
DSNotify – Detecting and Fixing Broken Links in
Linked Data Sets

Bernhard Haslhofer
University of Vienna

Department of Distributed and Multimedia Systems
Email: bernhard.haslhofer@univie.ac.at

Niko Popitsch
University of Vienna

Department of Distributed and Multimedia Systems
Email: niko.popitsch@univie.ac.at

Abstract—The Linking Open Data (LOD) initiative has mo-
tivated numerous institutions to publish their data on the Web
and to interlink them with those of other data sources. But since
LOD sources are subject to change, links between resources can
break and lead to processing errors in applications that consume
linked data. The current practice is to ignore this problem and
leave it to the applications what to do when broken links are
detected. We believe, however, that LOD data sources should
provide the highest possible degree of link integrity in order
to relieve applications from this issue, similar to databases that
provide mechanisms to preserve referential integrity in their data.
As a possible solution, we propose DSNotify, an add-on for LOD
sources that detects broken links and assists the data source
in fixing them, e.g., when resources were moved to other Web
locations.

I. INTRODUCTION

As part of the Linking Open Data (LOD) initiative, nu-
merous data providers have started to expose their data as
structured data on the Web and to interlink them with data
from other data providers. They now form the so called Linked
Data cloud1. Prominent LOD data sources are DBpedia [1],
which is the structured version of Wikipedia, the BBC Mu-
sic Portal2, or the Swedish Library Union Catalogue [2].
They have in common that besides providing human-friendly
(HTML) presentations, they also expose machine-processable
resource descriptions (RDF) on the Web that can be accessed
and processed by clients by dereferencing their HTTP URIs.

Links between resources in different data sources take a
central role in the LOD approach. They are usually created
either manually or by using semi-automatic link discovery
tools (see e.g., [3]). Figure 1 shows a resource that represents
a band and is exposed by the BBC Music LOD source
(link source). Amongst other descriptive data, it contains a
typed link (owl:sameAs) to a resource in the DBpedia LOD
source (link target). An application, which processes the data
provided by the BBC Music LOD source, could follow the link
and retrieve further information about this band from DBpedia,
such as the band’s members. Hence, a major benefit of the
LOD approach is that machines can use the Web as humans
already do: they can easily access Web resources by their

1http://www4.wiwiss.fu-berlin.de/bizer/pub/lod-datasets 2009-03-27.html
2BBC Music: http://www.bbc.co.uk/music/

URIs and follow available links to retrieve further contextually
relevant data.

DBpedia LOD SourceBBC LOD Source

http://www.bbc.co.uk/music/artists/
e60e1f0b-1e8c-45e7-9d4a-222db9cb34f7#artist

http://dbpedia.org/resource/
New_Model_Army_(band)owl:sameAs

Link Source Link Target

Link 

Fig. 1. Sample link between BBC Music and DBpedia data.

One problem with the LOD approach of data management
is that applications face the same difficulties as humans do
when browsing the Web: links between resources may become
broken resulting for example in HTTP error responses or no
response at all (see e.g., [4]). Reasons for this can be manifold:
web servers may be down or resources might be removed or
moved to other locations. While the problem of broken links
is annoying for human end-users and the typical reaction is
using the browser’s back button or manually looking up the
intended link target using a web search engine, this is much
harder for machines.

In the context of LOD, we define link integrity as a qualita-
tive property that is given when all links within and between a
set of data sources are valid and deliver the result data intended
by the link creator. Traditional data management systems (e.g.,
RDBMS), have built-in mechanisms (e.g., referential integrity)
that preserve such kind of integrity. Unfortunately, we cannot
apply these mechanisms for LOD data, because there is no
single instance that has full control over the whole data set.
Therefore, we require an alternative solution for dealing with
the broken link problem. In particular, we need a solution that
(i) detects broken links between resources and (ii) provides
support for fixing those links.

Our central contribution is a solution that can detect broken
links in LOD data sets and assists in repairing them by propos-
ing fixes for broken links. As a proof-of-concept, we have
implemented these two contributions in an initial prototype
called DSNotify. Comparable to iNotify3 in the Linux kernel,
it can be used by an LOD source to get informed about create,
remove, and move operations in remote LOD sources.

