7→ BOOL indicates whether a sile is annotated with a slink that
has a given name, ignoring the destination sile:

hasSlinkNameΓ(s, l) =

{
true if ∃l′ | existsΓ(s) ∧ l′ ∈ Ls ∧ slinkname(l) = slinkname(l′)
f alse otherwise

• hasSlinkDestinationΓ : Σ × L 7→ BOOL indicates whether a sile is annotated with a
slink with a given destination sile, ignoring the slink name:

hasSlinkDestinationΓ(s, l) =

{
true if ∃l′ | existsΓ(s) ∧ l′ ∈ Ls ∧ slinkdst(l) = slinkdst(l′)
f alse otherwise

• hasSlinkNameDestinationΓ : Σ×L 7→ BOOL indicates whether a sile is annotated with
a slink that has a given name and destination sile:

hasSlinkNameDestinationΓ(s, l) =


true if ∃l′ | existsΓ(s) ∧ l′ ∈ Ls

∧ slinkname(l) = slinkname(l′)
∧ slinkdst(l) = slinkdst(l′)

f alse otherwise

In analogy to hasAttributeΓ we define the predicate hasSlinkΓ : Σ× S 7→ BOOL which is
an alias for hasSlinkNameDestinationΓ:

hasSlinkΓ(s, l) = hasSlinkNameDestinationΓ(s, l)

65

Based on the slink existence predicates hasSlinkNameΓ and hasSlinkΓ, we can define two
predicates that indicate whether siles are slinked to each other. We can define areDirected-
RelatedΓ : Σ× Σ 7→ BOOL that indicates whether a sile ss is annotated with a slink to another
sile sd, whereas usd denotes the URI of sile sd:

areDirectedRelatedΓ(ss, sd) =


true if ∃l | existsΓ(ss) ∧ existsΓ(sd)

∧ l ∈ slinks(ss) ∧ slinkdst(l) = usd

f alse otherwise

In addition to the directed variant we also define an undirected variant areRelatedΓ : Σ×Σ 7→
BOOL that indicates whether two siles are related, regardless of the direction of the slink:

areRelatedΓ(sa, sb) =


true if areDirectedRelatedΓ(sa, sb) = true

∨ areDirectedRelatedΓ(sb, sa) = true
f alse otherwise

3.3.4 Sile Selection Operators

Based on the existence operators, we can define operators that select siles based on specific
criteria. Selection operators are always applied to a base set of siles and return a subset of this
set. This subset contains only siles that fulfill specific criteria.

The definition of the selection operators based on the existence predicate is straightfor-
ward; basically it is constituted by wrapping each annotation existence predicate by an oper-
ator that returns all siles si ∈ Σ for which the respective existence predicate is true. Thus we
give here only a list of all operators without further explanation.

TagSiles : P(Σ)×T 7→ P(Σ)
TagSiles(S, t) = {si ∈ S | hasTag(si, t) = true}

CategorySiles : P(Σ)×C 7→ P(Σ)
CategorySiles(S, c) = {si ∈ S | hasCategory(si, c) = true}

AttributeNameSiles : P(Σ)×A 7→ P(Σ)
AttributeNameSiles(S, a) = {si ∈ S | hasAttributeName(si, a) = true}

AttributeValueSiles : P(Σ)×A 7→ P(Σ)
AttributeValueSiles(S, a) = {si ∈ S | hasAttributeValue(si, a) = true}

AttributeNameValueSiles : P(Σ)×A 7→ P(Σ)
AttributeNameValueSiles(S, a) = {si ∈ S | hasAttributeNameValue(si, a) = true}

AttributeSiles : P(Σ)×A 7→ P(Σ)
AttributeSiles(S, a) = AttributeNameValueSiles(S, a)

66

SlinkNameSiles : P(Σ)×L 7→ P(Σ)
SlinkNameSiles(S, l) = {si ∈ S | hasSlinkName(si, l) = true}

SlinkDestinationSiles : P(Σ)×L 7→ P(Σ)
SlinkDestinationSiles(S, l) = {si ∈ S | hasSlinkDestination(si, l) = true}

SlinkSiles : P(Σ)×L 7→ P(Σ)
SlinkSiles(S, l) = {si ∈ S | hasSlink(si, l) = true}

DirectedRelatedSiles : P(Σ)× Σ 7→ P(Σ)
DirectedRelatedSiles(S, src) = {si ∈ S | areDirectedRelated(src, si) = true}

RelatedSiles : P(Σ)× Σ 7→ P(Σ)
RelatedSiles(S, d) = {si ∈ S | areRelated(si, d) = true}

Each of these operators can be applied to a given base set of siles S and returns a result set
of siles. This base set could, for instance, be derived from the given context of interpretation:
based on the selection of the base set, either only hosted siles (S = ΣΓh), referenced siles
(S = ΣΓr), or the full set of siles S = ΣΓ = ΣΓh ∪ ΣΓr can be used as base set. Alternatively, the
operators can be arbitrarily nested in order to form more expressive queries. The following set
of boolean operators can be used to state combinations of selection operators:

and : P(Σ)×P(Σ) 7→ P(Σ) and(S1, S2) = S1 ∩ S2

or : P(Σ)×P(Σ) 7→ P(Σ) or(S1, S2) = S1 ∪ S2

not : P(Σ) 7→ P(Σ) not(S) = {si | si ∈ Σ ∧ si /∈ S}

3.4 Summary

In this section we have discussed the abstract sile model. Its basic constituents are siles, which
are units of digital contents, and different types of annotations that can be attached to siles:
tags are plain, unstructured keyword strings; categories are formally specified classes which
are identified by a unique id; attributes are typed name/value pairs, and slinks are labelled
connections between siles. Furthermore we have defined spects that are a lightweight notion
for ontological knowledge, and our understanding of a repository; i.e., a logically closed unit
that hosts a set of siles.

The presented query framework for sile data covers all static elements of the sile data
model, which were introduced in the previous chapter. It allows one to formulate expres-
sions that evaluate the state of siles and their annotations, i.e., tags, categories, attributes, and
slinks. As such it is appropriate to model information needs that arise in concrete applications,
and it is suitable to retrieve sile entities that fulfil certain criteria.

However, the model exposes the following limitations:

1. Restricted Domain — The query algebra can be only applied to siles, not to other elements

67

of the sile model. It can not be used to query for annotations; e.g., it is not possible to
retrieve a list of all tags, or to query which rules are defined within a spect.

2. No Joins — The query algebra defines no possibility to join objects; e.g., it is not possible
to query for siles that share common, equal annotations.

3. Unspecified Data Type Semantics — Attribute annotations contain a URI that identifies the
attribute’s data type, i.e., the way its value has to be interpreted. Since the query algebra
abstracts over concrete data types, it does not define semantics for this interpretation; for
instance, it does not specify an ordering for data type values, or arithmetic operators.

4. No Aggregate Functions — The algebra does not specify aggregate functions, thus it is not
possible to e.g., count the number of siles that fulfil a certain criterion.

We are aware of the fact that the lack of these features may cause problems for certain
information needs, and plan to further extend the query language in the future in order to
cover additional use cases. Nevertheless we do not want to abandon our goal of providing a
model and a query algebra that are simple to understand and to use, and this goal must be
considered when designing model extensions.

68

Chapter 4

An Application Programming
Interface for Siles

If debugging is the art of removing bugs, then programming must
be the art of inserting them. — Unknown

In Chapter 3 we have presented an abstract data model for the representation of siles and
their annotations. This data model allows for a comprehensive description of data assets, their
annotations, and their relationships. We have also discussed an abstract algebra and a col-
lection of operators and predicates that can be used to analyze and query these information
entities. Together they form a found framework to represent semantically enriched informa-
tion objects, and to retrieve such objects based on their semantic descriptions. However it is
the goal of this thesis to provide an infrastructure that allows for interoperable information
exchange for desktop applications, which may be both information producers and consumers.
In this section, we describe an abstract Application Programming Interface (API) that trans-
lates the abstract model into an implementation-centric specification, which can be taken as a
reference for implementations. Then, we show how the presented specification can be used in
the context of the application scenarios discussed in Section 1.1.

4.1 API Specification

We partition the specification of the Sile Application Programming Interface (API) into three
parts. In the first part, entities, we describe the main types of the API, their properties, and their
methods. In the second part, filters, we describe how the generic sile operators and predicates
are represented by an object hierarchy. In the third part, repository, the methods that have to
be implemented by a sile repository are listed and described.

69

addAnnotation()
addAnnotations()
delete()
getAnnotations()
getAttributes()
getCategories()
getSlinks()
getTags()
hasAnnotation()
hasAnnotations()
removeBoundAnnotation()
removeBoundAnnotations()

<<type>>
Sile

compareTo()

URI uri
URI repositoryId

<<type>>
Entity

clone()

<<type>>
HostedSile

<<type>>
ReferencedSile

getAsByteArray()
getAsInputStream()

String contentType
Long contentSize

<<type>>
Content

11 has

Figure 4.1: Sile type hierarchy

4.1.1 Entities

Entities are the information units in the sile class hierarchy. An entity in the context of the sile
model is any object that can be uniquely identified by a URI. No further restrictions are put on
an entity’s behavior or characteristics.

The Entity type is the root of the sile type hierarchy. An entity has two properties; one is
a URI that identifies the entity itself; the second one is a reference URI to its home repository.
Entities must be comparable to ensure safe handling and comparison; hence we include a
compareTo method.

Siles

An abstract sile tuple s = (us, bs, Ts, As, Cs, Ls) (cf. Section 3.2) is mapped to an instance of the
type Sile (cf. Figure 4.1). This type extends the Entity type by methods for adding, retrieving,
and removing annotations. We will discuss the type hierarchy for annotations below; for now
it is sufficient to say that because different types of annotations have specific characteristics,
we introduce individual getter methods for each annotation type to retrieve annotations that
fulfill certain criteria.

The Sile type allows access to a sile’s associated annotations (i.e., the annotation sets

70

<<type>>
Annotation

compareTo()

URI uri
URI repositoryId

<<type>>
Entity

Spect spect

<<type>>
SpectbasedAnnotation

compareTo(Slink)

URI slinkName
URI destination

<<type>>
Slink

compareTo(Attribute)

URI attributeName
String value
URI datatype

<<type>>
Attribute

compareTo(Tag)
String label

<<type>>
Tag

compareTo(Category)
URI categoryName

<<type>>
Category

Figure 4.2: Annotation type hierarchy (abstract annotations)

contained within a sile tuple, namely Ts, As, Cs, and Ls) through the generic methods add-

Annotation(), addAnnotations(), getAnnotations(), as well as removeBoundAnnotation() and
removeBoundAnnotations(). Note the naming difference between the add methods and the
remove methods; we will discuss the difference between an Annotation and a BoundAnnotation

below. We also introduce special getter methods for the four different types of annotations,
getAttributes(), getCategories(), getSlinks(), and getTags(), because these can be used to
retrieve sile annotations based on type-specific characteristics. For instance, the getTags()

method retrieves only those tags that match a defined pattern, specified as regular expression.
The sile URI us can be accessed by the inherited uri attribute of the Entity type. For ac-

cessing the content, we have to distinguish between hosted and referenced siles, for which we
introduce sub-types of the Sile type, HostedSile and ReferencedSile. Each HostedSile in-
stance holds exactly one reference to a Content instance, while instances of the ReferencedSile

type do not.
Such a content object is characterized by a contentType and a contentSize property, and the

actual content can be accessed as byte array or as input stream, depending on the aspired
processing. Through this type, access to the content element bs in a sile tuple is realized.

The content access mechanism for ReferencedSile instances is out of the scope of this spec-
ification and may depend on various factors, e.g., the URI scheme of the referenced sile: de-
pending on this scheme, the actual sile content may be accessed by connecting to a remote
server, by reading a file from a local file system, or by directly interpreting the URI as content
(cf. the data: URI scheme [Mas98]).

Furthermore, in contrast to a ReferencedSile a HostedSile can be cloned. The reason for the
impossibility to clone referenced siles is that the URI is used to uniquely identify and distin-

71

Sile sile
Annotation annotation
boolean readonly

<<type>>
BoundAnnotation

compareTo(BoundTag)
Tag tag

<<type>>
BoundTag

compareTo(BoundCategory)
Category category

<<type>>
BoundCategory

compareTo(BoundAttribute)
Attribute attribute

<<type>>
BoundAttribute

compareTo(BoundSlink)
Slink slink

<<type>>
BoundSlink

<<type>>
Entity

Figure 4.3: Bound annotation type hierarchy

guish siles. Simultaneously, the URI of referenced siles is the pointer to its hosted equivalent,
which resides in another repository. However, if a referenced sile would be cloned, it would
receive a new URI, and thus the reference to its hosted counterpart would be lost. In con-
trast, hosted siles can be cloned by assigning a new URI to the clone, and slinking them to
their originals. Because of these restrictions, the clone() method is defined only for the class
HostedSile.

Annotations

As described in Section 3.2, the sile data model describes four types of annotations, tags, cat-
egories, attributes, and slinks. To subsume these types, we model them within a type hierar-
chy that is rooted by an abstract Annotation type. Additionally, every annotation constitutes
an entity, thus Annotation is a sub-type of Entity1. Additionally we introduce the interface
SpectbasedAnnotation that is used for all annotations that may be related to information de-
fined in a Spect, i.e., for categories, attributes, and relationships (see below).

In addition to the properties and operations inherited from the base classes Entity and
Annotation, the annotation classes provide members and methods for accessing the infor-
mation that is specific to the respective annotation types. Moreover they provide specific
compareTo methods to check annotations for equality.

It is important to note that the four annotation classes discussed here represent generic an-
notations, not concrete instances that are attached to a sile. To distinguish the former from
the latter, we introduce the hierarchy of bound annotations. A bound annotation is an anno-
tation that is attached to a sile. Any instance of BoundAnnotation holds a reference to the sile
it is attached to (cf. Figure 4.3) as well as to the actual Annotation instance it represents (cf.
Figure 4.4).

Bound annotations constitute the link between siles and annotations in the API: each in-
stance of BoundAnnotation holds a reference to the sile it is attached to; and the annotation
getter methods in the Sile type return instances of BoundAnnotation or its sub-types, respec-
tively.

1The URI for tags should be minted based on the tag’s label.

72

<<type>>
Annotation

<<type>>
Entity

<<type>>
SpectbasedAnnotation

<<type>>
Slink

<<type>>
Attribute

<<type>>
Category

<<type>>
BoundAnnotation

<<type>>
BoundSlink

<<type>>
BoundAttribute

<<type>>
BoundCategory

<<type>>
BoundTag

<<type>>
Tag

<<has-a>> <<has-a>> <<has-a>> <<has-a>>

<<has-a>>

<<type>>
Sile

<<has-a>>

Figure 4.4: Annotation type hierarchy (complete)

4.1.2 Spects

The Sile Application Programming Interface introduces Spects as basic notion for a simplified
set of semantic constructs. A spect describes a number of relationships between categories, at-
tributes, and slinks, and its main purpose is to provide a (simplified) view on the rules defined
in a formal model, e.g., using an ontological language, an entity-relationship model, or an
object oriented model, in order to allow a user-friendly representation. These ontological con-
structs are abstracted and faceted by the Spect interface, and thus can be used to accordingly
represent annotation concepts in a user interface, and to ease navigation within potentially
large sets of annotation types.

A spect contains three groups of consistency rules that a repository may use to validate its
set of siles and annotations. The types of rules are reflected by methods defined in the Spect

interface as follows:

1. Category Hierarchy Rules — In addition to methods that return all categories defined
in a spect (getAllCategories()) and that retrieve a category identified by a URI (get-
Category(), the Spect interface defines three methods that can be used to traverse
the asserted category hierarchy: getRootCategories() returns all categories that have
no defined super-categories; getSubCategories() returns the sub-categories and get-

SuperCategories() returns the super-categories of a given category.

2. Attribute Applicability Rules — The spect type defines a method to retrieve all at-
tributes defined by the spect (getAllAttributes()) as well as the methods getApplicable-
Attributes() and getAttributeDomainCategories(), that reflect the spect’s attribute ap-
plicability rules.

73

getAllCategories()
getCategory(URI)
getRootCategories()
getSubCategories(Category)
getSuperCategories(Category)

getAllAttributes()
getAttribute(URI)
getApplicableAttributes(Category[])
getAttributeDomainCategories(Attribute[])

getAllSlinks()
getSlink(URI)
getApplicableSlinks(Category[], Category[])
getSlinkDomainCategories(Slink[])
getSlinkRangeCategories(Slink[])

getLabel(SpectbasedAnnotation)
getDescription(SpectbasedAnnotation)

<<type>>
Spect

<<type>>
Entity

Figure 4.5: Spect type

3. Slink Domain and Range Applicability Rules — Spect defines the methods
getApplicableSlinks(), getSlinkDomainCategories(), and getSlinkRangeCategories()

for these purpose of returning the defined slink domain and range applicability rules,
respectively. Additionally, getAllSlinks() enumerates all slinks that are defined within
the spect.

In addition to these three types of rules, the Spect interface introduces two further rule
sets that describe aspects of human-friendly rendering of spect-based annotations, Entity Label
Rules and Entity Description Rules.

1. Entity Label Rules — A spect may define human-readable labels for all entities defined
within the spect. These labels may be used by a user interface to render visual or au-
ral representations of the entity. Note that although it is not formally required, it is
recommended that within a spect labels are assigned uniquely to entities. However they
should never be used to programmatically distinguish entities; the entity URI is designed
for this purpose.

A user interface may apply the entity URI or a fragment of this to represent an entity if
no label is defined for this entity by the spect.

2. Entity Description Rules — A spect may define a textual description for all kinds of en-
tities. Such a description text may explain the intention and meaning of entities in a
human-readable and -understandable way.

74

<<type>>
AtomicFilter

add()
remove()
makeDNF()
makeCNF()

Filter[] children

<<type>>
CompoundFilter

<<type>>
Filter

isCNF()

<<type>>
AndFilter

isDNF()

<<type>>
OrFilter

getChild()

<<type>>
NotFilter

Figure 4.6: Filter type hierarchy (root types)

4.1.3 Filters

Filter types are used to model the abstract query algebra described in Section 3.3. A filter is
in fact an entity that matches siles, depending on certain annotations that are attached to it. In
other words, a filter can be used to reduce a given set of siles so that the result set is a subset
of the original set, and so that every member of the result set is a sile that matches the criteria
specified by the filter.

The Filter API described in the following is designed to be highly generic. It only consid-
ers elements from the sile data model (cf. Section 3.2) and is not designed towards a specific
implementation. Hence the way the filter API can be implemented depends on the underlying
storage architecture; e.g., a given filter can be translated to a query language such as SQL or
SPARQL.

The Filter API defines a root type Filter which has two sub-types; AtomicFilter and
CompoundFilter. While an atomic filter represents a specific characteristic that can be matched
against a sile, compound filters can be used to combine filters and form arbitrarily complex
expressions. Currently the API contains two compound filters, AndFilter and OrFilter. In
combination with NotFilter (which is modeled as atomic filter, see below), according to De
Morgan’s laws, every expression consisting of only these compound filter types (and atomic
filters) can be transformed into conjunctive normal form (CNF) or disjunctive normal form (DNF),
which is an essential prerequisite for the representation of sile filters in common query lan-
guages. Thus the CompoundFilter type defines two methods makeDNF() and makeCNF() that re-
turns semantically equivalent representations of the filter in disjunctive or conjunctive normal
form, respectively.

According to the different annotation types (tags, categories, attributes, and slinks), a set
of atomic filters are defined and described in the following.

75

String valuerangeMin
String valuerangeMax
URI datatype

<<type>>
AttributeValuerangeFilter

String valuepattern
URI datatype

<<type>>
AttributeValuepatternFilter

String value

<<type>>
AttributeValueFilter

URI attributeName

<<type>>
AttributeNameFilter

<<type>>
AttributeNameValuerangeFilter

<<type>>
AttributeNameValuepatternFilter

<<type>>
AttributeNameValueFilter

<<type>>
AtomicFilter

Figure 4.7: Attribute filter type hierarchy

Tag Filters Tags are, in fact, plain string literals, thus the set of tag filters is very limited. In
its generic form, a TagpatternFilter takes a pattern definition in the form of a regular expres-
sion, while the specialized TagFilter performs an exact match on the tag string. We choose
regular expressions since they are capable of representing a wide area of string patterns, and
are also well supported by many storage systems and can thus be translated to concrete query
languages.

Category Filters A category is identified by a URI, and consequently this is the only criterion
that can be used to restrict siles. The CategoryFilter represents such a restriction entity.

Attribute Filters Attribute filters can be used to filter siles by considering combinations of
the attribute name and the attribute value (which is always represented as string literal, cf. Sec-
tion 3.3.4). When filtering for an attribute a, one can consider the attribute name attname(a)
or the attribute value and data type combination, attvalue(a) and atttype(a). The three ba-
sic filters AttributeValuerangeFilter, AttributeValuepatternFilter, and AttributeNameFilter

select siles based on their value (which can be represented either by a range or a regular ex-
pression pattern) and their name, respectively. By combining these variants, a set of additional
attribute filters can be derived (Figure 4.7), with AttributeNameValueFilter being the most spe-
cialized one: it matches only siles that are annotated with an attribute that has exactly the given
name, value and data type.

Slink Filters Sile entities can take two roles within slinks (relationships); either they can be
the source of the slink (in which case we denote the slink an outgoing slink), or it can be the

76

Sile source

<<type>>
SileInboundFilter

Sile destination

<<type>>
SileOutboundFilter

<<type>>
SileInOutboundFilter

URI slinkname

<<type>>
SlinkInboundFilter

URI slinkname

<<type>>
SlinkOutboundFilter

<<type>>
SlinkInOutboundFilter

<<type>>
SileSlinkInboundFilter

<<type>>
SileSlinkOutboundFilter

<<type>>
SileSlinkInOutboundFilter

<<type>>
AtomicFilter

Figure 4.8: Sile and slink filter type hierarchy

slink’s target (then, the slink is called incoming). Consequently, one can perform searches for
incoming and outgoing slinks, or a combination of both.

Slinks are described by their name which is expressed as a URI; however this URI can
be considered or ignored when searching for slinked siles. We define two classes of filters,
SlinkFilters and SileFilters. The former consider slinks with specific name, while the latter
considers slinks with specific source or target siles. Both can be combined to a SileSlinkFilter,
see Figure 4.8.

NotFilter Filter expressions can be negated by encapsulating them into a NotFilter. A Not-

Filter inverts the sile selection of its child; i.e., it selects all siles that are not selected by its
child filter.

Compound Filters Compound filters are used to logically connect other filters, both atomic
and compound filters. A compound filter contains a set of sub-filters (called children) that are
combined by a boolean operator. The CompoundFilter type (cf. Figure 4.6) defines two methods,
add() and remove(), that add and remove child filters to the compound filter. We have defined
two compound filters, AndFilter and OrFilter. An AndFilter returns the intersection of its
children’s result sets, while an OrFilter returns their union set.

4.1.4 Repository

A Repository is an entity that manages instances of the sile data model, i.e., siles, annotations,
and spects, and is able to execute queries represented using the filter type hierarchy. It is the
central access point for operations on sile data. Thus, the repository interface hides the im-
plementation details from the client application, similar to the file system API of an operating

77

system which hides the details of file storage and physical access from an application that
operates with files.

This design allows the repository to wrap different manifestations of siles and annotations.
The most important tasks of a repository implementation will be the storage and management
of siles and their annotations, as well as the execution of read (search) and update (creation,
deletion, modification) operations. However the actual implementation can be freely chosen.
A repository can be implemented using a relational database system (RDBMS), RDF triple
stores, plain files, or any other technology that is suitable to implement the repository inter-
face. To demonstrate the flexibility and wide applicability of the sile model and its API, three
exemplary implementations of the repository interface are discussed in Chapter 7.

The repository interface can also be used to integrate external data sources into the sile
model. By doing so, a mediator-wrapper architecture (cf. [Has08]) can be built which establishes
a unified view on a heterogeneous information landscape. The sile model is designed so that
it can capture many different types of information; initial considerations for specific infor-
mation classes (namely, object-oriented languages and relational databases) are discussed in
Section 5.4.

Within such an architecture, a repository can act as a mediator that subsumes informations
stored in further repositories. Using a combination of mediators and wrappers, an integrated
view on different, heterogeneous information sources could be established. Typically, personal
information is stored not only on one physical device (e.g., the personal desktop computer),
but is scattered across multiple systems and is represented in varying forms: in addition to per-
sonal siles stored on the local system, there may exist a shared file server for the project team,
an IMAP mail server, and a blog service on the web. All these data silos could be wrapped by
components that implement the repository interface, and hierarchical mediators can provide
integrated views on these wrapped data sources. Such an scenario is depicted in Figure 4.9:
here, two mediators are used to integrate different data sources which are related to private and
work information contexts, respectively. These are again integrated by the top-level mediator
that subsumes all personal information under one consistent view. All wrappers and media-
tors implement the repository interface and can thus be arbitrarily nested. An application can
choose either to use the top-level personal mediator, or directly connect to the private or work
mediators, depending on which data set the user intends to work with.

The repository interface itself defines several groups of operations, which are briefly de-
scribed in the following.

1. Sile Management. Siles can be created either as hosted siles or as referenced siles
(cf. Section 4.1.1). The URI of a hosted sile is defined (minted) by the repository
where it is created, while the URI of a referenced sile must be specified by the ap-
plication; consequently, the method createHostedSile() takes no parameter, while
createReferencedSile() takes a URI as parameter. Another method to create a new sile
is to clone a hosted sile through the cloneSile() method. The conditions under which a
cloning can take place are described in Section 4.1.1.
Siles can be deleted using the deleteSile() method. Deletion of a sile means that both the
sile’s content and its associated annotations (including its incoming slinks) are deleted.
Note that the deletion of a sile may have effects of external repositories that hold refer-
ences to the deleted sile: these references become invalid2.
Siles can be retrieved either directly when their URI is known (via the getSile() method),
or they can be searched based on filter expressions. As described above, a filter is a

2A synchronization mechanism for sile repositories is out of the scope of this work

78

Local Sile
Repository

Shared File
ServerBlog IMAP

Server

Wrapper Wrapper Wrapper

Private
Mediator

Work
Mediator

Personal
Mediator

External Data Source

Wrapper

Mediator
implementing the Repository interface}

Client Application

Figure 4.9: Mediator-wrapper architecture using the repository interface

possibly nested collection of criteria, and the searchSiles() method takes a filter as input
and returns a list of siles which meet the specified criteria. Using the offset and limit

parameters, the number of results may be restricted, similar to the OFFSET and LIMIT

clauses of SQL or SPARQL. The order parameter specifies a rule that defines the ordering
of the result list3.

2. Spects. The spects registered by the repository can be retrieved by the two methods
getAllSpects(), that returns all registered spect, and getSpect(), that returns a specific
spect which is identified by a URI. We do not define the procedures to register or un-
register spects; currently this is out of the scope of this API. Instead, an application may
assume that the set of spects registered in one repository does not change during the
repository’s lifetime. However, it may be possible that such behavior is defined by later
versions of this API, e.g., through the definition of methods that register and un-register
spects or to modify spect elements (cf. Section 4.1.2).

3. Annotation management. The repository interface defines a create() and get() method for
each type of annotation. A client application should use these calls to retrieve instances
of annotations before they can be used, e.g., before a sile is annotated. The reason for this

3A number of ordering types are defined by the API; e.g., AttributeValueAscendingOrder. These are not discussed
here in more detail

79

createHostedSile()
createReferencedSile(URI)
cloneSile(HostedSile)
deleteSile(Sile)
getSile(URI)
searchSiles(Filter, int offset, int limit, Order order)

getAllSpects()
getSpect(URI)

createTag(String)
getTag(String)
getTags(String)
createCategory(URI)
getCategory(URI)
createAttribute(URI, String, URI)
getAttribute(URI, String, URI)
createSlink(URI, Sile)
getSlink(URI, Sile)

getBoundAnnotations(Sile[])
getBoundTags(Sile[], String)
getBoundCategories(Sile[], URI[])
getBoundAttributes(Sile[], URI[], String)
getBoundSlinks(Sile[], URI[], URI[])

addAnnotation(Sile[], Annotation[])

removeBoundAnnotation(BoundAnnotation[])
removeBoundAnnotation(Sile[], Annotation[])
removeAnnotation(Annotation[])

updateBoundAnnotation(BoundAnnotation[], Annotation)
updateAnnotation(Annotation[], Annotation)

getContent(HostedSile)
setContent(HostedSile[], Content)

URI repositoryId

<<type>>
Repository

Figure 4.10: Repository type

design is to ensure that the repository is aware of any annotation instances before they
are actually used. Depending on the repository implementation, this helps to maintain
internal structures like indices or annotation tables.

The methods createTag(), createCategory(), createAttribute(), and createSlink() are
used to create instances of the respective annotations if they do not already exist in the
repository. In this context, “exists” means that the annotation has been created before;
it does not necessarily imply that the annotation is also used (i.e., it is bound to one or
more siles). The methods getTag(), getCategory(), getAttribute(), and getSlink() re-
turn instances of already existing annotations. All get methods provide parameters that
specify the characteristics of the annotation, e.g., the category URI or the attribute value.
Additionally, getTags() retrieves multiple tags at once, whereas the tags are selected by
a regular expression pattern.

One must distinguish the abovementioned get() methods that return generic annotation
instances from the methods that return bound annotations, i.e., annotation instances that

80

are attached to a sile. The repository interface provides a generic method getBound-

Annotations(Sile[]) that returns all annotations that are bound to a set of siles (whereas
the set also can consist of only one sile), as well as specific methods getBoundTags(),
getBoundCategories(), getBoundAttributes(), and getBoundSlinks() return only a subset
of these which can be restricted using annotation type-specific parameters.

Annotations can be bound to, and unbound from siles using the addAnnotation() and
removeBoundAnnotation() methods. removeBoundAnnotation() has two variants; one takes
as parameter a set of BoundAnnotation instances which are removed from the repository’s
database; the other one takes two parameters of type Sile[] and Annotation[] and re-
moves all passed annotations from the passed set of siles. Thus a client application can
remove a certain set of bound annotations without first retrieving all the BoundAnnotation

instances by which they are represented. Additionally, removeAnnotation() can be used
to remove all occurrences of an annotation from the entire repository.

To modify annotations, two methods are provided: updateBoundAnnotation() updates a
set of bound annotations with a new annotation, while updateAnnotation() updates all
occurrences of an annotation with a new annotation. Note that by using these methods,
not only annotation specifics (e.g., an attribute value) can be updated, but also the an-
notation type can be changed: for instance, it is possible to replace a tag annotation with
a category annotation for all sides within a repository by using the updateAnnotation()

call.

4. Content Management. Finally, the Repository interface defines two methods to retrieve
and update the content of hosted siles; getContent() and setContent(). Note that it is
not possible to retrieve or update the content of a referenced sile since per definition
such siles do not have associated content within the repository. Instead, the retrieval
mechanism for referenced siles is determined by the type of the sile’s URI.

