
Defining Electronic Data Interchange Transactions with UML

Christian Huemer
University of Vienna, Institute for Computer Science and Business Informatics

christian.huemer@univie.ac.at

Abstract

The application-to-application exchange of business da-
ta, known as electronic data interchange (EDI), has not ful-
filled the expected potential. The focus for the development
of EDI standards should be shifted from the interchange file
to the information contained within the business process.
The use of object oriented techniques to model the semantics
of business data permits the differentiation from IT specific
requirements. In this paper we present the OO-edi approach.
OO-edi is based on UML and the Rational Unified Process
(RUP). Nevertheless, RUP is only a framework and guide-
lines on how to exactly apply modeling must be specified.
The presented customization of RUP is called UMM (UN/
CEFACT’s modeling methodology).

1. Introduction

Electronic Data Interchange (EDI) is the application-to-
application exchange of business-related data based on a
format understood by both (all) trading partners using an
electronic transmission medium in order to carry out a
business transaction [11]. The economic advantages of
electronic data interchange (EDI) are widely recognized in
the business-to-business area of electronic commerce.
Nevertheless, the number of organizations and companies
employing EDI is relatively small compared to the total
number of businesses worldwide. The huge difference is
caused by the fact that current EDI standards, like UN/
EDIFACT [1] or ANSI X12 [9], include a lot of complexity
and their integration into existing applications is expensive.

Each EDI standard message is based on a data model for
a single business transaction. It is created by volunteers
from the business world working in the standardization
bodies, who put their business sector know-how into a data
schema which is written down in EDI standard syntax [21].
As a result an EDI standard message is a data schema that is
intended to capture all data that may appear in any business
document of the corresponding business transaction. But
message developers do not use a well defined method to
collect and structure the user requirements. In absence of
documentation on user requirements, the only output of the
standardization process is the EDI message structure itself.
Without any documentation it is difficult to keep track of
why a certain message component has been introduced.

Accordingly, the standards are not tied back to the
business process as a whole. As a consequence, people not
directly involved in message development, may not
understand the complexity included in the messages. This
is made worse by the fact that standard messages include
optionality without explaining under which conditions
these options are to be used. Furthermore, the same
information can be passed in different ways within a
standard message.

Before starting an EDI interchange, the involved
partners have to trim down the EDI standard messages to
suite their requirements and to specify the semantics with
almost no optionality within message implementation
guidelines (MIGs). Usually, they interpret the standard
message structure in their own way, which might be quite
different to the standard’s intention. Hence, MIGs for
different partnerships usually stay in conflict. It follows
that business partnersalthough using a so-called
standard messagein fact, use different corresponding
proprietary messages for different business relationships.

To overcome this unlucky situation of semantic
ambiguities and different interpretations of a ‘standard’, it
is a prerequisite to define semantically complete and
unambiguous data models for an EDI business transaction.
Therefore, EDI standard development should start with a
careful analysis of the EDI business transaction in question.
In this starting phase the techniques of business modeling
will ensure the development of ‘standardized’ EDI business
transactions. According to the Open-edi reference model
(ISO standard 14662) [15] this allows a separation of the
semantics of a business process and the representation of
data in a transfer syntax. The business models present the
BOV (business oriented view) standards of Open-edi,
which describe the business needs of an EDI transaction.
BOV related standards provide the tools for formal
business description(s) of the external behavior of
organizations, as seen by other organizations, in view of
achieving a business goal. As such, the BOV related
standards provide a means for capturing the static and
dynamic requirements of the real world. The BOV
standards are not influenced by the FSV (functional service
view) standards, which address the supporting services
meeting the mechanistic needs of Open-edi.

The separation of BOV and FSV provides two main
advantages compared to the current approach. Firstly, the
BOV standards document the business requirements and

allow for a semantically consistent definition of an EDI
transaction. Secondly, the BOV standards will remain
stable even if different EDI methodologies in the FSV are
used. For each transfer syntax used in the FSV a commonly
agreed methodology for mapping from the BOV standards
to the corresponding transfer syntax is needed. This
approach ensures the mappability between transfer
syntaxes and saves the business know how for upcoming
syntaxes of the future. Note that translating from a certain
syntax to another is limited by the semantics that each sytax
is able to express. BOV standards can form the basis for
current EDI messages in EDIFACT or X12 syntax. But
BOV standards serve as foundation for the development of
XML DTDs [3] to be used in XML/EDI interchanges [20].
The development of XML based interchanges on the basis
of business process models will be considered in the
ebXML project of UN/CEFACT and OASIS [7]. This
projects aims to avoid the proliferation of different XML/
EDI formats [14] and to research and identify the technical
basis upon which the global implementation of XML can
be standardized [6].

According to the above mentioned advantages the UN/
CEFACT Steering Group proposed the following resolution
for adoption by the UN/EDIFACT Working Group (EWG)
in January 1998: ‘The UN/CEFACT Steering Group (CSG)
resolves that business and information modeling is an
essential requirement to the future of UN/EDIFACT and
that the implementation of business and information
modeling is a critical objective of the CEFACT strategy and
its attendant work program’ [4].