3see http://www.linuxjournal.com/article/8478



II. BROKEN LINKS IN LOD DATASETS

The preferable method to deal with the broken link problem
is to avoid that links break in the first place. Unfortunately,
this strategy can only be applied if both, links and resources,
are under full control of one single system (like e.g., in
an RDBMS), which is not the case in Web environments.
Another strategy — the status-quo in the LOD context — is to
ignore the problem and shift it to higher-level applications that
process the exposed data. Our approach is to fix broken links
wherever possible. In the following, we elaborate on possible
types of broken links, discuss strategies for fixing such links
and analyze the implications on the DSNotify design.

A. Possible Types of Broken Links

We speak of a broken link whenever an HTTP GET request
executed against the HTTP URI of the link target does not
resolve to a resource description (RDF) but delivers an error
response. We can classify the possible types of broken links
according to the type of operations that cause links to break:

1) Removed link targets: The target of a link is removed
permanently from the Web or is not reachable anymore.
Reasons for this include that the hosting server is
switched off or that the respective resource has been
removed from the server. In the latter case, an HTTP
Server would return an HTTP error response, such as
404 Not Found, when an application looks up the link
target’s URI.

2) Moved link targets: The target of a link is not reachable
anymore because it has been moved to another Web
location, i.e., it is available via another HTTP URI.
This happens for instance, whenever an organization
changes its domain name (e.g., from dbpedia.org to
lodpedia.org) or relocates resources (e.g., from http://
dbpedia.org/resource/New Model Army (band) to http:
//dbpedia.org/resource/band/New Model Army).

B. Possible Reactions on Broken Links

In order to preserve link integrity, an LOD data source
can react differently on each type of broken link: a possible
reaction for the first case (removed link targets) would be
to remove broken links. In RDF this means to remove all
statements containing the removed link target.

Reacting on moved link targets is more complicated but
equally important. Assuming that the resource identifier of the
moved link target refers to the same4 real-world entity as the
resource identifier of the original link target, the operation
move can also be interpreted as remove and add. The first
step is then the same as in the first case: removing the affected
links. In a second step, an LOD data source can fix the link
by updating the link target with an HTTP URI that identifies
the same resource as the removed link target.

4In the (Semantic) Web community, the notions of identity and equality are
still open issues (cf. [5]). In this work, we conceive equality as a subjective
decision that depends on the context of an application.

C. Design Considerations
Regarding the Linked Data cloud, we can observe that

a local LOD data source is always interlinked with 0 . . . n
remote data sources. For DSNotify we can identify two
possible application scenarios: either it is installed as an
add-on to a local LOD data source, observes link targets
in 0 . . . n remote sources, and notifies the local data source
whenever a link target becomes unavailable, i.e., is removed or
moved. Alternatively, the remote LOD data sources integrate
the DSNotify add-on, which observes modifications in the
(local) data sets and sends notifications to subscribed LOD
sources (see e.g., [6]). Although the second alternative is more
economical considering network and storage costs, we cur-
rently focus on the first scenario because we cannot influence
the behaviour of remote LOD data sources maintained by other
institutions.

The main challenge lies in the decision, whether a link target
resource has been removed permanently or moved to another
Web location. Since the identity of a resource is determined
by its URI identifier, which changes whenever a resource is
moved, we cannot rely on that identifier for deciding on the
equality of resources but must apply heuristic methods based
on a resource’s RDF description. If the RDF description of
a moved resource remains unchanged or contains some kind
of structured identifier (e.g., ISBN number), the heuristics
could be a simple string comparison and the chance to identify
moved resources is very high. If a resource’s RDF description
comprises mainly low-level metadata (e.g., file-size, mime-
type) and maybe a reference to some multimedia object (e.g.,
an image or a video), more advanced heuristics including
different kinds of feature extraction mechanisms are required.
In such cases, human intervention may be necessary in order
to decide whether two HTTP URI identifiers refer to the same
resource, i.e., that a link target resource has been moved.
So it must be possible to tailor the heuristics to domain-
specific requirements and consider the possibility to include
user feedback/intervention in the DSNotify design.

