
Using Stateful Activities to Facilitate Monitoring
and Repair in Workflow Choreographies

J. Eder +, J. Mangler #, E. Mussi ∗1, B. Pernici ∗2

+Department for Informatics Systems,
University of Klagenfurt, Austria
johann.eder@uni-klu.ac.at

#Faculty of Computer Science,
University of Vienna, Austria

juergen.mangler@univie.ac.at

∗Dipartimento di Elettronica e Informazione,
Politecnico di Milano, Italy
1enrico.mussi@polimi.it

2barbara.pernici@polimi.it

Abstract—The repair of faulty processes (workflows, web-
service compositions) needs information about the state of
the involved webservices. We introduce an architecture where
(webservice based) activities and their instances are treated as
manageable resources. Based on the WAMO Model our activities
provide detailed information about the state they currently
hold, possible states they can reach, as well as operations to
affect the current state. The strength of this approach is that
we can introduce independent repair and monitoring facilities,
that utilize a generic way to access information about running
activities.

I. INTRODUCTION

Self-healing webservices need to monitor the progress of
the execution of a process, detect abnormal situations and
diagnose the causes of the failure and repair the process by
enable correct continuation of the process.

We define a workflow as a behavioral description, that
combines for several webservices how to use the operations
described by the WSDL. When such a description is executed
it results in a process that holds the runtime information and
data associated with a particular set of involved webservices.
All information associated with the execution of a particular
webservice (e.g. state, return values) is defined as activity.
An orchestration is given when the invoked webservices
themselves are interfaces to processes.

Typically all information about a particular webservice is
collected at design time: a process description represents a
static interaction model for a set of webservices. Webservices
are seen as collections of operations.

Current webservice implementations are commonly de-
scribed as stateless, but they often allow for the manipulation
of state, e.g. when data values are persistent because of
webservice interactions like in WS-BPEL or explicitly through
frameworks or standards [1] [2].

Therefore service that provides multiple operations (a con-
sumer can interact with) may quite likely have a internal

state (in contrast to the frequent definition of webservices as
stateless operations). A standardized way of exposing this state
has not yet established in the workflow community.

In our approach multiple webservices are invoked by a
controlling process. Whenever an error occurs there is the need
to repair the process, which in turn implies the need to fetch
information from invoked services at runtime. In our paper
we will introduce an architecture that will allow to efficiently
provide and mange the information that is necessary to control
and repair such processes.

We define webservices as having the following properties:
• webservices have multiple operations [3].
• The operations interrelate on each other in that they return

values that are needed as parameters for other operations
of the same service.

• Operations can be long running.
Calling an operation results in an activity, which is therefore
• The representation of a running operation.
• An instance of a call to the operation.
• Realized as a new webservice with its own endpoint.
So our approach activities are not only abstract entities

associated with the execution of operations of a webservice,
but are stateful instances.

The main focus of this work is to control the interaction
between a workflow engine and the called webservices. We
propose a generic way to query the status of the communica-
tion between a workflow and the operations it calls, as well
as a generic way to find out which operations are available
depending on the status. This mechanism has also to work
in the case of failure. So we propose to manage activities as
manageable resources.

Activities are described by a set of states, an activity can
be in, and operations an activity can perform depending on
the states (presented as state graph). These operations include

typical repair operations (e.g. undo and retry. We claim that
our approach has the following advantages:
• It provides status information about the interaction be-

tween a process and a webservice.
• It provides means to control the interaction (start, stop,

abort, undo).
• Information about activities separated and encapsulated

from the workflow specific information, and are made
accessible through a generic interface.

• The monitoring facility to the system is independent from
the business logic.

• The repair facility is independent from the business logic
and is able to repair some problems without interfering
with the workflow engine.

Our contributions include a way to represent a workflow
activity by a fixed set of properties, a way to expose this
properties by utilizing the already established WSDM (Web
Services Distributed Management) [4] standard, as well as an
architecture that implements the above named requirements.