4.2 Usage Examples

In this section we outline the usage of the sile API by the means of pseudocode examples.
These are meant to show the API calls that can be used by an application to retrieve informa-
tion stored in a sile repository. In the following example, we use simplified URN identifiers
for all names of categories, slinks, and annotations. For the sake of brevity, we treat URI pa-
rameters for method calls as normal strings in the examples.

In our scenario, an instant messaging client has been extended to store information about
chat sessions, contacts, and transferred objects using a local sile repository. In our example,
three persons discuss their research work within a chat session. During this session, they
discuss a blog entry that was found by one of the participants, and they discuss a document
that was written by one participant.

First, the application obtains a reference to a repository instance; the means of doing so
remains unspecified by the API. When a new IM session is initiated, the application creates a
new sile that represents this session:

Repository repo = ... ;

HostedSile session = repo.createHostedSile();

In order to retrieve the transcript at a later point in time, the application annotates all
sessions with an appropriate category and attributes. To describe its vocabulary, the client uses
a vocabulary of urn:im: URIs. For this purpose the application retrieves the corresponding
annotation object—in this case, a category—from the repository,

81

Category cSession = repo.getCategory("urn:im:Session");

and attaches it to the sile that represents the session.

session.addAnnotation(cSession);

Note that the application does not decide to explicitly store the chat’s start time; this is not
necessary because the repository automatically annotates a sile with its creation date.

The application also adds slinks that connect the conversation to their participants; let
us assume it is a chat between three people. The application uses numerical account ids to
identify contacts; thus the corresponding siles can be retrieved via a query that considers a
category and an attribute:

AndFilter filter = new AndFilter();

filter.add(new CategoryFilter("urn:im:Account"));

filter.add(new AttributeNameValueFilter("urn:im:account-id", "9182745", "xsd:string"));

Sile john = repo.searchSiles(filter, 0, 1, null)[0];

Similarly, the application searches for the siles that represent other participants; e.g., ann
and me. Now, the application establishes slinks that connect the sile that represents the
conversation to the siles that represent the participants. For this, we uses the slink types
urn:im:participant and urn:im:initiator:

sile.addAnnotation(repo.getSlink("urn:im:initiator", ann));

sile.addAnnotation(repo.getSlink("urn:im:participant", john));

sile.addAnnotation(repo.getSlink("urn:im:participant", me));

Whenever a message is posted into the chat, the application creates a sile that represents
this message (which is again automatically annotated with its creation time). It stores the
message text as content, and attaches a category and sender annotation. Also it connects the
message sile to the sile that represents the chat:

Sile message = repo.createHostedSile();

message.setContent(new StringContent("hi bernhard, nice thesis! :-)"));

message.addAnnotation(repo.getCategory("urn:im:Message"));

message.addAnnotation(repo.getSlink("urn:im:author", john));

session.addAnnotation(repo.getSlink("urn:im:message", message));

The discussion now is about a particular blog entry found by one of the participants. She
posts the URL into the chat, which is recognized by the IM application. Thus, the application
can add a reference to the blog entry (which the repository now treats as referenced sile) and
slink it to the message, and (to simplify later retrieval) to the entire conversation:

ReferencedSile externalResource =

repo.createReferencedSile("http://blog.beef.de/thesis/");

message.addAnnotation(repo.getSlink("urn:im:topic", externalResource));

session.addAnnotation(repo.getSlink("urn:im:topic", externalResource));

Later, the participants discuss a document that one of the participants has recently written.
One of the participants posts the document into the chat, whereby it is downloaded by the
IM client application and stored as a hosted sile. The application slinks the document to the
sender, and slinks the conversation to the document:

82

HostedSile document = repo.createHostedSile();

document.setContent(new ByteContent([...]));

document.addAnnotation(repo.getAttribute

("sile:label", "semantic_web_report.pdf", "xsd:string"));

document.addAnnotation(repo.getSlink("urn:im:author", john));

session.addAnnotation(repo.getSlink("urn:im:topic", document));

Since the chat participants agree on the version sent by John, the user tags the received
document with a note that it has been approved. This is accomplished by a component in the
instant messaging application that allows the user to add comments or tags to items,

document.addAnnotation(repo.getTag("approved"));

and to the discussion as a whole:

session.addAnnotation(repo.getTag("phdthesis"));

When the discussion is finished, the client application stores the end time of the conversa-
tion:

session.addAnnotation(repo.getAttribute("urn:im:end-time", now(),

"xsd:dateTime"));

Later on, our user wants to catch up items discussed in the chat session. She remembers
that on this particular day there were several chat sessions, and that the particular document
was discussed with John. Thus, using a sile browsing application, she looks for the sile that
represents John and issues a query that looks for all documents that were discussed with John
a couple of weeks ago. Since the filter API does not support sub-queries or joins, we need
to implement this search by two distinct queries; the first one looks for John, the second one
returns all chat sessions John attended that took place within one week.

// search for John

AndFilter filter = new AndFilter();

filter.add(new CategoryFilter("urn:im:Account"));

filter.add(new AttributeNameValueFilter("urn:im:nickname", "john",

"xsd:string"));

Sile result = repo.searchSiles(filter, 0, 1, null)[0];

// search for chat sessions with John within a week

filter = new AndFilter();

filter.add(new CategoryFilter("urn:im:Session"));

filter.add(new SileInOutboundFilter(result));

filter.add(new AttributeNameValuerangeFilter("sile:creation-date",

"2008-07-07T00:00:00", "2008-07-13T23:59:59", "xsd:dateTime"));

Sile[] results = repo.searchSiles(filter, 0, 0, null);

The generic sile browser allows her to scan the tags of all resulting sessions. After she
has found the session that is tagged with “phdthesis”, she issues a query so that she will be
presented all items that were discussed during the session:

Sile session = ... ;

Sile[] result = repo.searchSiles(

new SileSlinkInboundFilter(session, "urn:im:topic")), 0, 0, null);

83

In this case, two siles will be returned: one that represents the blog entry that was discussed
during the meeting, and another one that represents the document that was approved during
the chat session.

In these examples we have shown how applications can use a personal sile repository to
store arbitrary kinds of information. Only a few API calls are needed to annotate siles with at-
tributes, tags, or categories, or to put them into relationships by creating slink annotations. Ap-
plications can read and write sile contents, and can create references to external data sources;
for instance, to web resources.

Although the sile model and its query framework have certain limitations (e.g., the lack
of sub-queries), they are able to cover a wide range of information demands. The API does
not require the programmer or the user to formulate complex hierarchical queries; instead
searched information can be iteratively retrieved.

In practice, applications will employ a mixture of predefined and dynamically generated
filter expressions to find information. For instance, the envisioned instant messaging appli-
cation could, during startup, issue a query to retrieve all user contacts, while it also could
provide an interface that allows the user to search for chat sessions that have been annotated
with a specific tag.

4.3 Summary

In this section, we have introduced the Sile application programming interface, which is de-
rived from the abstract sile model discussed in the previous section. The static part of the Sile
API consists of a set of types that reflect all model elements of the sile model, i.e., different
types of siles, annotations, and filters. The dynamic API, in the form of the Repository speci-
fication, represents operations on sile data sets. The API has been specified in a generic UML
notation so that it can be easily transformed to any object-oriented language. Finally we have
demonstrated how the API can be used in concrete exemplary application scenarios.

84

Part III

Implementation

85

Chapter 5

Digital Manifestation of Siles

The nicest thing about standards is that there are so many of them
to choose from. — Ken Olsen

The abstract data model presented in Section 3.2 shares several characteristics with the
well-known RDF meta model [KC04]: (1) both use graph-based data structures for represent-
ing annotations (in particular, relationships) of digital and non-digital resources, and (2) both
are designed to be extended by user- or application-specific vocabularies through the usage of
ontologies. RDF recently emerged as a global interchange format for descriptive data on the
web [BHAR07] and thus many tools, parsers, and databases are available. Thus it is a reason-
able choice for the physical representation of sile data, and in the following we define rules
how the abstract model can be mapped to RDF graphs; however it would be perfectly valid to
represent sile data in other formats like the relational model1.

In this section, we introduce the building blocks that are required for such a mapping be-
tween the sile model and RDF. We introduce a basic core ontology in Section 5.1 that models
the classes and properties which are used by the mapping rules between siles and RDF re-
sources described in Section 5.2. Then, we describe how the elements of the abstract query
framework can be transformed to the SPARQL Query Language for RDF [PS08] in Section 5.3.

After this mapping to the Semantic Web technology family, we briefly discuss possible
alternative representations by the means of object-oriented languages and relational database
systems. These are not discussed in detail, but rather are meant to be directions for future
work in this direction.

5.1 A Core Ontology for the Sile Model

We define a simple core ontology for the representation of sile data using RDF. This ontology
defines a set of classes and attributes that formally represent the data elements of the RDF

1To prove this claim, we have also implemented a repository that maps sile annotations to IMAP mail message
headers, cf. Section 7.3

87

representation of siles. The ontology described here serves two main purposes; first, it defines
a vocabulary that can be used for the exchange of sile data in the form of RDF, and second, it
implies a minimal set of reasoning rules that can be applied when querying sile data.

Short Name Full URI

sile: http://www.semdav.org/2007/03/core#

rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs: http://www.w3.org/2000/01/rdf-schema#

xsd: http://www.w3.org/2001/XMLSchema#

Table 5.1: URI prefixes for the sile ontology

In this section we informally describe the elements of the ontology using the RDF Vo-
cabulary Description Language (RDFS) [BG04]; we use the common abbreviated URI prefix
notation with the name spaces enumerated in Table 5.1.

Classes

The root class for sile entities is the class sile:Sile. It indicates that a resource can be in-
terpreted as sile. sile:Sile has two subclasses, sile:HostedSile and ReferencedSile, which
indicate the type of sile within the repository. The two classes are marked as disjunct (cf.
Figure 5.1).

The indication whether a sile is a sile:HostedSile or a sile:ReferencedSile is only valid
w.r.t. a specific data context, i.e., usually within a repository instance. When sile data is ex-
changed between two contexts, the receiving entity must ensure that the sile data are accord-
ingly transformed so that the data model remains in a consistent state. For instance, the re-
ceiving entity (repository) must check if any instance of sile:ReferencedSile in the received
data set references to an already existing instance of sile:HostedSile by comparing the re-
spective URIs. If this is the case, the sile data must be accordingly merged; i.e., the annota-
tions contained in the received data set must be attached to the already existing instance of
sile:HostedSile2.

To model the rules that are manifested in a Spect (cf. Section 3.2), we define three classes
that reflect the three annotation types that can be referred within a spect, sile:AttributeName,
sile:CategoryName, and sile:SlinkName, These are subsumed by a class sile:Annotation. They
are used to identify the names (URIs) of annotations within a spect definition, and they serve
as domain and range for the properties that reflect the elements of a spect (see below).

The sile ontology defines a further class, sile:Tagged, which is the root class of all tag
classes. Tags are, in principle, plain text strings attached to data objects; thus it would seem
natural to represent them as RDF properties with a literal object, where the literal has a desig-
nated data type, and its value represents the tag literal. However, doing so would render them
unusable for further semantic processing; e.g., connecting tags and ontologies, which would
help to gain more information out of tags [HRS07]. Such processing can, by design, be applied
only to RDF resources. Additionally, standard RDFS reasoning can be applied if we model
siles that are tagged with a specific tag x as instances of a class, namely the class of x-tagged
objects. Hence, we model tags as ontology classes that are subclass of a designated tag root
class called sile:Tagged, and attach the tag’s literal text as a label to the class.

2More details on the process of importing siles into a repository are discussed in Section 6.1

88

rdfs:Class

sile:Sile

rdf:type

sile:Annotation

sile:Filter sile:Spect

rdf:type
rdf:type rdf:type

Figure 5.1: Sile ontology core classes

Finally, the sile ontology defines the root class of all filters, sile:Filter, and its sub-
classes that basically reflect the filters defined in the sile filter API (see Section 4.1.3), i.e.,
sile:CompoundFilter, sile:AtomicFilter, and sile:NotFilter. For each compound and atomic
filter, an appropriate class is defined. Each filter is further specified by properties that repre-
sent the criteria that this filter represents (see below).

Properties

Annotation Properties To associate tag and category annotations to the sile resource, we
use two specific properties: sile:cat-type and sile:tag-type. Both are modelled as sub-
properties of rdf:type and thus can be generally interpreted as relationship between an in-
stance (the sile) and a class (the category or the tag class). We further restrict the domain of
sile:tag-type to subclasses of sile:Tagged since all classes that represent tags must be sub-
classes of this class.

Core Sile Attributes The sile core ontology defines a number of attributes that describe core
properties of siles; these are depicted in Table 5.2. Each repository implementation should
make sure these properties are always updated, and are always included when sile data are
exchanged between systems. The date attributes are applicable to all siles, while the content-
related description attributes are only applicable to hosted siles.

Additionally, the ontology defines two label attributes—sile:sile-label for siles, and
sile:tag-label for tags—that define strings for human-readable representation of annota-
tions. These are defined as subproperties of rdfs:label in order to allow generic RDF browsers
to reuse the label information. For both, the ontology allows that an instance may have multi-
ple labels; e.g., to support multi-language systems.

Core Slink Types In principle, all RDF properties that have an instance of sile:Sile as their
domain and range can be considered as slinks. The Sile core ontology only defines two slink
types that are sufficiently generic so that they can be used as a starting point for the tailoring of
sile ontologies (cf. Table 5.3). The top type, sile:related, indicates that two siles are somehow
related. sile:cloned-from, which is a subproperty of sile:related, indicates that a sile was

89

Local Name Domain Range

creation-date sile:Sile xsd:dateTime

update-date sile:Sile xsd:dateTime

content-size sile:HostedSile xsd:long

content-type sile:HostedSile xsd:string

sile-label sile:Sile xsd:string

tag-label sile:Tagged xsd:string

Table 5.2: RDF properties for core attributes

Local Name Domain Range

related sile:Sile sile:Sile

cloned-from sile:Sile sile:Sile

Table 5.3: RDF properties for core slink names

created by cloning another one. Thus the connection between a sile and its clones is retained.

Spect Properties A spect defines a number of relationships between different types of sile
annotations. For each of these relationships, a property is defined in the sile core ontol-
ogy. The properties sile:applicable-slink-domain and sile:applicable-slink-range indicate
that a category (identified by its category name) can be used as domain or range for a slink
(identified by its slink name). The property sile:applicable-attribute-domain indicates that
a category can be used as an attribute’s domain, and the properties sile:sub-category and
sile:super-category are used to specific category hierarchies (see Table 5.4).

Local Name Domain Range

applicable-slink-domain sile:SlinkName sile:CategoryName

applicable-slink-range sile:SlinkName sile:CategoryName

applicable-attribute-domain sile:AttributeName sile:CategoryName

sub-category sile:CategoryName sile:CategoryName

super-category sile:CategoryName sile:CategoryName

Table 5.4: RDF properties for spects

Filter Properties The filter hierarchy has already been discussed in Section 4.1.3; the filter
class hierarchy described above basically reflects this design in terms of an ontology. To repre-
sent the exact parameters of a concrete filter, a number of properties as indicated in Table 5.5

90

Local Name Domain Range

attribute-name sile:AttributeNameFilter sile:AttributeName

valuerange-min sile:AttributeValuerangeFilter rdfs:Literal

valuerange-max sile:AttributeValuerangeFilter rdfs:Literal

valuepattern sile:AttributeValuepatternFilter rdfs:Literal

value sile:AttributeValueFilter rdfs:Literal

datatype sile:AttributeValuerangeFilter rdfs:Datatype

sile:AttributeValuepatternFilter

source sile:SileInboundFilter sile:Sile

destination sile:SileOutboundFilter sile:Sile

slink-name sile:SlinkInboundFilter sile:SlinkName

sile:SlinkOutboundFilter

category-name sile:CategoryFilter sile:CategoryName

Table 5.5: RDF properties for sile filters

can be used. Filters may refer to annotation names and therefore the range of each filter prop-
erty is also given in this overview table.

5.2 Representation of Sile Data as RDF

Siles

On the first sight it seems obvious to directly map siles to RDF resources and vice versa, as
both can be considered as having their own identity and are, per se, independent from any
other resource. While this approach is suitable in the one direction (representing siles as RDF),
it may be impractical to transform every RDF resource as sile. As siles we consider only such
objects that have a direct digital manifestation (similar to files), while in common RDF data
there may exist abstract resources (so-called “non-information resources”) or such ones that do
not directly denote a specific concept (e.g., blank nodes). RDF resources may act as container
for complex data structures (cf. Section 2.3 in [MM04]); artificial resources may be created to
distinguish “real world objects” from their digital counterparts (cf. [ABK+07]), or blank nodes
may be present. As a consequence, we require that each sile is represented as non-blank node
and is explicitly typed as sile, as follows:

∃s ∈ Σ←→ {< us, rdf:type, sile:Sile >}

We read this as follows: If a sile si exists, this sile is represented by a singleton RDF triple
set, and vice versa. This set (enclosed by braces) contains, in this case, only one triple (which
is enclosed by angle brackets); this triple’s subject is equal to the sile’s URI ui, its predicate is
rdf:type, and its object is the URI sile:Sile.

Note that we do not require any other assertions to be made about a sile. In consequence,
no further predicates can be derived from the fact that a resource is typed as sile:Sile, but,
on the other hand, no further information is necessary to indicate that a resource can be in-
terpreted as sile. This design allows one to selectively and easily enrich existing RDF data

91

sets in order to obtain a representation that conforms to the sile model. Information that is
available in the form of RDF data (e.g., as Linked Data [BHAR07] on the Semantic Web) can
be interpreted as sile data by adding the typing triple to the resources of interest. All addi-
tional information about resources can be expressed via the mapping rules for annotations, as
described in the following.

Annotations

Tags As described before, tags are represented by subclasses of the class sile:Tagged, and the
tag label is attached to this class. Hence a tag is represented by a pair of RDF triples:

∃t | t ∈ T ←→ {< t′, sile:tag-label, "t"ˆˆxsd:string >,
< t′, rdfs:subClassOf, sile:Tagged >}

where t′ is the URI of a tag class that is internally used to represent tag t. The first triple
denotes the textual representation of the tag (using the common syntax for typed RDF literals),
and the second one identifies the tag resource as subclass of the tag root class.

We then relate the sile to the tag class using the sile:tag-type property and thus are able
to apply all reasoning operations for ontology classes also to tags.

∃s ∈ Σ, t ∈ T | t ∈ Ts ←→ {< us, sile:tag-type, t′ >}

Categories Categories roughly correspond to ontology classes and therefore can be directly
mapped to RDF triples which express the type of the resource. This mapping does not consider
class hierarchies and any entailment based on such, and the sile data model does not specify
which mechanisms are used to infer implicit information: an implementation can choose to ap-
ply arbitrary mechanisms, like reasoners and rule-based systems, to categories, and by doing
so generate additional category associations for siles and the corresponding RDF statements.

∃s ∈ Σ, cj ∈ C | c ∈ Cs ←→ {< us, sile:cat-type, c >}

Attributes Attributes can be mapped to RDF statements that have a typed literal as object.
We define that the rules that are valid for typed literals in RDF (cf. Section 6.5 in [KC04]) hold
also for sile attributes. Attributes are directly attached to sile resources using a simple RDF
triple, whereas the attribute value literal and the attribute data type URI are encoded as typed
literal:

∃s ∈ Σ, a ∈ A | a ∈ As ←→ {< us, ana, "ava"ˆˆata >}

Again, we use the RDF syntax for typed literals where the data type of the attribute value
is attached to the literal representation of the attribute value using two hat signs. For plain
literals (i.e., literals that have no associated data type) we define that in the corresponding
attribute annotation the xsd:string data type is used by default.

Note that we do not impose any constraints on the existence or cardinality of sile attributes.
Both the sile model and the RDF model allow one to attach multiple attribute instances with
the same name to one sile; however a sile cannot have two attributes that have identical name,
value, and value type (as the sile data model is, like RDF, set-based).

Slinks — Slinks can be regarded similar to attributes: as slink we consider all statements
whose object is a resource that is typed as sile. In other words, a slink is an attribute of the
source sile whose value is the target sile. Slinks always connect two siles, so we model them
as pairwise predicate on two siles. Slinks are always directed; correspondingly, we can define a

92

mapping to an RDF triple that contains the URIs of the participating siles as subject and object,
and the relationship name URI as predicate. The destination URI must be typed as sile:Sile:

∃s ∈ Σ, l ∈ L | l ∈ Ls ←→ {< us, lnl , ldl >, < ldl , rdf:type, sile:Sile >}

Content

In principle, it is possible to represent binary data in RDF using literals that are typed with
the XML data types xsd:base64Binary or xsd:hexBinary. In several studies the average file
sizes on personal computer systems has been analyzed [DB99, ABDL07]. These studies show
that with the advent of multimedia data the number of large files—which are problematic to
represent in RDF and XML—has increased. In 2004, while most files were smaller than 4 KB
the mean file size by 2004 was 189 KB and increases by 12% p.a. Thus one could consider
the representation of sile contents within the RDF format. However, representation of binary
content as RDF data brings no additional benefit in our context: neither can it be queried
using RDF query languages like SPARQL, nor can any RDF processor perform meaningful
operations on such literals. Additionally, because of the necessary Base64-Encoding [Jos06]
the data volume is significantly increased, and it becomes hard to perform search requests
without prior decoding. Hence we avoid the representation of sile content in base64-encoded
form; instead we leave the actual storage to the implementation.

However, we annotate a sile with attributes that describe the sile’s content size and MIME
type, for which we define the functions size(·) and mime(·). These functions return the corre-
sponding values in the form of attribute values, which can be mapped to a RDF representation
using the rules for attributes, as described above.

∃s ∈ Σ, b ∈ B | b = bs ←→ (sile:content-size, size(b), xsd:nonNegativeInteger) ∈ As,
(sile:content-type, mime(b), xsd:string) ∈ As

Examples

After having specified the mappings, we can now represent typical siles from our application
scenarios. In Section 4.2 we have described how applications can make use of sile data to
represent instant messaging chat session. In the following we describe how the representation
of these sessions in RDF could look like.

The first sile that was created during this example was one that represents a chat session. It
has been automatically assigned a URI by the repository, and it was annotated with a Session

category by the instant messaging application. Thus its basic RDF representation looks as
depicted in Listing 5.1, lines 1–153.

This example shows in the first line the sile URI that was automatically created by the
repository when the sile was created. The second line indicates that the sile is a hosted sile,
while the third line shows that it is annotated with a category called urn:im:Session. Lines 4 to
7 indicate the creation and update time stamps for the sile, which are automatically assigned
by the repository on each update. Lines 8 and 9 contain information about the sile content,
which is empty in this example. Lines 10 to 13 contain slinks to the single messages of this
sile (some of them have been skipped in this example), and lines 14 and 15 represent the topic
annotations that have been issued during the chat session; one refers to an external URI (i.e., a
referenced sile); one refers to another hosted sile whose URI has been automatically assigned
by the repository.

3We use the Turtle notation for RDF [Bec07] in the following examples, and we assume the sile: and xsd: URI
prefixes to be defined according to the respective specifications.

93

1 <urn:uuid:57207370-6880-11dd-ad8b-0800200c9a66>

2 a sile:HostedSile ;

3 sile:cat-type <urn:im:Session> ;

4 sile:creation-date "2008-07-11T16:21:14"^^xsd:dateTime ;

5 sile:update-date "2008-07-11T17:14:21"^^xsd:dateTime ,

6 "2008-07-11T17:19:12"^^xsd:dateTime ,

7 "2008-07-11T17:32:02"^^xsd:dateTime ;

8 sile:content-type "sile/empty"^^xsd:string ;

9 sile:content-size "0"^^xsd:long ;

10 <urn:im:message> <urn:uuid:82d4a304-e50c-44f5-8040-bd1911341619> ,

11 <urn:uuid:1ee4afbb-d171-468b-9fb6-76bbebe732ef> ,

12 <urn:uuid:307f39e4-1c0a-4898-a8e2-7e2f3534a8a1> ,

13 [...] ;

14 <urn:im:topic> <http://blog.beef.de/thesis/> ,

15 <urn:uuid:9fb8f66f-6d17-429e-ab5d-d7dfe85f3308> .

16

17 <urn:uuid:307f39e4-1c0a-4898-a8e2-7e2f3534a8a1>

18 a sile:HostedSile ;

19 sile:cat-type <urn:im:Message> ;

20 sile:creation-date "2008-07-11T16:27:02"^^xsd:dateTime ;

21 sile:update-date "2008-07-11T16:27:05"^^xsd:dateTime ;

22 sile:content-type "text/plain"^^xsd:string ;

23 sile:content-size "30"^^xsd:long ;

24 <urn:im:author> <urn:uuid:8435222c-9675-473a-a989-e73af38a910b> .

25

26 <urn:uuid:8435222c-9675-473a-a989-e73af38a910b>

27 a sile:HostedSile ;

28 sile:cat-type <urn:im:Account> ;

29 [...]

30 <urn:im:account-id> "9182745"^^xsd:string ;

31 <urn:im:nickname> "john"^^xsd:string ;

Listing 5.1: Example RDF representation of siles

94

Listing 5.1, lines 17–24, shows the representation of one message entry that was part of
this chat session. This message entry is slinked by the sile that represents the conversation
(line 12), and in addition to the default attributes for siles and a category annotation (line 19)
it contains a slink to the sile that represents the author of the message. The (abbreviated) RDF
representation of the author is depicted in lines 26–31.

These examples demonstrated how siles are actually represented using RDF, a generic
graph-based representation format for data. In the following section, we discuss how we
translate filter queries, i.e., expressions that model information retrieval requests based on the
sile model, to the SPARQL query language for RDF; these queries can then directly be issued
to data that is represented according to the rules discussed in this section.

5.3 Transforming Sile Filters to SPARQL Queries

The SPARQL Query Language for RDF [PS08] has become the de-facto standard for querying
RDF data sets. Together with the SPARQL protocol [CFT08] which defines how SPARQL
queries and results are to be encoded and transported over a network connection, it has been
a W3C Recommendation since January 2008.

SPARQL employs a pattern matching approach to query RDF data. A basic SPARQL query
to retrieve the URIs of all siles that are defined in a repository is given in Listing 5.24. In
this example the SELECT query format is used, which returns a table of results, similar to SQL
queries.

1 SELECT ?sile

2 WHERE { ?sile rdf:type sile:Sile . }

Listing 5.2: Simple SPARQL query

SPARQL provides another query form, CONSTRUCT, which can be used to create a new RDF
graph that is filled with results from the WHERE clause. Listing 5.3 depicts a query that returns all
hosted and referenced siles. The UNION statement is used to combine different graph patterns:

1 CONSTRUCT { ?sile rdf:type sile:Sile . }

2 WHERE

3 {

4 { ?sile rdf:type sile:HostedSile . }

5 UNION { ?sile rdf:type sile:ReferencedSile . }

6 }

Listing 5.3: SPARQL CONSTRUCT query

Although there are a number of issues5 that have been not addressed in the 2008 specifica-
tion of SPARQL, the language is widely supported by a large fraction of RDF storage systems.
It is also a core building block of many semantic desktop projects: as our analysis shows (cf.
Section 2.3.4), most of them use RDF for data representation, and SPARQL to query these data.

4The URI prefixes are omitted in the following examples.
5A comprehensive list of these is given at http://www.w3.org/2001/sw/DataAccess/issues; the features that the

SPARQL working group is currently addressing are listed at http://www.w3.org/TR/sparql-features.

95

http://www.w3.org/2001/sw/DataAccess/issues
http://www.w3.org/TR/sparql-features

Having the ability to map the Sile data model to RDF (cf. Section 5.1 and Section 5.2), it
is natural to define a mapping of sile filters (cf. Section 3.3) to SPARQL. This allows us to
formulate abstract sile queries over the sile model, and to execute such queries against sile
data expressed in RDF. The transformation from the (abstract) filter model to SPARQL must
consider the structure and semantics of SPARQL [PAG06a, PAG06b], as well as the absence of
certain language constructs, e.g., negotiated patterns and subqueries.

Considering the proposed normal form for SPARQL queries [PAG06a] which eliminates
certain situations in which the SPARQL semantics is ambiguous (cf. Sections 4.3 of [Cyg05]),
we perform the translation of filters to SPARQL queries in two steps. First, we bring the filter
into disjunctive normal form; second, we translate the elements of the normalized filter expres-
sion to SPARQL graph patterns. Note that this generic approach may produce redundant and
non-optimal queries, thus one should apply query optimization algorithms to the resulting
query. However this is out of the scope of this work; instead we refer to several approaches to
SPARQL optimization that have been published (e.g., [SSB+08, HH07]).

Prerequisites

The filter API for Sile data is in detail described in Section 3.3. As we can see, filters are ba-
sically boolean expressions built of atomic filters and negated atomic filters, which are (recur-
sively) grouped by compound filters (And and Or). Such an expression is said to be in disjunctive
normal form if it consists of one or more disjuncts, each of which is a conjunction of one or more
literals; and it is in conjunctive normal form if it consists of one or more conjuncts, each of which
is a disjunction of one or more literals. In the case of the sile filter model, literals are atomic
filters and negated atomic filters.

However, SPARQL does not provide direct means to query using such boolean expres-
sions: it provides neither explicit AND, OR, or NOT operators. Thus we need to transform
a filter expression into a suitable form before we can convert it into a SPARQL query. In the
following we will discuss how the elements of disjunctive and conjunctive normal forms—i.e.,
conjunctions, disjunctions, and negations—can be translated to SPARQL in order to justify the
selection of an appropriate normal form.

Representation of Conjunctions In SPARQL, the WHERE clause is used to specify graph pat-
terns; i.e., sets of RDF triples in which each element (subject, predicate, or object) may be a
variable [PS08]. Group graph patterns are the most primitive kind of grouping SPARQL graph
patterns; the SPARQL semantics requires that all triple patterns within a group must match
in order to constitute a valid result; i.e., the single elements of the graph pattern are AND-
combined.

Representation of Disjunctions Results from different, independent graph patterns (i.e., al-
ternative solutions) can be combined with the UNION statement. Two UNION-combined patterns P1
and P2 produce a solution if P1, or P2, or P1 and P2 match, whereas all matches are reproduced
in the solution. Thus we can consider the SPARQL UNION statement as an equivalent to the
logical OR.

Representation of Negations There is no basic negation operator in SPARQL since it is built
on the Open World Assumption; i.e., one can only decide whether a fact is true, but not
whether it is false. Instead, negation as failure [SS08] can be applied: the BOUND operator can
be used to test whether a SPARQL variable has been assigned a value in the current evalua-
tion context; i.e., whether it is bound to a solution. In combination with an OPTIONAL graph

96

pattern one can test if a set of triples is asserted in the data set or not. OPTIONAL patterns are
included in the evaluation solution if they are present, but do not cause the evaluation to fail
if they are not present in the data. An example of negation as failure in SPARQL is given in
Section 11.4.1 of [PS08].