III. APPROACH

Our proposed solution to the problem of broken links
in LOD data sets is called DSNotify. Figure 2 depicts an
overview of its architecture: we consider an LOD source
(shown on the left hand side) that is linked to other LOD
sources (right hand side). This source knows how to update
its data and needs to fix broken links occurring when the linked
LOD sources are updated.

At the very core of DSNotify lies an indexing infrastructure:
A monitor (e.g., a web crawler) accesses considered LOD
items, extracts features describing an item and derives an item
representation (including an item’s URI and its feature vector)
that is stored in an index. The monitor detects what items were
created, removed or modified by consulting the index. Detected
events are written to a central event log and consecutively
result in notifications sent to registered applications5.

5Note that this infrastructure would already be sufficient to provide a broken
link detection service to LOD applications.



DSNotify

LOD Sources
LOD Source

 owl:sameAs 

 owl:sameAs 

update

* Monitor (feature extraction)
Event
LOG

monitor

Indices

II RII AII

* Move Detector (heuristic)

notifications

querying

user

decision making* Decider

* LOD source 
updater

LOD „consuming“ 
application

Fig. 2. DSNotify architecture. Components that require some domain-
dependent implementation are marked with an asterisk.

A. Feature Vectors Represent Items

The central task of DSNotify is to detect whether items that
are not reachable under a particular URI anymore were moved
and are now reachable under a different URI. In order to do
this, DSNotify does not index the content of its considered
items but rather extracts a feature vector from an item’s
content and its accessible meta data. This vector consists
of features that basically constitute name/value pairs (e.g.,
selected property-values of the corresponding LOD item).
The name of a feature is represented by a URI, its value is
implemented by some data type. DSNotify provides standard
feature implementations for XML schema data types (e.g.,
string, integer or boolean features), but as the data type of
features may be largely domain-dependent we also permit to
plug-in custom data types like for example a histogram type
for images. For the reasons explained below, it is required that
features are comparable to each other.

Possible features in the case of the example shown in
Figure 1 could be the band’s name in DBpedia (e.g.,
rdfs:label = "New Model Army") and/or the current and
past members of that band (e.g., dbpprop:currentMembers
= dbPedia:Justin_Sullivan). In general, these properties
are sufficient to uniquely identify a band.

B. Indices and Move Detection

An item’s representation, consisting of its identifier (URI),
its feature vector, and some administrative meta data, is stored
in an index that is periodically updated by the monitor. In fact,
DSNotify keeps three distinct indices: an item index, a removed
item index and an archived item index. Item representations are
moved between these three indices as illustrated in Figure 3
and explained in the following:

Originally, representations of new items detected by the
monitor are stored in the item index. Whenever a monitor

http://dbpedia.org/resource/
New Model Army (band)

http://dbpedia.org/resource/
band/New Model Army

http://dbpedia.org/resource/
New Model Army (band)

http://dbpedia.org/resource/
New Model Army (band)

http://dbpedia.org/resource/
New Model Army (band)

http://dbpedia.org/resource/
band/New Model Army

http://dbpedia.org/resource/
band/Punk/New Model Army

Item Index (II) Archived Item Index (AII) Removed Item Index (RII)

t1

t2

t3

t4

time

Fig. 3. Diagram explaining how the three DSNotify indices work together.
Item representations are moved between indices (dashed arrows) and archived
item representations are linked (solid arrows) to corresponding newer repre-
sentations. Note that some intermediate steps between time t3 and t4 were
omitted for simplicity (see text).

reads an item, it also extracts the item’s feature vector and,
if the item is not represented yet, stores the item together
with its feature vector in the item index. If the item is
already represented in the index but has changed since the
last monitoring cycle, the feature vector is updated in the
index. For example, at time t1, a single item http://dbpedia.org/
resource/NewModelArmy(band) is stored in the item index.