This leads to an environment, in which errors can be
detected independently from a workflow process. An indepen-
dent repair engine can interact with the created activities for
possible repair actions, and optionally escalate errors to the
workflow engine when repair fails. In our view this leads to
increased transparency and simpler, reusable components for
repair and monitoring, and to a self-healing system that can
transparently handle error cases, that previously to be defined
in static workflow descriptions.

We will exemplify our idea with a simple ”airline” example.
A flight has to be booked, which includes searching for
suitable one, booking it, and in case of a problem, refunding
the money (unbooking).

II. WORKFLOW ACTIVITIES AS STATEFUL RESOURCES

A. Outline

Webservice orchestrations invoke webservices, in that op-
erations are called with a set of parameters[5]. The return
value will be used for subsequent calls to other webservices. A
webservice choreography, on the other hand, is the interaction
protocol between (two) orchestrations (that expose operations
through a webservice interface).

A problem with this approach is, that webservices are
usually considered as stateless, and error handling is part of
a predefined orchestration[5] description. The information and
logic necessary to repair the orchestration must be present in
the running instance of the orchestration. Current orchestration
and choreographies standards [6] [7], focus on describing the
interaction or flow of an orchestration or choreography in the
sense that they try to provide means to map workflow patterns
[8].

We propose to add two issues:
• Whenever an operation is called, it results in an activity,

that has a state and a set of operations for interaction.
• The activity is a stateful webservice that lives for the

whole lifecycle of an orchestration and encapsulates all

information associated with a call to a particular operation
it has been spawned for.

The activity is therefore a standardized interface to the
functionality triggered by the operation, which of course may
internally have its own business logic. The operation acts like
a factory [9], that creates activities, which are then the sole
communication partners of the orchestration.

With this addition it is possible to access a standardized set
of information about the activity, as well as triggering repair
actions. Because the activities represent and encapsulate a pro-
cess, they must live until the end of the orchestration, because
they can only be seen as finished, when the orchestration itself
is finished, which means that repair of single activities is no
longer necessary (because of successful termination).

Failures are the inability of an activity to perform its
functionality, this means it cannot deliver the requested service
(e.g. flight cannot be booked). Such failures are frequently
called semantic failures or expected exceptions [10] as op-
posed basic failures (e.g. system crash) or application failures
(e.g. abnormal program termination). Failures are represented
as state changes of the activity (see Fig. 1).

B. The Lifecycle of an Activity
As Ardagna et al. [11] we

(...) conceive of self-healing behavior as a combina-
tion of monitoring and repair capabilities. Our goal
is to detect failure during a process execution and
apply appropriate recovery actions to let the process
successfully terminate.

In [11] a Mediator detects errors and takes steps to “repair”
the process. The downside is that the mediator has to have
knowledge of the semantic cohesion between the operations, to
allow for self-healing. Whereas we try to make operations like
undo, redo, compensate, . . . explicit, and thus try to generalize
the repair process.

In this section we describe the set of states and operations
that are available for the activities that are created as a result
to the call of a webservice operation.

In our approach we rely on the foundation laid by WAMO
(Workflow Activity Model) [10]. The idea of WAMO is to
introduce transactions into the workflow model to handle long
running activities. Exceptions that are defined for the activities
are automatically handled by the underlying workflow system,
when an activity fails. As in WAMO, activities have a common
state. Compared to the WAMO model, we deal with the
following premises:
• WAMO describes hierarchical structured workflow sys-

tems However everything is in-process, where now we
deal with a distributed system. Again the activities can
consist of sub-activities, but they are not transparent to
our system, as they are encapsulated.

• Activities are webservices, that expose an internal state
to the orchestration.

• We introduce runtime specific information about states to
the dynamic system imposed by the interaction of various
partners.