Representation of Disjunctive Normal Forms Let P1, P2, . . . , Pn denote basic graph patterns,
i.e., sequences of triple patterns. AND-combined filters can be represented within a basic graph
pattern, since all triples within the pattern must match in order to obtain a solution. As long as
an atomic filter element can be matched to a basic graph pattern, we can represent the entire
formula (in disjunctive normal form) as a UNION of the single basic graph patterns:

P1 ∨ P2 ∨ . . . ∨ Pn 7→ {{P1} UNION {P2} UNION {. . .} UNION {Pn}}

Representation of Conjunctive Normal Forms Because SPARQL allows one to group UNION

clauses, we can also represent a conjunctive normal form, which is an conjunction of alterna-
tives (disjuncts). If A1, A2, . . . , Am denote UNION-combined basic triple pattern (i.e., disjuncts
as above), then we can transform a CNF formula as follows:

A1 ∧ A2 ∧ . . . ∧ Am 7→ {{A1} . {A2} . {. . .} . {Am}}

In principle, DNF and CNF formulas can be converted into each other without information
loss. However, for the purposes of an SPARQL-based implementation of the filter algebra, we
choose disjunctive normal form because we assume that CNF formulas are mentally harder
to formulate and will therefore less often be used by end users. The rationale behind this
assumption is that conjunctions (of which DNF formulas consist) appear to be a more natural
way to describe information demands than disjunctions6. In the following we briefly outline
how we generically transform a filter expression into DNF, and how we convert such a DNF
filter into a SPARQL WHERE clause.

Step 1: Filter Normalization

Under the assumption that negation can be applied to atomic filters but not to compound
filters (cf. Section 4.1.3), we can use the distributive law to reorganize the hierarchical nesting
of filters so that the resulting filter is always in DNF. The function makeDNF(·) that returns a
DNF representation of a filter is described in Algorithm 1. This algorithm recursively moves
conjunctions upwards and redistributes disjunctions according to De Morgan’s laws so that
they are flat; i.e., they only contain conjunctions. Algorithm 2 and 3 describe the detailed
procedures for And and Or filters.

The resulting filter is either (1) an atomic filter, (2) an AndFilter that contains only atomic fil-
ters as children, or (3) an OrFilter that contains either atomic filters or AndFilters that contain
only atomic filters. In either case, the resulting filter is in DNF and can be directly converted
to a SPARQL WHERE statement, as described in the following.

6This decision is mainly driven by user interface considerations; for a detailed discussion of these issues we refer
the reader to [Tod08]

97

Algorithm:makeDNF
Input: A filter F
Output: DNF representation of F
if F is an AtomicFilter then

return F ;
end
if F is an AndFilter then

if F has only atomic children then
return F ;

else
return makeAndDNF(F) ;

end
end
if F is an OrFilter then

return makeOrDNF(F) ;
end

Algorithm 1: Conversion of filters to DNF

Step 2: Transformation to SPARQL

The conversion of a DNF filter into a SPARQL can be performed as follows, where we demon-
strate the transformation by the example of a SPARQL CONSTRUCT query. As described before,
CONSTRUCT query always creates an RDF graph (i.e., a set of triples) that is constructed by bind-
ing variables in the construct pattern to results from the query solutions. For each solution
found, an instance of the triple pattern specified in the CONSTRUCT clause is added to the result
graph, whereas all variables in the CONSTRUCT clause are bound to the corresponding nodes of
the query solution.

Sile filters are used to search for siles, and siles are represented as RDF resources; thus we
define one target variable ?t that is used as common variable across all filters. This variable will
hold the sile URI if a match is found in the data set. Besides this common variable, each filter
mapping may use internal variables; i.e., variables that are used only within the filter’s result
pattern, and anonymous variables; i.e., placeholder variables that are bound but not further
evaluated. In SPARQL, the scope of variables is always global (cf. Section 4.1.3 of [PS08]), thus
we employ a random name generator to ensure uniqueness of internal variable’s names across
the entire query.

The CONSTRUCT triple pattern used for searching siles always at least contains the target
variable ?t as well as the sile’s type information; i.e., a statement of the form

?t rdf:type ?type .

where ?type indicates the sile type within the queried repository, i.e., sile:HostedSile or
sile:ReferencedSile. The sile type information is always included in the result graph since
it is required by the mapping component to build corresponding objects based on the result
graph.

Additionally, the query may be used to ask for additional information about the sile, in-
cluding but not restricted to its core attributes (cf. Section 5.1). The SPARQL query transfor-
mation engine allows the client to specify a set of attribute names whose values are, if present,
added to the return graph. Consequently, statements of the form

?t property ?v .

98

Algorithm:makeAndDNF
Input: An AndFilter F
Output: DNF representation of F
let F′ = an empty AndFilter ;
for all children Fi of F do

if Fi is an CompoundFilter then
Fhelp ←−makeDNF(Fi); add Fhelp to F′ ;

else
add Fi to F′ ;

end
end
let F′′ = an empty AndFilter ;
let O[][] = a 2-dimensional array of OrFilters ;
for all children F′i of F′ do

if F′i is an AtomicFilter then
add F′i to F′′ ;

end
if F′i is an AndFilter then

add all children of F′i to F′′ ;
end
if F′i is an OrFilter then

add all children of F′i into a new row of O[][] ;
end

end
if O[][] is empty then

return F′′ ;
else

F′′′ ←− an empty OrFilter ;
fill F′′′ with deMorgan-distributed elements of O[][] ;
return F′′′ ;

end

Algorithm 2: Conversion of AND-filters to DNF

99

Algorithm:makeOrDNF
Input: An OrFilter F
Output: DNF representation of F
let F′ = an empty OrFilter ;
for all children Fi of F do

if Fi is an AtomicFilter then
add Fi to F′′ ;

end
if Fi is an CompoundFilter then

Fn
i ←−makeDNF(Fi) ;

add all children of Fn
i to F′ ;

end
end
return F′ ;

Algorithm 3: Conversion of OR-filters to DNF

are added to the query’s CONSTRUCT and WHERE clause. In the latter they are encapsulated within
an OPTIONAL block since siles that are not annotated with the property should nevertheless be
included in the result set. The variable ?v in the above statement is an internal variable, as
described before, and property is a placeholder for the attribute name URI.

Each atomic filter defined in Section 4.1.3 can be mapped to a conjunction of triple patterns
and filters; for instance, a TagFilter that searches siles that are annotated with the tag “impor-
tant” can be mapped to the triple pattern depicted in Listing 5.4. This pattern consists of three
triples which are connected through an internal variable as described above. Triple 1 connects
the target variable (?t) using the sile:tag-type predicate to the resource that represents the
tag (which is identified by the internal variable ?32d885); triple 2 states that the tag resource
must be a subclass of sile:Tagged, and triple 3 states that the sile:tag-label must be equal to
the string “important”.

1 {

2 ?t sile:tag-type ?32d885 .

3 ?32d885 rdfs:subClassOf sile:Tagged .

4 ?32d885 sile:tag-label "important"^^xsd:string .

5 }

Listing 5.4: SPARQL triple pattern for a TagFilter

The transformation of negations (NotFilters) requires additional effort because SPARQL
does not provide explicit negation of triple patterns; instead we must apply negation as failure
as described before. We employ a generic two-step mechanism to convert negated atomic fil-
ters to graph patterns. First, we transform the negated filter into graph patterns as described
before. Second, we negate the resulting graph patterns according to Algorithm 4 which takes
as an input a set of clauses (i.e., elements of a graph pattern; currently, we support the trans-

100

Algorithm:negatePattern
Input: A set of clauses C
Output: A set of result clauses R and helper clauses H
for all elements Ci of C do

if Ci is a triple pattern then
create a new triple pattern P by substituting all non-variables Cij in Ci with
internal variables ;
add P to R ;
for each internal variable Pj in P do

add FILTER(Pj = Cij) to H ;
add FILTER(!bound(Pj)) to R ;

end
end
if Ci is a UNION pattern then

apply negatePattern(·) to the left children of Ci ;
apply negatePattern(·) to the right children of Ci ;

end
end

Algorithm 4: Conversion of negated filters

formation of basic triple patterns and UNION patterns7) and creates a set of result clauses and
helper clauses. Both are added to the query’s WHERE clauses, whereas the helper clauses are en-
capsulated in an OPTIONAL block. The idea behind this approach is to make sure that for every
variable in the negated pattern there exists a filter expression that makes sure that the variable
is not bound.

An example of the query that is created from a negated TagFilter is depicted in Listing 5.5.
In this example, the three triples from Listing 5.4 have been wrapped by an OPTIONAL clause,
and all resources and literals have been substituted by internal variables. For instance, the
property sile:tag-type has been replaced by the internal variable ?642bc3 (line 8). To ensure
a correct binding to results, each variable is bound to its actual value by a FILTER statement;
e.g., for the sile:tag-type property this binding is depicted in line 9. Additionally, for each
variable a FILTER(!bound()) is added in the WHERE clause which ensures that only results are
returned for which none of the internal variables are bound.

1 CONSTRUCT

2 {

3 ?t rdf:type ?type .

4 }

5 WHERE

6 {

7 ?t rdf:type ?type .

8 ?type rdfs:subClassOf sile:Sile .

9 OPTIONAL

7The conversion of FILTER expressions can be performed by inverting the inner filter expression according to the
semantics defined in Section 11.3 of [PS08]. However it is currently not implemented because of the complexity caused
by the diversity of possible FILTER clauses.

101

10 {

11 ?t ?642bc3 ?b10a64 .

12 FILTER (?642bc3=sile:tag-type).

13 ?b10a64 ?87303d ?a9d2b2 .

14 FILTER (?87303d=rdfs:subClassOf) .

15 FILTER (?a9d2b2=sile:Tagged) .

16 ?b10a64 ?fb2633 ?68a96f .

17 FILTER (?fb2633=sile:tag-label) .

18 FILTER (?68a96f="important"^^xsd:string) .

19 } .

20 FILTER (!bound(?642bc3)) .

21 FILTER (!bound(?87303d)).

22 FILTER (!bound(?a9d2b2)).

23 FILTER (!bound(?fb2633)) .

24 FILTER (!bound(?68a96f)) .

25 }

Listing 5.5: SPARQL representation of a negated TagFilter

For the negation of UNION patterns we use one of De Morgan’s laws, ¬(A ∨ B) ⇔ ¬A ∧
¬B, to flatten the UNION pattern, which results in a standard (AND-combined) graph pattern.
For instance, a disjunction of two tag filters would be transformed as depicted in Listing 5.6,
while the transformation result of the negation of said combination is depicted in Listing 5.7.
There, the two tag patterns are now AND-combined (i.e., the UNION clause was flattened) and
individually negated, as described before.

1 CONSTRUCT { ?t rdf:type ?type . }

2 WHERE

3 {

4 ?t rdf:type ?type .

5 ?type rdfs:subClassOf sile:Sile .

6 {

7 ?t sile:tag-type ?069f46 .

8 ?069f46 rdfs:subClassOf sile:Tagged .

9 ?069f46 sile:tag-label "new"^^xsd:string .

10 }

11 UNION

12 {

13 ?t sile:tag-type ?cac684 .

14 ?cac684 rdfs:subClassOf sile:Tagged .

15 ?cac684 sile:tag-label "important"^^xsd:string .

16 }

17 }

Listing 5.6: SPARQL representation of two OR-combined TagFilters

1 CONSTRUCT { ?t rdf:type ?type .

102

2 }

3 WHERE

4 {

5 ?t rdf:type ?type .

6 ?type rdfs:subClassOf sile:Sile .

7 OPTIONAL

8 {

9 ?t ?f16c81 ?2fbd42 .

10 FILTER (?f16c811=sile:tag-type) .

11 ?2fbd42 ?08c33f ?6ad79a .

12 FILTER (?08c33f=rdfs:subClassOf) .

13 FILTER (?6ad79a=sile:Tagged) .

14 ?2fbd42 ?0bed41 ?cc17fb .

15 FILTER (?0bed41=sile:tag-label) .

16 FILTER (?cc17fb="new"^^xsd:string) .

17 } .

18 OPTIONAL

19 {

20 ?t ?d3735a ?b3f7be .

21 FILTER (?d3735a=sile:tag-type).

22 ?b3f7be ?18f315 ?0afc18 .

23 FILTER (?18f315=rdfs:subClassOf) .

24 FILTER (?0afc18=sile:Tagged) .

25 ?b3f7be ?30a2d0 ?2ace30 .

26 FILTER (?30a2d0=sile:tag-label) .

27 FILTER (?2ace30="important"^^xsd:string) .

28 } .

29 FILTER (!bound(?f16c81)) .

30 FILTER (!bound(?08c33f)) .

31 FILTER (!bound(?6ad79a)) .

32 FILTER (!bound(?0bed41)) .

33 FILTER (!bound(?cc17fb)) .

34

35 FILTER (!bound(?d3735a)) .

36 FILTER (!bound(?18f315)) .

37 FILTER (!bound(?0afc18)) .

38 FILTER (!bound(?30a2d0)) .

39 FILTER (!bound(?2ace30)) .

40 }

Listing 5.7: SPARQL representation of a negated AND-combination of two TagFilters

We can convert arbitrarily complex sile filter expressions to SPARQL using the presented
algorithms. However we are aware of the fact that most current RDF implementations do
not perform well if a query contains complex SPARQL FILTER patterns. The recent Berlin
SPARQL Benchmark [BS09] underlines this: query Q5 of this benchmark, which of all queries
contains the most complex FILTER patterns, exposes the weakest performance times on all
tested systems, or even times out [BS08]. We consider this result as an important direction for
research on triple stores, since it is obvious that more efficient solutions for this class of queries
have to be found in order to make SPARQL more utilizable.

103

5.4 Discussion of Alternative Representations

RDF is a natural candidate for representing siles and their annotations, since its data model
overlaps greatly with the characteristics of the sile model. However, it is not the only possible
representation of siles. Although the more detailed discussion of alternative representation
formats for siles is out of the scope of this work, we briefly indicate in the following two
popular candidates: the Object Oriented model (OOM) and the Relational Model.

5.4.1 Object Oriented Model

The object-oriented model is probably the most widespread programming paradigm in use
today. Thus, many applications use this paradigm to represent their data. Hence, objects
are an interesting candidate to map to the sile model, since such a mapping would allow for
direct integration of the sile model into applications; and it would reduce the effort required
for adapting user applications towards a semantic desktop infrastructure. In the following we
discuss aspects of a mapping between the sile model and the object oriented model; however,
we do not define a formal mapping.

From Siles to Objects The object oriented model is sufficiently expressive to represent all
aspects of siles; however, the open and flexible design of the sile model imposes a problem
on a direct mapping. The natural way to map e.g., a sile attribute to an object would be to
use the attribute URI as member name, and the attribute datatype as type of the member, and
the actual attribute value as member value. However, sile annotations (especially attributes
and slinks) are flexibly typed through their URIs, and there are no restrictions on which an-
notations can be attached to a sile: a sile may be annotated with arbitrary types and numbers
of attributes and slinks. Consequently, a direct mapping to a static class description is not
feasible.

This problem can be circumvented if the sets of applicable attributes and slinks are reduced
through the usage of spects (cf. Section 3.2), which restrict the possible combinations of cat-
egories, attributes, and slinks that may occur. The rules defined in a spect can be converted
into a number of class or interface specifications that reflect these valid combinations. Such
converters have already been presented based on OWL ontologies (e.g., Jastor8). However,
while the sile model permits the use of additional annotations that are not defined in a spect,
these annotations cannot be represented in such a statically typed representation.

Still, a generic approach can be employed that only represents the generic sile model el-
ements (i.e., siles, annotations, spects, and repositories) as objects. Such a generic object-
oriented representation is part of the Sile API, which has been discussed in Section 4.1.

From Objects to Siles The most natural way for the mapping of an object’s static aspects
(i.e., their member fields and relationships to other objects) to the sile model is to represent
the object itself as sile, and to represent the object’s type information as categories. For siles
and categories, we have to find suitable URIs: these will depend on the characteristics of the
used object-oriented language. Most modern object-oriented languages provide mechanisms
to prevent naming conflicts, and these mechanisms can be used to mint URIs. However, while
it may be straightforward to derive URIs for static aspects of objects (for instance, its type in-
formation), it depends on the programming language and the actual object’s structure whether
a persistent identifier can be derived for the object itself. For instance, Java defines for each

8Jastor: http://jastor.sourceforge.net

104

http://jastor.sourceforge.net

object a hashCode() method. If such an identifier cannot be derived, one can always fall back
to use (pseudo-)random UUID URIs [LMS05].

Example. A Java object of type String could be represented by a
sile with the URI <urn:java:object:java.lang.String#969099747> which
may be generated using the Object.hashCode() method. To repre-
sent its type hierarchy membership, it could be annotated with a
number of categories, including <urn:java:type:java.lang.String>,
<urn:java:type:java.lang.Object>; to represent the interfaces it im-
plements, the categories <urn:java:type:java.io.Serializable> and
<urn:java:type:java.lang.Comparable> are added.

The instance variables of an object can be represented as a mixture of attributes and slinks.
Primitive data types (like string, integer, a.s.f.) can be represented by attributes, while relation-
ships to other objects (which are themselves represented as siles) can be mapped to slinks. The
attribute and slink name URIs can be derived by extending the URI of the defining class with
the field name, while the data type URI of an attribute representation can be derived from the
programming language’s primitive data types. As shown in the previous example, a plausible
heuristics to derive URIs for types is to use a concatenation of the class’ full-qualified class
name (which includes the package name) and prefix it; e.g., with uuid:java:type:. For fields,
the defining class’ URI can be extended by the name of the field, which then can be used as
attribute name (in the case of primitive data types) or slink name (in the case of objects).

Example. In order to represent the member values of the sile from above
example that represents a Java String object, it could be annotated with the
attribute tuples (<urn:java:field:java.lang.String.value>, “Hello World!”,
<urn:java:type:char[]>), (urn:java:field:java.lang.String.offset, “0”,
<urn:java:type:int>), and (<urn:java:field:java.lang.String.count>, “12”,
<urn:java:type:int>), which represent the object’s member fields.

The type and interface hierarchy can be mapped to a representation within a spect model.
A type or interface hierarchy can be represented using class hierarchy rules, and applicability
rules for attribute names and slink names can be used to reflect the static definition of types.

However, such a translation causes a certain information loss, and the re-conversion from
the sile model to the object oriented model is not straightforward. Although one can recon-
struct object field values from the sile representation, usually there exists no standard way to
create objects. Many programming languages allow objects to have private constructors, or
use factory methods. Static classes cannot be instantiated during runtime at all. It depends
on the characteristics of the concrete object-oriented language which methods can be applied.
While most object oriented languages provide mechanisms for reflective programming (e.g.,
Java’s Reflection API9), customized code must be implemented that maps the generic represen-
tation in the sile model to the specifics of the target programming language. Our Java-based
prototype implementation contains special handling for frequently-used data types, including
String, char[], int, and long.

9http://java.sun.com/docs/books/tutorial/reflect/index.html

105

http://java.sun.com/docs/books/tutorial/reflect/index.html

5.4.2 Relational Model

The Relational Model [Cod70] is one of the most widely used meta models for information
representation. It constitutes the theoretical and logical foundation of Relational Database Man-
agement Systems (RDBMS), which are used as part of a magnitude of applications and systems.

From siles to relations Similar as for a mapping of siles to the object-oriented model as de-
scribed before, we face the problem that sile annotations are dynamically typed, while the
relational model requires a fixed configuration of attributes, which must have fixed names
and types. Hence, the same approaches as described for the object-oriented model can also be
applied when siles should be represented within a relational model.

In this respect the sile model is very similar to the RDF model, which can be (in its most sim-
ple form) represented by a single relation triple (subject, predicate, object). A number
of works have described how the representation of RDF in relational data bases can be op-
timized (e.g., by considering additional knowledge about patterns occurring in RDF graphs
[DWSK03], by using vertical partitioning [AMMH07], or by employing hypergraph structures
to store RDF triples [WLHW08]).

From relations to siles The core element of the relational model, the tuple, can directly be
mapped to a sile; however one must apply plausible heuristics to determine URIs for such
tuples. The tuple’s attributes can then be represented by sile attribute, whereas the attribute
names can be generated by concatenating the tuple URI and the attribute name, and the at-
tribute data type can be generated from the attribute’s domain. The name of the tuple’s relation
can be used to mint a URI for a category annotation that can be attached to each tuple sile.

Example. Let us assume that an instant messaging application uses an
application-internal relational database to store data about the user’s contacts. For
each contact, the application stores the account id, a nickname, and the URL of the
contact person’s home page. Thus, the schema can be written as
contact (account_id, nickname, url)

Assuming that we use virtual URN prefix urn:im: for all URIs, we can represent
each tuple from this relation as a sile. We can create the data from this schema by
using the account_id attribute to create the sile URI, and represent the nickname
and the URL fields as attributes.

If present, we can utilize additional information from the relational schema: if an attribute
is known to be a primary key, it can be used to mint the tuple’s URI. If an attribute is known
to be a foreign key, it can be modelled not as attribute, but as slink that refers to the sile that
represents the foreign tuple.

The mapping between the sile model and the relational model becomes important in two
use cases: first, by applying the relatively simple mapping rules that we have informally de-
scribed above, we can represent data stored within an RDBMS as siles, and integrate them
with data from other sources. Second, by inverting the mapping rules and using information
from a spect (which can be regarded as a complexity-reduced version of an entity-relationship
model), one can implement a specific sile repository for a subset of annotations (namely, the
attribute and slink names that are defined in the spect). Such, performance optimization algo-
rithms that are discussed in database literature can be applied. In the latter case, one would
also need to map sile filter expressions to the appropriate database query language (e.g., SQL).

106

5.5 Summary

In this section, we have discussed how the elements of the abstract sile model can be repre-
sented using the Semantic Web technology family. We have defined a core ontology, expressed
in RDFS, which represents the elements of the abstract model in terms of RDF classes and prop-
erties. Then we have discussed how sile instance data (i.e., siles and their annotations) can be
translated into RDF triples, and vice versa. This mapping allows us to integrate sile data with
the Semantic Web, and to interpret external RDF data sets as siles. Consequently, we have
described algorithms that translate sile filter expressions into the SPARQL query language
in order to execute such queries against RDF datasets. Finally, we have discussed directions
towards alternative representations of sile data; namely, we have outlined mappings to the
object-oriented model and the relational model.

107

108

Chapter 6

Serializing Sile Data

I write down everything I want to remember. That way, instead of
spending a lot of time trying to remember what it is I wrote down,

I spend the time looking for the paper I wrote it down on. —
Beryl Pfizer

Siles (and associated entities, like annotations, filters, and spects) are defined as abstract
objects, and this characteristic leaves many degrees of freedom for repository implementations
w.r.t. the details of digital representation of siles.

In Chapter 5 we have discussed in detail one possible representation of siles using the
Semantic Web technology family. We have outlined how RDF can be used to represent siles
and their associated annotations, and we have discussed how we can transform sile filters to
SPARQL queries that can be executed against RDF models. In the following sections we build
upon this representation in order to define mechanisms to transfer the elements of the sile
model across repositories, between repositories and applications, and between applications.
We introduce silepacks, a mechanism to represent collections of siles, annotations, spects, and
filters as self-contained files, which can be used to transfer these data over established mech-
anisms. Moreover, we outline how sile data can be integrated with other data sources on the
Web of Data.

As an alternative serialization mechanism for sile data we describe how the methods de-
fined in the Repository interface (which is part of the Sile API, cf. Chapter 4) are implemented
as an extension to the XML-RPC protocol [Win99]. Finally we indicate how the well-known
WebDAV protocol can be used to transport siles and their annotations, which allows us to in-
terconnect to a wide range of applications and systems already in place. These serialization
mechanisms enable us to distribute sile-based systems across different systems and platforms,
and to interconnect sile repositories within personal networks, intranets, or the World Wide
Web.

109

6.1 Silepacks: Transportable Sile Containers

Dealing with personal information often includes communication: digital devices and data are
used to convey information from a sender to a recipient. Files, being the prevalent means
of information representation in the personal information domain, can be transported over a
variety of channels. It is common to copy files from their source device onto transportable
media, like optical disks, flash disks, or external hard disk, and transfer them to their target
system. Files can also be easily attached to e-mail messages, and most instant messaging
protocols include file transfer functionality. Finally, the World Wide Web itself is, in its basic
nature, an infrastructure to transfer files between hosts, for which purpose the HTTP protocol
was developed.

However, the weak features that a file system provides to organize data are even more
reduced when files are transferred via one of these mechanisms. For instance, a file’s path—
which can be regarded as a sort of annotation—is usually lost when a file is transported from
one system to another one; only the file name is retained because it is required by the trans-
portation infrastructure (e.g., the HTTP layer) for identification purposes. File transportation
infrastructures usually omit file annotation mechanisms provided by operating systems, like
alternate data streams or extended attributes (cf. Section 2.1.2) because the syntax and seman-
tics of these mechanisms are not standardized.

The sile model can be regarded as semantic extensions to files, and one of its design goals is
to provide interoperability of file annotations between applications. However this applies not
only to single instances (e.g., one repository that is installed on a personal computer) but also
to distributed environments, which are commonplace today. Because of the infrastructure that
is available today (see above), it is very easy for end users to transfer files. Thus it is natural
to utilize these structures also for the transportation of siles. For this purpose we introduce
silepacks, a mechanism to represent a set of siles, annotations, spects, and filters as a single,
self-contained file which can be transferred using the mechanisms that are available today.

6.1.1 The Structure of a Silepack

We have defined the possibility to transfer silepacks using available file transfer infrastructure
as a central requirement for silepacks. Therefore it must be possible to represent a silepack as
a single file. As a silepack includes different kinds of information, including binary content
and structured semantic annotations, we need a container format that wraps these data into a
single file. The ZIP file format [Kat07] is a popular file format that is widely used for different
applications (e.g., Java JAR files or OpenDocument files). The ZIP file format is suitable for en-
capsulating files since single files can be extracted without the need to read through the entire
file. In addition single entries can be identified using a directory-like naming convention.

We have shown in Section 5.2 how we can represent siles and annotations in RDF. In the
following we use RDF to encode all aspects of siles as described in this mapping. A number
of serialization formats for RDF exist (e.g., RDF/XML [Bec04], N3 [BL06b], and Turtle [Bec07])
which have different advantages and verbosity. The Turtle syntax represents a reasonable
tradeoff between efficiency in terms of machine processing and human readability, and is fur-
thermore, to a large extent, compatible to the SPARQL triple pattern syntax. Therefore we
choose the Turtle syntax whenever RDF data is encoded within a silepack.

The basic structure of a silepack is depicted in Figure 6.1. It contains four entries on the
root level, meta.ttl, siles.ttl, annotations.ttl, and filters.ttl, as well as a subdirectory
that contains all binary content objects, and a subdirectory that holds spect serializations. The
metadata about the silepack at hand (i.e., its URI, creation date, and the id of its origin reposi-

110

/

siles.ttl

anotations.ttl

filters.ttl

content_1

content_2

content_n

types.ttl

content/

...

RDF/Turtle entry

Binary content entry

spect_1.ttl

spect_2.ttl

spect_n.ttl

...

spect/

Directory entry

meta.ttl

Figure 6.1: Structure of a silepack

tory) are stored in the meta.ttl file; an example is given in Listing 6.1.
The entry siles.ttl contains a model that holds the URIs of all siles that are represented in

the silepack, together with their type information (sile:HostedSile or sile:ReferencedSile).
This index file can be used to quickly scan the silepack for the URIs of the siles that are stored
within. The file annotations.ttl contains all annotations that are attached to the siles con-
tained in the silepack. Within this file, annotations are represented in RDF according to the
mapping rules described in Section 5.2. If loaded into a triple store, this model can be directly
queried with SPARQL queries. Finally, the filters.ttl entry contains RDF representations
of filters. All three files correspond to the model specified by the sile core ontology (cf. Sec-
tion 5.1).

The siles’ binary content streams are represented by the entries in the content sub-directory.
There, for each sile an entry is created, whereas the entry name is the sile URI which is en-
coded according to the URL encoding algorithm [BLFM05]. This ensures that no characters
that may appear in URIs but are usually not allowed in file names (e.g., : or /) are used in
the entry name. Finally, the content/types.ttl entry contains an RDF model that holds the
sile:content-type properties for all siles in the silepack. This file provides the means for
direct interpretation of sile contents without the need to parse the entire annotation model,
which is contained in the annotations.ttl file.

111

1 <urn:uuid:e4e1150e-8939-44d3-9d82-953b643aa6ba>

2 a <http://www.semdav.org/2008/07/silepack> ;

3 sile:creation-date "2008-08-12T16:02:31.188Z"^^xsd:dateTime .

Listing 6.1: Silepack meta.ttl file example

To distinguish spects within a silepack, each spect is stored in a separate entry within the
spect sub-directory. As with content entries, the entry name is derived by encoding the spect
URI.

6.1.2 Exporting and Importing Silepacks

The process of exporting silepacks from, and importing them into a repository requires several
steps to be performed in order to ensure the integrity of the sile model. In the following we
briefly outline these procedures.

Export We denote as export the process of selecting entities from a repository and assembling
them into a silepack. We do not specify the exact procedure for creating a silepack: a repository
implementation may provide additional services that a client can use to obtain a complete
silepack, or a client application may assemble a silepack by combining entities that it reads
from a repository. In any case the following guidelines need to be considered.

If entities are to be exported from a repository, the silepack creator should populate the
silepack with self-describing metadata: it should mint a permanent, unique silepack URI, it
should indicate the silepack’s creation date, and it should include a URI that references the
repository where the silepack contents have been exported from. All these data are written
into the meta.ttl entry in the silepack’s root directory.

A repository may decide to include siles either as hosted siles or as referenced siles. In the
former case, the sile URI is retained as it is stored by the repository, and the sile content is
included as an entry under the content directory. In the latter case, the repository must mint a
new URI for the referenced sile. This URI can be used by a recipient of the silepack to reference
to the hosted version of the sile, which remains within the exporting repository.

A repository also needs to decide which spects should be included in a silepack. In princi-
ple, the silepack structure provides the flexibility to include an arbitrary number of spects, and
the spects are independent from the sile annotations that they are packed with. The question
of whether a spect should be included when a silepack is created depends on the application
scenario: if data is frequently exchanged between two parties, they will be aware of the spects
they are using and thus the spects need not to be included in every silepack that is transferred
between them. On the other hand, if one decides to publish a silepack on the World Wide Web
for public download, it will make sense to include all relevant spects in order to allow clients
to interpret the information stored in the silepack.

Import Siles are imported into a repository by loading the contents of the silepack and in-
tegrating it into the existing data set. The specification of the Repository interface (cf. Sec-
tion 4.1.4) does not define methods that allow a client to load spects or filters into the reposi-
tory, and it does not provide methods to store or retrieve filter expressions. Hence, a repository
implementation may choose to either support only the import of siles (which can be accom-

112

plished through calls defined in the Repository interface), or it may provide additional meth-
ods and interfaces to upload silepacks (for instance, it may accept silepacks to be uploaded
via the setContent() method and interpret the uploaded content accordingly). Therefore the
procedures for integrating spects and filters into a repository are out of the scope of this work
and remain unspecified.

When siles are loaded from a silepack into a repository, the repository implementation
must interpret the imported hosted siles as copies of the original siles. This implies that the
repository must mint new URIs for the siles, and it may refer to the originals of the imported
siles (which will likely still reside in the silepack’s origin repository) as referenced siles. This
reference can be implemented by creating a codesile:cloned-from slink (cf. Section 5.1) from the
clone to the original. This procedure is not required for referenced siles within the silepack,
since the sile model allows the instantiation of multiple referenced siles with the same URI.