The Techniques and Methodology Working Group
(TMWG) of UN/CEFACT investigated in three different
modeling techniquesnamely IDEF [27], EXPRESS-G
[28] and UML [26]as possible candidates in an EDI
environment. According to a careful analysis of these
techniques TMWG selected UML as the technique for UN/
CEFACT’s use in business process and information
modeling.

In a current project TMWG is developing the OO-edi
standard [25], which is a BOV related standard on the basis
of UML models. Since UML is ‘only’ a modeling
language, a methodology for applying UML modeling
techniques within the OO-edi standards development
process is needed [5, 10]. Therefore, TMWG has selected
the Unified Process [17] as candidate process to start with.
Nevertheless, the Unified Process has to be adapted to the
specific needs of modeling EDI transactions. Furthermore,
within Unified Process exact guidelines on how to exactly
use the UML models must be specified. The core of this
paper will focus on concepts that have to be used when
modeling EDI transactions with UML.

Since UML has been designed to support the software
development process, it is our goal to gain experience on
the suitability of UML to support business modeling
[12,18] with a special focus on inter-organizational
business modeling. Using UML for business modeling as
well as for a following software process to design off-the

shelf EDI software would eliminate a paradigm shift
necessary when using another business modeling
technique. Consequently, an UML-based methodology will
ensure a consistent overall design process.

The remainder of this paper is structured as follows. In
Section 2 we introduce the specific needs of BOV related
standards on a business modeling methodology. How these
requirements are captured in UN/CEFACT’s modeling
methodology (UMM), which follows the framework of the
Unified Process, is described in Section 3. We conclude
with a short summary on the experience gained from a
demonstration project.

2. Requirements for Modeling EDI

The development of EDI standards requires a full
understanding of the problem domain. In an EDI
environment this problem domain is usually an inter-
organizational system. A business modeling methodology
should be used to ensure a better understanding of the inter-
organizational system [16]. An UML-based methodology
should help to visualize an inter-organizational system and
permit the specification of its structure and behavior.

In order to specify a UML-based methodology the first
task is to define the expected results to be delivered by the
models. TMWG takes the view that the BOV standards and
consequently the relating business models must cover a
definition of the business domain to be supported, a
specification of the requirements on the EDI transaction
and a specification of the common EDI business objects
(data structures and their relation to processes using the
data) [8]. Accordingly, the current focus is not on software
development, but on using UML to describe business
transactions on a conceptual level. As a consequence, the
proposed methodology concentrates on the following core
workflows of the Unified Process [17]: the business
modeling workflow, the requirements workflow, the
analysis workflow and the design workflow.

The OO-edi approach does not take advantage of the
implementation and following workflows. This is due to
the fact that the implementation workflow will go beyond
the goals of BOV standards, because it has to consider a
concrete transfer mechanism which is part of the FSV layer
of Open-edi standards. Only at a later stage, once the
benefits of OO-edi have been tested, it will be possible to
take the additional steps of working more closely with
service and software providers to finally implement off-
the-shelf EDI software.

Therefore, the current focus is on providing modeling
guidelines for the starting four core workflows. In order to
verify the suitability of UML for modeling EDI
transactions the following requirements on a methodology
to support inter-organizational business modeling have
been identified [13]:
• The methodology must ensure that all involved organi-

zations have a common understanding on the problem
domain. Therefore, the business terms used in the

description of the problem domain must be ‘agreed’
upon to ensure a semantically identical understanding
among the involved organizations.

• The boundaries of the inter-organizational business sys-
tem must be well understood. It must be clear what is
inside the scope of the business transaction and what is
outside.

• Since the focus is on the inter-organizational systems,
the functions internally performed by the information
systems of the involved organizations are not explicitly
part of the system to be modeled. Nevertheless, the
interfaces to these information systems have to be
clearly identified. The inter-organizational system must
define the functions expected to be fulfilled by internal
information systems.

• The business transaction to be focused within the mod-
els must be defined to an extend that avoids a prolifera-
tion of design models. For example to model all the
transactions in an international trade transaction would
result in a multitude of design models which cannot be
traced efficiently. Therefore, the models have to focus
on subtransactions which are by itself meaningful (e.g.,
order process). Consequently, the models of a consid-
ered business transaction must enable links to concepts
detailed in another business transaction. Furthermore,
the interfaces to a system modeled in another business
transaction must be clearly identifiable.

• It should be easy to distinguish between interfaces to
the internal information systems (which support the
core functions of the business transaction) and inter-
faces to external systems (where details are docu-
mented in another business transaction).

• The sequence of activities to be performed by each
party in the business transaction should be clearly iden-
tified. In particular, these activities that lead to different
scenarios must be expressed in the models. An 'easy to
use' method should ensure that business experts without
modeling experience can deliver input to design their
organizations' business practices and express their
requirements on services from partners.

• Services provided by each organization to contribute to
the business transaction must be defined. It must be
clear what an organization expects as input to perform a
service and what the organization returns as output to
the requester of a service.

• Models must be able to capture the communication pro-
cesses between the organizations. The order of the com-
munication processes must be defined. Accordingly the
preconditions to be reached that a certain process can
start must be declared.

• Data structures supporting the information flows must
be identified. It must be clear which components of the
data structure must be instantiated in an interchange
and which instances are optional. Furthermore, rules for
the instantiation should be identified.