Fig. 1. The States That Can Occur Throughout The Lifecycle of an Activity

Fig. 1 describes a set of states in which an activity can
be: Idle, Working, Failed, Suspending, Suspended, Commit-
ted, Compensating Compensated, Undoing, Undone, Aborting,
Aborted

Every activity also exposes a set of properties that are con-
nected to the states, and indicate the possibility of triggering
a transition to a different state:

suspendable can be true/false in Working state. In all other
states it is notdefined. Suspendable means that
the Activity can be stopped and resumed (e.g.
the shipment can not be suspended).

retryable can be true/false in Failed state. In all all
other states it is notdefined. An Activity may
be retryable when the error that occurred was
a temporary one, that is likely to disappear
(e.g. connection problems to services that are
used internally by the Activity).

stornotype can be be either undo, compensate, notnec-
essary or notpossible in Committed state. In
all all other states it is notdefined.

undo means that there are no conse-
quences from undoing the Ac-
tivity (e.g. all money is trans-
fered back to my account).

compensate means that some (unspecified)
consequences arise from com-
pensating the Activity.

notnecessary is basically the same as undo,
but takes zero time (as no

method has to be called).
notpossible means that the Activity can not

be repaired (e.g. the money is
lost).

abortable can be true/false in Idle, Working and Sus-
pended state. In all all other states it is notde-
fined. An Activity is abortable when the work
done so far had no consequences (e.g. no
money was transfered yet, or no goods are in
shipment so far).

There is a set of operations that can be used to manually
trigger transitions to a new state. In the following paragraphs
we will describe the lifecyle of an activity, and how the
operations can be used.

After being created by a ResourceManager, Activities are
an idle state, waiting to be put either into the working state or
into the aborting state. When Activities are in the working state
it means that they are executing their business logic. In case
Activities successfully complete they move into the committed
state, while if they are not able to complete, or they complete
with unsuccessful results, they move into the failed state.

From the failed state, Activities can be moved back into
the working state by sending a retry message that enables
re-executing Activities from the beginning. The re-execution
is enabled only for those Activities that have the property
retryable set to true.

During their execution, Activities can be paused and moved
into the suspended state. Suspended Activities can be resumed
or aborted. In the former case they are moved back into the

working state, while in the latter they are moved into the
aborted state.

Committed Activities can be either undone or compensated.
Undoing an Activity means that it is possible to cancel
all the effects it produced without additional costs, while
compensating means that it is possible to cancel its effect
partially or totally, but with additional costs. Activities with
the compensate property set to true can be compensated by
sending a compensation message that moves the Activities
into the compensated state. Similarly, activities with the undo
property enabled can be undone by sending an undo message
that moves the Activities into the undone state.

From the point of the Activity there is no difference between
compensate and undo, as in both operations the underlying
functionality is not exposed to the outside. The difference
between the two is purely maintained to reflect the terms
common at class and process level also at the level of
instances.

Since the transitions from one state to the other may
be consuming in terms of time and resources used by the
Activities, we introduced a set of states to represent such tran-
sitions. These states are suspending, compensating, undoing,
and aborting.

The completion of an Activity is achieved by sending the
terminate message. That message can be sent when activities
are either in the failed, committed, compensated, undone, or
aborted state.

III. THE CORE ARCHITECTURE

The usage of stateful activities leads to the following Archi-
tecture (see Fig. 2). The resource-orientation entails a slightly
different approach, when compared to plain webservices:

(1) the orchestration calls an operation
(2) the operation spawns an activity, returns the endpoint of

the activity
(3) the orchestration starts the activity
(4) the activity finishes its work and delivers the result to

the orchestration
(5) the orchestration can still interact with the activity for

possible repair/undo.
This roughly describes the creational pattern [12]. The web-

service is seen as factory that spawns activities whenever an
operation is called. The advantage of having separate activities
is that webservice specific information (the operations and
parameters that are needed for the actual problem) can be
separated from common information, like the state of the
interaction between the process and the activity.

The ResourceManager holds a mere stub of an interface
when compared to an ordinary webservice. It is a Resource
that also includes information about the availability of the
service, statistical information about reliability as well as
semantic information how the operations of the service depend
on each other. This can be useful in repair situations, however
this is not in the scope of this paper.