6.2 Sile Systems as Part of the Web of Data

More and more data is exposed on the web using RDF as common data interchange format.
The Linking Open Data (LOD) initiative [BHAR07] encourages people and institutions to pub-
lish data using the World Wide Web and Semantic Web infrastructures, and propose to apply
four basic principles that enable a unified view on the Web of Data [BL06a]:

1. Use URIs as names for things.

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information.

4. Include links to other URIs. so that they can discover more things

Data sources of impressive size have been made public recently (an overview is given
in Figure 6.2), including DBpedia (RDF representation of Wikipedia) with 91 million triples,
Geonames (60 millions), DBLP bibliographic data (15 millions) and 2000 US census data (700
million triples). The publication of RDF data from existing data sources is facilitated by tools
like D2RQ [BS04], and transformation languages like GRDDL [Con07] which map data sources
(like relational databases or XML documents) to RDF.

The RDF representation of siles as described in the previous section is the basis for a sile
systems to participate in this Web of Data. For a conformant repository implementation, the
four principles described above can be implemented as follows.

1. Siles are per definition identified by URIs; thus the first rule requires no further adaption.

2. A repository implementation is free to choose arbitrary URIs for siles; the identifiers for
hosted siles are always minted by the repository. Thus an implementation should ensure
that “correct” (in the sense of LOD) URIs are created. For instance, instead of using UUID
URIs, like

<urn:uuid:0e323733-11d5-4aa2-a772-000277d3bf03>

the repository could mint a corresponding HTTP URI of the form

<http://siles.mydomain.org/sile/0e323733-11d5-4aa2-a772-000277d3bf03>

113

Figure 6.2: The Linked Open Data cloud as of March 2009 [CJ09]

which carries an equal amount of information as the previous form, but additionally can
be directly resolved by a client.

3. The term useful information depends on the context of the request. LOD encourages ser-
vice providers to use content negotiation ([FGM+99], Section 12), which allows the client
to specify the type of information it is interested in. HTTP redirects can be used to
point the client to either human-readable information (e.g., in the form of (X)HTML)
or machine-interpretable data (in the form of RDF). In the context of siles, a repository
implementation could mint four URIs per sile, each of which refers to an individual type
of data. For instance, for the sile described above, requests to the four URIs

<http://siles.mydomain.org/content/0e323733-11d5-4aa2-a772-000277d3bf03>

<http://siles.mydomain.org/ann/0e323733-11d5-4aa2-a772-000277d3bf03>

<http://siles.mydomain.org/page/0e323733-11d5-4aa2-a772-000277d3bf03>

<http://siles.mydomain.org/sile/0e323733-11d5-4aa2-a772-000277d3bf03>

return the content, the annotations (as RDF), or a HTML page that describes the sile,
respectively. The fourth URI serves as generic URI which, depending on the request the
client has sent, redirects to one of the three special URIs.

114

With the exception of a human-readable (X)HTML representation through the /page

URI, requests to these URIs can be directly mapped to sile API calls. For deliv-
ering the sile content, data received via Repository.getContent() can be used. The
RDF model to be returned for the /annotations URI can be created by executing a
Repository.getAnnotations() call for the respective sile, and then applying the RDF con-
version rules (as discussed in Section 5.2) to the resulting set of annotations. The API
does not provide a direct human-readable representation of siles (which would be re-
turned for the /page) URI; however such a page can easily be created by either iterating
over the set of annotations for a sile, or by rendering its RDF representation in a human-
friendly way.

4. Siles can be annotated with slinks which are basically typed links to other siles. As ar-
bitrary digital resources (as long as they are identifiable by URIs) can be interpreted as
siles, RDF properties between such resources can be interpreted as slinks. It is out of the
scope of this work to define methods how to automatically establish links between re-
sources. Nevertheless, the sile model provides a basis for algorithms like content-based
feature extraction or analysis of interaction logs [Oko08].

This discussion shows that siles are predestined to participate in the Web of Data, which
can be the basis for a large number of applications that combine data from various sources.
However, currently the Web of Data is a read-only infrastructure, since it does not specify how
published data can be updated or manipulated in a uniform way. Therefore it is not possible
to map the entire set of sile operators (as manifested in the Sile API, cf. Section 4.1) to the
LOD architecture. To accomplish a full distribution of sile systems, we have to apply other
techniques, of which we discuss one example in the next section.

6.3 Distributing Sile Systems via XML-RPC

Often, the scope of tasks involved with personal information management cannot be restricted
to a single machine or data repository, but have to be considered in the context of distributed
system. Even in situations where data is personal in the narrower sense (i.e., it is private to one
person and not relevant for others) the need to distribute functionalities and data sets across
different systems may arise. In collaborative environments (for instance, distributed project
teams) the necessity to instantiate shared repositories that can be accessed by all eligible parties
occurs frequently.

The sile model and the sile API presented in the previous sections are a data model for the
representation and annotation of personal information objects. The given definitions do not
restrict the application of this model to a single system; rather, the presented representation of
sile data as RDF and the possibility to encapsulate sile data into self-contained units (silepacks)
indicate that we desire to make the sile model suitable for distributed and collaborative appli-
cation scenarios.

In the following we outline an implementation of the sile API based on the XML-RPC
protocol [Win99]. XML-RPC is a set of specifications that define how procedure calls can be
executed remotely by representing call requests and responses as XML and transporting this
XML data via HTTP POST methods. A typical XML-RPC procedure call, as well as an outline
of the transported XML data, is depicted in Figure 6.3.

XML-RPC has significant advantages over other remote procedure call protocols (e.g.,
CORBA, Java-RMI, or SOAP) because

115

<?xml version="1.0"?>
<methodCall>
 <methodName>Repository.getTags</mehodName>
 <params>
 <param>
 <value>.*</value>
 </param>
 </params>
</methodCall>

Client Server
<?xml version="1.0"?>
<methodResponse>
 <params>
 <param>
 <value>important</value>
 </param>
 <param>
 <value>new</value>
 <param>
 </params>
</methodCall>

POST /semdav/xmlrpc 1

2

Figure 6.3: Example XML-RPC communication: request (1) and response (2)

1. it has an open, documented specification;

2. its structure is easy to understand and simple to use;

3. it uses XML as data representation, for which many tools (editors, parsers, validators,
schema languages, etc.) exist;

4. it uses HTTP as transport infrastructure and can therefore be distributed on the World
Wide Web, and other HTTP features like user authentication can be applied.

However, XML-RPC has some serious limitations, the most important of which is its re-
striction to a set of basic data types. With the exception of <struct> and <array> (which are
not suitable for polymorphic data types), it provides no mechanism to encode and transport
complex types or appication-specific data structures. Although the building blocks of the sile
model elements can be represented by primitive XML-RPC data types, the Repository inter-
face requires polymorphism since many operations return collections of abstract supertypes1.
Thus we face the decision whether to stay fully compliant to the original XML-RPC specifi-
cation, but accept limitations or modifications to our original sile API, or to define our own
extension to the XML-RPC protocol that is able to transport the information required by our
model.

We do not see additional benefit by strictly conforming to the original XML-RPC specifi-
cation: any client or server that will operate on sile objects will have to implement specific

1For instance, the getBoundAnnotations(Sile[]) method returns a collection of BoundAnnotation objects, which in
fact contains specialized instances for the various annotation types; i.e., BoundTag, BoundAttribute, and so forth.

116

1 <semdav:ReferencedSile

2 xmlns:semdav="http://www.semdav.org/2008/07/xmlrpc/datatype">

3 <semdav:repositoryId>

4 http://schandl@semdav-imap.univie.ac.at/

5 </semdav:repositoryId>

6 <semdav:sileUri>

7 message:466ADA28-40B3-4F26-AE6D-CB002A9DCF18@univie.ac.at

8 </semdav:sileUri>

9 </semdav:ReferencedSile>

Listing 6.2: Sile serialization example

serialization and deserialization algorithms, regardless of which approach has been taken. It
makes no sense for a “generic” XML-RPC client, i.e., one that has no knowledge about the
sile data model, to access the sile repository interface, because it will not be able to process
the returned data in a meaningful way. Therefore we see the justification for our decision to
define extensions to the XML-RPC protocol (which we call SemDAV/XMLRPC); namely, we
define specific data types that represent the data objects used in the sile API, including siles,
annotations, spects, and filters.

6.3.1 Data Types

We introduce a dedicated XML namespace2 for the definition of our data type extensions; this
is required to separate the XML-RPC elements within a method request from the sile-specific
data types. We introduce sile data types for all elements of the sile data model and the sile
API. The following basic serialization rules apply3:

• Entities are serialized by an XML element whose local name corresponds to the name
of the entity class as defined in the sile API. The entities’ members are represented as
sub-elements of the entity element.

• Entity members are serialized by an XML element whose local name is equal to the name
of the member field as defined in the sile API.

• Literal values like strings and URIs are serialized as plain character strings.

An example for these serialization rules, applied to a hosted sile, is given in Listing 6.2.
We see that a sile holds two URIs; one that identifies the sile’s home repository; the second is
the sile’s own URI (in this case, the URI refers to an e-mail message), according to the class
diagram depicted in Figure 4.1 (page 70). The xmlns namespace declaration applies to the
ReferencedSile element as well as to its sub-elements.

As an example for a serialization of an annotation, Listing 6.3 shows a serialized Tag in-
stance. This annotation consists of two elements, a URI (repositoryId) and a plain string
(label).

2http://www.semdav.org/2008/07/xmlrpc/datatype
3We give here only an informal description; a formal specification of the rules has been defined by the means of a

RELAX NG schema.

117

http://www.semdav.org/2008/07/xmlrpc/datatype

1 <semdav:Tag

2 xmlns:semdav="http://www.semdav.org/2008/07/xmlrpc/datatype">

3 <semdav:repositoryId>

4 http://schandl@semdav-imap.univie.ac.at/

5 </semdav:repositoryId>

6 <semdav:label>

7 new

8 </semdav:label>

9 </semdav:ReferencedSile>

Listing 6.3: Tag serialization example

Note that this serialization does not distinguish basic data types for literals. We choose this
design since the sile data model uses only two basic data types, string and URI. All URIs can
be directly represented as strings, and the sile API defines for each entity member field which
data type is used.

Several methods of the Repository interface use array parameters and return values. We
use the XML-RPC standard method to transport object arrays, which is to encapsulate the
elements into a nested <array><data>...</data></array> element structure. Per definition,
XML-RPC permits to mix types within an array, hence we can represent sub-types of the ar-
ray’s base type in the serialization. Listing 6.4 shows an example of such a serialization, where
three tags are represented in a list form.

Sile content, which may be represented in arbitrary binary form and thus potentially prob-
lematic to include in XML, is encoded using the Base64 algorithm [Jos06]. In this encoded
format, it can be safely treated as XML plain text, and it can be used as parameter or return
value for method calls and responses. Together with the content itself, the content type is al-
ways passed to allow any agent to correctly interpret the content stream. Listing 6.5 shows an
abbreviated example of a serialized content object.

Filters are serialized using the same basic serialization rules as outlined above. For all
atomic filters, the API specification defines the names of member fields that characterize the
filter criteria. For compound filters, the list of their children filters is encoded within an ele-
ment <children>...</children> according to the serialization rules for arrays (see above). An
example filter is depicted in Listing 6.6; this AndFilter consists of a tag filter and a category
filter.

Spects, in their generic form, are serialized in the form of lists, each of which represents
a group of rules specified in the spect. Thus, a spect element has a structure as indicated in
Listing 6.7; as an example for the contents of each sub element an attribute applicability rule
is depicted.

The elements <uri> and <label> describe the spect itself: they contain the spect URI and
a human-readable label of the spect. The elements <allAttributes>, <allCategories>, and
<allSlinks> enumerate all annotations that are defined by this spect. The following elements
describe the semantic relationships between the spect elements: applicability rules for at-
tributes and slinks, and sub/super category relationships (cf. Setion 3.2). The <labels> and

118

1 <array>

2 <data>

3 <value>

4 <semdav:Tag>

5 <semdav:repositoryId>

6 http://schandl@semdav-imap.univie.ac.at/

7 </semdav:repositoryId>

8 <semdav:label>

9 new

10 </semdav:label>

11 </semdav:Tag>

12 </value>

13 <value>

14 <semdav:Tag>

15 <semdav:repositoryId>

16 http://schandl@semdav-imap.univie.ac.at/

17 </semdav:repositoryId>

18 <semdav:label>

19 important

20 </semdav:label>

21 </semdav:Tag>

22 </value>

23 <value>

24 <semdav:Tag>

25 <semdav:repositoryId>

26 http://schandl@semdav-imap.univie.ac.at/

27 </semdav:repositoryId>

28 <semdav:label>

29 junk

30 </semdav:label>

31 </semdav:Tag>

32 </value>

33 </data>

34 </array>

Listing 6.4: Tag array collection example

119

1 <semdav:Content

2 xmlns:semdav="http://www.semdav.org/2008/07/xmlrpc/datatype">

3 <semdav:content>

4 PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0iVVRGLTgiPz4K

5 [...]

6 dCI+CgkJPHRleHQvPgoJPC9kZWZpbmU+CgkKPC9ncmFtbWFyPgo=

7 </semdav:content>

8 <semdav:contentType>

9 text/plain

10 </semdav:contentType>

11 </semdav:Content>

Listing 6.5: Content serialization example

1 <semdav:AndFilter

2 xmlns:semdav="http://www.semdav.org/2008/07/xmlrpc/datatype">

3 <semdav:children>

4 <semdav:CategoryFilter>

5 <semdav:categoryURI>

6 http://www.semdav.org/2007/03/contenttype#PlainText

7 </semdav:categoryURI>

8 </semdav:CategoryFilter>

9 <semdav:TagFilter>

10 <semdav:tagText>

11 new

12 </semdav:tagText>

13 </semdav:TagFilter>

14 </semdav:children>

15 </semdav:AndFilter>

Listing 6.6: Filter serialization example

120

1 <semdav:Spect

2 xmlns:semdav="http://www.semdav.org/2008/07/xmlrpc/datatype">

3 <semdav:uri>http://www.semdav.org/2007/03/contenttype#</semdav:uri>

4 <semdav:label>Sile Content Type</semdav:label>

5 <semdav:allAttributes> ... </semdav:allAttributes>

6 <semdav:allCategories> ... </semdav:allCategories>

7 <semdav:allSlinks> ... </semdav:allSlinks>

8 <semdav:applicableAttributesForCategories>

9 <semdav:entry>

10 http://www.semdav.org/2007/03/contenttype#RichText

11 </semdav:entry>

12 <semdav:list>

13 <semdav:Attribute>

14 <semdav:attributeName>

15 http://www.semdav.org/2007/03/contenttype#length

16 </semdav:attributeName>

17 <semdav:value>

18 </semdav:value>

19 <semdav:datatype>

20 http://www.w3.org/2001/XMLSchema#int

21 </semdav:datatype>

22 </semdav:Attribute>

23 [...]

24 </semdav:list>

25 </semdav:applicableAttributesForCategories>

26 <semdav:applicableSlinksForDomainCategories>

27 ...

28 </semdav:applicableSlinksForDomainCategories>

29 <semdav:applicableSlinksForRangeCategories>

30 ...

31 </semdav:applicableSlinksForRangeCategories>

32 <semdav:superCategories> ... </semdav:superCategories>

33 <semdav:labels> ... </semdav:labels>

34 <semdav:descriptions> ... </semdav:descriptions>

35 </semdav:Spect>

Listing 6.7: Spect serialization example

121

Local Element Name Mapping Key Value(s)

applicableAttributesForCategories 1 : n Category Attribute[]

applicableSlinksForDomainCategories 1 : n Category Slink[]

applicableSlinksForRangeCategories 1 : n Category Slink[]

superCategories 1 : n Category Category[]

Table 6.1: Serialization of spect applicability rules

1 <?xml version="1.0" encoding="UTF-8"?>

2 <methodCall xmlns:ex="http://ws.apache.org/xmlrpc/namespaces/extensions">

3 <methodName>Repository.createReferencedSile</methodName>

4 <params>

5 <param>

6 <value xmlns:semdav="http://www.semdav.org/2008/07/xmlrpc/datatype">

7 <semdav:uri>

8 http://www.xmlrpc.com/spec

9 </semdav:uri>

10 </value>

11 </param>

12 </params>

13 </methodCall>

Listing 6.8: XML-RPC method call serialization example

<descriptions> elements enumerate human-readable labels and description texts for spect el-
ements.

A spect can basically be interpreted as a set of maps that reflects the associations between
spect elements. Spects contain two classes of maps: 1:1-maps map one element to another one,
and 1:n-maps map one element to a set of elements. For instance, a sub-category rule defined in
a spect can be interpreted as a mapping from a category (key) to a list of categories (values); i.e.,
a 1:n mapping relationship. To reflect this structure in XML-RPC, we introduce the elements
<entry> and <list>: each map entry is encapsulated by an <entry> element. Each <entry>

element has two sub-elements: one element which is interpreted as the entry’s key, and a
<list> element which contains the values for this key. For each element indicated in Table 6.1,
a category URI is the key, and the appropriate serialization elements indicate relationships
to other entities. For instance, the <applicableSlinksForDomainCategories> element contains
a category as key, and a list of slinks as elements, which means that the category is a valid
domain for the slink.

122

6.3.2 Calls and Responses

XML-RPC defines the basic structure of communication between a client and a server as fol-
lows. A client sends an XML document with a root element <methodCall>, and the server
replies with a document that is rooted by a <methodResponse> element. As stated by the XML-
RPC specification, the <methodCall> element must contain one <methodName> sub-element,
which contains the name of the method to be called. The method names of the sile API calls
are given in Figure 4.10. To allow a repository to offer additional services using the same port,
a Repository prefix is added to each method’s name.

To encode input parameters for the method call, a <params> element must be added to
the <methodCall> element, and each parameter specified therein must be encapsulated in a
<param><value>...</value></param> element structure. It is important to distinguish between
calls that require multiple parameters (e.g., Repository.createTag(String)) and calls that re-
quire collections (arrays) as parameters (e.g., Repository.getAnnotations (Sile[])). In the
former case, one <param> element must be specified for each paramter, while in the latter case,
one <param> element must be present which contains an XML-RPC conformant array serial-
ization using the <array> syntax described above. Listing 6.8 shows a full method call which
creates a referenced sile with the specified URI in the repository.

Listing 6.9 shows a more elaborate method call which retrieves a set of attributes for a
specified set of siles. In this case, two array parameters are specified; the first one contains a
set of two siles, while the second one contains a set of two URIs that identify the attributes for
which the values should be returned. The third paramter, a value pattern, is not used in this
example and therefore remains empty.

A repository’s response will, according to the XML-RPC specification, always be encap-
sulated by a <methodResponse> element; the return value must be wrapped by a <params>

<param><value>...</value></param></params> structure. The serialization rules for return val-
ues are the same as for method parameters; if, according to the API specification, a method
returns a collection (array) of values, then they must be encapsulated in an <array> element as
described before.

As an illustrative example, Listing 6.10 contains an example of a response to a Repository.

getTags() method call. In this example, a number of tags are returned. For the sake of brevity,
we reproduce only the first two in this example.

6.3.3 Discussion

We have shown how elements of the sile model (siles, annotations, filters, spects) can be seri-
alized into a XML representation, and can be transported over a network in order to remotely
execute operations on a sile repository. The serialization rules presented in this chapter repre-
sent an alternative to the RDF serialization that was discussed in Section 5.2.

Although RDF is a reasonable choice for the representation of semantically enriched data,
and it was designed to be a representation for information on the Web, it has the significant
drawback that it requires a two-step serialization and deserialization process. Several serial-
ization formats for RDF exist; e.g., RDF/XML, N3, Turtle, or N-Triples. However, regardless
of which format is used, application data must undergo a two-step serialization: first, ob-
jects have to be converted in some intermediate RDF graph representation (e.g., an in-memory
graph); and second, this graph has to be serialized into the desired format. The message re-
cipient must perform the same two-step deserialization: first, the RDF serialization has to be
parsed into an in-memory model; then, the first class objects can be generated by iterating over

123

1 <?xml version="1.0" encoding="UTF-8"?>

2 <methodCall xmlns:semdav="http://www.semdav.org/2008/07/xmlrpc/datatype">

3 <methodName>Repository.getAttributes</methodName>

4 <params>

5 <param>

6 <value>

7 <array>

8 <data>

9 <value>

10 <semdav:HostedSile>

11 <semdav:repositoryId>

12 http://localhost/sile-repository/

13 </semdav:repositoryId>

14 <semdav:sileUri>

15 urn:uuid:2a28faab-f1b2-4ad6-88a5-134c7588e791

16 </semdav:sileUri>

17 </semdav:HostedSile>

18 </value>

19 <value>

20 <semdav:HostedSile>

21 <semdav:repositoryId>

22 http://localhost/sile-repository/

23 </semdav:repositoryId>

24 <semdav:sileUri>

25 urn:uuid:97209b07-be3c-46ed-ae89-d09e153ec965

26 </semdav:sileUri>

27 </semdav:HostedSile>

28 </value>

29 </data>

30 </array>

31 </value>

32 </param>

33 <param>

34 <value>

35 <array>

36 <data>

37 <value>

38 http://www.semdav.org/2007/03/core#sile-label

39 </value>

40 <value>

41 http://www.semdav.org/2007/03/core#content-type

42 </value>

43 </data>

44 </array>

45 </value>

46 </param>

47 <param>

48 <value>

49 </value>

50 </param>

51 </params>

52 </methodCall>

Listing 6.9: Full SemDAV/XMLRPC method call

124

1 <?xml version="1.0"?>

2 <methodResponse

3 xmlns:semdav="http://www.semdav.org/2008/07/xmlrpc/datatype">

4 <params>

5 <param>

6 <value>

7 <array>

8 <data>

9 <value>

10 <semdav:Tag>

11 <semdav:repositoryId>

12 http://shared.example.com/silerepo/

13 </semdav:repositoryId>

14 <semdav:label>

15 new

16 </semdav:label>

17 </semdav:Tag>

18 </value>

19 <value>

20 <semdav:Tag>

21 <semdav:repositoryId>

22 http://shared.example.com/silerepo/

23 </semdav:repositoryId>

24 <semdav:label>

25 important

26 </semdav:label>

27 </semdav:Tag>

28 </value>

29 [...]

30 </data>

31 </array>

32 </value>

33 </param>

34 </params>

35 </methodResponse>

Listing 6.10: Full SemDAV/XMLRPC method response

125

Sile Repository

XML-RPC
Connector

XML-RPC
Handler

<<interface>>
Repository

 implements

Sile Repository

(a)

(b)

Figure 6.4: Distributed connector/handler architecture

this model’s statements.
We have opted for the usage of XML-RPC over other, more light-weight architectures (like

e.g., the REST architecture [Fie00]) because the characteristics of XML-RPC communication
(especially its call-response structure, which directly represents the semantics of method calls
in object-oriented languages, and the relatively straightforward style of information encod-
ing) help to create lightweight client adapters that bind the SemDAV/XMLRPC protocol to
concrete programming languages.

This design helps to integrate different, distributed services that all operate on a unified
data model (the sile abstract model), and follow a shared operation semantics (the method
calls defined in the Repository interface). Consider Figure 6.4(a), which shows a typical in-
stantiation of a distributed sile system: a client software (e.g., a to-do list manager) uses the
sile model to represent information and uses a connector, which implements the repository
interface, to communicate with a remote server. On the server machine, a lightweight compo-
nent translates incoming XML-RPC requests to native calls, while the actual server component
again implements the same interface. If the user switches to a local sile repository instance,
only the XML-RPC connectors have to be removed; no further modifications to the architecture
or the single components have to be made (Figure 6.4(b)).

In this architecture, the method call semantics are retained through the entire execution pro-
cess: the user performs an action in the client application’s user interface, which is interpreted
by the application and implies a number of API calls. These calls are directly translated into
XML-RPC calls and executed by the repository. In contrast to architectures that focus on data
(like the REST architecture mentioned above), this design allows the executing party (the
repository) to interpret the semantics of calls (e.g., “add tag t to sile s”). This interpretation
can take place on many levels: for instance, the repository may apply security mechanisms to

126

calls and forbid certain actions for certain users, or certain entities. Additionally, the reposi-
tory may log method calls and, by combining them and integrating them with existing data,
use these logs to infer implicit sile annotations [Oko08].

6.4 Enriching WebDAV with Sile Annotations

In the previous sections, we have discussed how we can encapsulate sile data as files using
silepacks, and how we can serialize repository API calls over a network using an extension
to XML-RPC. These two methods cover a wide range of application scenarios that require
distributed sile systems. However, both of them require that any participating agent has full
knowledge of the sile model, the semantics of repository calls, and the meaning of spects and
filters.

We can observe a wide acceptance of hierarchical file systems: they are used on every
desktop computer, represent a core foundation of operating systems, and are imitated in nu-
merous ways (e.g., in IMAP accounts). Even one of the basic building blocks of the World
Wide Web architecture, namely Unique Resource Identifiers (URIs) include the notion of hier-
archical naming (cf. Section 1.4 of [BLFM05]), although this specification does not imply that
the serving entity physically represents resources in a hierarchical structure.

The sile model aims to extend files with semantic annotations and, in principle, makes hi-
erarchical organization structures obsolete. By attaching annotations like tags, attributes, and
categories to siles, and by interconnecting siles via slinks, it establishes an information graph.
However, to allow integration with the many systems in place that are based on hierarchical
trees, it is desirable to find a way to represent sile data in hierarchical form. At first sight, such a
representation must inevitably be a compromise, since a graph structure cannot be mapped to
a tree without information loss. However, the way file systems are normally used disburdens
us from the need to find a static tree representation of the sile graph: usually end users interact
with file systems by browsing through folders; i.e., at a given point in time they only percept
a subset of the entire tree. This allows us to employ a dynamic mapping, i.e., a mapping where
the representation is constantly adapted to the user’s navigation steps. Additionally, such a
dynamic mapping is able to avoid the information loss described above up to a certain degree.

As we have described in the previous section, it is preferable to distribute sile systems; this
applies also to any hierarchical representation of sile data. One basis technology for this pur-
pose are the HTTP Extensions for Distributed Authoring; also called WebDAV [GWF+99]. This
protocol uses a hierarchical data model that is similar to file systems, and data sets exposed
via WebDAV can be mounted on desktop machines (all common desktop operating systems
support this protocol off-shelf), whereby they appear as normal directories and files to the
user. Additionally, WebDAV allows to annotate resources with metadata properties [WG04]
and thus provides a lightweight annotation mechanism.

In the following we present an approach how we expose the graph structure represented
by the sile model via WebDAV. The basic idea of this approach is to transform WebDAV col-
lection URIs to sile filter expressions, and return the results of the filter execution as WebDAV
resources. In the following we give a short introduction to WebDAV, before we describe the
details of our mapping approach.

6.4.1 Introduction to WebDAV

WebDAV [GWF+99] is a protocol that was originally designed for distributed authoring of
digital resources on the Web. WebDAV is designed on top of HTTP [FGM+99] and extends
said protocol with a number of features. As HTTP, WebDAV is stateless, and it is defined in

127

terms of methods that are sent from a client to a server, and are answered by a server response.
The WebDAV data model consists mainly of resources and collections. Resources are digital

objects whose representation can be transmitted over a network. Collection resources are hi-
erarchically nested structures that may contain other resources, including collections. Thus, a
WebDAV repository exposes a structure similar to a hierarchical file system, whereas resources
correspond to files and collections correspond to directories. Furthermore, WebDAV intro-
duces properties, which are name/value pairs that describe the state of resources. WebDAV
uses XML to encode server responses and properties, and uses URIs to identify resources,
collections, and their properties.

In addition to the methods defined by HTTP, WebDAV defines operations that deal with
the creation and manipulation of collections and properties. Most notably, WebDAV intro-
duces the PROPFIND and PROPPATCH methods, which are used to read and manipulate resource
properties, and MKCOL to create new collections4. It also introduces COPY and MOVE operations
for resources. The details for all WebDAV methods can be found in Section 8 of [GWF+99].

The PROPFIND method, applied to a collection resource, allows the client to retrieve prop-
erties of this collection and properties of the collection’s members, if there are any. Thus this
method can be used by the client to retrieve information about which resources are contained
in a collection. WebDAV uses a hierarchical URI syntax for resources and uses the slash char-
acter (“/”) to delimit hierarchy levels. The fact that the hierarchical URI syntax for WebDAV
resources implies also a collection membership (cf. [GWF+99], Section 5.2) allows us to de-
fine a mapping from hierarchical path expressions (i.e., WebDAV collection URIs) to sile filter
expressions, and to create virtual collections that are populated by the results of the filter exe-
cution. In the following section we describe the details of this mapping.

6.4.2 Mapping Algorithm

A hierarchical WebDAV path (i.e., a WebDAV URL of which the protocol, hostname, and port
parts have been omitted) can be interpreted as a sequence of tokens that are delimited by the
slash character “/”. We can define a set of predefined tokens, for each of which we define a
corresponding filter that is instantiated whenever this predefined token appears in the Web-
DAV path. For each predefined token, we also define a set of rules how to map a number of
subsequent tokens to parameters for the respective filter. The set of filters that can be derived
from this analyzation of the WebDAV path are AND-combined and executed against the sile
repository. For each sile in the result set, a virtual child resource is returned to the client.

Let us demonstrate this approach by an example. For instance, let us define the predefined
token !tag. Let us define that for each !tag token a TagFilter is instantiated, which consumes
one token (the one that follows the !tag token) and interprets it as parameter for the tag filter,
i.e., as tag label. Thus, the WebDAV request

PROPFIND /!tag/important HTTP/1.1

would lead to the instantiation of a TagFilter with a tag label = "important"5. Similarly,
the WebDAV request

PROPFIND /!tag/important/!tag/new

would lead to the instantiation of an AndFilter that contains two child filters, TagFilter
("important") and TagFilter("new"). With this technique, we can construct arbitrarily com-
plex AND-combined filter expressions.

4The HTTP method DELETE has been extended so that it can be applied to resources of all kinds, including collec-
tions.

5Note that the HTTP/1.1 parameter is required by the HTTP protocol specification.

128

Figure 6.5: Sile repository mounted as WebDAV folder

When a WebDAV PROPFIND request is executed, the repository searches for siles that match
the specified criteria which are derived from parsing the request path. The result siles are
returned as virtual resources which, by definition, have to have a URL that is derived from their
containing collection’s URL. Thus we instantiate a virtual URL that can be used to access the
sile, as in the following example. This virtual URL consists of the path that is predetermined by
the virtual collection URL plus an identifier for the sile. For example, for the request depicted
above, the following virtual resources would be returned:

/!tag/important/!tag/new/sile1

/!tag/important/!tag/new/sile2

/!tag/important/!tag/new/sile3

However, we need a way to uniquely identify the siles, as WebDAV URLs must be unique.
In principle, each sile has a “natural” unique identifier, its URI. However, the sile URI will
often be created automatically by a repository (e.g., in the form of a UUID) and thus will be
often not suitable for human consumption. Thus we use the value of the sile core property
sile:sile-label (cf. Section 5.1), which is meant to contain a human-readable label for the
sile, as identifier, and append it to the collection URL. However, the sile label is not required to
be unique, i.e., two or more siles may have the same sile:sile-label. To resolve this problem,
we add another virtual collection resource per distinct sile label which contains all instances that
are annotated with this label. To distinguish the instances, we use the sile URI as an additional
intermediate layer which contains the actual resource, this time safely identified by the sile
label.