• The guidelines must support the modeling of different
scenarios (including different information flows and
different data structures) based on different situations

(conditions) within the same business transaction.
• To support modeling of different scenarios it is not suf-

ficient to look only at the communication processes
between the organizations. Rather it is necessary to ana-
lyze the internal processes of each organization to an
extent that different information flows and different
data structures can be determined. It must be clear
under which circumstances which scenario has to hap-
pen. Therefore, the models must be able to support dif-
ferent views on operation calls and data structures.

• Information exchanged between organizations in EDI is
often based on code sets. Models must allow the defini-
tion of code sets to be used in the EDI transaction. Fur-
thermore, codes which are meaningful in a specific
situation must be declared. Therefore, the models have
to support relations between scenarios and instances of
code sets.

• Phrasing conventions used in the models (e.g. class
names, method signatures) have to be self explanatory
to ensure a common understanding of the common
business objects and, thus, the sharing of the models
among organizations all over the world.

3. UMM for Modeling EDI Transactions

In order to support the requirements mentioned in the
previous section, we follow the Unified Process to
experience which parts of the Unified Process are
meaningful to the modeling of EDI transactions (resulting
in EDI specific guidelines) and to verify whether UML
diagrams [2,19,23] are suitable to support the specification
of BOV standards. In this section we present the resulting
UMM methodlogy for the business modeling workflow, the
requirements workflow and the analysis workflow by
means of a simplified ‘Order from Catalog’ example,
which has been chosen from TMWG as demonstration
project for OO-edi. Furthermore, we give a short
introduction on the steps to be done in the design workflow.
Nevertheless, it is important to note that UMM is an
ongoing project whith respect to changes in the
methodology.

3.1. The Business Modeling Workflow

The purpose of business modeling is to understand the
structure and dynamics of the operations within a domain.
It helps to ensure that all users, standards developers and
further on software providers have a common
understanding of the domain. In addition business
modeling is used to derive the high level requirements
needed to support the subsequent detailed analysis and
eventual EDI solution. Note, that the business modeling
workflow should allow insight into the business under
consideration without any specific focus on EDI. It should
generally describe what is performed in a business
transaction. How EDI can support these business
transactions will be part of subsequent workflows.

The business modeling workflow starts with a high level
definition of the vision and scope of the domain to be
considered (see Figure 1). Furthermore, important terms
used in the business should be covered in a glossary (e.g.
the BuyerID: Seller assigned identification by which the
seller uniquely recognizes a buyer). The vision and scope
statement should allow to derive the business actors (who
is involved in the considered business transactions?) and
the use cases (which are the main business functions under
consideration?). Since the scope of the system is the inter-
organizational communication between involved
organizations, the use cases focus on communication
processes between the actors and not on the internal
operations performed by each actor (see Figure 1).

Having found all use cases, the next step is to detail each
use case. This covers a description of main activities
performed in a use case and a high level description of
information being exchanged. For example: To request a
registration the buyer sends a registration request including
his name and address, contact information and credit card
information. This information could be used to design a
first object model for each use case. We have omitted to do
that, because in our project the business workflow (which is
also optional in the Unified Process) should just allow a
first insight into the business domain to understand what
following workflows have to consider.

3.2. The Requirements Workflow

The objective of the requirements phase is for
representative users and UN/CEFACT groups to come to an
agreement on what an EDI solution for the selected domain
should do. This workflow usually considers a use case
representing a subset of the business domainmodeled in
the business modeling workflowand refines the output
for the area selected for the requirements modeling project.
It concentrates on specifying requirements to a level that is
good enough for users and standards developers to agree on
what EDI solutions should provide. The process covers
similar steps to those applied in the business modeling

workflow. Whereas the business modeling workflow is
independent of a specific communication technology, the
requirements workflow concentrates on EDI specifics.
Therefore, the steps are applied to a more specific area and
a finer level of detail [24].

The extended team to provide the more detailed EDI
requirements will include representatives who are
knowledgeable about the business requirements of the
domain as well as appropriate members working on UN/
EDIFACT standards for the domain. At least one member
of the team must be familiar with UML and UMM in
particular.

The vision and scope of the business modeling
workflow has to be refined to incorporate the EDI specific
needs. It is essential to define an exact boundary of the
system. It must be clear which business transactions (and
which specific scenarios) of the business domain will be
supported by EDI. Knowing the exact boundary it is
necessary to define those actors who are inside the new

Buyer

Request Catalog

Register

Request Price

Order Product

Request Order Status

Seller

Figure 1. Business Modelling Workflow: Use Case Diagram ‘Order from Catalog’

The vision and scope of ‘Order from Catalog’ is described by five business
transactions depicting the process of a Buyer executing a catalog order with a
Seller. “Request Catalog” is an optional business transaction. A Seller may
offer to provide to any potential Buyer an electronic version of the current
Seller’s catalog on request. “Register” depicts a first time Buyer initiating a
relationship with a Seller by providing required buyer information, confirmed
by receiving a Seller’s Buyer ID from the Seller. “Request Price” (provide a
price quote to the Buyer for selected product(s) on request) is an optional
business transaction where the Seller may offer a price quote to a Buyer after a
valid Seller’s Buyer ID has been assigned. “Order Product” depicts the
process of a Buyer ordering items from a catalog, having previously
established a relationship with the Seller by providing Buyer information and
receiving a Seller’s Buyer ID (refer to “Register”). “Request Order Status” is
an optional business transaction where the Seller provides order status
information to the Buyer on request.

