
<<DIR>>-XML2 - Unambiguous Access to
XML-based Business Documents in B2B E-Commerce

Christian Huemer
University of Vienna
Liebiggasse 4/3-4

1010 Vienna, Austria
+43 1 4277 38443

christian.huemer@univie.ac.at

ABSTRACT
XML-based vocabularies have become more and more popular in
application-to-application exchanges. Like traditional EDI
standards, XML-based formats require an additional agreement on
rules to access XML-based data structures. It is our goal to define
a machine-readable format for these agreements to accompany
XML DTDs or schemas. We present our approach by using a
simplified state machine to define access rules. The semantics of
the state machine will be expressed by the means of XML itself to
be stored in a registry.

Categories and Subject Descriptors
H.5.3 [INFORMATION INTERFACES AND
PRESENTATION]: Group and Organization Interfaces –
evaluation/methodology, theory and models, web-based
interaction.

General Terms
Standardization, Languages.

Keywords
B2B e-commerce, XML, EDI, UN/EDIFACT, xCBL, ebXML.

1. INTRODUCTION
B2B systems already existed before the Internet hype. Since the
1960ies, organizations have been exchanging business
information with their business partners by means of electronic
data interchange (EDI). EDI can be defined as the application-to-
application exchange of standard business documents between
companies, independent of software, hardware, and
communication networks [1]. Over the past decades various EDI
standards capturing syntax and semantics of business documents
have been developed: Proprietary formats, sector specific
solutions, and branch-independent standards like X12 and
UN/EDIFACT. All these formats more or less have two things in

common: First, they use an implicit data identification
mechanism. Second, they are successfully used by large
organizations, but fail in the acceptance of small and medium
enterprises (SMEs).
On the contrary, XML uses an explicit data identification
mechanism by tagging the information and is said to be accepted
even by SMEs. However, today’s XML-based business
vocabularies inherit a weak point of traditional EDI standards
which is further detailed in Section 2: the generic definition of the
document types. This means that the document types are not
capable of capturing all constraints and dependencies among the
included components. Accordingly, producing a well-formed and
valid XML document does not guarantee that the receiver
supporting the document type is able to process it. In traditional
EDI systems additional rules on the document structure - called
Message Implementation Guidelines (MIGs) - are agreed on by
the business partners and are implemented on each partner’s side
prior to the interchanges. The implementation of these off-line
agreements make EDI difficult and costly to set-up and maintain.

It is our goal to define a simple set of rules, similar to those used
in MIGs, to define the access to XML business documents.
Furthermore, it should be guaranteed that these rules can be
expressed in a machine-readable format, ideally in XML itself.
Since we do not stick to a particular business vocabulary used for
the exchange, it is a precondition that the organizations support
the document type and understand the semantics of its
components. Consequently, we do not specify any rules on how to
interpret and process the document. In Section 3 we present our
approach based on UML state machines that allow a graphical
representation understood by business experts and a
representation in a machine-readable format.

2. PROBLEMS OF B2B VOCABULARIES
In this Section we analyze the problems resulting from a generic
structure approach and validate them by the example of specifying
parties in a purchase order. We emphasize on the fact that the
major B2B problems are independent of a transfer-syntax. For
demonstration purposes we have selected UN/EDIFACT as
representative of traditional EDI standards and xCBL as
representative of XML-based vocabularies.
UN/EDIFACT is the mostly used traditional standard today. In
order to be globally valid, message types represent an assembly of
all the data fields of any business in the world. However, only a
very few data elements of the message type are used in a particular

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EC’01, October 14-17, 2001, Tampa, Florida, USA.
Copyright 2001 ACM 1-58113-387-1/01/00010…$5.00.