When DSNotify detects that an item cannot be accessed any
more (because it was removed or moved), the corresponding
index entry is not removed but rather moved to the removed
items index (cf. time t2).

Some (configurable) time after this happens, the move
detector tries to find out what event really took place (move or
remove). It uses a plug-in heuristic that compares this item’s
feature vector to the feature vectors of all recently added
items by comparing each single feature and combining the
results. Our default implementation of this heuristic basically
averages the similarity values of all compared features, which
might be sufficient for the example mentioned above. For
more complex scenarios, advanced strategies may be needed
to achieve satisfactory results (e.g., the influence of single
features on the total similarity should be configurable).

The result of this comparison is a list of item/probability-
value pairs denoting what items could be newer representa-
tions of the considered item. Now it has to be decided whether
some item from this list actually is a newer representation
(thereby triggering a moved event) or whether none of them are
(thereby triggering a removed and a created event). Depending
on its configuration, DSNotify decides this autonomously
(based on threshold values) or sends a decision request to
some subscribed application that makes the decision (e.g., by
incorporating feedback from a human user).

When an item was considered as moved to a new location,
the corresponding old representation is moved from the re-
moved items index to a third index called the archived items
index. Additionally it is linked to its corresponding newer
representation in the item index (cf. time t3). Thereby, over
time, representations of a particular item form a timely-ordered
linked list (see time t4: here 3 representations of an item,
arranged in a linked list, can be seen).



C. Feedback and Notification Mechanisms

As depicted in Figure 2, applications may interact with
DSNotify in three possible ways: (1) by passively receiving
event notifications, (2) by actively querying the DSNotify
indices, or (3) by answering decision requests issued by the
move detector.

In the first case, applications may register for getting
event notifications from the central DSNotify event log via
various types of communication protocols. Currently we have
implemented a simple XML-RPC interface but in principle any
kind of Web-based interface is imaginable. DSNotify could,
for instance, deliver notifications to subscribing applications
using HTTP PUT requests.

The second possibility is that applications actively query
DSNotify via its HTTP interface to find out what happened
to a particular item identified by a certain URI. DSNotify
searches its indices for the passed URI and answers depending
on the index it is found in. In case it is found in the item
index or in the removed item index, DSNotify answers with
“existing” or “removed” respectively. In case it is found in the
archived item index, DSNotify follows the links to the latest
item representation and answers with the new URI. Thereby
DSNotify may be used as a service that maps historical to
recent URIs, for example by applications that do not make
use of the notification service and detect that some item is
unavailable (e.g., due to an HTTP error response).

In the third case, DSNotify decides between move or
remove/create events by consulting a list of item/probability
pairs. In some situations this decision can be made automat-
ically with a high probability of correctness: for example,
consider that only the URI of an item has changed. In this case,
the feature vector comparison of the old and the new item rep-
resentation should return the highest possible similarity value
and – in case there are no duplicates with equal feature vectors
– it is straightforward to decide that this item was moved.
But in other cases (e.g., when the URI and some properties
of the item were changed since the last monitoring cycle) it
may be difficult or even impossible for DSNotify to make
this decision. For this latter case, DSNotify may outsource
the decision to a subscribed decision making application. This
application may now decide such “borderline cases” based on
its own heuristics, possibly incorporating external knowledge
DSNotify is not aware of, or by consulting human users, e.g.,
in the form of positive or negative feedback. We are well aware
that such cases are very likely to occur, therefore this external
decision making loop is a core component of DSNotify. By
that, an LOD source may decide for itself what strategy to
choose to avoid as many false negatives (i.e., broken links)
and false positives (i.e., links that point to wrong data items)
as possible.

IV. IMPLEMENTATION

We have implemented a DSNotify Java prototype that
includes all the components described in Section III. The index

implementations are based on Apache Lucene6, whereas for
each index type one can choose between a slow (but persistent)
and a fast (in-memory) index. For the archived item index, for
instance, the default configuration uses a persistent index. In
order to support non-text based content as well, it was nec-
essary to extend Lucene’s information retrieval functionality
by customizable feature vectors. The LOD data sources to be
observed, the feature extraction algorithms to be applied on the
data, as well as the heuristics used to detect moved resources
can be tailored to domain-specific requirements via external
configuration files and plug-in implementations (Java classes).