Buyer IS

Request Catalog

Request Price

Order Product

Request Order Status

Register

Seller IS

Verify Credit
<<external>>

<<uses>>

<external>
Bank

Figure 2. Requirements Workflow: Use Case Diagram
‘Order from Catalog’

boundary chosen for the requirements phase. Nevertheless,
it is also essential to explicitly define those actors outside
the boundary, but affected by inputs and/or outputs from
processes within this boundary. Consequently, also
information going in and coming out of the boundary have
to be specified. Furthermore the business objects handled
within the boundary must be identified. Since a deep
insight necessary for these definitions will often be gained
when detailing a specific use case (which is a later step of
the requirements workflow), the requirements workflow is
considered as an iterative process.

Since EDI is the application-to-application exchange
where no humans are involved who can interpret certain
semantics, there is a great sensitivity on the semantics of
information exchanged. Hence, capturing a common
vocabulary in a glossary is of great importance in the
requirements workflow. Consider for example the term
‘delivery date’. It seems that everyone might know what a
delivery date is. But there is still a place for
misinterpretations: Is it an exact, earliest, latest delivery
date? Thus, a semantically complete definition must be

stated in the glossary.
As mentioned earlier information exchanged in EDI is

often coded. Consider the example of different delivery
dates. In some situation it might be useful to state the exact
semantics of a delivery date (exact, earliest, latest, ...)
within an interchange. This can be realized with an instance
of delivery data accompanied by a code specifying the kind
of delivery date. Therefore, the glossary should also cover
the definition of code sets including the various codes with
a complete semantic definition. Another example for
defining code sets would be the various codes needed to
state the reasons for rejecting a certain request.

The next step of the requirements workflow is to find the
actors and use cases (see Figure 2) according to the
boundary definition in the vision and scope statement
[22,24]. Since EDI is the application-to-application
information exchange, no users are involved in the inter-
organizational transaction. Users might be involved in the
operation of the internal system, which is not considered in
the system in question. But input and output to the use
cases is always sent/received by the information systems

Use Case Name: Register Buyer

Summary:
In order to do further business with the Seller (obtain price quotes or order products), the
Seller requires the Buyer to register and obtain a Buyer ID. Therefore, the Buyer provides the
personal and credit information required for registration, and the Seller issues a Buyer ID.

Interfaces/Actors: Buyer IS, Seller IS (internal) Bank (external)

Preconditions: none

Begins When: Buyer initiates the Registration process.

Description:

The Buyer initiates the registration process and documents the following information:
Bill To details:

Buyer name
Bill to address (street, city, zip, country)
Contact name (first, middle initial, last)
Contact phone

Ship To details (if different from Bill To info):
Ship to address (street, city, zip, country)
Ship to contact name (first, middle initial, last)
Ship to contact phone

Credit card info:
Credit card number
Credit CardHolder Name
Credit Card Issuer Name
Credit Card Type
Credit Expiration Date
Encrypted signature

Respond-by date (date by which the Buyer wishes to receive the Buyer ID)

The Buyer then sends this information to the Seller.
When the Seller receives the request, the Seller checks the respond-by date. If the date has
passed, the request is discarded.
If the Respond-by date has not passed, the Seller validates the Buyers credit information
(Uses Verify Credit Use Case). If the credit information is not valid, the Seller sends the
Buyer a rejection notice containing the following information:

Rejection reason code
Rejection reason description

If the Buyers credit information is valid, the Seller creates a Buyer ID for the Buyer. The
Seller then sends a notice to the Buyer with the Buyer ID.

Ends when: The Buyer receives a response from Seller, or the respond-by date is exceeded.

Exceptions: none

Postconditions: Buyer has a Buyer ID, a rejection of the Registration Request, or the request has been dis-
carded

Figure 3. Requirements Workflow: Use Case Description of ‘Register Buyer’

themselves. Consequently, the inter-organizational system
has always to interface directly to the organizations’
internal systems. To denote this fact, the use case model of
the requirements model (which primarily focuses on EDI)
does not depict actors, but the interfaces to the
organizations’ internal systems supporting the EDI
transactions.

Taking a closer look on Figure 2 it is easy to recognize
that the definition of the use case ‘Register Buyer’ has been
refined, because the use case takes advantage of another
use case namely ‘Verify Credit’. This is due to the fact that
a seller wants to verify whether a buyer is credit-worthy or
not. For this purpose, the seller contacts his bank to perform
the verification. Since this verification does not belong to
the core processes of an order from catalog it is outside the
defined system boundary. Accordingly, the use case ‘Verify
Credit’ must be defined in another system of EDI
transactions. Therefore, the use case itself and the interface
for the bank are stereotyped as ‘external’. Nevertheless, it
is necessary to analyze the required inputs and outputs
from/to the external system.