This design is illustrated in the following example. Consider three siles that have equal

129

labels and are the result of a tag filter query. These siles are represented by the following
resources:

/!tag/important/Important_Document.txt/

urn%3Auuid%3A0e323733-11d5-4aa2-a772-000277d3bf03/Important_Document.txt

/!tag/important/Important_Document.txt/

urn%3Auuid%3A29ab77fb-7d7d-48c8-942b-0f0f148e5b7c/Important_Document.txt

/!tag/important/Important_Document.txt/

urn%3Auuid%3A6d550f69-9aa5-4d4a-87e8-9ba7c3e20576/Important_Document.txt

In this case, the URIs of the three siles are UUIDs, and each sile is represented as a virtual
sub-collection of the Important_Document.txt/ collection. This design has several advantages:

1. It reflects the design principle to uniquely identify siles by their URI, not by their “name”.

2. The actual resource can be accessed by its label, not by its URI. This is especially impor-
tant if the user wants to copy a resource to her local file system; in this case the label, not
the sile URI, is used as the duplicate’s file name, which is usually more meaningful to
the user than the URI.

3. The sile label can be changed without modifying the URI. The repository can reject re-
quests that would require to change the sile URI, however it can accept requests that aim
to change the sile label.

4. Additional information regarding a sile can be represented. The repository can use the
virtual collection that represents a sile (i.e., one of the collections named by a UUID in
the above example) to include not only the sile itself as a member, but also additional
information, like related siles:

/!tag/important/Important_Document.txt/

urn%3Auuid%3A6d550f69-9aa5-4d4a-87e8-9ba7c3e20576/!slinked/

This path expression could be interpreted as a query for all siles that are connected via
slinks with the sile under consideration.

As described before, the feature of mounting WebDAV repositories as virtual file system
is implemented by all modern desktop operating systems. Thus, if a sile repository supports
WebDAV access, one can connect to this repository and search and browse siles as if they
were files in a hierarchical file system, using the standard file browser. A screenshot of such a
browsing session is depicted in Figure 6.5.

As mentioned above, WebDAV resources can be annotated with properties. In our imple-
mentation, we have used this feature to represent all annotations that are attached to a sile as
WebDAV properties. The WebDAV property design [WG04] perfectly matches the design of
sile annotations, as both use URIs to identify the type of annotation. This information can be
accessed by WebDAV-compliant client software and may be used to establish interoperability
on a semantic and structural level between systems. Unfortunately these attributes are not
used by typical file browsers; however, they can be displayed by dedicated WebDAV clients.
An example of such a client, that renders all annotations of a WebDAV resource in tabular
form, is depicted in Figure 6.6.

As we can see in this figure, sile annotations are represented as WebDAV properties. This
includes attributes like content-type, content-size, and creation-date, but also slinks to other

130

Figure 6.6: WebDAV representation of sile annotations

siles (author), categories (cat-type) and tags (tagged). As WebDAV only defines properties
to represent resource annotations, all types of sile annotations are mapped to this construct;
hence their type cannot be distinguished based only on the WebDAV representation.

Figure 6.6 also shows that as far as possible, sile annotations are also mapped to standard
WebDAV properties. WebDAV defines several properties that are required or recommended
for attributes (cf. [GWF+99], Section 13). Most of them coincide with the sile core attributes
that also have to be present and thus can be generated by directly mapping them; e.g., the at-
tribute sile:content-size is mapped to DAV:getcontentlength, the attribute sile:content-type

is mapped to DAV:getcontenttype, and so forth.

6.5 Summary

In this section, we have introduced various approaches how sile data can be serialized, which
address different needs that occur in different application contexts. First, we have introduced
silepacks, which are a way to encapsulate objects from the sile model (siles, annotations, fil-
ters, and spects) into a single, self-contained unit that can be represented as file and thus be
easily transferred over a variety of channels, including e-mail, instant messaging, or remov-
able devices. Because they are based on well-documented formats and standards, silepacks
additionally enable simple archiving or publishing of annotated sile data. Second, we have
discussed how data represented in a sile repository can be exposed under consideration of the
principles posted by the Linking Open Data initiative.

Since these guidelines do not permit write access on publish data, we have further de-
scribed how we can distribute access to sile repositories by encoding method calls defined in
the sile API using the XML-RPC standard. We have described an extension to the XML-RPC
protocol that allows for semantically complete serialization of sile objects. Fourth, we have
described how we can represent sile data and annotations as a file system-like hierarchical
structure, and how we map this representation to the WebDAV protocol. This allows us to ac-

131

cess sile repositories using standard software, like file browsers and other applications, which
establishes interoperability on a very broad basis.

132

Chapter 7

Case Studies of Sile Repository
Implementations

If we don’t succeed, we run the risk of failure. — Anonymous

After having presented the sile model and its elements in various levels of abstraction, we
now discuss prototypical implementations of this proposed data structure. These implemen-
tations greatly differ in their functionality and their technological realization; this is by intent,
since we want to show the flexibility of the sile model and its applicability in entirely different
scenarios. We discuss three implementations:

1. the SemDAV Server, which is a sile repository based on Semantic Web technology and
supports advanced services like reasoning, data integrity validation, and integration of
external data sources;

2. silefiles, a lightweight repository that interprets hierarchical file systems as sile data; thus
it becomes possible for the user to annotate and to relate them through the Repository
interface, but at the same time it is possible to continue to use the files directly; and

3. SileMail, a wrapper for IMAP servers which exemplarily shows how data sources that
are relevant for personal information management can be represented as siles.

In the following, we outline the architecture and important implementation aspects of each
of these prototypes.

7.1 The SemDAV Server: A Triple Store-based Sile Repository

7.1.1 Architecture Overview

We have implemented a fully-functional sile repository based on Semantic Web technologies.
This implementation has been developed using the Java 1.6 platform; it uses plain files to

133

store sile content, and it utilizes the Jena Semantic Web framework1 with the Pellet OWL DL
reasoner2, backed by a PostgreSQL database3, to store and manage sile annotations, which
are internally represented using RDF [KC04]. Its main functionalities w.r.t. sile storage and
management are

1. storage of sile data, including storage of content and annotations;

2. handling of updates to content and annotations;

3. query processing, including the conversion of filter expressions to SPARQL queries, and
the transformation of result graphs to sile objects;

4. ontology management for performing reasoning and consistency checks on sile metadata;

5. request handling according to the specification of the SemDAV/XMLRPC protocol (see
Section 6.3), the WebDAV-sile mapping (Section 6.4), and the SPARQL Protocol for RDF
[CFT08];

6. Interaction logging for subsequent analysis and automatic generation of sile annotations
[OS09].

The architecture of the repository implementation is depicted in Figure 7.1. The implemen-
tation is highly modular, and any component can be exchanged without modifications to other
ones. For instance, we have also implemented an experimental adapter for the Sesame RDF
storage system4. In the following, we briefly describe the main components of the SemDAV
server.

Content Management The binary contents of hosted siles are stored in plain files in a desig-
nated server directory. The current implementation uses a flat naming scheme, where the URI
of siles is directly mapped to file names. This is done by encoding all URI characters that are
not allowed in file names (like \, :, |, and so forth) so that they can be used as file names5.

Annotation Management As described above, we use the Jena Semantic Web framework
as storage backend for sile annotations. The representation of siles within the repository is
conformant to the mapping described in Section 5.2. The annotation management component
is designed to support multiple named graphs [CBHS05a], although currently only the default
graph is used6.

Interaction Logging The manual creation of annotations is expensive, and often users are not
willing to do such annotations because the immediate benefit of doing so is not apparent. In
this case, methods for automatic annotation generation are required. One possible strategy to
derive such annotations is to analyze the interactions (i.e., the requests that the server receives)
with siles and annotations [SK06]. For this purpose, the interaction logging component traces
all read and write requests that are issued to the server for subsequent analysis. The discussion
of the analysis component is out of the scope of this work; we refer the reader to [OS09].

1http://jena.sourceforge.net
2http://pellet.owldl.com
3http://www.postgresql.org
4http://www.openrdf.org
5The same mapping between URIs and file names is used within silepacks, cf. Section 6.1
6In later versions the repository may be extended, e.g., to support multi-user annotations; in this case each user’s

model could be stored in a separate graph.

134

http://jena.sourceforge.net
http://pellet.owldl.com
http://www.postgresql.org
http://www.openrdf.org

Content
Repository

Annotation
Repository

Storage

SemDAV Repository

Query
Processing

Reasoning
Validation

Ontology
Mgmt

Content
Mgmt

Annotation
Mgmt

Interaction
Logging

SemDAV/
XML-RPC WebDAV SPARQL

SemDAV-enabled
Applications

Semplorer WebDAV-Clients SPARQL / LDOW
Browsers

Figure 7.1: SemDAV server architecture overview

Query Processing The server receives filter expressions (cf. Section 4.1.3) via its XML-RPC
interface; however these filters must be converted to SPARQL expressions so that they can be
executed on the stored annotation data. The algorithms for this conversion are described in
Section 5.3. The query processing component implements these algorithms and executes the
resulting SPARQL CONSTRUCT query against the RDF database. Similarly, all SemDAV/XML-
RPC operations that deal with annotations (for instance, getAttributes()) are internally trans-
formed to SPARQL queries, and the results are re-converted to sile annotation objects. Cur-
rently all existing graphs are included in queries; however this may be restricted to subsets of
all graphs in future versions.

Reasoning and Spect Management The server can be configured to load an arbitrary num-
ber of spects in the form of OWL-DL ontologies, which can be used for inferencing and con-
sistency checks over the database. Every ontology is loaded into a separate named graph. The
repository is implemented so that reasoning and consistency validation can easily be disabled
to increase the overall system performance, which is a major issue in a system with dynami-
cally changing data (cf. requirement R8 in [WLL+07]).

135

Metadata Repository

Ontology Registry

User Manager

Content Handler

DB

File

Annotation Manager

Content Manager

Sile Manager

Tag Manager

Spect Manager

Slink ManagerHigh Level
Connector

Sile Model Components

Translation Components

RDF based Components

Storage Components

Low Level
Connector

Component Dependency

Figure 7.2: SemDAV server components

7.1.2 Request Handling

The server implementation is designed in a highly modular manner; the main components
are depicted in Figure 7.2. This design allows for a strict separation of functionalities, and
enables us to replace components if the internal structure of the server needs to be changed,
or if external data sources should be integrated into the system (cf. Section 7.1.3).

We can roughly distinguish four groups of components, depending on their level of ab-
straction; these groups are indicated by different colors in Figure 7.2:

1. Sile Model Components are operating on objects of the sile API (which includes annota-
tions and filters) and entirely abstract over any serialization of siles.

2. Translation Components implement the mapping between the sile API objects and the
concrete RDF representation, as described in Section 5.2, between filters and SPARQL
queries (cf. Section 5.3); and handle raw sile content.

3. RDF based Components work only with the RDF data model, i.e., they provide functional-
ity that is independent from the abstract sile model. These components could be reused
for other RDF-based systems.

4. Storage Components are responsible for the actual physical storage of data. These com-
ponents perform their individual mapping of low-level data, like RDF graphs and byte
arrays, to physical representations (in our case, to a relational database and to files in a
server directory).

The translation components, depicted in the left area of Figure 7.2 transform request data
from the sile model to RDF and SPARQL and forward them to the underlying components.

136

:XMLRPCServlet

:HighLevelConnector

:SileManager

:AnnotationManager

:SPARQLQueryCreator

:MetadataRepository

:Model

XMLRPC
request

searchSiles()

searchSiles()

searchSiles()
makeConstruct

Query()

querystring

query()

createReasoned
Model()

executeQuery()

createQuery()

resultgraph

resultgraph

create sile objects

resultsileset

resultsileset

deserialize filter
objects

resultsileset

serialize result
objectsXMLRPC

response

Figure 7.3: Sequence diagram for searchSiles() requests

There, the requests are processed by using the storage components, which abstract over the
actual data storage backend. The result data is processed by the storage components and
re-converted into the sile model by the appropriate manager components. As an illustrative
example, the workflow of a searchSiles() request is depicted in Figure 7.3.

All these components are referenced by a number of connectors that expose actual func-
tionality to the outside. Currently we have implemented two connectors: first, the High Level
Connector implements the Repository interface described in Section 4.1 and provides access
to sile data on a high level. Through this interface, siles and annotations can be manipulated,
and filter queries can be issued. It does not expose implementation details to the outside and is
thus entirely independent from the RDF- and SPARQL-based representation of siles and filter
expressions within the server. Second, via the Low Level Connector clients can directly access
the raw data stored within the server. This connector provides methods to access RDF triples,
to upload and download binary content, and to issue SPARQL queries.

The connectors are wrapped by servlets that provide protocol-specific access to the meth-

137

ods exposed by the two connectors. We have implemented two servlets based on XML-
RPC [Win99], one that serializes binary Java objects, and another one that uses the platform-
independent, generic XML serialization rules described in Section 6.3 to provide platform-
independent access to objects in the repository.

7.1.3 External Data Integration

The modular architecture of the implementation described above allows for the easy integra-
tion of external data sources by replacing certain system components with other ones that
communicate with external systems. By doing so we can instantiate a sile facade for external
systems, and thus integrate data of arbitrary form and structure into a semantic desktop en-
vironment. It is out of the scope of this work to discuss integration scenarios in more detail;
however in this section we indicate starting points towards such work.

The selection of components to be replaced depends on the type and level of integration
that should take place. For instance, for any data source that can be exposed as RDF and uses
a suitable vocabulary (e.g., relational databases [BS04]), one could implement a corresponding
MetadataRepository component. The interface of MetadataRepository is based on the RDF and
SPARQL languages, thus in this scenario the data would not have to be converted in other
formats. However, depending on the vocabularies used in the external source, it could be nec-
essary to perform a schema mapping, which includes query rewriting, in order to transform
the external RDF data sets into a representation that conforms to the sile and annotation rep-
resentation rules discussed in Section 5.2 (for siles and annotations) and Section 5.3 (for filter
expressions). An example for an integration architecture that performs such mapping on RDF
instance data is discussed in [Has08].

If such a conversion cannot take place, one could consider replacing the entire
AnnotationManager component. This component instantiates the mapping between the ele-
ments of the abstract sile model and the concrete RDF representation. Its interface does not
expose any RDF-specific elements, and thus a manager component can be implemented that
uses no RDF data model at all. For instance, on this level one could directly wrap information
stored in online services or in relational databases7.

In certain integration scenarios it may be necessary to refer only to externally hosted con-
tent; for instance, to content that resides in a file system, or to web resources that do not
provide the means for semantically rich annotations. In such situations, it may be sufficient to
replace the ContentHandler component. It is the task of this component to provide read and
write access to binary content objects. In our reference implementation all binary content ac-
cess operations are mapped to files that reside within a directory hierarchy on the server, but
a different implementation could e.g., choose to redirect these requests to BLOBs stored in a
RDBMS, or to remote content repositories.

7.2 silefiles: A Semantic File System Extension

In the previous section we have discussed a reference implementation of a sile repository that
provides a large set of functionality, including ontology-based reasoning and validation. To
demonstrate the versatileness of the sile model, we have also implemented a functionality-
restricted, purely file-based prototype repository. This implementation builds on top of an
existing hierarchical directory structure, and one of its main design goals was to allow users to
continue working with files and directories, but to provide additional support for unstructured

7For an initial discussion on the mapping between the relational model and the sile model refer to Section 5.4.2.

138

File System

/

work/

private/

templates/

documents/

pictures/

business.dot

private.dot

music/

invitation.doc

.invitation.doc.sdmeta

silefiles Repository

In-memory RDF Model

Operating System
File System API

Sile API

Figure 7.4: silefiles architecture

annotations; in this case, for tagging.
Our system implements a lightweight annotation tool for hierarchical file systems. It uses

the same RDF-based representation for siles and annotations as the full repository implemen-
tation described in the previous section; however it does not employ a full triple store or a
relational database to store sile content and annotations. Instead, it holds an in-memory RDF
model of the file system, and references actual files via their URIs. This in-memory model con-
tains implicit and explicit annotations, which are described in the following. This design allows
the user to continue to work with the hierarchical file system and its semantic extensions in
parallel; hence the tools that the user is familiar with can be used further on, but additionally
it is possible to semantically annotate and interrelate files.

• Implicit Annotations are derived from data that already exists in the file directory tree.
These annotations include the file name, file size, and the dates of creation and last up-
date (which are represented by attribute annotations), but also the file path, whereas this
string is split into its parts (i.e., each subdirectory name is considered separately) and
attached to the file as tags. Furthermore, a special category File is implicitly attached to

139

1 <http://www.semdav.org/2007/03/tag-class#important>

2 <http://www.w3.org/2000/01/rdf-schema#subClassOf>

3 <http://www.semdav.org/2007/03/core#Tagged> ;

4 <http://www.w3.org/2000/01/rdf-schema#label>

5 "important"^^<http://www.w3.org/2001/XMLSchema#string> .

6

7 <local:local>

8 <http://www.semdav.org/2007/03/core#tag-type>

9 <http://www.semdav.org/2007/03/tag-class#important> ;

10 <http://www.semdav.org/2007/03/core-annotation#derived-from>

11 <http://my.host/repository/work/templates/business.dot>

Listing 7.1: Example of a silefiles metadata file

all siles. Implicit annotations are generated on-the-fly and are never persisted to the file
system.

• Explicit Annotations are annotations that can not be derived from information present in
the file system. All sile annotations (tags, attributes, categories, slinks) are converted
into their RDF representation, and are written to a hidden metadata file in the same
directory as the file resides. The file is named as its reference file, and a .ttl suffix is
added. Within this RDF model the file is referenced not via its URI but via a special
resource local:local. This design increases the system’s flexibility w.r.t. changes in the
file system. As the connection between a file and its persisted annotations is established
via the file name, redundancy is avoided by repeating the name within the metadata file.
A typical metadata file is depicted in Listing 7.1. It shows a tag annotation and a slink to
another file that resides in a different directory.

The URIs of siles that are exposed via the repository interface are minted by combining a
repository-specific prefix (e.g., http://my.host/repository) with the path of the file, relative to
the repository’s root directory. Thus the mapping between RDF annotations and files is always
unambiguous. However if a file is moved or renamed, the annotations (including slinks that
point to this file) are lost. We have not yet implemented a solution for this problem; however
it would be possible to hook into the underlying file system and trace corresponding events8.
Then we can use this event information to keep the RDF model up-to-date. However, several
problematic aspects of synchronization between underlying file systems and overlay metadata
systems remain, as described in Section 3.1.

7.3 SileMail: Semantic Extensions to E-Mail

Similar to the silefiles implementation described in the previous chapter, we have developed a
wrapper component for mail messages that reside in an IMAP server [Cri03]. Alongside files,
e-mails are probably the most important manifestation of digital personal information [DB01]
and are therefore of high interest to be integrated into a semantic desktop environment.

8All current desktop operating systems provide functionality to hook into file system events; for instance, on Mac
OS X the FSevents framework can be used for this.

140

Figure 7.5: An annotated e-mail message as displayed in an off-the-shelf e-mail client

The structure of IMAP accounts is very similar to the structure of file systems: objects (in
this case, mail messages) are arranged within a hierarchical structure. However, mail messages
expose one alleviation in contrast to files: a unique Message-ID is generated by the mail system
where the mail message is created; this id can be used for unambiguous reference. We have
implemented a component similar to the system presented in the previous section. The idea is
again to enable a parallel use of traditional e-mail clients and semantic PIM tools.

In contrast to files, e-mail messages provide a standardized way to store arbitrary describ-
ing data in the form of headers. A number of headers are already defined in the various stan-
dards that define e-mail message formats and communication protocols, and the information
found therein (e.g., From:, To:, Subject:, Priority:, and so forth) can be exposed as attributes
or slinks within the sile model as implicit annotations. If a message is unread, we can automat-
ically attach a corresponding tag to the sile. The References: header, which contains message
id’s of previous mail messages within a conversation, is mapped to slinks. Additionally, cus-
tom headers can be used to store additional information, e.g., tag annotations or slinks to other
siles. This information can be stored directly within the message on an IMAP server and is thus
available through the IMAP protocol, which allows an e-mail client application to retrieve this
information (cf. Figure 7.5).

The IMAP protocol defines a SEARCH command (cf. Section 6.4.4 of [Cri03]) which can be
used to search for e-mails based on a number of criteria, including contents of custom headers,
across the entire set of messages. By translating the generic sile filter algebra (cf. Section 3.3)
to corresponding IMAP search expressions we can execute sile queries against e-mail repos-
itories. For demonstration purposes we have implemented a mapping of tag filters to the
X-Sile-Tag: header (cf. Figure 7.5).

7.4 Summary

In this section we have showed three different system implementations that are capable of
representing sile and annotation data, and (to a certain extent) execute sile filter queries and
return corresponding results. The range of implementations (from plain file systems to high-
end RDBMS-backed repositories) shows that the sile model is able to adequately represent
very diverging kinds of information. We have outlined the advantages of the modular design
of our RDF-based repository implementation, which allows one to extend or replace certain
components and connect to external data sources on various levels.

In the next section we will discuss a prototypical implementation of a client application,
the Semplorer, which is a generic utility to browse and manipulate sile repositories. It uses the
sile API to communicate with a sile repository and has been successfully tested with all three
repository implementations presented in this chapter.

141

142

Chapter 8

The Semplorer: A User Interface for
Sile Management

“Where did you put it?”
“Put what?”
“You know?”

“Where do you think?”
“Oh.” — Nicholas Negroponte, Director of the MIT Media

Lab, stating his ideal model of human-computer interaction

The vocabularies used to describe siles (i.e., the possible names for categories, attributes,
and slinks) are extensible, and often they are not specified in a formal way, especially in the
semantic desktop domain. While this fact is one of the greatest strengths of this data model,
it also imposes severe consequences for application design and development: tools must be
designed so as to accommodate changing and developing data models and data formats.

This issue becomes especially apparent in the context of user interfaces. Most “traditional”
applications use a closed-world data model: the structure and semantics of the processed data
is known at design time, and appropriate user interfaces can be designed, evaluated, and
optimized—a rigid data model is a solid basis for user interface design. On the contrary, an
application that operates with an open data model can only guess what the data it operates
on will look like. Often the only known factor is the underlying meta model, thus the user
interface for such an application must be designed sufficiently generic, yet suitable and un-
derstandable for the end user.

One example of such a generic interface is the file browser, of which we have analyzed
several implementations in Section 2.1.6. Typical file browsers, as found in modern desktop
operating systems, provide functionality for generic management of files, but do not consider
the inner semantics of file contents and directory hierarchies. File browsers are used for both
manual annotation (e.g., when saving a file within an application, a file browser window is
opened to select a storage location and enter a file name) and retrieval (by navigating through

143

the directory structure, or in an application’s Open File dialog). File browsers can also be
used to arbitrarily manipulate the file system structure (and, if not prevented by access control
mechanisms, also to corrupt it). However it is not possible to edit file contents using a standard
file browser, since the inner structure of files remains hidden.

In a generic information system, like the sile data model, the possible annotation and re-
trieval operations are more manifold; still, a generic user interface for search, retrieval, and
manipulation is desirable.

We have developed the Semplorer [SAPT07], a generic interface for browsing, searching,
and manipulating siles. In the following we give an overview on the design considerations,
and describe the interaction mechanisms that we have realized in this implementation.

8.1 Design Considerations

In the design and implementation of the Semplorer, we focused on three main design ob-
jectives that we consider as important for a novel desktop data management paradigm; fa-
miliarity, simplicitiy, and modularity. We justify the emphasis of these three objectives in the
following.

Familiarity

As mentioned above, we consider it important that a tool for annotation and retrieval of se-
mantic data assets (siles) is—as far as possible—immediately familiar to end users. We respect
the results of research in novel user interfaces and interaction metaphors, both for traditional
file systems (cf. Section 2.1.6) and semantic systems1. However we believe that for the time
being it is important not to force users to adopt to new interfaces, but to develop interfaces
that adopt to what users are familiar with.

Such adoption takes place on multiple levels, including metaphors, appearance, vocabulary,
and interaction. Metaphors subsume the abstract concepts that the user and the machine are
collaboratively working with; they can be regarded as the bridge between the mental models
in the human brain and the binary representation in the computer’s memory.

The metaphors used on desktop computers (mainly files and directories) are, whether they
actually adequately represent a human’s mental model or not, well understood by end users2.
The concept of single, self-contained logical information units seems to reflect—to a certain
extent—the human view of the world. The sile model extends this concept by externalizing
describing information for these units, and adds mechanisms to represent semantic relationships
between them.

Consequently, the Semplorer can be seen as an extension of file browsers, where these ex-
tensions are also applied to appearance of the user interface. The classic rendering of files using
a combination of a symbol icon and a textual label is retained in our design. We also keep the
familiar representation forms of lists in various forms, although we add the possibility to rep-
resent siles in new ways that become possible only because of the underlying semantic data
model; e.g., time-based views or customizable tabular views. The representation of organiza-
tional structures, however, is a different issue: while file systems provide only one dimension
of structure (hierarchical directories), siles offer a variety of semantic annotations with vari-
ous degrees of semantic expressivity, and these different types of annotations require different
visualization renderings.

1Recent research in this field has been published, for instance, in the Semantic Web User Interaction Workshop
series [msGD+08].

2We can observe that the term “file” often used as a synonym for “data” by computer users.

144

The question of the vocabulary used in user interfaces for semantic systems is very difficult
to answer. On the one hand, users are familiar to certain terms, like “file”, “folder”, or “file
name”. The direct application of these terms to semantically rich concepts may cause confu-
sion, since the concepts significantly differ on many levels: a sile is not a file, and vice versa.
On the other hand, we should not expect users to become familiar with terminology from se-
mantic systems, like “ontology”, “data type property”, or “disjoint classes”, since these terms
are loaded with certain, possibly unclear or diffuse interpretations; e.g., in science or in mar-
keting; and are therefore hard to learn and understand for end users.

Users face also a common set of interaction mechanisms in typical file browsers. The WIMP
interface paradigm (cf. Section 2.1.6) exposes certain mechanisms that have been adopted by
all desktop operating systems. We consider it important for a semantic user interface (1) to
inherit interaction mechanisms, as far as possible, and apply them to the semantically rich
concepts as far as possible, and (2) to integrate with external or legacy interfaces that are fur-
ther used. In Section 8.2 we describe how we apply one of the most common interaction
mechanisms, drag and drop, to our semantic user interface, and how we integrate this interface
with the operating system’s native user interface.

We believe that by implementing familiar user interface concepts and slightly adapting
them to the semantic data management paradigms, we can ease the migration path for end
users and increase the acceptance and efficiency of interactive semantic systems.

Simplicity

Semantic technologies and models expose a high level of complexity, especially when one
considers the modelling and representation of complex ontologies. This complexity should be
hidden from the user by the user interface, which should provide a simplified, yet compre-
hensive view on data, and interaction mechanisms that hide complex queries or processing
procedures.

Naturally, the requirement of simplicity collides with the requirement of full functionality.
Certain aspects of a semantic object model can only be accessed through a higher level of
complexity; a good example for such a conflict are search interfaces. A simple keyword search
can be transported through a highly reduced and simplified interface; however, a complex
search query that possibly incorporates nested boolean expressions needs an advanced and
thus more complex user interface. To overcome this problem, we followed an approach that
is often successfully used for web search engines [TL05]; namely, to offer a standard interface
with restricted functionality but simple appearance, and an advanced interface that provides
full access to all features through a more sophisticated interface that, however, requires more
experience and knowledge to use.

Modularity

A semantic data model like the one envisioned in this thesis can represent a wide variety of
information, ranging from highly structured data sets that are backed by a relational database
to the unstructured collections of files that can be found on an end user’s desktop. Depending
on her current context, different information aspects may be of relevance to the user. Naturally,
one user interface cannot cover all possible application scenarios, and it is in fact one major
goal of the sile model to provide a data abstraction layer that can be used by applications that
bring their own, specialized and highly focused interface for specific tasks. Nevertheless, we
believe that even a generic-purpose interface like the Semplorer should provide the possibility
to change the user’s view on information.

This becomes especially apparent when we consider the Semplorer as a kind of user interface

145

library, which provides widgets and window components to be reused within other applica-
tions. The benefit of such generalized libraries can be seen by the means of the standardized
Open File and Save File dialogs that are provided by operating systems: first, application de-
velopers do not need to re-implement the functionality provided by such components within
their own applications; and second, users are always presented the same interface for the same
task; i.e., to open or save files. The same advantages can be realized through interface com-
ponents provided by the Semplorer: for instance, applications could reuse tag widgets so that
they have equal appearance across a system, or they could reuse drag and drop implementa-
tions for object annotation.

Even if the functionality of a graphical user interface is highly modularized and de-
coupled, one must guarantee that the user always percepts the system as a single unit; i.e.,
one must avoid visible or tangible gaps in the usage flow. For instance, the user should not
notice a point of rupture when she synchronously interacts with loosely coupled components,
or should be able to use the same interaction mechanisms regardless of which data view she
is working with. Within the Semplorer we have implemented several interface variants for
searching and browsing, and although they expose different views on information they share
a common set of graphical widgets and interaction metaphors, as described in Section 8.2.

8.2 Interface Design

In the following we describe the main elements of the Semplorer UI design: the main window
which contains the visual rendering of the interactive elements, and the entity widgets which
are small graphical units that represent elements of the sile data model and constitute the
interactive elements of the system. Then, we sketch the interaction mechanisms through which
a user is able to search, navigate, and manipulate siles.

The Semplorer Main Window With our design of the structure of the Semplorer main win-
dow, we follow the two design principles of familiarity, by designing the window’s structure
and appearance similar to common file browsers, and modularity, by separating the window
into different parts, each of which can be considered as an individual component. A screen-
shot of a typical browsing session with the semplorer is depicted in Figure 8.1; the individual
window parts and their purposes are described in the following.

1. Organize — With the Semplorer the user can navigate and manipulate the different or-
ganizational metaphors provided by the sile model (i.e., tags, attributes, categories, and
slinks). Currently we have implemented a spect browser to navigate elements of a spect
(cf. Section 3.2); i.e., a restricted view on an ontological model; and a tag browser through
which tags can be created, searched, manipulated, and attached to siles.

2. Browse — The siles in the repository are displayed according to the currently loaded view
implementation and can be browsed accordingly. We have implemented three different
views on siles which are discussed in Section 8.2.1.

3. Search — Users can employ the annotations visible on screen to incrementally build
search filters (cf. Section 4.1.3) which restrict the set of displayed siles. We have im-
plemented a number of different search interfaces that expose different levels of com-
plexity and expressivity w.r.t. modeling of complex filter queries; these are discussed in
Section 8.2.2.