business transaction. Thus, EDI branch organizations specify
MIGs by trimming down the overloaded message types to suit the
requirements of business organizations in a particular sector
and/or particular part of the world [6]. Before organizations,
moreover, can start doing business on-line they have to agree on
an even more specific MIG which considers the requirements and
limitations of their information systems.
For the purpose of a syntax-neutral analysis, Figure 1 depicts a
UML class diagram representing the structure of parties in a
UN/EDIFACT standard message type. Accordingly, there is no
need to specify any party in a purchase order, but one can specify
up to 99 parties as instances of NameAndAddress. The party type
is identified by a code in the PartyFunctionCode attribute.
Theoretically, each party type a code exists for might be
transmitted. However, not all of them are relevant for a purchase
order, e.g. the Social Security Collectors Office. Some are useful
in a purchase order like a Buyer’s Agent, but might not be
processable for a particular organization. Accordingly, a MIG has
to specify all the different party types that are meaningful.
There are multiple ways of identifying a party in an interchange.
One can use a unique party identification in the Party-
IdentificationDetails, unstructured name and address lines in the
NameAndAddress attribute, or use the remaining attributes Party
Name, Street, City Name, etc. for a more structured description.
The MIG has to specify which way to use. Furthermore, the way it
has to be done might be dependent on the party type.
Additionally, locations, financial institutions, references,
documents, and contacts can be specified for each party. The MIG
has to identify which of them are meaningful. But again it is not
enough to declare contacts as meaningful. It is necessary to
identify which kind of contact is meaningful, which attributes to
use for which kind of contact, and again how this all might differ
for each type of party.
It follows that producing a UN/EDIFACT message conforming to
the standard does not mean that the receiver of this message
supporting UN/EDIFACT is able to process it. Consequently, a
message must be in conformance to a MIG which defines
additional access rules to ensure interoperability.

The question is now whether XML vocabularies by itself specify
unambiguous interchange definitions or whether there is also a
need for MIGs. We choose the (extensible) Common Business
Library 2.0 or xCBL [2], one of the most popular XML-based
approaches, for illustration. Figure 2 uses UML to depict the
structure of parties in an xCBL purchase order document type.

xCBL explicitly mentions the buyer, the seller, the party, the
goods to ship to, and the party to be billed as meaningful parties
in a purchase order. According to the definition, the buyer and the
seller information is mandatory even if there is no business need
to specify e.g. the seller. The ShipToParty and the BillToParty are
optional. Further parties could be used according to a list of
‘coded’ parties. There already exists an enumeration of different
useful types (like StoreNumber or SupplierAgent), but without
any rules concerning their usage.
In xCBL, there are also multiple ways of identifying a party. It is
possible to use one or more identifiers for a party. If only one
identifier is used it could be specified in the PartyID attribute of
Party or in the Identifier element in (a one element)
ListOfIdentifiers. If more than one identifier is indicated, the
concept of ListOfIdentifiers must be used. Alternatively, a party
can be specified by using the structures under NameAndAddress.
Contact persons can be included for all types of parties. But again
there is no rule to define which types of contact are useful for
which type of party, not to mention the use of different attributes
for each type of contact. xCBL does not support constraints to be
specified according to roles of different components.
To sum up, xCBL has been developed and modeled after EDI
semantics to preserve and extend the EDI investments. It has also
adopted the ambiguous definitions of generic document
structures. These document structures, and not the syntax as quite
commonly stated, cause the major problems in B2B e-commerce.
Like xCBL, any serious e-commerce language will have similar
problems, because they will take advantage of reusing
components. Most of the described problems are a result of
reusing different components in a slightly different way.

3. ACCESSING BUSINESS DOCUMENTS
It is our goal to find an approach in which no additional off-line
agreements between partners on a certain view on a document
structure is needed. Our approach follows the Open-edi reference
model [5] by distinguishing a business operational view (BOV)
and a functional service view (FSV). BOV standards define the
business independent of any transfer-syntax, whereas the FSV
standards map these definitions into a certain transfer-syntax. This

Figure 1. Parties in a UN/EDIFACT purchase order

Figure 2. Parties in an xCBL purchase order

... ...

DateAndTime DateAndTime

ORDERS

Location Reference

0..50..5

FinancialInstitution
Information

Document

0..50..5

NameAndAddress
+ PartyFunctionCode
+ PartyIdentificationDetails
+ NameAndAddress
+ PartyName
+ Street
+ CityName
+ CountrySubEntityDetails
+ PostalIdentificationCode
+ CountryNameCode

0..990..99

0..250..25 0..990..990..50..5 0..50..5

Communication

ContactInformation

0..50..5

0..50..5

Agency
AgencyID
AgencyOther

Ident

Identifier

ReceivingContact ShippingContactListOfIdentifier OrderContact

Party

OtherContacts

OrderHeader

BuyerParty SupplierParty ShipToParty BillToParty

OrderParty

PartyRoleCode
<<enumeration>>

ListOfPartyCoded

PartyRoleOtherPartyRole

PartyCoded

1 11 1

1..n

0..1 0..1

1..n

0..1
0..1 0..1 0..1

0..1
0..1 0..10..1

1 1 0..1 0..11 1 0..1 0..1

1

0..10..1

0..1

1

1

1..n1..n

0..11

ContactCoded

1..n1..n

...