The main function of the requirements workflow is to
describe each use case in detail. We have developed a
template for the purpose of a detailed use case description.
Figure 3 depicts the instantiated template for the use case
‘Register Buyer’. The template has been designed to cover
the following facts: For each use case the involved
interfaces (actors) have to be defined. It must be clear
which preconditions must be met before the use case can
start and what initiates the start of the use case.
Accordingly, one or more events must be specified which
terminate the use case. The postconditions met by each of
the end states have to be clarified.

Between start and end event certain activities have to be
fulfilled within the use case. Note that a use case can cover
more than one scenario. This means that there might exist
different paths through a use case (sometimes leading to
different end states). The use case description has to
capture all possible scenarios through a use case. To give a
better understanding of the activities performed in a use
case the textual description within the use case template is
accompanied by an activity diagram for each use case (see
Figure 4). For each scenario the activities are given in the
order they are regularly performed. It must be evident
which conditions/decisions lead to different scenarios.
Furthermore, it must be clear which interfaces (actors) are
involved in each activity. This can be defined by using
swimlanes in activity diagrams (see Figure 4) [19].

Finally, each use case description must cover a
description of the business objects that are subject to the
activities of the use case. The description in the use case
template must allow to derive the business objects structure
in a class diagram. Owing to space limitations we have
omitted to depict a class diagram for the requirements
workflow. However, class diagrams are especially focused
in the following subsection.

The last step of the requirements workflow is to capture

supplementary business specifications that are not already
captured in use cases. Such specifications include, for
example, legal and regulatory requirements and application
standards.

3.3. The Analysis Workflow

The purpose of the analysis workflow is to transform the
requirements identified in the requirements workflow into a
design of the EDI system to-be [17]. The goal is to evolve a
robust architecture of common EDI business objects. This
architecture should allow organizations participating in
EDI to build their internal EDI systems. Nevertheless, the
analysis of the organizations’ internal systems is not part of
this workflow. But the architecture is designed to give
advice on the business objects that the internal systems
have to support when participating in the considered EDI
transaction. The workflow within each involved
organization is analyzed in a limited extent to capture
different scenarios which have an impact on the overall
EDI workflow. For example, if a request might result in
different responses, the workflow at the responder’s side
will show the different situations that lead to different
responses.

The team involved in the analysis workflow is made up
of business modeling experts who have substantial know
how of the focused business domain. They have to follow
the described modeling conventions to ensure that the
presentation of the architecture is consistent across the
standardization bodies, independent software providers
offering EDI software and EDI users.

Figure 4. Requirements Worksflow: Activity Diagram
‘Register Buyer’

The core part of the analysis workflow for defining EDI
transactions is the use case analysis. For each use case
identified in the requirements workflow a corresponding
use-case realization is created in the analysis model. For the
use case realization it is necessary to identify the classes
that perform a use case’s flow of events. The use case
behavior has to be distributed to those classes using use
case realizations. Therefore, the responsibilities, attributes
and associations of these classes must be identified [17].

The first task of the use case analysis is to supplement
the descriptions of the use case to capture additional
information needed to understand the behavior of the
system. In the requirements workflow the use case
descriptions do not focus on the internal behavior. Instead
they only describe what the system is expected to do.
Hence, this black-box description must be transformed into
a white box description to define what the system does
from an internal perspective. Due to space limitation we do
not concentrate any further on this supplementary use case
description for our demonstration example.

The next task is to identify a candidate set of analysis
classes which will be capable of performing the behavior
described in the use case. Usually, there exist three types of
analysis classes: entity classes, boundary classes and
control classes. We take advantages of all three types in
modeling EDI transactions. Entity classes represent the
information exchanged in an EDI transaction. They are
used to describe the structure of the ‘virtual’ business
documents that are meaningful to the EDI transaction.
Additionally, we find another type of entity classes in EDI
transaction models. There must be entity classes covering
information included in code sets. These enumerations
comprise a fixed number of possible values. Each
organization in the EDI transaction must be aware of these

enumerations, because the objects themselves are not
interchanged, but the codes.

A boundary class intermediates the interface to
something outside the system. Thus, the interfaces to the
organizations’ internal information systems are modeled as
boundary classes. In addition to that, interfaces to external
information systems that provide a service to the system are
modeled as boundary classes. Control classes provide
coordination behavior in the system. In an EDI transaction
model we use a control class for each role (which is usually
carried out by one organization) participating in the
transaction. Each control class is responsible for
coordinating the EDI transaction from the viewpoint of the
corresponding role. It is in charge of instantiating the entity
classes and of interfacing the boundary classes.

In the class diagram of the demonstration example
‘Register Buyer’ (see Figure 5) there are boundary classes
for the interface to the buyer’s information system, to the
seller’s information system and to the information system
of the bank (used to validate the credibility of the buyer).