In the test-runs we have carried out so far, we simulated
location and data modifications in available LOD data sets7

and assured that the behaviour of DSNotify reflects our
strategy of detecting and fixing broken links. A comprehensive
long-term evaluation on the efficiency and effectiveness of
DSNotify in combination with real-world LOD sources will
be the next step.

V. RELATED WORK

Early hypertext systems clearly considered link integrity to
be an integral feature. But with the application of hypertexts
in distributed environments it became more and more diffi-
cult to maintain this integrity. Alternative approaches to the
Web, which implement more advanced linking concepts and
strategies for ensuring link integrity, such as Hyper-G [7] or
W3Objects [8], never made it “out of the lab”.

We can divide existing strategies for avoiding and fixing
broken links, into the following groups:

• Indirection — A layer of indirection is introduced that
allows content providers to keep links to their hosted
resources up to date. The PURL8 and the Handle [9]
system, the underlying technologies for Digital Object
identifiers (DOIs), are two well known examples for this
(see e.g., [10]). Both implement the concept of Uniform
Resource Names (URNs) to identify resources on the
Web and provide services for translating these URNs to
resolvable URLs.
The disadvantage of this strategy is that central services
are required for the translation step. Just like it is the
case for the domain name service (DNS), clients must
be aware of how to address these services and they
introduce additional latency when accessing resources.
Furthermore, content providers still have to (manually)
update the physical address bound to a URN in these
services.

• Redundancy — Redundant copies of resources are kept
and a service forwards referrers to one of these copies as
long as at least one copy still exists. However, such ser-
vices can reasonably be applied only to highly available,

6http://lucene.apache.org
7For testing purposes we use subsets of the data exposed by OAI2LOD

data sources. See: http://www.mediaspaces.info/tools/oai2lod/
8The PURL system makes use of the HTTP redirect facility which itself

provides only a partial solution for the broken link problem, cf. [8]



unmodifiable data. Examples for such systems include
LOCKSS [11] and RepWeb [12].

• Robust link implementations — Among the approaches
for fixing links automatically, the solution proposed by
Phelps and Wilensky [13] is the most relevant in our
context: they propose robust hyperlinks based on standard
Web technologies. The URLs of resources referred to
by robust hyperlinks are augmented by a small signa-
ture composed of terms extracted from the referenced
document. When the targeted document is moved, these
terms may be used to automatically search for it using a
Web search engine and the broken link may be fixed.
The authors found out that five terms are enough to
uniquely identify a web resource in virtually all cases.
A disadvantage of the robust hyperlink solution is that it
requires existing URLs to be changed and that it depends
on web search engines, therefore being restricted to the
indexed part of the Web. Furthermore it is unclear how to
extend this method to non-textual resources. Nevertheless
we consider a lexical signature as a very useful DSNotify
feature data type for LOD sources that link to external
text documents.

• Manual / pragmatic approaches — In this group we
summarize strategies of Web users respectively content
providers to fix broken links manually. This includes
“manually” searching for resources using search engines
(basically this is the strategy the above-mentioned robust
link idea tries to automate) or direct manipulation of the
URL.
Content providers sometimes make use of automatic link
checking software9 to get informed when broken links
occur on their websites. On the other hand, users may
utilize services like ChangeDetection10 for monitoring
particular Web resources and get informed when they
change. Such systems may already be used to solve the
broken link detection problem described in Section II
but provide no means to support applications in (semi-)
automatic link fixing.

VI. CONCLUSIONS AND FUTURE WORK

A major goal of this paper is to create the awareness
that when we consider the Web as a novel form of data
management as done in the LOD approach, we also have
to provide means for preserving link integrity in the exposed
data sources, an issue that has already been realized in more
established domains (e.g., referential integrity in RDBMS).
As a possible solution, we have presented DSNotify, which is
an add-on for LOD data sources that can keep links between
LOD resources consistent with very little required user input. It
allows LOD data sources to react not only on removed but also
on moved link targets in remote LOD sources. The decision
whether a link target has been moved is computed heuristically
on the basis of domain-specifics features.