NameAndAddress

0..10..1

0..10..1

... Contact

...

separation is also envisioned by the ebXML initiative [3], which
our approach could fit into. In ebXML, business documents
supporting a business activity are built by core components and
are modeled according to UN/CEFACT’s modeling methodology
(UMM) [4] in a UML class diagram using common business
objects (CBOs). In our approach we concentrate on the BOV by
using state machines to depict access rules to the CBOs of
business documents. The graphical presentation should enable a
verification by business experts.
In absence of an existing set of ebXML core components (which
will further be developed in a UN/CEFACT project), we make
assumptions about CBOs to be used. Note that these assumptions
do not influence the overall approach, since the exact definition of
individual CBOs is not of importance. It is only important that
agreed CBOs exist, because we do not care about semantic
definitions of CBOs and their attributes. It is a precondition that
the business partners understand the semantics of the CBOs.
In Figure 3 we assume the CBOs Date, Party, Address and
Contact among others to build a purchase order. This document
structure would be capable of capturing all the business data as
stated in the following extract of the business requirements: The
purchase order must have a unique purchase order identification
and must include the date the purchase order is placed. The buyer
must identify itself either by the buyer identification assigned by
the seller or by its full address. This address is also used for
billing. The buyer can indicate multiple delivery addresses, P.O.
boxes are not useful in a delivery address. Furthermore, the buyer
might specify multiple contact persons to be consulted for
questions regarding the purchase order. The seller information -
represented by a buyer assigned identification - is optional.
Each CBO definition must include a defined set of roles the CBO
can take on. We use these roles on the aggregation relationships
between the CBOs to define the document structure. This allows
the unambiguous specification of aggregations between CBOs in
different roles. A solution using roles on aggregation hierarchies
is presented in Figure 3.
To define how each role accesses its (UML) attributes and its
related CBOs, a UML state machine is used. The state machine
has to define more or less the semantics found in a MIG:
� what happens if a value for an attribute is specified or not
� what happens if an attribute is of a certain value or not
� what happens if access to another CBO succeeds or fails

Hence, each state in the state machine is either a pseudo state
(start and end state) or represents the access to an attribute, a
related CBO or an internal parameter. The transitions reflect the
result of the access. The guard of the transition is used to control
the transition according to the result. Therefore, conditions to be
verified by guards are: (1) was the access successful or did it fail,
(2) is the result of a certain value or not, and (3) is an internal
parameter of a certain value. Furthermore, an action can be
assigned to a transition. This action is used to set values of
internal parameters. These internal parameters can be accessed
either within a state or can be part of a condition specified in a
guard. If a state accesses another CBO in a defined role, the state
uses a submachine to show the access within the other type/role of
CBO. Each state machine has end states of value OK or FAIL. The
transitions going out from the access state in the supermachine
can verify whether the access was successful or failed. The value
corresponds to the end state of the submachine. This concept
guarantees traceability of the access rules of the overall document.
In Figure 4 we present an extract of the state machines for our
purchase order document example. The left side shows the state
machine for the overall document, whereas the right side depicts
the submachine to access the buyer information.
The semantics being captured by the state machine are shown in a
class diagram on the left side of Figure 5. The class diagram is
based on the UML metamodel of state machines [7]. We have
eliminated those classes of the UML metamodel handling
concepts not being relevant for our approach. Furthermore, we
have added some classes to reflect the state machine’s purpose to
access CBOs. A central class is CBOUsage, which expresses the
use of a CBO in the context of a certain type/role. Each
CBOUsage uses other CBOs in a certain context or, in other
words, a CBOUsage can be composed of other CBOUsages. How
a CBOUsage actually uses a CBO is shown by a state machine.
Therefore there is a one-to-one relationship between the
CBOUsage and the AccessStateMachine. Each state machine
comprises multiple states. Each state might be reached by multiple
transitions and lead to multiple outgoing transitions. There can be
a guard specifying a condition for each transition. In our case only
a transition can lead to a certain action. Each state machine can
control multiple internal parameters. We distinguish between
three types of states: pseudo states are start and end states. Simple
states either access an attribute of a CBO or an internal parameter
of the state machine. Submachine states access another role/type
of CBO, which is shown by another state machine. There is a

Figure 3. Class diagram using roles on CBOs Figure 4. State machine showing the Access to CBOs

Date
Day
Month
Year

...
...