The entity classes present the structure of information
exchanged in the registration transaction. Accordingly, the
entity classes model a registration request to be sent from
the buyer to the seller and a registration response to be sent
back. For the registration response we use the concept of an
abstract class. The concept of an abstract class is used in
EDI transaction models to denote the fact that the structure
of the information exchanged depends heavily on decisions
made according to different situations. In our example the
buyer expects a registration response to be sent back. But
the information included in this response is dependent on
whether the seller is willing to register the buyer or not. If
so, the response will include the registration stating the
buyer identification. Otherwise, the response will state the

Buyer_Subsystem_CC

initiate_registration_request(buyer_info : Buyer_Information) : void

Seller_Subsystem_CC

register(reg_request : Registration_Request) : Registration_Response

Negative_Registration_Response
RejectReason : code
Text : string

Negative_Registration_Response()

<external> Bank

verify_credit(cc : Credit_Card) : code

(from Use Case View)

<<Interface>>

Buyer IS
(from Use Case View)

<<Interface>> Seller IS

validate_registration_request()

(from Use Case View)

<<Interface>>
<<uses>>

Positive_Registration_Response

Positive_Registration_Response()

Registration
BuyerID : string

Registration(buyer_id) : Registration

<<instantiates>>

1..1

1..1 -reg_response

1..1-buyer_id

1..1

Registration_Response

<<instantiates>>

<<uses>>
Registration_Request

RespondByDate : date

Registration_Request(buyer_info : Buyer_Information, ex_date : date) : Registration_Request
check_respond_by_date() : boolean
get_buyers_credit_card() : Credit_Card

<<instantiates>>

0..1

1..1 -reg_response

0..1

-reg_request

1..1

Address
Street : string
City : string
Zip : string
Country : string

Contact_Person
FirstName : string
MiddleInitial : string
LastName : string
Phone : string

Credit_Card
CC_number : string
CC_Holder : string
CC_Issuer : string
CC_Type : string
CC_Expiration : date
CC_Signature : string

Buyer_Information
PartyName : string

get_credit_card()

1..1
-buyer_information
1..1

1..1

-bill_address

1..1 0..1
-ship_address
0..10..1

-bill_contact
0..1 0..1

-ship_contact
0..1 1..1

-credit_card
1..1

<<uses>>

Registration_Rejection_Code_Set

instance_of
Credit_Validation_Code_Set

deliver_instance_of

<<uses>>

{if different}
{if different}

Figure 5. Class Diagram for ’Register Buyer’

reason for the rejection. Thus, the concrete structure of the
response is modeled in classes for positive response and
negative response, which are subclasses of the abstract
class for the general response. Additionally, the class
diagram includes entity classes for the code sets for the
registration rejection reasons and for the results of the
credit verification.

Finally, we have a control class for the buyer subsystem
and one for the seller subsystem. The control class for the
buyer’s subsystem is interfacing the buyer’s information
system and is responsible for creating the registration
request. Similarly, the control class for the seller’s
subsystem is interfacing the seller’s information system
and the external bank and is in charge of creating the
registration response. Furthermore, the buyer’s control
class uses that of the seller to set the registration request
and to receive the response in return.

The next step of the use case analysis is to distribute the
use case behavior to the identified classes. The goal is to
express the use case behavior in terms of collaborating
analysis classes. For this purpose the responsibilities of
each analysis class have to be defined. According to these
responsibilities the actions performed by an object and the
knowledge an object maintains and provides to other
objects can be determined. To ensure that the
responsibilities are correctly defined a collaboration
diagram for each independent scenario must be created.

Figure 6 shows a collaboration diagram for a successful
registration in our demonstration example. The buyer’s
information system is willing to send a registration request.
Therefore, it calls an instance of the control class of the
buyer’s EDI subsystem to create the request according to
the stated buyer’s information. The buyer’s control object
instantiates the entity objects of the registration request.

Then it calls the register operation of the seller’s control
object. Note, that this operation call is a time-out function,
because the buyer expects the response until a given
response date. The seller’s control object is now
responsible for producing the registration response.
Therefore, it calls the interface of its information system to
validate the request. If successful, it determines the buyers
credit card according to the registration request information
structure. The credit card is input to the credit verification
operation which is performed by the interface object of the
corresponding bank. In case of credit-worthiness the
seller’s control object will check whether the response date
stated in the request is expired or not. It this is ok, the
control object creates a registration object including the
buyer’s identification. This registration is then linked to the
newly created positive registration response that is the
return value to the register operation called by the buyer’s
control object. Note, that the buyer as well as the seller will
usually store the registration in their information systems.
But we have not modeled these functions within the
collaboration diagram, because they are not meaningful for
the EDI transaction itself. These functions have to be
considered in the design of an EDI system for a specific
organization, which is out of scope for our purpose.
Nevertheless, further collaboration diagrams have to be
established for different scenarios leading to a negative
response and for the scenario resulting from an expired
response date.

The analysis of all the collaborations for the different
scenarios has to lead to a consistent class diagram for the
considered use case. The class diagram has to define all the
attributes and operations assigned to the classes, the
associations between the classes, as well as the existing
dependencies. Figure 5 depicts the final class diagram for

the buyer : Buyer_
Subsystem_CC

 : Buyer
IS

the request :
Registration_Request

the seller : Seller_
Subsystem_CC

 : Seller
IS

the-buyer-info :
Buyer_Information

the bank :
<external> Bank

the buyer_id :
Registration

the positive response : Positive_
Registration_Response

2: Registration_Request(Buyer_Information, date)

3: register(Registration_Request)

6: get_credit_card()
5: get_buyers_credit_card()
8: check_respond_by_date()

4: validate_registration_request(Registration_Request)

7: verify_credit(Credit_Card)

9: Registration(buyer_id)

10: Positive_Registration_Response(Registration, Registration_Request)

1: initiate_registration_request(Buyer_Information)

Figure 6. Collaboration Diagram for a Successful Registration in ’Register Buyer’

the use case ‘Register Buyer’.
In modeling EDI transactions we often take advantage

of unidirectional associations to express the navigational
direction for the exchanged information. For example, it is
important to follow the link from the registration request to
the buyer information to determine which buyer has sent
the request. But for EDI transactions it is not meaningful to
get all the registration requests a buyer has initiated,
because in an EDI exchange only one registration request is
sent.