146

Organize
Search

Browse and Manipulate

View and Manipulate

Remember

Figure 8.1: Semplorer main window structure

4. View — Detail information for the currently selected sile is displayed in the rightmost
area of the window. This includes a sile label, core attributes like the sile’s creation date
and the date of its last update (cf. Section 5.1), and its associated annotations. Annota-
tions are spatially grouped by their type, and each group can be collapsed and expanded.
This area can also be used to manipulate sile annotations (see below).

5. Manipulate — Both the browse and the view area can be used to manipulate annotations;
i.e., to edit, add, or remove annotations. These actions are initiated by simple mouse-
based interactions; the detailed interaction mechanisms are discussed in Section 8.2.3.

6. Remember — Regularly used objects of all types can be remembered by the Semplorer
and are kept in the bottom area of the screen. Items of any type can be “pinned” in this
area, and since the remember area is not affected from filters, pinned items remain to
stay there until the user explicitly removes them by selecting the widget’s remove mark
(see below).

The Entity Widget Concept The Semplorer provides a set of widgets to represent elements of
the sile data model. The widgets for different annotation types differ in form and color in order
to allow the user to immediately and unambiguously recognize and identify the represented

147

(a) (b) (c) (d) (e)

Figure 8.2: Entity widgets: sile (a), tag (b), attribute (c), category (d), slink (e)

Figure 8.3: Widget with tooltip and delete button

information. The five widget types are depicted in Figure 8.2 and described in the following.

• Siles are represented as an icon and a text, whereas the icon represents the sile’s content
type and the text is derived from a sile’s sile-label attribute3. When the mouse hovers
over the sile widget, the sile’s URI is displayed in the form of a tooltip (see Figure 8.3).

• Tags are represented by blue rectangles with rounded vertexes on the left and right side.
Tags are labelled with the tag’s textual representation, which can contain an arbitrary
sequence of characters including spaces.

• Attributes are represented by yellow rectangles with an icon in the form of a stylized
speech bubble. The widget shows both the attribute name (in an abbreviated form) and
the value, separated by an equivalence sign. The widget’s tool tip shows more informa-
tion about the attribute annotation, including the full name URI, the value, and the value
data type.

• Categories are represented by green rectangles with a rounded right vertex, which slightly
resembles the letter C. It contains a rendering of the category name and a book icon,
which indicates that there may be more information about this category “behind the
scenes”. Similar to attributes, the icon of the category may be overruled by the spect
definition in future versions.

• Slinks are symbolized by a pink shape that points from the left to the right. It is labelled
with the (abbreviated) slink name, and the slink URI is displayed when the user hovers
over the widget. The arrow points from the slink’s source sile to its target sile; hence
the slink’s source is always be displayed to the left of the widget, while the target is
displayed to the right of the widget.

As described before, each widget can be dragged and dopped to perform various opera-
tions. In general, whenever an annotation is dropped onto a sile, this sile is annotated with
the dropped annotation (cf. Section 8.2.3). When the user hovers over an annotation or a sile,

3A sile may have multiple, different sile-label attributes; however we do not specify an algorithm how to select
one in this case. Currently the Semplorer selects an arbitrary attribute instance, if many are present, and displays the
sile’s URI if no sile-label attribute is present. Future versions may use additional information (e.g., language tags)
to select a sile label, or render all existing instances of the attribute.

148

Figure 8.4: Semplorer timeline view [Tod08]

a small “X” button is displayed which can be used to remove the object from its current con-
text. Finally, all widgets can be used as search criteria by dragging them into the filter area (cf.
Section 8.2.2).

8.2.1 Navigation

The Semplorer itself offers a restricted set of navigation methods. Usually the center area of
the Semplorer window (the Browse and Manipulate area in Figure 8.1) displays siles from the
repository that match the restrictions defined by the current set of filters (cf. Section 8.2.2). It
depends on the selected rendering component how the siles are actually displayed. We have
implemented three different views on siles (cf. [Tod08]) that may be helpful in different usage
scenarios:

1. a List View (Figure 8.1) that arranges siles, sorted by their label, in a list. This is the default
view and is useful for small numbers of items;

2. a Table View (Figure 8.5) displays selected information about siles in tabular form. The ta-
ble view can be customized by the user by dragging annotations, e.g., attributes, into the
table header; then, the according information is displayed in the column. The columns
can also be re-arranged and removed by drag and drop operation;.

3. a Timeline View (Figure 8.4) that arranges siles along a one-dimensional axis, according
to one user-selected attribute value. Siles are arranged along the x-axis according to the
value of this attribute, and are stacked along the y-axis if their rendering would collide.
Using the left mouse button the user can scroll along the x-axis, and using the right
mouse button the user can zoom in and out.

These components provide different view on information, and as the Semplorer is designed
in a modular way it is possible to plug-in new views that integrate seamlessly into the user

149

Figure 8.5: Semplorer table view

interface.

8.2.2 Search

The Semplorer wraps the generic sile filter framework (cf. Section 3.3 and Section 4.1.3) with
a graphical query language. The basic idea in this design is to give the user the possibility to
use every widget on screen as filter criterion. Thus we do not separate the tasks of viewing and
browsing from the task of searching; instead we integrate them into a unified mechanism for
interaction with available information.

We implemented this unified mechanism by providing an interface section called the Filter
Bar, which is situated in the top section of the Semplorer window. Any widget can be dropped
onto this bar and immediately extends the currently active filter (the filter context). This non-
separation allows the user to define filter criteria very quickly and without the need to leave
her current context. Instead of selecting a designated “Search” window, the user can—at any
time—pick any widget from the screen and use it to narrow her view on the sile repository.
Widgets are removed from the filter bar by clicking the “X” sign that appears when the user
moves the mouse pointer over one filter element.

All elements in the filter bar are AND-combined. The filter that is added to the current
filter context created depends on the type of the dropped widget and, in certain cases, on its
state. A detailed enumeration of this behaviour is given in Table 8.1.

Notice that only a subset of all existing filters in the API (cf. Section 4.1.3) are accessible
through this method. Currently there exists no visual representation for more elaborate filter
types like AttributeValuerangeFilter or SileSlinkFilter; we choose to keep the UI mecha-
nisms for searching simple instead of comprehensive.

As described above, all filters that are added to the filter bar are AND-combined. We have
also implemented two alternative representations of the filter bar; one to model complex filter
combinations using Venn diagrams—which, in principle, can be used to graphically represent
combinations of large numbers of filters [RSW06]; however in our implementation we have

150

Annotation Type Widget Created Filter

Tag TagFilter

Attribute with value AttributeNameValueFilter

Attribute without value AttributeNameFilter

Category CategoryFilter

Slink SlinkInOutboundFilter

Sile SileInOutboundFilter

Table 8.1: Conversion of entity widgets to sile filters

restricted the maximum number of filters to three. Another variant of the filter bar can be
used to iteratively construct CNF filters by visually grouping them.

More details on these advanced interfaces for searching and browsing of semantically en-
riched data is out the scope of this work; for a more detailed discussion the reader is referred
to [Tod08].

8.2.3 Manipulation

One main goal of the interaction mechanism design for the manipulation of siles and annota-
tions was consistency: the same type of action should always have the same effect, regardless of
the context wherein it was executed. Thus we choose the following basic types of interaction:

• Drag and drop operations establish a relationship between two entities; e.g., between a
sile and a tag, or between two siles. The details of the action (e.g., the name of the slink
with which two siles should be connected) are selected from a pop-up menu that appears
after the drag and drop operation has been completed.

• A mouse click on an entity allows one to select edit the entity. In the browsing area, siles
can be selected to view further details; a click on an attribute in the detail view area
allows the user to change the value of an attribute, and so forth.

• A remove icon in the form of an “X” appears when the user moves the mouse over an
entity (cf. Figure 8.3); by clicking on this icon the entity is removed from its current
context. For instance, if a tag is deleted in the organize area in the left window part, it is
removed from the repository; if it is deleted in the detail view of one sile, it is removed
from this particular sile, but not from other ones..

However several manipulation actions cannot be carried out by these operations. For in-
stance it is currently not possible to change the data type of an attribute (cf. Section 3.2), or to
annotate a sile with an arbitrary category that is not defined in one of the spects, although the
execution of such operations is possible by the definition of the sile API. Again, this design de-
cision is a tradeoff between the user interface’s complexity and expressivity: more advanced

151

features would require a deeper understanding of the concepts of the sile model by the user.
For instance, creating a new category would require understanding about their internal repre-
sentation and how to integrate the category into existing spects in order to relate them to other
categories, attributes, and slinks.

8.3 Summary

In this section, we have presented the Semplorer, a graphical user interface for sile repositories.
The Semplorer is designed as a generic user interface without focus on a specific application,
and resembles similarity to typical file browsers that can be found in desktop operating sys-
tems. We have discussed the rationales that led to the design of the Semplorer, and described
how it applies simple interaction mechanisms, like drag and drop operations, to the complex
data structures that underly the system. Finally, we have described our generic design that we
consider as a basis for subsequent development of enhanced applications.

152

Part IV

Conclusions

153

Chapter 9

Discussion and Experimental
Results

Statistics: The only science that enables different experts using the
same figures to draw different conclusions. — Evan Esar

In the following we discuss the results we have obtained during our research. We present
a qualitative comparison to the Semantic Desktop approaches presented in Section 2.3, and
we present experimental quantitative results that indicate the performance of our reference
implementation of an RDF-based sile repository, which was presented in Section 7.1.

9.1 Comparison and Differentiation

In Section 2.3.4 we have analyzed a number of research projects in the field of Semantic Desktop.
We have defined a number of characteristics and criteria, and qualitatively compared the ap-
proaches. From this analysis we drew a number of requirements which influenced the design
and development of our sile model.

Table 9.1 reproduces the comparison table from Section 2.3.4, with the work presented in
this thesis added in the rightmost column. In the following, we reproduce the criteria that
we applied in our survey and compare our approach and its implementation against the ana-
lyzed projects. We discuss to which extent our approach fulfils the requirements, and how it
differentiates from other approaches.

Data Model The predominant data model used in most of the discussed approaches is the
Resource Description Framework (RDF). Basically RDF represents data in the form of a graph,
which we also adapt in our data model, the sile model. However, in contrast to RDF, where
each node within the graph is an individual and equal entity, the sile model treats larger
amounts of information as atomic units. RDF nodes do not carry inherent information: a node

155

Nepomuk Haystack Chandler Semex DeepaMehta OpenIRIS DBin iMeMex Siles

Data ModelData Model

Meta Model RDF / NRL (1) RDF (7)
Items,

Collections
RDF

Topic Maps (+
extensions),

RDF
RDF RDF

iDM (graph-
based) (23)

Graph-based
hybrid model

Storage Layer
RDF2Go /
Sesame2

In-memory DB
BerkeleyDB,

Lucene

Jena in-
memory DB

(10)
MySQL, HSQL Jena DB (16) Sesame2

Apache Derby
(RDBMS)

RDF
(alternatives

possible)

Metadata ModelMetadata Model

Ontologies

Four level
model (2) with

predefined core
ontologies

Predefined
specific

ontologies

Predefined
ontology

Predefined
domain model

Predefined
high-level

concepts (13)

Predefined
high-level
concepts

(subset of CLIB)
(14, 15)

Predefined
ontology

No predefined
schema

Predefined
core ontology

Extensibility
Based on NIE

(3)
Adenine (9)

Python data
structures (21,

22)

Malleable
Schemas (12)

Base Java class
OWL

Ontologies
Brainlets (27)

iDM Resource
View Classes

(23)

Lightweight
Ontologies

(Spects)

Integration / InteroperabilityIntegration / InteroperabilityIntegration / Interoperability

External Data
Sources

Data wrapper/
crawler

framework

Data Extractors
(defined by

demonstration)
(26)

IMAP, iCal File System
SQL, IMAP,
SMTP, IMAP

Harvester for
file system,

e-mail

RDF import and
export

File system,
XML, IMAP,
RDBMS, RSS

File system,
IMAP, ...

Data Mapping

Alignment
engine with

user feedback
(5)

- -
Reference

reconciliation
(11)

-
Bayesian
classifier

Resource
matching

Incremental
integration

(planned) (24)
-

Application
Programming
Interface

Access via
SOAP/REST,
application

plugins

-
CalDAV,

WebDAV, HTTP
- SOAP, EJB XML-RPC -

HTTP, WebDAV
(25)

Generic API,
XML-RPC,
WebDAV,
SPARQL

Operating
System

Integration in
KDE Core

- - - - - -
File events
(planned)

File events
(planned)

User InterfaceUser Interface

Interface
Metaphor

Knowledge
Workbench

View
Prescriptions,
Lenses (7,8)

Tree- and list-
based item

browser

Tree-based
search and
navigation

Graph-based
resource
browser

Tree-based
item browser

Tree-based
topic browser

Tree-based
resource
browser

File browser-
like, drag and

drop

Implementation
Standalone

(RCP)
Standalone

(RCP)

Standalone
(Python) + Web

interface

Standalone
(Java)

Standalone
(Java) + Web

interface

Standalone
(Java)

Standalone
(RCP)

AJAX Web
interface

Standalone
(Java)

UI Extensibility
RCP plugins

(GnoGno
framework)

Declarative
(Adenine) (9)

Python classes
(21)

-
Java classes +

Java Server
Pages

Application
plugin

framework
(Java Beans)

Brainlets (RCP
Plugins)

-
Event model,
widget library

CollaborationCollaboration

Data Sharing
P2P

Infrastructure
(GridVine) (4)

-

Client/Server
Publish/

Subscribe
Mechanism

-
Shared

workspaces
(13)

(planned)
RDFGrowth

(17) / Semantic
Web Pipes (19)

(planned)
Linking Open

Data, Silepacks

Access Control RMU-Cube (6) - Item-based - Type-based -
Restricted P2P
Groups (20)

- -

Synchronization
P2P-based

replication (2)
-

Via dedicated
server

- -
Jabber-based
Sync Protocol

P2P-based
resource

exchange (18)
(planned) -

(1) Sintek et al, 2007 (15) http://www.cs.utexas.edu/users/mfkb/RKF/treehttp://www.cs.utexas.edu/users/mfkb/RKF/treehttp://www.cs.utexas.edu/users/mfkb/RKF/tree

(2) Reif et al, 2007 (16) http://www.openiris.org/downloads/IRIS-nightly/doc-current/doc/http://www.openiris.org/downloads/IRIS-nightly/doc-current/doc/http://www.openiris.org/downloads/IRIS-nightly/doc-current/doc/http://www.openiris.org/downloads/IRIS-nightly/doc-current/doc/

(3) http://www.semanticdesktop.org/ontologies/niehttp://www.semanticdesktop.org/ontologies/niehttp://www.semanticdesktop.org/ontologies/nie dev/pdf/iris-developer-guide.pdfdev/pdf/iris-developer-guide.pdf

(4) Aberer et al, 2004 (17) Tummarello et al, 2006Tummarello et al, 2006

(5) http://dev.nepomuk.semanticdesktop.org/wiki/LocalDataAlignmenthttp://dev.nepomuk.semanticdesktop.org/wiki/LocalDataAlignmenthttp://dev.nepomuk.semanticdesktop.org/wiki/LocalDataAlignment (18) Tummarello et al, 2004Tummarello et al, 2004

(6) Ioannou et al, 2007Ioannou et al, 2007 (19) Morbidoni, 2008

(7) Karger et al, 2005 (20) Tummarello et al, 2007bTummarello et al, 2007b

(8) Quan and Karger, 2004Quan and Karger, 2004 (21) http://chandlerproject.org/Projects/PluginsTutorialhttp://chandlerproject.org/Projects/PluginsTutorialhttp://chandlerproject.org/Projects/PluginsTutorial

(9) http://groups.csail.mit.edu/haystack/developers/adenine.htmlhttp://groups.csail.mit.edu/haystack/developers/adenine.htmlhttp://groups.csail.mit.edu/haystack/developers/adenine.html (22) http://chandler.osafoundation.org/docs/0.7/parcel-schema-guide.htmlhttp://chandler.osafoundation.org/docs/0.7/parcel-schema-guide.htmlhttp://chandler.osafoundation.org/docs/0.7/parcel-schema-guide.htmlhttp://chandler.osafoundation.org/docs/0.7/parcel-schema-guide.html

(10) http://data.cs.washington.edu/semex/download/download.htmhttp://data.cs.washington.edu/semex/download/download.htmhttp://data.cs.washington.edu/semex/download/download.htm (23) Dittrich and Salles, 2006Dittrich and Salles, 2006

(11) Dong et al, 2005 (24) Blunschi et al, 2007Blunschi et al, 2007

(12) Dong and Halevy, 2005Dong and Halevy, 2005 (25) Dittrich et al, 2005

(13) Richter andPoelchau, 2008Richter andPoelchau, 2008 (26) Hogue and Karger, 2004Hogue and Karger, 2004

(14) Cheyer et al, 2005 (27) Tummarello et al, 2006aTummarello et al, 2006a

Table 9.1: Qualitative comparison of the sile model with other approaches

156

has no information value as long as it is not considered in the context of its graph. There exist
proposals how to define groups of triples that form a logical unit; however these approaches
cannot efficiently avoid the predominant role of the single triple in RDF.

In the sile model, although it can be represented as graph, we do not lift the graph struc-
ture into the main focus of the user (i.e., the software developer who writes applications that
operates on sile data, or the end user). To mask the underlying graph structure, we define
several types of first-class objects (siles, annotations, filters, and so forth) which can be treated
individually and independent of any concrete representation. Additionally, we treat non-meta
data (i.e., sile content) as an integral part of siles. In contrast to RDF, which merely deals with
the description of resources, the sile model includes the resource itself—at the cost of renouncing
the possibility to describe so-called “non-information resources”.

Meta Data Model Our choice of a meta data model for siles is very much in line with the
choice taken in related projects. A core ontology has been derived from the sile model; this
core ontology represents the model’s building blocks and entity types, as well as property
types to represent relationships between them. However, the sile core ontology is not a do-
main ontology: it does not define domain-specific categories or attribute and slink names.
Instead, the sile model provides a generic mechanism how ontological knowledge can be cap-
tured and represented, in the form of spects. We believe that in the field of the semantic desk-
top and personal information management, there is no need for highly complex, massively
structured ontologies: they tend to overburden end users, and cause additional workload and
performance loss in the underlying storage systems. Nevertheless, since the sile model (and,
especially, spects) are defined in an abstract manner, the concept puts no restrictions on repos-
itory implementations w.r.t. the usage and application of ontological knowledge to sile data.

The ontology layer of the sile model can be extended by loading additional spects into a
repository. Such spects can, for instance, be derived from existing ontologies. We have imple-
mented a component that loads an OWL DL ontology, uses the rules defined therein to per-
form reasoning and consistency checks, and exposes all information that can be represented by
the spect framework to client applications. This concept, again, allows for interoperability be-
tween systems: an RDF-based sile repository can continue to use its OWL or RDFS ontologies,
while a sile repository implemented on top of an RDBMS can expose its relational schema
in the form of a spect. From the client perspective, both systems appear to have equal data
structures and can be treated in a unified way.

Integration and Interoperability One of the main goals behind the design of the sile model
was to reach data interoperability on the desktop. In principle, we share this goal with many
other approaches in this field, and lots of research has been conducted in the field of data
source wrapping, transformation, and integration1. However it is not the main goal of our
architecture to actually reach “perfect” integration in the sense that the borderlines between
heterogeneous systems entirely disappear. We do not deal with algorithms or mechanisms
that enable us, for instance, to specify how data that conforms to a specific schema can be
transformed to another one. Instead our goal is to provide a unified view on different types
of data, and allow applications to access them without knowing the details of the physical
information representation. We have shown how we can integrate external data sources by
two examples, IMAP servers and hierarchical file systems.

To provide such unified access, we have defined a generic application programming inter-
face which can be implemented in arbitrary languages. We provide different mechanisms that
distribute sile systems and enable interoperability in cases where the storage and the client

1A comparative study of web-based mapping solutions is given in [Has08].

157

components are operating on different machines or on different platforms. By using our map-
ping algorithm between the sile model and RDF, we are able to publish sile data on the web
and thus interlink it with other open data sources. Also we provide a means to access sile
repositories with traditional file browsers by providing a dynamic mapping to a tree represen-
tation, and by exposing this representation via the standardized WebDAV protocol.

User Interface Although research on user interfaces is not the primary focus of this work,
we have discussed one possible visualization and interaction metaphor for sile data. In com-
parison to the user interfaces found in other Semantic Desktop projects, we choose a very re-
stricted and simplified representation of semantic information. The Semplorer user interface
is oriented close towards file browsers, which represent digital objects (files and directories)
as labelled icons, and allow the user to perform operations via mouse gestures (e.g., drag and
drop). The Semplorer applies a similar design philosophy; one of the main differences to other
approaches is that it allows the user to directly interact with every piece of information visi-
ble on the screen. In the current implementation of the Semplorer, the user is never required
to manually enter URIs; instead she can work with drag and drop operations to annotate
siles, or to modify search queries. One drawback of this approach is that the interface is not
functionally complete (for instance, the majority of filter types cannot be used in the current
implementation); however we tend to apply here the Pareto principle: we estimate that 80% of
all user queries can be formulated by the 20% of filters that are available in the Semplorer. For
more complex queries, we have implemented advanced representations that can be activated
on demand.

Collaboration The sile model does not provide explicit support for collaboration; however it
provides several means to exchange information between co-workers. Also because of its dis-
tributed nature, shared sile repository instances can be instantiated. However the sile model
does currently not include mechanisms for access control, or for replication and synchroniza-
tion, which are out of the scope of this work.

9.2 Experimental Results

The proposed data model for siles, its associated query framework, and the discussed di-
rections towards physical representation of sile data are highly generic concepts. Its target
domain, personal information management and desktop data management, is a very broad
field, and the potential users, use cases, and implementation scenarios are manifold. Instead
of performing a highly specialized evaluation under the assumption of a very limited usage
scenario—which would bear the risk of being not representative for the general case—, we
outline our preliminary experience with our proposed models and their implementations on
two levels: first, we describe experience that we gained through the implementation of com-
ponents that operate on the sile model. Second, we discuss several quantitative aspects of
sile-based desktop data management that indicates research directions for the future perfor-
mance improvement of semantic desktop data storage systems.

9.2.1 Implementation Experience

We have implemented several components that use different mechanisms to store and manage
sile data; these are in detail described in Chapter 7. Because of the clear semantics and reduced

158

complexity of the API types and repository method calls, only small effort is required to build
systems on top of them.

In most cases, the sile model elements could be more or less directly mapped to elements
of the native system, and the choice of annotation types was predetermined by the underlying
system’s structures. In all cases, it was possible to adequately represent elements of the base
system’s meta model using the mechanisms that are provided by spects, without significant
information loss. Additionally, the transformation of filter expressions to search queries (or
corresponding programmatic constructs) was possible. This experience shows that the sile
model is able to cover many aspects of information that is found on desktops, and that it can
be used to cover both information representation and retrieval needs.

However, in certain cases it was very expensive or, in certain cases, not even possible to
map all filter types to the underlying system. For instance, the SemDAV server has been im-
plemented with a triple store (Jena) based on a relational database backend (PostgreSQL).
Thus, Jena translates incoming SPARQL queries to SQL queries and issues them against the
database. However, in the version we used for our implementation, no direct translation of
FILTER queries to SQL conditions is possible; hence, the filter criteria are applied after the data
has been retrieved from the database, which causes significant performance loss. Another
example is the IMAP-based implementation: the IMAP SEARCH command does not provide
means to query for value ranges, which renders an efficient implementation of attribute value
range filters impossible.

The sile model also gives developers the flexibility to choose between different implemen-
tation approaches; for instance, in the case of silefiles (cf. Section 7.2) we faced the two options
of implementing search operations either on an in-memory cache that holds annotations of the
entire file system tree under consideration, or to crawl for metadata files throughout the entire
directory tree each time a search request is issued. Both approaches have advantages and dis-
advantages; however the sile model does not enforce or prefer one particular implementation
architecture.

Regarding the implementation of client applications, we have already shown in the usage
examples of the sile API (cf. Section 4.2) that working with sile repositories requires only few
lines of code. Application developers are enabled to directly operate on siles, their annotations,
and filters without additional overload. We see this as an important contribution towards
the adoption of semantic technologies, and as an example of how the simplicity of existing
structures (e.g., hierarchical file systems) can be retained while simultaneously the expressivity
of the data model is significantly increased.

9.2.2 Quantitative Results

To evaluate the performance of our approach, we have analyzed the execution times of typical
file system operations that were executed against a virtual file system implemented on top of
the SemDAV Server (cf. Section 7.1), called SileFS [SH09]. To estimate a realistic amount of
data, we crawled the home directories of our department’s members, which includes scientific
staff (7 persons) as well as technical and administrative staff (3 persons). We used only home
directories in favor of scanning entire hard disks because personal data will be the target do-
main for a semantic file system, and there is little need to semantically annotate system- and
application-internal file structures. We discarded files that were on a black list of files and
directories that usually are present in users’ home directories but are not directly accessed by
end users; e.g., .svn, desktop.ini, and *.tmp. The resulting average size of the home directory
was 38,000 files stored within 5,150 directories. We view these numbers as upper limits, since
we assume that the home directories of computer scientists will typically contain more files

159

Dataset # 1 2 3

Hierarchy depth 2 3 4

Average no. of sub-directories per directory 5 6 7

Average no. of files per directory 12 15 15

Total number of siles (directories and files) 403 4,144 44,816

Total number of RDF triples 3,626 37,295 403,343

Total number of RDF triples incl. ontologies 4,361 38,030 404,078

Table 9.2: Datasets used for performance evaluation

(e.g., source code trees) than those of average end users.
To estimate the influence of the size of home directories on our system’s performance, we

artificially created three test data sets, which are described in Figure 9.2. To represent basic
data about files and directories nine triples per object were created. Note that this does not
include any additional descriptive triples (i.e., semantic annotations); these were not consid-
ered in our performance evaluation. Our implementation also requires loading a set of core
ontologies, which add another ≈700 triples to the database.

We have analyzed the runtime performance of typical access patterns to file systems: nav-
igation between directories, listing of directory contents, deletion, moving, and renaming of
files. We have carried out the experiments on a high-end consumer notebook (MacBook Pro,
Core 2 Duo, with 2 GB RAM) running Mac OS X 10.5 and JVM 1.5. We have used the command
shell (/bin/bash) to perform our measurements and used only standard commands (cd, ls, rm,
and mv). Because of our implementation architecture, each operation is processed by a number
of external components (e.g., the FUSE kernel module; see Figure 9.1) which are not under our
direct control. Hence we do not have influence on how shell commands are translated to file
system driver calls; for instance, issuing a directory listing command (ls) causes the execution
of four FUSE calls being passed to our implementation. Nevertheless, our goal was to mea-
sure the execution time as experienced by the end user, hence we tracked the total processing
time of commands, including overhead caused by the operating system and the FUSE kernel
module.

VFS Kernel Service FUSE
Module

SileFS
Implementation

SemDAV Sile
Repository

User Space
Kernel
Space

Sile-based
Applications

Command
Line

File
Browser

File-based
Applications

Plugin

Figure 9.1: Architecture of a virtual file system, based on a sile repository

The operations we have evaluated involve read-only access (directory navigation and di-

160

Dataset # 1 2 3

Total number of siles 403 4,144 44,816

cd 0.029 0.048 0.107

rm 0.063 0.142 0.879

ls 0.258 0.464 1.547

mv within directory 0.254 0.488 2.488

mv across directories 0.296 0.688 3.238

Table 9.3: Evaluation results for virtual file system access operations: average execution times
in seconds

rectory listing) and read+write operations (deletion, moving, renaming). For the latter, the
complexity of read and write operations differs: for a sile deletion, (1) the triples within the
store that describe the object to be deleted have to be identified (read), and (2) these triples
have to be removed from the store (write). Move and rename operations require in principle
the same access operations, whereas a move across directories requires an additional read and
write operation, namely the update of the relationship between the file and its parent direc-
tory. For our experiment, we have executed each of these operations 10 times in random order,
and the entire experiment was repeated five times.

The results of our experiments are depicted in Figure 9.3. For the first two datasets (≈400
and ≈4,000 siles) we can observe very low execution times, which allow for uninterrupted in-
teractive work with virtual file systems. For a dataset consisting of ≈40,000 siles, the response
times for simple operations (change directory, remove file) are still in a reasonable range, and
even operations that involve multiple, complex queries (directory listing, moving) are within
a range comparable to accessing remote file systems via the Web. We did not evaluate the
performance of actual read and write operations on the file content: the modifications to meta-
data caused by these actions are comparable to those of a move operation (i.e., an update of
the content-length and update-time properties), and the actual file content is provided by the
underlying file system and hence is out of the scope of our performance measurements.

These numbers indicate that even a prototypical implementation of a virtual file system,
based on our data model and built using an off-the-shelf RDF triple store, has acceptable per-
formance for everyday usage on a typical consumer machine. A semantic file system and a
more efficient triple store, more tightly integrated into the operating system, could achieve
even better performance, since this would allow us to circumvent the rather inefficient archi-
tecture that we have chosen for the sake of implementation simplicity.

We have also evaluated the performance of typical access operations to sile metadata under
comparable amounts of data. For this test, we have extended the datasets described before. We
have annotated each sile in the repository with (in average) 3 tags, 4 categories, 8 attributes,
and 5 slinks, which results in repositories containing up to 1.2 million triples. For the number
of siles we have oriented us towards the numbers of files on typical user desktops as described
before; additionally we have assumed numbers of annotations that we consider as easily man-
ageable by end users.

We have loaded these data into our repository implementation, which we ran on a high-
end laptop machine (Apple MacBook Pro, 2.53 GHz Intel Core 2 Duo with 4 GB RAM, running
Mac OS X 10.5.7) using Java 6, Jena 2.5.5, and PostgreSQL 8.2.5. We tested a mix of API calls

161

Dataset # 1 2 3

Total number of triples 11,049 123,967 1,238,534

Search siles tagged with a specific tag 0.271 1.084 2.008

Search siles tagged with one out of three tags 0.734 1.182 2.304

Search siles that are related to a given sile 0.014 0.029 0.039

Retrieve all sile annotations 0.037 0.050 0.071

Create one sile and add one tag 0.158 0.187 0.205

Delete one sile 0.044 0.051 0.071

Table 9.4: Evaluation results for metadata access operations: average execution times in sec-
onds

against this instance, including read and write access. These API calls are implemented in
our repository prototype using different mechanisms; for instance, some are implemented
using graph access through the Jena API (e.g., retrieval of sile annotations), others are realized
through SPARQL queries (e.g., search for siles based on tags), and some involve write access
to the graph. Each test session was repeated 10 times.

Table 9.4 shows the average execution times of the different calls. These numbers indicate
that an RDF-based sile repository, as described in this paper, is able to handle the discussed
data volumes with response times ranging from 14ms for simple queries (e.g., retrieving all
attributes for a sile) to around three seconds for more complex queries (e.g., retrieval of siles
that are tagged with one out of three given tags). Especially operations that are implemented
using SPARQL queries (i.e., sile search operations) require longer execution times with increas-
ing data amounts, hence we can identify the need to further improve triple stores and SPARQL
execution engines so that they are applicable in desktop environments. Nevertheless we con-
sider the average execution times of typical data access operations already as acceptable for
interactive work with such a system.