PurchaseOrderDocument
DocumentID
...

1
+OrderDate

1

Address
Street
POBox
City
ZIP
State
Country

Contact
Name
Telephone
Fax
e-mail
...

Party
...
Name
PartyID
TypeOfPartyID

1
+Buyer

1

0..1
+Seller

0..1

0..1
+BillTo

0..1

+Buyer

0..n
+ShipTo

0..n

+Buyer

0..5
+OrderContact

0..5

+Buyer

StartPurchaseOrderDocument

DocumentID

OrderDate

[a=OK]

Buyer

[a=OK]

Seller

[a=OK]

...

OK

FAIL[a=FAIL]

FAIL[a=FAIL]

FAIL[a=FAIL]

StartBuyer

TypeOfPartyID

PartyID

[v="SellerAssigned"]

OK

[a=OK]

BillTo

[a=FAIL OR v<>"SellerAssigned"]

ShipTo

[a=OK]

OrderContact

[a=OK]
[a=FAIL] / i=0

[a=OK] / i++

OK

[a=FAIL AND i<=5)]

[a=FAIL] FAIL[a=FAIL]

[a=FAIL AND i >5]

dependency between the relationship of a submachine state and
the state machine on the one hand and the recursive relationship
between CBOUsages on the other hand, because a submachine
can only be used if the corresponding CBOUsage is also included
in the CBOUsage the supermachine belongs to.
Since the state machine definitions should be stored in a registry
together with the definitions of the business document types, they
have to be represented in a machine-readable format. This format
ideally should be in XML itself. Inasmuch as the state machine is
represented in UML, XMI would be a candidate format.
Nevertheless, due to its expressiveness, XMI would produce large
overheads of data not needed for our approach. Thus, we prefer a
simple DTD which actually meets our requirements. We have
developed a special DTD, which we refer to as <<DIR>>XML2 -
Document Interface Rules for XML Documents in XML. The
middle column of Figure 5 shows this DTD. The DTD includes
multiple state machines. Each state machine has a unique ID in
order to be referenced as submachine. A state machine consists of
a CBOUsage, stating the name of the corresponding CBO, and a
path. A path is always a state with its outgoing transitions. For
each state the type attribute identifies whether the state accesses
an XML attribute, an element, a submachine or an internal
parameter. If the access is to a submachine, the ID of this state
machine is referenced. If an attribute is accessed, the element
including the attribute is stated in the hostelement attribute.
Each transition can be characterized by multiple attributes: The
access attribute is used to condition whether the access in the state
was successful or not. The comp and the value attributes control
whether the access was equal or not equal to a given value. The
inparameter, incomp, and invalue attributes are used to compare
an internal parameter to a certain value. To specify a Boolean
expression between the guards regarding the access and those
regarding the internal parameters, the boolean attribute is used.
Actions can be defined in the outparameter, action and setvalue
attributes. Each transition would logically lead to a new state, but
in our DTD it is a choice of three implementations. Firstly, it can
lead to a new path (which includes further access states and
transitions). Secondly, it can lead to an end state, which either
signifies either success or failure. Last, it can lead to a path, which
is not included as subelement, but which is referenced by a unique

ID. This concept is needed to express that a state might have
multiple incoming transitions.
The right column of Figure 5 gives an extract of an
<<DIR>>XML2 instance defining the access to buyer information
according to our example. It is equivalent to the state machine
presented on the right side of Figure 4. In a registry the
<<DIR>>XML2 document instance should accompany a purchase
order document DTD or schema.