Another important aspect of class definitions for EDI
transactions covers the requirements for a value for certain
attributes of an object. Unfortunately, it is not able to depict
in the class diagram whether an object must have a value
for a certain attribute or not. This information has to be
included in the documentation of the class definition.
Furthermore this documentation has to include rules for
specifying the conditions under which an attribute value is
optional. The same documentation must be applied for
attributes resulting from existing associations. But in this
case the cardinality already gives an advice on the
optionality. Furthermore, it is essential to remark that all
instantiated values for attributes of entity objects in EDI
transactions should be frozen, because when instantiated
they are sent to the partner organization that has to rely on
this information.

The class diagram should also depict existing
dependencies. This covers the ‘uses’ and ‘instantiates’
dependencies from/to control classes and boundary classes.
But dependencies should also be defined in a class diagram
whenever an attribute, a parameter or a return value refers
to an entry of a code set. For example, the attribute reject
reason of a negative response has to be a code mentioned in
the registration rejection code set or the verify credit
operation of the bank returns a code of the credit validation
code set. Thus, these dependencies should be depicted in
the class diagram. Unfortunately, our tool did not allow to
assign the dependency exactly to the attribute and the
operation, but only to the class.

The use case analysis has to be performed for each of the
identified use cases leading to a class diagram for each use
case. The final task of the analysis workflow for EDI
transactions is to create an overall class diagram for the
whole system. This means that a view integration of the
different views resulting from different use cases has to be
made. Firstly, this task has to handle relationships (include,
extend, specialize) between the identified use cases. In
addition to that, the reuse opportunities of classes in other
use-cases have to be identified. For example, the control
classes for the buyer and the seller will be used in each use
case, but provide different services to each use case.
Furthermore, generalization hierarchies between the
analysis classes might be established. For example, each of
the requests (registration, catalog, order, order status) might
have some common attributes (respond by date) and
methods (check respond by date), leading to a common
superclass for requests. The design decisions made for the
overall class diagram must finally be distributed to the use

case specific diagrams.

3.4. The design workflow

The objective of this workflow is to take the outputs
from the analysis workflow described above and to apply
design rules to produce an OO-edi systems design.
Accordingly, the output from the analysis workflow will be
used for the creation of UN/EDIFACT messages, Simpl-
EDI messages, XML messages, or any transfer syntax used
in EDI. Since the design process for these different transfer
syntaxes are very different and are a matter of the FSV
layer, we do not.detail this workflow. Nevertheless, the
development of a commonly agreed design methodology
for each transfer syntax will be a crucial success factor of
the overall approach.

4. Summary

In this paper we propose UMM,a methododology
based on RUP [17] and UML [19] to support the design
of EDI transactions from a business-oriented viewpoint.
According to the requirements of modeling EDI
transactions using Unified Process and UML contributes to
a consistent design of common EDI business objects in the
following way: The business workflow helps in
understanding the focused business domain. The
requirements workflow describes the EDI specifics of the
business domain. A glossary is used to ensure the
semantically correct interpretation of EDI-specific and
business terms. Furthermore, code sets for coded
information used in an EDI interchange must be defined in
the glossary. The vision and scope statement of the
requirements workflow together with a use case diagram
and supplementary use case definitions allow to exactly
identify the boundaries of the EDI transaction. Within use
case diagrams it is visible what is inside the boundary.
Different stereotypes for interfaces allow to distinguish
between interfaces to organizations’ internal information
systems (internal) and interfaces to external systems
(external). External interfaces are often used when a service
is provided by an external use casealso stereotyped in
the use case diagramdefined in another EDI transaction.
Nevertheless, a referencing mechanism to these external
defined EDI transactions has not been developed by now.
Furthermore, the requirements workflow uses activity
diagrams to describe the main flow of events in a use case.
Since activity diagrams use a rather simple notation to be
easily understood by domain experts, they are able to state
their requirements on the use case as well as to validate the
use case.

The analysis workflow finally is used to define the
common EDI business objects. The entity classes in the
class diagrams exactly define the data structure of the
‘virtual’ business documents being exchanged.
Unfortunately, the requirement designators for attributes
are not visible in the class diagram, but have to be

documented in the class specification. The control classes
controlling the EDI transaction for each participating
organizations identify by their operation signatures what
services the organization provides to the EDI transaction,
what input is required to fulfil a service and what output
can be expected. The ‘instantiates’-dependency between
control classes and entity classes defines which
organization instantiates which ‘virtual’ documents or part
thereof. Furthermore, the ‘uses’ dependencies show the
interfaces among the control classes and between the
control classes and the interfaces. Additionally, existing
dependencies to code sets can be depicted in the class
diagrams. The set of collaboration diagrams help to define
different scenarios that might exist within a use case. The
defined collaboration specifies the sequence of the
activities in a use case and depicts different instantiations of
entity classes based on different scenarios. The concept of
abstract classes helps to model different data structures for
the same type of return value. The scenarios leading to the
instances of the subclass of the abstract class are captured
in collaboration diagrams.