9e.g., the W3C link checker, http://validator.w3.org/checklink
10http://www.changedetection.com/

DSNotify is highly configurable in terms of its application
domain and can therefore serve in many different scenarios.
We believe that, when it becomes an integral part of LOD
storage solutions, it could help in stabilizing the links between
sources and increasing the quality of data provided as part of
the Linked Data cloud.

In our future work, we will first perform an evaluation on
the efficiency and effectiveness of the DSNotify approach.
We will use the currently available DBpedia dumps and set
up a testbed comprising several LOD instances, where each
instance reflects the state of DBpedia at a certain point in
time. We will annotate the exposed data in order to build a
benchmark data set and perform a precision-recall analysis.
Possible extensions of DSNotify are other types of resource
modifications, e.g., modifications within arbitrary RDF data,
and, of course, extending this approach to other types of data
sources, such as the Web of (HTML) documents or remote
(semantic) file systems. We expect to publish a first open
source release of DSNotify within the next months.

REFERENCES

[1] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives,
“Dbpedia: A nucleus for a web of open data,” in Proceedings of the 6th
International Semantic Web Conference (ISWC), ser. Lecture Notes in
Computer Science, vol. 4825. Springer, 2008, pp. 722–735.

[2] M. Malmsten, “Making a Library Catalogue Part of the Semantic Web,”
in Proceedings of the International Conference on Dublin Core and
Metadata Applications, J. Greenberg and W. Klas, Eds., September 2008.

[3] J. Volz, C. Bizer, M. Geadke, and G. Kobilarov, “Silk - a link discovery
framework for the web of data,” in 2nd Linked Data on the Web
Workshop (LODW2009), co-located with WWW 2009, Madrid, Spain,
2009.

[4] H. C. Davis, “Hypertext link integrity,” ACM Comput. Surv., vol. 31,
no. 28, p. 28, December 1999.

[5] H. Halpin, “Identity, Reference, and Meaning on the Web,” in Proceed-
ings of the Workshop on Identity, Meaning and the Web (IMW06), 2006.

[6] S. Auer, S. Dietzold, J. Lehmann, S. Hellmann, and D. Aumüller,
“Triplify: light-weight linked data publication from relational databases,”
in WWW ’09: Proceedings of the 18th international conference on World
wide web. New York, NY, USA: ACM, 2009, pp. 621–630.

[7] K. Andrews, F. Kappe, and H. Maurer, “The hyper-g network informa-
tion system,” Journal of Universal Computer Science, vol. 1, no. 4, pp.
206–220, 1995.

[8] D. Ingham, S. Caughey, and M. Little, “Fixing the “broken-link”
problem: the w3objects approach,” Comput. Netw. ISDN Syst., vol. 28,
no. 7-11, pp. 1255–1268, 1996.

[9] R. Kahn and R. Wilensky, “A framework for distributed digital object
services,” Int. J. Digit. Libr., vol. 6, no. 2, pp. 115–123, 2006.

[10] W. Y. Arms, “Uniform resource names: handles, purls, and digital object
identifiers,” Commun. ACM, vol. 44, no. 5, p. 68, 2001.

[11] D. S. H. Rosenthal and V. Reich, “Permanent web publishing,” in ATEC
’00: Proceedings of the annual conference on USENIX Annual Technical
Conference. USENIX Association, 2000, pp. 129–140.

[12] L. Veiga and P. Ferreira, “Repweb: replicated web with referential
integrity,” in SAC ’03: Proceedings of the 2003 ACM symposium on
Applied computing. New York, NY, USA: ACM, 2003, pp. 1206–1211.

[13] T. A. Phelps and R. Wilensky, “Robust hyperlinks cost just
five words each,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/CSD-00-1091, 2000. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2000/5442.html