4. SUMMARY
In this paper we emphasize on the need for additional access rules
for generic document structures usually used in XML-based B2B
vocabularies. These Document Interface Rules to XML
documents are defined by adapted <<UML>> state machines that
are expressed by an XML DTD as well. Thus, we call this
language <<DIR>>XML2. This language has just served
successfully for the case studies in our test field. It has to be
applied in a real-business environment to verify whether
additional types of constraints are necessary or not.

5. REFERENCES
[1] Coathup, P. Electronic Data Interchange. Computer Bulletin,

(1988), 15 - 17

[2] Commerce One. XML Common Business Library.
http://www.xcbl.org

[3] Eisenberg, B., and Nickull, D. ebXML Technical
Architecture Spec. v1.0.4., (2001). http://www.ebxml.org

[4] Huemer, C. Defining Electronic Data Interchange
Transactions with UML. Proceedings of HICSS-34 (Hawaii,
January 2001), IEEE Coputer Society Press

[5] ISO. The Open-edi Reference Model. ISO/IEC JTC1/SC30
IS 14662, (1996)

[6] Raman, D. XML/EDI - Cyber Assisted Business in Practice.
TIE Holding NV, 1999

[7] UML Revision Task Force. OMG Unified Modeling
Language Specification, version 1.3. document ad/99-06-08.
Object Management Group (1999)

Figure 5. <<DIR>>XML2: Meta model, DTD and example

!ELEMENT DIRXML2 (AccessStateMachine+)>
<!ELEMENT AccessStateMachine (CBOUsage, Path)>
<!ATTLIST AccessStateMachine ID ID #IMPLIED>
<!ELEMENT CBOUsage (#PCDATA)>
<!ELEMENT Path (State, Transition+)>
<!ATTLIST Path ID ID #IMPLIED>
<!ELEMENT State (#PCDATA)>
<!ATTLIST State

type (A | E | S | P) #IMPLIED>
submachine IDREF #IMPLIED
hostelement C DATA #IMPLIED>

<!ELEMENT Transition (Path | EndState | NextPath)>
<!ATTLIST Transition

access (OK | FAIL) #IMPLIED
comp (equal | notequal) #IMPLIED
value CDATA #IMPLIED
boolean (AND | OR) #IMPLIED
inparameter CDATA #IMPLIED
incomp (equal | notequal | greater | less | grequ | lequ) #IMPLIED
invalue CDATA #IMPLIED
outparameter CDATA #IMPLIED
action (set | inc | dec) #IMPLIED
setvalue CD ATA #IMPLIED>

<!ELEMENT EndState EMPTY>
<!ATTLIST EndState success (OK | FAIL) #R EQUIRED>
<!ELEMENT NextPath EMPTY>
<!ATTLIST NextPath continue IDREF #REQUIRED>

<AccessStateMachine ID="ASM003">
<CBOUsage>Party</CBOUsage>
<Path>

<State type="E">TypeOfPartyID</State>
<Transi ti on comp="equal" value="SellerAssigned">

<Path>
<State type="E">PartyID</State>
<Transi ti on access="OK">

<EndState success="OK" />
</Transition>
<Transi ti on access="FAIL">

<NextPath continue="P001"/>
</Transition>

</Path>
</Transition>
<Transi ti on access="FAIL" comp="notequal" value="Sel lerAssigned">

<Path ID="P001">
<State type="S" submachine=" ASM005">Bil lTo</State>
<Transi ti on access="FAIL">

<EndState success="FAIL" />
</Transition>
<Transi ti on access="OK">

<Path ID="P002">
<State type="S" submachine=" ASM006">ShipTo</State>
<Transi ti on access="OK">

<NextPath continue="P002"/>
</Transition>
...

</Path>
</Transition>

</Path>
</Transition>

</Path>
</AccessStateMachine>

Pseudostate

Attribute

{xor}

SubmachineState SimpleState

0..10..1

Internal
Parameter

0..10..1

Guard

State

Action

Transition

0..1

1

0..1

1 n 1
+outgoing

n
+source

1

1n
+target
1

+incoming
n

1
0..1
1

0..1

CommonBusinessObject

1..n

1

1..n

1

AccessStateMachine

1..n

1

1..n

1
1

0..n

1

0..n

0..n

1

0..n

1

CBOUsage
+ Role 11

0..n

0..n

0..n

0..n

1

1

1

1