162

Chapter 10

Conclusions and Future Directions

The best way to predict the future is to invent it. — Alan Kay

10.1 Summary and Conclusions

This thesis introduces a novel concept for data management on the personal desktop, the sile
model. It is the goal of the sile model to provide a core foundation for the management and han-
dling of semantically annotated unstructured content. To accomplish this, we have combined
model elements from file systems, semantic technologies, and the object-oriented paradigm,
and have defined a formal model which can serve as a basis for the future development of sys-
tems that exhibit improved and more user-oriented characteristics w.r.t. personal information
management.

We have founded our conceptualization on an analysis of the current situation in the do-
main of personal information management and the semantic desktop. We have analyzed the
wide range of technologies, starting from simple organization metaphors that are in place to-
day, like hierarchical file systems, to heavyweight semantic desktop solutions that provide full
support for ontology-based modelling of personal data. From this analysis, we have derived
requirements and design goals for a generic data model that offers a sufficiently high level of
flexibility to be able to represent the different types of data that are found on typical desk-
tops. This model, called the sile model, has been defined in an abstract model; i.e., independent
from concrete representation syntaxes or implementations. The basic elements of this model
are siles (i.e., discrete, identifiable units of information), annotations (that are used to describe
siles), and spects (lightweight ontologies that describe valid annotation constellations). We
have enriched this model with an abstract query language, which we call sile filters, that se-
lects data objects based on their annotations. These models allow us to describe and process
different kinds of data that are typically relevant in the context of personal information man-
agement.

In anticipation of concrete implementations, we have discussed a mapping from the

163

sile model to a concrete representation which uses Semantic Web technologies (RDF, RDFS,
SPARQL). This mapping can be used (1) to implement sile repositories which are backed by
triple stores, and (2) to serialize sile data into self-contained files (so-called silepacks) and trans-
mit them across different systems.

In addition to the RDF-based serialization mechanisms, we have shown a general method
to provide remote access to repositories via XML-RPC requests, which allows us to distribute
sile data across different systems and platforms. We have also discussed how we can represent
sile data in a hierarchical, file system-like fashion. This representation is exposed via WebDAV
so that it can be accessed from every common desktop operating system, as if it were a normal
file system.

As proof of concept, we have discussed three different implementations of sile repositories.
One is based on Semantic Web technologies and makes use of their full set of features, includ-
ing inference and model validation. Because it is backed by a triple store, it provides direct
access to sile data in the form of RDF triples and thus can be integrated with other data sources
exposed on the Web of Data. Another prototypical implementation shows how another im-
portant class of personal information, e-mail, that is stored on an IMAP server can be wrapped
and transformed to the sile model. This transformation allows us to interpret e-mail messages
as siles, and to put them into a unified information context with other data sources. A further
example for such an information system are file systems, for which we have implemented an-
other prototypical wrapper. This wrapper stores file annotations in-place; i.e., in small chunks
of RDF that are stored directly in the file system.

We have presented a prototypical implementation of a user interface, the Semplorer, that
allows users to search, browse, and manipulate sile data in a way similar to file browsers. The
Semplorer operates on the unified data structure that the sile model provides, and thus does
not distinguish between the actual representation of siles. Hence the Semplorer enables the
user to annotate files, mail messages, relational databases, or triple stores in the same manner.

Finally, we have concluded our work with a discussion of our approach, and an outline
of commonalities as well as differences to other approaches in the semantic desktop research
area.

10.2 Future Research Directions

The results of this thesis can be regarded as the basis for a number of future research directions,
which we will outline in the following.

Extensions for the Sile Model and the Sile Filter Algebra The current specification of the
sile model and its associated query algebra covers, in the author’s opinion, a wide range of
application needs. Many directions to extend them are conceivable, and we plan to specify ad-
ditional annotation types and operator types. However we must ensure that implementations
of the model and the algebra are still simple and straightforward to use.

Access Control Mechanisms for Graph-Based Data Structures One question we did not
address in this thesis is how to efficiently manage access control in graph-based, open data
structures. This functionality is required as soon as sile repositories are intended not only
for personal use, but in collaborative environments. By “open data structures” we mean that
the data do not adhere to predefined schemas or structure definitions (as it is the case, e.g., in
relational databases). Similar to RDF, the sile model is designed to be extensible in terms of the
vocabulary that is used to describe and relate entities. Spects can be loaded into the system,

164

and repository implementations may use arbitrarily complex internal schemas. In contrast to
hierarchical structures, no rights inheritance can take place in graph-based structures; thus,
we need models and algorithms that allow for a fine-granular definition of access rights for
graph structures that take into account constantly changing data, both on the instance and on
the schema level.

Performance Optimization of Dynamic Triple Stores As we have seen in our prototypical
implementation of the sile repository, triple stores still suffer from a significant performance
drawback if the application requires reasoning and integrity validation in combination with
frequent dynamic updates of data. In the personal information management domain, data is
subject to constant change; this causes heavy load on the reasoning sub-systems, regardless of
whether inference is performed during update time or during query time. We want to further
investigate the question how triple stores can be designed and implemented more efficiently
under these conditions.

Integration of Data Sources We have already outlined how systems that contain relevant
data in the context of personal information management (e.g., e-mail servers) can be wrapped
by adapters that transform the information into the sile model and vice versa. However we
regard our work in this field only as initial step and preliminary proof of concept. We plan to
investigate on the question how more complex data structures can be efficiently transformed
to siles, and how sile filters can be executed on native data sets.

Integration of Desktop Applications Users carry out most of their daily productive work
not on the basis of underlying data structures (like files, RDF, or siles), but by using applica-
tions. Applications and their user interfaces represent the direct connection between digital
data and the user’s mental model, and they possess detailed knowledge about the meaning
and context of actions executed by a user. Thus, the application layer has the best knowledge
about human factors; however, in current systems this information is often lost. Our goal is
to work on algorithms how applications can capture and persist such knowledge in order to
generate relevant annotations for personal data, which may help in subsequent search and
retrieval tasks.

Sile Repository Mediation We have shown how different data sources, e.g., e-mail servers
or file systems, can be wrapped and represented as siles. However in order to interrelate these
distinct data sources, mediation components are required. Such components wrap an arbitrary
number of sile repositories, but appear to the outside as a single sile repository. Internally, such
a component would distribute incoming requests to the mediated repositories, and combine
the results to a single, integrated view.

Replication and Synchronization Currently, the sile model does not provide mechanisms
for repositories to synchronize or replicate their data. This is an open issue also for related
technologies like RDF databases. With the increasing power of mobile devices in terms of
computing power and memory, however, the importance of this question increases. In the
future, we plan to investigate on efficient algorithms that allow users to “undock” subsets of
their personal information space and re-synchronize them later on.

Analysis of Interaction Logs The manual generation of annotations is cumbersome, and of-
ten users are not willing to perform this task because they do not see an immediate benefit.

165

Research on automatic generation of annotations is mostly focusing on content analysis al-
gorithms. However these approaches are only in a limited manner applicable to our model,
which is not restricted to certain media types. Thus we plan to investigate in algorithms for
the analysis of user interaction logs, i.e., time series of actions that users and applications have
executed on the existing data, for which the sile model and our implementations are a solid
basis. We hope to derive context information out of these time series and can use these data to
instantiate new annotations and relationships between siles.

Integration of Structured and Unstructured Annotations Semantically enriched personal
information management, as it is envisioned by the Semantic Desktop idea, is situated in the
area of conflict between unstructured, lightweight annotations (like tags) and complex, for-
mally specified ontologies. The sile model and its implementations aim to be a kind of in-
termediator between these two worlds, which is reflected by the inclusion of annotations of
different semantic expressivity in the sile model. However, the interdependencies between
annotations on different semantic levels have not been fully studied, and are subject to further
research.

166

List of Figures

2.1 Pseudo-ontological use of file names and directories in a media library 15
2.2 File management interface in Mac OS 1.1 and Mac OS X 18
2.3 File management interface in Windows XP and Red Hat Linux 19
2.4 Folder icons in Windows XP, Windows Vista, Apple Mac OS X, and Linux/KDE 19
2.5 Three-dimensional user interfaces for file systems 22
2.6 Multiple scattered hierarchies on a user’s desktop computer 24
2.7 Typical file preview: no actual content . 25
2.8 Typical file metadata: no information available 26
2.9 RDF graph example . 28
2.10 RDF Turtle syntax example . 29
2.11 Semantic Desktop user interfaces . 43

3.1 Representation of mail messages and files using the sile model 57
3.2 A spect defining rules for the relationship between email categories and attributes 60

4.1 Sile type hierarchy . 70
4.2 Annotation type hierarchy (abstract annotations) 71
4.3 Bound annotation type hierarchy . 72
4.4 Annotation type hierarchy (complete) . 73
4.5 Spect type . 74
4.6 Filter type hierarchy (root types) . 75
4.7 Attribute filter type hierarchy . 76
4.8 Sile and slink filter type hierarchy . 77
4.9 Mediator-wrapper architecture using the repository interface 79
4.10 Repository type . 80

5.1 Sile ontology core classes . 89

6.1 Structure of a silepack . 111
6.2 The Linked Open Data cloud as of March 2009 114
6.3 Example XML-RPC communication . 116
6.4 Distributed connector/handler architecture . 126
6.5 Sile repository mounted as WebDAV folder . 129
6.6 WebDAV representation of sile annotations . 131

7.1 SemDAV server architecture overview . 135
7.2 SemDAV server components . 136
7.3 Sequence diagram for searchSiles() requests . 137
7.4 silefiles architecture . 139

167

7.5 An annotated e-mail message as displayed in an off-the-shelf e-mail client . . . 141

8.1 Semplorer main window structure . 147
8.2 Entity widgets: sile (a), tag (b), attribute (c), category (d), slink (e) 148
8.3 Widget with tooltip and delete button . 148
8.4 Semplorer timeline view . 149
8.5 Semplorer table view . 150

9.1 Architecture of a virtual file system, based on a sile repository 160

168

List of Tables

2.1 Comparison of file system characteristics . 12
2.2 Comparison of Semantic File Systems . 16
2.3 Comparison of Semantic Desktop projects . 40

5.1 URI prefixes for the sile ontology . 88
5.2 RDF properties for core attributes . 90
5.3 RDF properties for core slink names . 90
5.4 RDF properties for spects . 90
5.5 RDF properties for sile filters . 91

6.1 Serialization of spect applicability rules . 122

8.1 Conversion of entity widgets to sile filters . 151

9.1 Qualitative comparison of the sile model with other approaches 156
9.2 Datasets used for performance evaluation . 160
9.3 Evaluation results for virtual file system access operations: average execution

times in seconds . 161
9.4 Evaluation results for metadata access operations: average execution times in

seconds . 162

169

170

Listings

5.1 Example RDF representation of siles . 94
5.2 Simple SPARQL query . 95
5.3 SPARQL CONSTRUCT query . 95
5.4 SPARQL triple pattern for a TagFilter . 100
5.5 SPARQL representation of a negated TagFilter 101
5.6 SPARQL representation of two OR-combined TagFilters 102
5.7 SPARQL representation of a negated AND-combination of two TagFilters . . . 102
6.1 Silepack meta.ttl file example . 112
6.2 Sile serialization example . 117
6.3 Tag serialization example . 118
6.4 Tag array collection example . 119
6.5 Content serialization example . 120
6.6 Filter serialization example . 120
6.7 Spect serialization example . 121
6.8 XML-RPC method call serialization example . 122
6.9 Full SemDAV/XMLRPC method call . 124
6.10 Full SemDAV/XMLRPC method response . 125
7.1 Example of a silefiles metadata file . 140

171

172

Bibliography

[AAH06] David Ahlstroem, Rainer Alexandrowicz, and Martin Hitz. Improving Menu
Interaction: A Comparison of Standard, Force Enhanced and Jumping Menus.
In CHI ’06: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 1067–1076, New York, NY, USA, 2006. ACM Press.

[AB06] Anand Agarawala and Ravin Balakrishnan. Keepin’ it Real: Pushing the
Desktop Metaphor with Physics, Piles and the Pen. In CHI ’06: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, pages 1283–
1292, New York, NY, USA, 2006. ACM Press.

[ABDL07] Nitin Agrawal, William J. Bolosky, John R. Douceur, and Jacob R. Lorch. A
Five-Year Study of File-System Metadata. In Proceedings of the 5th Conference
on File and Storage Technologies (FAST ’07), San Jose, CA, 2007.

[ABG+06] Sasha Ames, Nikhil Bobb, Kevin M. Greenan, Owen S. Hofmann, Mark W.
Storer, Carlos Maltzahn, Ethan L. Miller, and Scott A. Brandt. LiFS: An
Attribute-Rich File System for Storage Class Memories. In Proceedings of the
23rd IEEE / 14th NASA Goddard Conference on Mass Storage Systems and Tech-
nologies, 2006.

[ABK+07] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyga-
niak, and Zachary Ives. DBpedia: A Nucleus for a Web of Open Data. In
Proceedings of the 6th International Semantic Web Conference (ISWC 2007), Busan,
Korea, 2007.

[ABM04] Riccardo Albertoni, Alessio Bertone, and Monica De Martino. Semantic Web
and Information Visualization. In Proceedings of the Semantic Web Applications
and Perspectives Workshop (SWAP 2004), 2004.

[ACMHP04] Karl Aberer, Philippe Cudré-Mauroux, Manfred Hauswirth, and Tim Van
Pelt. GridVine: Building Internet-Scale Semantic Overlay Networks. In
Sheila A. McIlraith, Dimitris Plexousakis, and Frank van Harmelen, editors,
International Semantic Web Conference, volume 3298 of Lecture Notes in Computer
Science, pages 107–121. Springer, 2004.

[Ado05] Adobe Systems Incorporated. XMP Specification. Adobe Systems Incorpo-
rated, September 2005.

[Aga06] Anand Agarawala. Enriching the Desktop Metaphor with Physics, Piles and
the Pen. Master’s thesis, University of Toronto, 2006.

173

[AL98] Nicolas Anquetil and Timothy Lethbridge. Extracting Concepts from File
Names: A New File Clustering Criterion. In ICSE ’98: Proceedings of the 20th
International Conference on Software engineering, pages 84–93, Washington, DC,
USA, 1998. IEEE Computer Society.

[AMMH07] Daniel J. Abadi, Adam Marcus, Samuel Madden, and Katherine J. Hollen-
bach. Scalable Semantic Web Data Management Using Vertical Partitioning.
In Proceedings of the 33rd International Conference on Very Proceedings of the 33rd
International Conference on Very Large Database (VLDB 2007), pages 411–422,
2007.

[AMS07] Kemafor Anyanwu, Angela Maduko, and Amit Sheth. SPARQ2L: Towards
Support for Subgraph Extraction Queries in RDF Databases. In WWW ’07:
Proceedings of the 16th International Conference on World Wide Web, pages 797–
806, New York, NY, USA, 2007. ACM Press.

[App93] Apple Computer, Inc. Inside Macintosh: Files. Addison-Wesley Publishing
Company, 1993.

[App00] Apple Computer, Inc. HFS Plus Volume Format. Apple Computer, Inc., 2000.

[AR06] Nicole Alexander and Siva Ravada. RDF Object Type and Reification in the
Database. In ICDE ’06: Proceedings of the 22nd International Conference on Data
Engineering, page 93, Washington, DC, USA, 2006. IEEE Computer Society.

[BB04] Hal Berghel and Natasa Brajkovska. Wading into Alternate Data Streams.
Communications of the ACM, 47(4):21–27, 2004.

[BBMN06] Ofer Bergman, Ruth Beyth-Marom, and Rafi Nachmias. The Project Fragmen-
tation Problem in Personal Information Management. In CHI ’06: Proceedings
of the SIGCHI conference on Human Factors in computing systems, pages 271–274,
New York, NY, USA, 2006. ACM Press.

[BD04] Michael Balzer and Oliver Deussen. Hierarchy Based 3D Visualization of
Large Software Structures. In VIS ’04: Proceedings of the Conference on Visu-
alization ’04, page 598.4, Washington, DC, USA, 2004. IEEE Computer Society.

[BDG+07] Lukas Blunschi, Jens-Peter Dittrich, Olivier René Girard, Shant Kirakos
Karakashian, and Marcos Antonio Vaz Salles. A Dataspace Odyssey: The
iMeMex Personal Dataspace Management System. In CIDR, pages 114–119.
www.crdrdb.org, 2007.

[Bec04] David Becket. RDF/XML Syntax Specification (W3C Recommendation 10 Febru-
ary 2004). World Wide Web Consortium, 2004.

[Bec07] David Beckett. Turtle – Terse RDF Triple Language, 2007. Available at http:
//www.dajobe.org/2004/01/turtle/, retrieved 08-Aug-2008.

[BG04] Dan Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0: RDF
Schema (W3C Recommendation 10 Februar 2004). World Wide Web Consortium,
2004.

[BGSV06] Stephan Bloehdorn, Olaf Görlitz, Simon Schenk, and Max Völkel. TagFS –
Tag Semantics for Hierarchical File Systems. In 6th International Conference on
Knowledge Management (I-KNOW’06), 2006.

174

http://www.dajobe.org/2004/01/turtle/
http://www.dajobe.org/2004/01/turtle/

[BHAR07] Chris Bizer, Tom Heath, Danny Ayers, and Yves Raimond. Interlinking Open
Data on the Web. In Poster at the 4th Europen Semantic Web Conference (ESWC
2007), 2007.

[BHLT06] Tim Bray, Dave Hollander, Andrew Layman, and Richard Tobin. Namespaces
in XML (Second Edition) (W3C Recommendation 16 August 2006). World Wide
Web Consortium, 2006. Available at http://www.w3.org/TR/REC-xml-names/.

[BKvH02] Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame: A
Generic Architecture for Storing and Querying RDF and RDF schema. In
Proceedings of the First International Semantic Web Conference (ISWC 2002), 2002.

[BL06a] Tim Berners-Lee. Linked Data. World Wide Web Consortium, 2006. Available
at http://www.w3.org/DesignIssues/LinkedData.html, retrieved 08-Aug-2008.

[BL06b] Tim Berners-Lee. Notation 3. World Wide Web Consortium, 2006. Available
at http://www.w3.org/DesignIssues/Notation3, retrieved 08-Aug-2008.

[BL07] Tim Berners-Lee. What do HTTP URIs Identify?, 01 2007. Available at http:
//www.w3.org/DesignIssues/HTTP-URI2, retrieved 08-Aug-2008.

[BLCC+06] Tim Berners-Lee, Yuhsin Chen, Lydia Chilton, Dan Connolly, Ruth Dhanaraj,
James Hollenbach, Adam Lerer, and David Sheets. Tabulator: Exploring and
Analyzing Linked Data on the Semantic Web. In Proceedings of the 3rd Interna-
tional Semantic Web User Interaction Workshop, 2006.

[BLFM05] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifier (URI):
Generic Syntax (RFC 3986). Network Working Group, January 2005.

[BLHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scien-
tific American, 284(5):34–43, 2001.

[BN95] Deborah Barreau and Bonnie A. Nardi. Finding and Reminding: File Organi-
zation from the Desktop. SIGCHI Bull., 27(3):39–43, 1995.

[Boa01] Richard Boardman. Multiple Hierarchies in User Workspace. In CHI ’01: CHI
’01 Extended Abstracts on Human Factors in Computing Systems, pages 403–404,
New York, NY, USA, 2001. ACM Press.

[Boo03] David Booth. Four Uses of a URL: Name, Concept, Web Location and Document
Instance. World Wide Web Consortium, 2003.

[BS04] Chris Bizer and Andy Seaborne. D2RQ - Treating Non-RDF Databases as
Virtual RDF Graphs. In Poster at the 3rd International Semantic Web Conference
(ISWC2004), 2004.

[BS08] Chris Bizer and Andreas Schultz. Benchmarking the Performance of Storage
Systems that Expose SPARQL Endpoints. In Proceedings of the 4th International
Workshop on Scalable Semantic Web Knowledge Base Systems (SSWS 2008), 2008.

[BS09] Christian Bizer and Andreas Schultz. The Berlin SPARQL Benchmark. To ap-
pear in: International Journal on Semantic Web and Information Systems — Special
issue on Scalability and Performance of Semantic Web Systems, 2009.

175

http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/Notation3
http://www.w3.org/DesignIssues/HTTP-URI2
http://www.w3.org/DesignIssues/HTTP-URI2

[BSS03] Richard Boardman, Robert Spence, and M. Angela Sasse. Too Many Hierar-
chies? The Daily Struggle for Control of the Workspace. In Proceedings of HCI
International 2003, volume 1, pages 616–620, 2003.

[BSW02] Benjamin B. Bederson, Ben Shneiderman, and Martin Wattenberg. Ordered
and Quantum Treemaps: Making Effective Use of 2D Space to Display Hier-
archies. ACM Trans. Graph., 21(4):833–854, 2002.

[Bus45] Vannevar Bush. As We May Think. The Atlantic Monthly, 176(1):101–108, July
1945.

[Byr93] Michael D. Byrne. Using Icons to Find Documents: Simplicity is Critical. In
CHI ’93: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 446–453, New York, NY, USA, 1993. ACM Press.

[CBHS05a] Jeremy J. Carroll, Christian Bizer, Pat Hayes, and Patrick Stickler. Named
Graphs. Journal of Web Semantics, 3(4), 2005.

[CBHS05b] Jeremy J. Carroll, Christian Bizer, Pat Hayes, and Patrick Stickler. Named
Graphs, Provenance and Trust. In WWW ’05: Proceedings of the 14th Interna-
tional Conference on World Wide Web, pages 613–622, New York, NY, USA, 2005.
ACM Press.

[CDD+04] Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds, Andy
Seaborne, and Kevin Wilkinson. Jena: Implementing the Semantic Web Rec-
ommendations. In WWW ’04: Proceedings of the 13th International Conference on
World Wide Web, pages 74–83, New York, NY, USA, 2004. ACM Press.

[CFT08] Kendall Grant Clark, Lee Feigenbaum, and Elias Torres. SPARQL Protocol for
RDF (W3C Recommendation 15 January 2008). World Wide Web Consortium,
2008.

[CG06] Andy Cockburn and Andrew Gin. Faster Cascading Menu Selections with En-
larged Activation Areas. In GI ’06: Proceedings of Graphics Interface 2006, pages
65–71, Toronto, Ont., Canada, Canada, 2006. Canadian Information Process-
ing Society.

[Chi02] Robert Chin. Three-Dimensional File System Browser. Crossroads, 9(1):16–18,
2002.

[CJ09] Richard Cyganiak and Anja Jentzsch. The Linking Open Data Dataset Cloud,
2009.

[Cla02] Kendall Grant Clark. Identity Crisis, 2002. Available at http://www.xml.com/
pub/a/2002/09/11/deviant.html, retrieved 08-Aug-2008.

[Cla05] Kendall Grant Clark. RDF Data Access Use Cases and Requirements (W3C Work-
ing Draft 25 March 2005). World Wide Web Consortium, March 2005.

[Cla06] Kendall Grant Clark. SPARQL Protocol for RDF (W3C Candidate Recommen-
dation 6 April 2006). Technical report, World Wide Web Consortium, 2006.

[Cod70] E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Commun.
ACM, 13(6):377–387, 1970.

176

http://www.xml.com/pub/a/2002/09/11/deviant.html
http://www.xml.com/pub/a/2002/09/11/deviant.html

[Con07] Dan Connolly. Gleaning Resource Descriptions from Dialects of Languages
(GRDDL) (W3C) Recommendation 11 September 2007. World Wide Web Con-
sortium, 2007.

[Cor] NudgeNudge Corp. Punakea – Make Tags come True.

[CPG05] Adam Cheyer, Jack Park, and Richard Giuli. Iris: Integrate. relate. infer. share.
In Stefan Decker, Jack Park, Dennis Quan, and Leo Sauermann, editors, Pro-
ceedings of the 1st Workshop on The Semantic Desktop. 4th International Semantic
Web Conference (Galway, Ireland), 2005.

[Cre07] Anne Cregan. Symbol Grounding for the Semantic Web. In Franconi et al.
[FKM07], pages 429–442.

[Cri03] M. Crispin. Internet Message Access Protocol (IMAP) (RFC 3501). Network
Working Group, 2003.

[CW91] Mark H. Chignell and John A. Waterworth. WIMPs and NERDs: An Extended
View of the User Interface. SIGCHI Bull., 23(2):15–21, 1991.

[Cyg05] Richard Cyganiak. A Relational Algebra for SPARQL. Technical Report HPL-
2005-170, HP Labs, 2005.

[DA07] Sebastian Dietzold and Sören Auer. Integrating SPARQL Endpoints into Di-
rectory Services. In Franconi et al. [FKM07].

[DAK+06] Andreas Dengel, Stefan Agne, Bertin Klein, Achim Ebert, and Matthias Deller.
Human-Centered Interaction with Documents. In HCM ’06: Proceedings of the
1st ACM International Workshop on Human-Centered Multimedia, pages 35–44,
New York, NY, USA, 2006. ACM Press.

[DB99] John R. Douceur and William J. Bolosky. A Large-scale Study of File-system
Contents. In Proceedings of the 1999 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems, pages 59–70, New York, NY,
USA, 1999. ACM Press.

[DB01] Nicolas Ducheneaut and Victoria Bellotti. E-Mail as Habitat: An Exploration
of Embedded Personal Information Management. interactions, 8(5):30–38,
2001.

[DELS99] Paul Dourish, W. Keith Edwards, Anthony LaMarca, and Michael Salis-
bury. PRESTO: An Experimental Architecture for Fluid Interactive Document
Spaces. ACM Trans. Comput.-Hum. Interact., 6(2):133–161, 1999.

[DES03] Rosario De Chiara, Ugo Erra, and Vittorio Scarano. VennFS: A Venn-Diagram
File Manager. In Proceedings of the Seventh International Conference on Informa-
tion Visualization (IV’03), 2003.

[DFJ+04] Li Ding, Tim Finin, Anupam Joshi, Rong Pan, R. Scott Cost, Yun Peng, Pavan
Reddivari, Vishal Doshi, and Joel Sachs. Swoogle: A Search and Metadata
Engine for the Semantic Web. In CIKM ’04: Proceedings of the 13th ACM Inter-
national Conference on Information and Knowledge Management, pages 652–659,
New York, NY, USA, 2004. ACM Press.

177

[DH05] Xin Dong and Alon Y. Halevy. Malleable Schemas: A Preliminary Report.
In Proceedings of the 8th International Workshop on the Web & Databases (WebDB
2005), pages 139–144, 2005.

[DH06] Philip L. Davidson and Jefferson Y. Han. Synthesis and Control on Large Scale
Multi-Touch Ssensing Displays. In NIME ’06: Proceedings of the 2006 Conference
on New Interfaces for Musical Expression, pages 216–219, Paris, France, France,
2006. IRCAM.

[DHM05] Xin Dong, Alon Halevy, and Jayant Madhavan. Reference Reconciliation in
Complex Information Spaces. In SIGMOD ’05: Proceedings of the 2005 ACM
SIGMOD International Conference on Management of Data, pages 85–96, New
York, NY, USA, 2005. ACM.

[Die05] Sebastian Dietzold. Generating RDF Models from LDAP Directories. In Pro-
ceedings of the Workshop on Scripting for the Semantic Web (Co-located with ESWC
2005), 2005.

[DKD+05] Li Ding, Pranam Kolari, Zhongli Ding, Saikanth Avancha, Tim Finin, and
Anupam Joshi. Using Ontologies in the Semantic Web: A Survey. Technical
Report TR CS-05-07, University of Maryland Baltimore County, Department
of Computer Science and Electrical Engineering, 2005.

[DMM00] Stefan Decker, Prasenjit Mitra, and Sergey Melnik. Framework for the Seman-
tic Web: An RDF Tutorial. IEEE Internet Computing, 04(6):68–73, 2000.

[DS04] Mike Dean and Guus Schreiber. OWL Web Ontology Language Reference (W3C
Recommendation 10 February 2004). World Wide Web Consortium, February
2004. Available at http://www.w3.org/TR/owl-ref/.

[DS06] Jens-Peter Dittrich and Marcos Antonio Vaz Salles. iDM: A Unified and Ver-
satile Data Model for Personal Dataspace Management. In Proceedings of the
32nd International Conference on Very Large Data Bases, Seoul, Korea, September
12-15, 2006, pages 367–378, 2006.

[DSKB05] Jens-Peter Dittrich, Marcos Antonio Vaz Salles, Donald Kossmann, and Lukas
Blunschi. iMeMex: Escapes from the Personal Information Jungle. In VLDB
’05: Proceedings of the 31st International Conference on Very Large Data Bases,
pages 1306–1309. VLDB Endowment, 2005.

[DWSK03] Luping Ding, Kevin Wilkinson, Craig Sayers, and Harumi Kuno. Application-
Specific Schema Design for Storing Large RDF Datasets. In In First Intl Work-
shop on Practical and Scalable Semantic Systems, 2003.

[EB04] Sarah P. Everett and Michael D. Byrne. Unintended Effects: Varying Icon
Spacing Changes Users’ Visual Search Strategy. In CHI ’04: Proceedings of the
SIGCHI conference on Human factors in computing systems, pages 695–702, New
York, NY, USA, 2004. ACM Press.

[EM07] Orri Erling and Ivan Mikhailov. RDF Support in the Virtuoso DBMS. In Sören
Auer, Christian Bizer, Claudia Müller, and Anna V. Zhdanova, editors, CSSW,
volume 113 of LNI, pages 59–68. GI, 2007.

178

http://www.w3.org/TR/owl-ref/

[Eng70] Douglas C. Engelbart. X-Y Position Indicator for a Display System (Patent No
3541541). United States Patent Office, 1970.

[FFG96] Scott Fertig, Eric Freeman, and David Gelernter. “Finding and Reminding’́
Reconsidered. SIGCHI Bull., 28(1):66–69, 1996.

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1 (RFC 2616). Network
Working Group, 1999.

[FGSSB06] Norberto Fernandez-Garcia, Leo Sauermann, Luis Sanchez, and Ansgar
Bernardi. PIMO Population and Semantic Annotation for the Gnowsis Se-
mantic Desktop. In Proceedings of the Semantic Desktop and Social Semantic Col-
laboration Proceedings of the Semantic Desktop and Social Semantic Collaboration
Workshop at the ISWC, 2006.

[FHM05] Michael Franklin, Alon Halevy, and David Maier. From Databases to Datas-
paces: A New Abstraction for Information Management. SIGMOD Rec.,
34(4):27–33, 2005.

[Fie00] Roy Thomas Fielding. Architecture Styles and the Design of Network-based Soft-
ware Architectures. PhD thesis, University of California, Irvine, 2000.

[FKM07] Enrico Franconi, Michael Kifer, and Wolfgang May, editors. The Semantic Web:
Research and Applications, 4th European Semantic Web Conference, ESWC 2007,
Innsbruck, Austria, June 3-7, 2007, Proceedings, volume 4519 of Lecture Notes in
Computer Science. Springer, 2007.

[FM04] Leah Findlater and Joanna McGrenere. A Comparison of Static, Adaptive,
and Adaptable Menus. In CHI ’04: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 89–96, New York, NY, USA, 2004.
ACM Press.