Consequently, UMMthe adapted Unified Process
and UML provide meaningful concepts for modeling EDI
transactions. But by now we have only gained experience
from modeling one EDI transaction from scratch. Further
investigations have to consider the reuse of patterns in
various EDI transactions. Furthermore, concepts for linking
these patterns and use cases assigned to different EDI
transaction packages have to be developed. These facts
become even more important, when a repository for
capturing all EDI transactions for public reuse will be
established.

References
[1] J. Berge, The EDIFACT Standards, NCC Blackwell Limited,

Oxford, 1991

[2] G. Booch, I. Jacobson, J. Rumbaugh, The Unified Modeling
Language User Guide, Addison Wesley Object Technology
Series, Reading, 1998

[3] J. Bosak, “XML, Java and the Future of the Web”, World
Wide Web Journal (W3J), O'Reilly, 1997

[4] CEFACT, Report of the CEFACT Steering Group Chair to
the CEFACT plenary, UN/Trade/CEFACT/1998/10, 1998

[5] D.F. D’Souza, A.C. Wills, Objects, Components and
Frameworks with Uml: The Catalysis Approach, Addison
Wesley Object Technology Series, Reading, 1998

[6] R. Drummond, “XML: The Only Chance for a Worldwide
Standard”, e-Business Advisor, 2000

[7] ebXML, Homepage of the ebXML Initiative,
http://www.ebXML.org , 1999

[8] P. Eeles, O. Sims, Building Business Objects, John Wiley
and Sons Inc., Chichester, 1998

[9] M.A. Emmelhainz, Electronic Data Interchange: A Total
Management Guide, Van Nostrand Reinhold, New York,
1990

[10] M. Fowler, K. Scott, UML Distilled, Addison Wesley Object
Technology Series, Reading, 1997

[11] N.C. Hill, D.M. Ferguson, “Electronic Data Interchange: A
Definition and Perspective”, EDI Forum: The Journal of
Electronic Data Interchange, Vol. 1, Issue 1, 1989, pp. 5-12

[12] P. Hruby, “Structuring Specification of Business Systems
with UML”, Proceedings of OOPSLA ‘98 - Business Object
Workshop IV, 1998

[13] C. Huemer, “Modeling Inter-Organizational Systems with
UML”, Proceedings of the 12th International Bled
Electronic Commerce Conference, Bled Slovenia, 1999

[14] C. Huemer, “XML vs. UN/EDIFACT or Flexibility vs.
Standardisation”, Proceedings of the 13th International Bled
Electronic Commerce Conference, Bled Slovenia, 2000

[15] ISO, Open-edi Reference Model,
ISO/IEC JTC 1/SC30 ISO Standard 14662, 1995

[16] M.M. Kande, S. Mazaher, O. Prnjat, L. Sacks, M. Wittig,
“Applying UML to Design an Inter-Domain Service
Management Application”, Proceedings of the International
Workshop <<UML>>’98, Mulhause France, 1998, 173-182

[17] P. Kruchten, Rational Unified Process, Addison Wesley
Object Technology Series, Reading, 1998

[18] G. McLeod, “Extending UML for Enterprise and Business
Process Modeling”, Proceedings of the International
Workshop <<UML>>’98, Mulhause France,1998, 195-204

[19] OMG, UML Notation Guide, Version 1.3, OMG,
http://www.rational.com/uml, 1999

[20] B. Peat, D. Webber, Introducing XML/EDI - „the E-business
framework, XML/EDI Group, http://www.xmledi.com,1997

[21] D. Raman, Cyber Assisted Business - EDI as the Backbone
of Electronic Commerce, EDI-TIE B.V., Hoofddorp
Netherlands, 1996

[22] D. Rosenberg, K. Scott, Use Case Driven Object Modeling
with UML: A Practical Approach, Addison Wesley Object
Technology Series, Reading, 1999

[23] J. Rumbaugh, The Unified Modeling Language Reference
Manual, Addison Wesley Object Technology Series,
Reading, 1998

[24] G. Schneider, J.P. Winters, Applying Use Cases: A Practical
Guide, Addisson Wesley Object Technology Series,
Reading, 1998

[25] TMWG, Reference Guide - ‘The Next Generation of UN/
EDIFACT’, CEFACT/TMWG/N010/R1, 1998

[26] TMWG, Assessment of UML for use as the Technique for
Next Generation EDI Standards, CEFACT/TMWG/N026,
1998

[27] TMWG, Analysis of Modelling Techniques: IDEF 0, IDEF
1X and IDEF 3, CEFACT/TMWG/N034, 1998

[28] TMWG, Main characteristics of EXPRESS-G and
assessment as a Technique for Next Generation EDI
Standards, CEFACT/TMWG/N036, 1998