[FNB06] Jennifer Ferreira, James Noble, and Robert Biddle. A Case for Iconic Icons. In
AUIC ’06: Proceedings of the 7th Australasian User interface conference, pages 97–
100, Darlinghurst, Australia, Australia, 2006. Australian Computer Society,
Inc.

[Gar03] L. M. Garshol. Living With Topic Maps and RDF. Ontolpia, 2003. Available at
http://www.ontopia.net/topicmaps/materials/tmrdf.html, retrieved 08-Aug-
2008.

[GEP04] Gunnar Astrand Grimnes, Pete Edwards, and Alun D. Preece. Learning Meta-
Descriptions of the FOAF Network. In Sheila A. McIlraith, Dimitris Plex-
ousakis, and Frank van Harmelen, editors, The Semantic Web - ISWC 2004:
Third International Semantic Web Conference,Hiroshima, Japan, November 7-11,
2004. Proceedings, volume 3298 of LNCS, pages 152–165. Springer, 2004.

[GG95] Nicola Guarino and Pierdaniele Giaretta. Ontologies and Knowledge Bases:
Towards a Terminological Clarification. In N. J. I. Mars, editor, Towards Very
Large Knowledge Bases: Knowledge Building and Knowledge Sharing, pages 25–32.
IOS Press, Amsterdam, 1995.

179

http://www.ontopia.net/topicmaps/materials/tmrdf.html

[GHM04] Claudio Gutiérrez, Carlos A. Hurtado, and Alberto O. Mendelzon. Founda-
tions of Semantic Web Databases. In Alin Deutsch, editor, Proceedings of the
23rd ACM Symposium on Principles on Database Systems, pages 95–106. ACM,
2004.

[GHM+07] Tudor Groza, Siegfried Handschuh, Knud Moeller, Gunnar Grimnes, Leo
Sauermann, Enrico Minack, Cedric Mesnage, Mehdi Jazayeri, Gerald Reif,
and Rosa Gudjonsdottir. The NEPOMUK Project - On the Way to the So-
cial Semantic Desktop. In Tassilo Pellegrini and Sebastian Schaffert, editors,
Proceedings of I-Semantics’ 07, pages pp. 201–211. JUCS, 2007.

[GHM+08] Bernardo Cuenca Grau, Ian Horrocks, Boris Motik, Bijan Parsia, Peter Patel-
Schneider, and Ulrike Sattler. OWL 2: The Next Step for OWL. Web Semantics:
Science, Services and Agents on the World Wide Web, 6(4):309 – 322, 2008. Seman-
tic Web Challenge 2006/2007.

[Gia99] Dominic Giampaolo. Practical File System Design with the Be File System. Mor-
gan Kaufmann Publishers, 1999.

[GJSJ91] David K. Gifford, Pierre Jouvelot, Mark A. Sheldon, and James W. O’Toole Jr.
Semantic File Systems. In SOSP ’91: Proceedings of the 13th ACM Symposium
on Operating Systems Principles, pages 16–25, New York, NY, USA, 1991. ACM
Press.

[GN96] Don Gentner and Jakob Nielsen. The Anti-Mac Interface. Commun. ACM,
39(8):70–82, 1996.

[Gra04] Bernardo Cuenca Grau. A Possible Simplification of the Semantic Web Archi-
tecture. In WWW ’04: Proceedings of the 13th international conference on World
Wide Web, pages 704–713, New York, NY, USA, 2004. ACM Press.

[Gra06] Bernardo Cuenca Grau. OWL 1.1 Web Ontology Language Tractable Fragments
(W3C Member Submission 19 December 2006). World Wide Web Consortium,
2006.

[Gre07] Mark Greaves. Semantic Web 2.0. IEEE Intelligent Systems, 22(2):94–96, 2007.

[Gri04] Richard Grimes. Code Name WinFS: Revolutionary File Storage System Lets
Users Search and Manage Files Based on Content. MSDN Magazine, 19(1),
2004.

[Gru93] T.R. Gruber. A Translation Approach to Portable Ontology Specifications.
Knowledge Acquisition, 5(2):199–220, 1993.

[GWF+99] Y. Goland, E. Whitehead, A. Faizi, S. Carter, and D. Jensen. HTTP Extensions
for Distributed Authoring – WebDAV (RFC 2518). Network Working Group,
1999.

[Has08] Bernhard Haslhofer. A Web-based Mapping Technique for Establishing Metadata
Interoperability. PhD thesis, University of Vienna, 2008.

[Hay04] Patrick Hayes. RDF Semantics (W3C Recommendation 10 February 2004). World
Wide Web Consortium, 2004.

180

[HBEV04] Peter Haase, Jeen Broekstra, Andreas Eberhart, and Raphael Volz. A Compar-
ison of RDF Query Languages. In Proceedings of the Third International Semantic
Web Conference, Hiroshima, Japan, 2004., NOV 2004.

[HH07] Olaf Hartig and Ralf Heese. The SPARQL Query Graph Model for Query
Optimization. In Franconi et al. [FKM07], pages 564–578.

[HHPS01] Ian Horrocks, Frank Van Harmelen, and Peter F. Patel-Schneider. DAML+OIL.
Joint US/EU ad hoc Agent Markup Language Committee, 2001.

[HK04] Andrew Hogue and David Karger. Wrapper Induction for End-User Semantic
Content Development. In First International Workshop on Interaction Design and
the Semantic Web, 2004.

[HK08] Bernhard Haslhofer and Wolfgang Klas. A Survey of Techniques for Achiev-
ing Metadata Interoperability. ACM Comput. Surv., 2008. Accepted for publi-
cation.

[HMPR04] A. R. Hevner, S. T. March, J. Park, and S. Ram. Design Science in Information
Systems Research. MIS Quarterly, 28(1):75–105, 2004.

[HRS07] Harry Halpin, Valentin Robu, and Hana Shepherd. The Complex Dynamics
of Collaborative Tagging. In WWW ’07: Proceedings of the 16th International
World Wide Web Conference, pages 211–220, New York, NY, USA, 2007. ACM
Press.

[IAD06] Jon Iturrioz, Sergio Fernández Anzuola, and Oscar Díaz. Turning the Mouse
into a Semantic Device: The seMouse Experience. In York Sure and John
Domingue, editors, The Semantic Web: Research and Applications, 3rd European
Semantic Web Conference, ESWC 2006, Budva, Montenegro, June 11-14, 2006,
Proceedings, volume 4011 of Lecture Notes in Computer Science, pages 457–471.
Springer, 2006.

[ICK+07] Ekaterini Ioannou, Juri De Coi, Arne Koesling, Daniel Olmedilla, and Wolf-
gang Nejdl. Access Control for Sharing Semantic Data across Desktops. In
Tim Finin, Lalana Kagal, and Daniel Olmedilla, editors, Proceedings of the
Workshop on Privacy Enforcement and Accountability with Semantics (PEAS2007)
at ISWC/ASWC2007, Busan, South Korea, November 2007.

[JCS+04] Andrew Josey, Donald W. Cragun, Nicholas Stoughton, Mark Brown, and
Cathy Hughes. IEEE Standard 1003.1, 2004 Edition. IEEE and The Open Group,
2004 edition, 2004.

[JEI02] JEITA. Exchangeable Image File Format for Digital Still Cameras: EXIF Version 2.2.
Japan Electronics and Information Technology Industries Association, April
2002.

[Jon04] William Jones. Finders, Keepers? The Present and Future Perfect in Support
of Personal Information Management. First Monday, 9(3), 2004.

[Jos06] S. Josefsson. The Base16, Base32, and Base64 Data Encodings (RFC 4648). Net-
work Working Group, October 2006.

181

[JW05] Ian Jacobs and Norman Walsh. Architecture of the World Wide Web, Volume One
(W3C Recommendation 15 December 2004). World Wide Web Consortium, 2005.
Available at http://www.w3.org/TR/webarch/.

[Kar07] David R. Karger. Haystack: Per-User Information Environments Based on
Semistructured Data. In Victor Kaptelinin and Mary Czerwinski, editors, Be-
yond the Desktop Metaphor, pages 49–100. Massachusetts Institute of Technol-
ogy, 2007.

[Kat07] Phil Katz. ZIP File Format Specification. PKWARE Inc., 2007.

[KBH+03] David Karger, Karun Baksxhi, David Huynh, Dennis Quan, and Vineet Sinha.
Haystack: A Customizable General-Purpose Information Management Tool
for End Users of Semistructured Data. In Proceedings of the 2nd Biennal Confer-
ence on Innovative Data Systems Research (CIDR 2005), 2003.

[KC04] Graham Klyne and Jeremy J. Carroll. Resource Description Framework (RDF):
Concepts and Abstract Syntax (W3C Recommendation 10 February 2004). World
Wide Web Consortium, 2004.

[KHL+07] Akrivi Katifori, Constantin Halatsis, George Lepouras, Costas Vassilakis, and
Eugenia Giannopoulou. Ontology Visualization Methods – A Survey. ACM
Comput. Surv., 39(4):10, 2007.

[LM99] Stephen Laurence and Eric Margolis. Concepts and Cognitive Science. In Eric
Margolis and Stephen Laurence, editors, Concepts: Core Readings, chapter 1,
pages 3–81. MIT Press, July 1999.

[LMS05] P. Leach, M. Mealling, and R. Salz. A Universally Unique IDentifier (UUID)
URN Namespace (RFC 4122). Network Working Group, 2005.

[LT07] Stefan Leitich and Martin Topf. Globe of Music - Music Library Visualization
Using GeoSOM. In 8th International Conference on Music Information Retrieval
(ISMIR 2007), Vienna, Austria, 9 2007. Österreichische Computer Gesellschaft
(OCG).

[Mal83] Thomas W. Malone. How do People Organize their Desks? Implications for
the Design of Office Information Systems. ACM Trans. Inf. Syst., 1(1):99–112,
1983.

[Mar06] Ben Martin. The World is a libferris Filesystem. Linux Journal, April 2006.

[Mas98] L. Masinter. The “data” URL Scheme (RFC 2397). Network Working Group,
August 1998.

[MB05] Alistair Miles and Sean Bechhofer. SKOS Simple Knowledge Organization Sys-
tem Reference (W3C Working Draft 25 January 2008). World Wide Web Consor-
tium, 2005.

[MH07] Knud Möller and Siegfried Handschuh. Towards a Light-Weight Semantic
Desktop. In Siegfried Handschuh and Gerald Reif, editors, Proceedings of the
Semantic Desktop Design Workshop at ESWC 2007, pages 36–46, 2007.

[MM04] Frank Manola and Eric Miller. RDF Primer (W3C Recommendation 10 February
2004). World Wide Web Consortium, February 2004.

182

http://www.w3.org/TR/webarch/

[msGD+08] m.c. schraefel, Jennifer Golbeck, Duane Degler, Abraham Bernstein, and
Lloyd Rutledge, editors. Proceedings of the Semantic Web User Interaction Work-
shop at CHI 2008: Exploring HCI Challenges, 2008.

[MSSvE07] Antoni Mylka, Leo Sauermann, Michael Sintek, and Ludger van Elst. NEPO-
MUK Ontologies. Technical report, NEPOMUK Project Consortium, 2007.
Available at http://www.semanticdesktop.org/ontologies.

[MTCP04] Aimilia Magkanaraki, Val Tannen, Vassilis Christophides, and Dimitris Plex-
ousakis. Viewing the Semantic Web through RVL Lenses. Journal of Web Se-
mantics, 1(4):359–375, 2004.

[MvH04] Deborah L. McGuinness and Frank van Harmelen. OWL Web Ontology Lan-
guage Overview (W3C Recommendation 10 February 2004). World Wide Web
Consortium, 2004.

[NH02] Quang Vinh Nguyen and Mao Lin Huang. Improvements of Space-
Optimized Tree for Visualizing and Manipulating Very Large Hierarchies.
In VIP ’02: Selected papers from the 2002 Pan-Sydney workshop on Visualisation,
pages 75–81, Darlinghurst, Australia, Australia, 2002. Australian Computer
Society, Inc.

[NH04] Quang V. Nguyen and Mao L. Huang. Visualising File Systems Using ENC-
CON Model. In VIP ’05: Proceedings of the Pan-Sydney area workshop on Visual
information processing, pages 61–65, Darlinghurst, Australia, Australia, 2004.
Australian Computer Society, Inc.

[NHT+06] Lev Novik, Irena Hudis, Douglas B. Terry, Sanjay Anand, Vivek Jhaveri,
Ashish Shah, and Yunxin Wu. Peer-to-Peer Replication in WinFS. Technical
Report MSR-TR-2006-78, Microsoft Research, 2006.

[NL06] Olaf Noppens and Thorsten Liebig. Interactive Visualization of Large OWL
Instance Sets. In Proceedings of the 3rd International Semantic Web User Interac-
tion Workshop, 2006.

[ODC+08] Eyal Oren, Renaud Delbru, Michele Catasta, Richard Cyganiak, Holger
Stenzhorn, and Giovanni Tummarello. Sindice.com: A Document-oriented
Lookup Index for Open Linked Data. Internal Journal of Metadata, Semantics
and Ontologies, 3(1):37–52, 2008.

[OG92] James W. O’Toole and David K. Gifford. Names Should Mean What, Not
Where. In Proceedings of the 5th ACM SIGOPS European Workshop on Models
and Paradigms for Distributed Systems Structuring, pages 1–5, New York, NY,
USA, 1992. ACM Press.

[Oko08] Adaora Chinelo Okoli. Extraction of Contextual Metadata from File System
Interactions. Master’s thesis, University of Vienna, 2008.

[OS09] Adaora Okoli and Bernhard Schandl. Extraction of Contextual Metadata from
File System Interactions. In Workshop on Exploitation of Usage and Attention
Metadata (EUAM 09) Workshop on Exploitation of Usage and Attention Metadata
(EUAM 2009), 2009.

183

http://www.semanticdesktop.org/ontologies

[OVBD06] Eyal Oren, Max Völkel, John Breslin, and Stefan Decker. Semantic Wikis for
Personal Knowledge Management. Database and Expert Systems Applications,
pages 509–518, 2006.

[PAG06a] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and Com-
plexity of SPARQL. In Isabel F. Cruz, Stefan Decker, Dean Allemang, Chris
Preist, Daniel Schwabe, Peter Mika, Michael Uschold, and Lora Aroyo, ed-
itors, International Semantic Web Conference, volume 4273 of Lecture Notes in
Computer Science, pages 30–43. Springer, 2006.

[PAG06b] Jorge Pérez, Marcelo Arenas, and Claudio Gutiérrez. Semantics of SPARQL.
Technical Report TR/DCC-2006-17, Universidad de Chile, October 2006.

[PBKL06] Emmanuel Pietriga, Christian Bizer, David Karger, and Ryan Lee. Fres-
nel: A Browser-Independent Presentation Vocabulary for RDF. In Isabel F.
Cruz, Stefan Decker, Dean Allemang, Chris Preist, Daniel Schwabe, Peter
Mika, Michael Uschold, and Lora Aroyo, editors, International Semantic Web
Conference, volume 4273 of Lecture Notes in Computer Science, pages 158–171.
Springer, 2006.

[PH03] Jeff Z. Pan and Ian Horrocks. RDFS(FA) and RDF MT: Two Semantics for
RDFS. In Dieter Fensel, Katia P. Sycara, and John Mylopoulos, editors, In-
ternational Semantic Web Conference, volume 2870 of Lecture Notes in Computer
Science, pages 30–46. Springer, 2003.

[Pow03] Shelley Powers. Practical RDF. O’Reilly, Beijing, Cambridge, 2003.

[PPS04] Bijan Parsia and Peter F. Patel-Schneider. Meaning and the Semantic Web. In
WWW Alt. ’04: Proceedings of the 13th international World Wide Web conference
on Alternate track papers & posters, pages 306–307, New York, NY, USA, 2004.
ACM Press.

[PS03a] Steve Pepper and Sylvia Schwab. Curing the Web’s Identity Crisis: Subject
Indicators for RDF. Ontopia, 2003. Available at http://www.ontopia.net/

topicmaps/materials/identitycrisis.html, retrieved 08-Aug-2008.

[PS03b] A. Pras and J. Schoenwaelder. On the Difference Between Information Models and
Data Models (RFC 3444). Network Working Group, 2003.

[PS08] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for RDF
(W3C Recommendation 15 January 2008). World Wide Web Consortium, 2008.

[PSH06] Peter F. Patel-Schneider and Ian Horrocks. Position Paper: A Comparison of
Two Modelling Paradigms in the Semantic Web. In WWW ’06: Proceedings of
the 15th international conference on World Wide Web, pages 3–12, New York, NY,
USA, 2006. ACM Press.

[PSH07] Peter F. Patel-Schneider and Ian Horrocks. OWL 1.1 Web Ontology Language
Overview (W3C Member Submission 19 December 2006). World Wide Web Con-
sortium, 2007. Available at http://www.w3.org/Submission/owl11-overview/,
retrieved 08-Aug-2008.

184

http://www.ontopia.net/topicmaps/materials/identitycrisis.html
http://www.ontopia.net/topicmaps/materials/identitycrisis.html
http://www.w3.org/Submission/owl11-overview/

[PSR06] Yoann Padioleau, Benjamin Sigonneau, and Olivier Ridoux. Lisfs: A logi-
cal information system as a file system. In Proceeding of the 28th International
Conference on Software Engineering (ICSE 2006), pages 803–806, New York, NY,
USA, 2006. ACM Press.

[QHSK02] Dennis Quan, David Huynh, Vineet Sinha, and David Karger. Adenine: A
Metadata Programming Language. Massachusets Institute of Technology, 2002.

[RCCR02] George Robertson, Kim Cameron, Mary Czerwinski, and Daniel Robbins. Pol-
yarchy Visualization: Visualizing Multiple Intersecting Hierarchies. In CHI
’02: Proceedings of the SIGCHI conference on Human factors in computing systems,
pages 423–430, New York, NY, USA, 2002. ACM Press.

[Res01] P. Resnik. Internet Message Format (RFC 2822). Network Working Group, 2001.

[RGH+07] Gerald Reif, Tudor Groza, Siegfried Handschuh, Mehdi Jazayeri, and Cédric
Mesnage. Intermediate Nepomuk Architecture. Technical Report NEPOMUK
D6.2.A, NEPOMUK Project Consortium, 2007.

[Roh05] Jean Rohmer. Lessons for the Future of Semantic Desktops Learnt from 10
Years of Experience with the IDELIANCE Semantic Networks Manager. In
Stefan Decker, Jack Park, Dennis Quan, and Leo Sauermann, editors, Proc. of
Semantic Desktop Workshop at the ISWC, Galway, Ireland, November 6, volume
175, November 2005.

[RP08] Jörg Richter and Jurij Poelchau. Deepamehta — another computer is possible.
In Jörg Rech, Björn Decker, and Eric Ras, editors, Emerging Technologies for
Semantic Work Environments: Techniques, Methods, and Applications. Idea Group
Inc., 2008.

[RSK04] Pamela Ravasio, Sissel Guttormsen Schär, and Helmut Krueger. In Pursuit of
Desktop Evolution: User Problems and Practices with Modern Desktop Sys-
tems. ACM Transactions on Computer-Human Interaction (TOCHI), 11(2):156–
180, 2004.

[RSW06] Frank Ruskey, Carla D. Savage, and Stan Wagon. The Search for Simple
Symmetric Venn Diagrams. Notices of the American Mathematical Society,
53(11):1304–1311, 2006.

[RVH05] Jörg Richter, Max Völkel, and Heiko Haller. DeepaMehta — A Semantic Desk-
top. In Stefan Decker, Jack Park, Dennis Quan, and Leo Sauermann, editors,
Proceedings of the 1st Workshop on The Semantic Desktop. 4th International Seman-
tic Web Conference (Galway, Ireland), volume 175. CEUR-WS, NOV 2005.

[SAPT07] Bernhard Schandl, Arash Amiri, Stefan Pomajbik, and Diman Todorov. In-
tegrating File Systems and the Semantic Web. In Demo at the 3rd European
Semantic Web Conference (ESWC 2007), 2007.

[SBD05] Leo Sauermann, Ansgar Bernardi, and Andreas Dengel. Overview and Out-
look on the Semantic Desktop. In Stefan Decker, Jack Park, Dennis Quan,
and Leo Sauermann, editors, Proceedings of the 1st Semantic Desktop Workshop,
volume 175, Galway, Ireland, November 2005. CEUR Workshop Proceedings.

185

[SBLH06] Nigel Shadbolt, Tim Berners-Lee, and Wendy Hall. The Semantic Web Revis-
ited. IEEE Intelligent Systems, 21(3):96–101, 2006.

[Sch06] Bernhard Schandl. SemDAV: A File Exchange Protocol for the Semantic Desk-
top. In Proceedings of the Semantic Desktop and Social Semantic Collaboration
Workshop, volume 202, Athens, GA, USA, November 2006. CEUR Workshop
Proceedings.

[SDvE+06] Leo Sauermann, Andreas Dengel, Ludger van Elst, Andreas Lauer, Heiko
Maus, and Sven Schwarz. Personalization in the EPOS Project. In Proceed-
ings of the Semantic Web Personalization Workshop at the ESWC 2006, 2006.

[Sea04] Andy Seaborne. RDQL - A Query Language for RDF (W3C Member Submission
9 January 2004). World Wide Web Consortium, 2004.

[SH08] Leo Sauermann and Dominik Heim. Evaluating Long-Term Use of the Gnow-
sis Semantic Desktop for PIM. In The Semantic Web — ISWC 2008, volume 5318
of LNCS, pages 467–482. Springer, 2008.

[SH09] Bernhard Schandl and Bernhard Haslhofer. The Sile Model – A Semantic File
System Infrastructure for the Desktop. In Proceedings of the 6th European Se-
mantic Web Conference (ESWC 2009), Heraklion, Greece, 2009.

[Shn92] Ben Shneiderman. Tree Visualization with Tree-Maps: 2D Space-Filling Ap-
proach. ACM Trans. Graph., 11(1):92–99, 1992.

[Sir05] John Siracusa. Mac OS X 10.4 Tiger. ars technica - the art of technology, 2005.

[SK06] Bernhard Schandl and Ross King. The SemDAV Project: Metadata Manage-
ment for Unstructured Content. In CAMA ’06: Proceedings of the 1st Interna-
tional Workshop on Contextualized Attention Metadata: Collecting, Managing and
Exploiting of Rich Usage Information, pages 27–32, New York, NY, USA, 2006.
ACM Press.

[SM07a] Andy Seaborne and Geetha Manjunath. SPARQL/Update: A Language for Up-
dating RDF Graphs. Hewlett-Packard, 2007.

[SM07b] Lucia Specia and Enrico Motta. Integrating Folksonomies with the Semantic
Web. In Franconi et al. [FKM07], pages 624–639.

[SS94] Andrew Sears and Ben Shneiderman. Split Menus: Effectively Using Selection
Frequency to Organize Menus. ACM Trans. Comput.-Hum. Interact., 1(1):27–51,
1994.

[SS08] Simon Schenk and Steffen Staab. Networked Graphs: A Declarative Mech-
anism for SPARQL Rules, SPARQL Views and RDF Data Integration on the
Web. In WWW ’08: Proceeding of the 17th international conference on World Wide
Web, pages 585–594, New York, NY, USA, 2008. ACM.

[SSB+08] Markus Stocker, Andy Seaborne, Abraham Bernstein, Christoph Kiefer, and
Dave Reynolds. SPARQL Basic Graph Pattern Optimization Using Selectivity
Estimation. In WWW ’08: Proceeding of the 17th international conference on World
Wide Web, pages 595–604, New York, NY, USA, 2008. ACM.

186

[Tal03] Marcelo Tallis. Semantic Word Processing for Content Authors. In In Work-
shop Notes of the Knowledge Markup and Semantic Annotation Workshop (SEMAN-
NOT 2003), Second International Conference on Knowledge Capture (K-CAP 2003),
October 2003.

[TH06] Yannis Tzitzikas and Jean-Luc Hainaut. On the Visualization of Large-sized
Ontologies. In AVI ’06: Proceedings of the working conference on Advanced visual
interfaces, pages 99–102, New York, NY, USA, 2006. ACM Press.

[TJB06] Jaime Teevan, William Jones, and Benjamin B. Bederson. Introduction to the
Special Issue on Personal Information Management. Commun. ACM, 49(1):40–
43, 2006.

[TL05] Heikki Topi and Wendy Lucas. Searching the Web: Operator Assistance Re-
quired. Information Processing and Management, 41(2):383–403, March 2005.

[TM07] Giovanni Tummarello and Christian Morbidoni. Collaboratively Building
Structured Knowledge with DBin: From del.icio.us Tags to an “RDFS Folk-
sonomy”. In Workshop on Social and Collaborative Construction of Structured
Knowledge (CKC 2007) at WWW 2007, Banff, Canada, 2007.

[TMN06] Giovanni Tummarello, Christian Morbidoni, and Michele Nucci. Enabling
Semantic Web Communities with DBin: An Overview. In Proceedings of the 5th
International Semantic Web Conference (ISWC 2006), pages 943–950. Springer,
2006.

[TMNP06] Giovanni Tummarello, Christian Morbidoni, Michele Nucci, and Onofrio
Panzarino. Brainlets: “Instant” Semantic Web Applications. In Sören Auer,
Chris Bizer, and Libby Miller, editors, Proceedings of the ESWC’06 Workshop on
Scripting for the Semantic Web, volume 183 of CEUR Workshop Proceedings ISSN
1613-0073, June 2006.

[Tod08] Diman Todorov. User Interface Concepts for Semantic Information Systems.
Master’s thesis, University of Vienna, 2008.

[TPM07] Giovanni Tummarello, Axel Polleres, and Christian Morbidoni. Who the
FOAF knows Alice? A Needed Step Toward Semantic Web Pipes. In Proceed-
ings of the First International Workshop Workshop "New forms of reasoning for the
Semantic Web: scalable, tolerant and dynamic". CEUR Workshop Proceedings,
2007.

[vD97] Andries van Dam. Post-WIMP User Interfaces. Commun. ACM, 40(2):63–67,
1997.

[vHvW02] Frank van Ham and Jarke J. van Wijk. Beamtrees: Compact Visualization of
Large Hierarchies. In INFOVIS ’02: Proceedings of the IEEE Symposium on In-
formation Visualization (InfoVis’02), page 93, Washington, DC, USA, 2002. IEEE
Computer Society.

[VS06] Max Völkel and Sebastian Schaffert, editors. Proceedings of the First Workshop
on Semantic Wikis - From Wiki to Semantics (Co-located with ESWC 2006), volume
206. CEUR-WS.org, 2006.

187

[vWvHvdW03] Jarke J. van Wijk, Frank van Ham, and Huub van de Wetering. Rendering
Hierarchical Data. Commun. ACM, 46(9):257–263, 2003.

[Wal05] Carsten Waldeck. Liquid 2D Scatter Space for File System Browsing. iv, pages
451–456, 2005.

[Wat07] Andrew Watt. Professional Windows PowerShell. Wrox Press Ltd., Birmingham,
UK, 2007.

[WG04] E. James Whitehead and Yaron Y. Goland. The WebDAV property design.
Softw. Pract. Exper., 34(2):135–161, 2004.

[WGM95] C.E. Wills, D. Giampaolo, and M.S. Mackovitch. Experience with an Interac-
tive Attribute-based User Information Environment. In Computers and Com-
munications, 1995. Conference Proceedings of the 1995 IEEE Fourteenth Annual
International Phoenix Conference on, pages 359–365, Mar 1995.

[Win99] David Winer. XML-RPC Specification. UserLand Software, Inc., 1999. Avail-
able at http://www.xmlrpc.com/spec, retrieved 08-Aug-2008.

[WLHW08] Gang Wu, Juanzi Li, Jianqiang Hu, and Kehong Wang. System II: A Na-
tive RDF Repository Based on the Hypergraph Representation for RDF Data
Model. In WAIM ’08: Proceedings of the 2008 The Ninth International Confer-
ence on Web-Age Information Management, pages 62–69, Washington, DC, USA,
2008. IEEE Computer Society.

[WLL+07] Timo Weithöner, Thorsten Liebig, Marko Luther, Sebastian Böhm,
Friedrich W. von Henke, and Olaf Noppens. Real-World reasoning with
OWL. In Franconi et al. [FKM07], pages 296–310.

[WWDW06] Weixin Wang, Hui Wang, Guozhong Dai, and Hongan Wang. Visualization
of Large Hierarchical Data by Circle Packing. In CHI ’06: Proceedings of the
SIGCHI conference on Human Factors in computing systems, pages 517–520, New
York, NY, USA, 2006. ACM Press.

[XC05] Huiyong Xiao and Isabel F. Cruz. A Multi-Ontology Approach for Personal
Information Management. In Stefan Decker, Jack Park, Dennis Quan, and Leo
Sauermann, editors, Proc. of Semantic Desktop Workshop at the ISWC, Galway,
Ireland, November 6, volume 175, November 2005.

188

http://www.xmlrpc.com/spec

Curriculum Vitae

Personal Data
Born: September 18th, 1979 in St. Pölten, Austria
Citizenship: Austria
Marital Status: Single, one child (born 2009)

Education
2005 — 2009 PhD in Computer Science, University of Vienna
1999 — 2004 Business Informatics, University of Vienna

and Vienna University of Technology

Professional Experience
2009 — present Co-founder

gnowsis.com, Vienna
2009 — present Lecturer

University of Applied Sciences “Technikum”, Vienna
2004 — present Researcher and Lecturer

University of Vienna
2002 — 2003 Software Solutions Developer

Siemens AG Austria, PSE, Vienna
2001 — 2004 Teaching tutor

Vienna University of Technology
1999 — 2000 Software Developer

Kapsch AG, Vienna

189

	Introduction
	Motivating Scenarios
	Research Methodology
	Contributions
	Organization

	I Background and Related Work
	A Comparative Study on Technologies for Desktop Data Management
	File Systems
	The Semantic Web: Expressing Knowledge about Resources
	Semantic Technologies for the Desktop

	II Concepts
	Siles: An Abstract Model for Semantic Representation of Data Assets on the Desktop
	Design Considerations
	Data Model
	A Query Framework for Siles
	Summary

	An Application Programming Interface for Siles
	API Specification
	Usage Examples
	Summary

	III Implementation
	Digital Manifestation of Siles
	A Core Ontology for the Sile Model
	Representation of Sile Data as RDF
	Transforming Sile Filters to SPARQL Queries
	Discussion of Alternative Representations
	Summary

	Serializing Sile Data
	Silepacks: Transportable Sile Containers
	Sile Systems as Part of the Web of Data
	Distributing Sile Systems via XML-RPC
	Enriching WebDAV with Sile Annotations
	Summary

	Case Studies of Sile Repository Implementations
	The SemDAV Server: A Triple Store-based Sile Repository
	silefiles: A Semantic File System Extension
	SileMail: Semantic Extensions to E-Mail
	Summary

	The Semplorer: A User Interface for Sile Management
	Design Considerations
	Interface Design
	Summary

	IV Conclusions
	Discussion and Experimental Results
	Comparison and Differentiation
	Experimental Results

	Conclusions and Future Directions
	Summary and Conclusions
	Future Research Directions