The ResourceManager acts as a factory to create multiple
Activities that represent the whole lifecycle of an activity from

Fig. 2. Architecture Utilizing Stateful Activities

creation to termination. Each Activity resource is represented
by its own dynamically created endpoint. The Process interacts
with the Activity, solely through either querying its status,
receiving status updates via notification messages or triggering
certain state changes through a uniform API. A new Activity
is created for every call to every operation in a certain
ResourceManager.

As the Activity is a resource and potentially long-running, it
makes sense that all communication is asynchronous. Polling
of the properties is possible, but the normal way of operation
should be to subscribe to the Activity and receive the state
changes as well as the result through notifications.

Of course the integration of such a mechanism is not
possible with existing workflow engines capable of execution
e.g. standard BPEL [13] code. This integration is no subject
of this paper and will be covered in subsequent publications.

IV. MONITORING AND REPAIR USING WEBSERVICE
MANAGEMENT STANDARDS

In this section we add a monitoring and repair facility to
our architecture (see Fig. 3).

(1) The Monitor subscribes to all ResourceManagers. When-
ever an Activity is created, its endpoint is advertised to the
Monitor. The Monitor subscribes to the Activity through
interface (c) in Fig. 2.

(2) The Activity notifies all state changes to the Monitor (as
it does to Orchestration).

(3) Whenever Failure occurs the RepairEngine is invoked,
with the endpoint of the Activity and the associated
Orchestration. It is also possible for the Monitor to be
activated due to timing constraints,

(4) The RepairEngine can subscribe to the Activity, query it
to get information and trigger operations like retry, undo,
compensate, . . . , when the repair strategy demands it.

(5) The RepairEngine is notified about all state changes,
that possibly occur when after retry, undo, compensate,
. . . operations.

(6) The RepairEngine is connected to the ResourceManager,
in order to be to be able spawn a new Activity to replace
a failed one.

(7) The RepairEngine is also connected to the Orchestration
to be able to request information about the executed
process and to possible repair/modify it.

Fig. 3. Monitoring and Repair Facilities

To implement the above sketched architecture, including
subscribing to activities, notify services of changes and query-
ing properties about services we rely on the WSDM (Web
Services Distributed Management) [4] standard. WSDM (pro-
nounced wisdom) is an OASIS standard to solve the problem
of ever growing complexity of business systems by utilizing
webservice technology. WSDM is particularly designed for
heterogeneous and distributed IT environments, to connect
software stacks from different vendors for scenarios where
cooperation between different (maybe independent) business
entities is necessary. The two main ingredients are the WS Re-
source Framework (WSRF) [14] and WS Notification (WSN)
Oasis Standards [15].

WSRF defines a way to add properties to a webservices, to
query which properties are available, and to get and set the
value of single properties. It is as well possible to dynamically
add properties at runtime.

WSN defines a standard set of operations and their behavior
that allows to subscribe to webservice or more specifically to
a set of topics, that are also exposed by a webservice.

The WSDM standard makes use of WSRF and WSN and
defines a set of properties, that can be queried and subscribed
to. Examples for Properties include e.g. Identity, Description,
State, OperationalStatus, The central idea of the standard
is the manageable resource, accessible through a webservice
endpoint reference (EPR). The EPR allow retrieve manage-
ment information, change the state and subscribe to events of
a manageable resource.

There are two major initiatives that provide competing
technology stacks, that share technical similarities and at least
goals with WSDM. The more important is WS-Management
which is a DTMF initiative supported by industry heavy-
weights like Microsoft, Dell, Intel and AMD. It relies on
similar but different Standards like WS-Eventing and WS-
Transfer. Information about the resources is provided in CIM
(Common Information Model) format, which is very generic
and allows therefore to represent all sorts of information.
There is also JMX (Java Management Extensions) which also

features widespread adoptions and is mainly intended for the
management and monitoring of applications. The management
interface is exposed by MBeans (Managed Beans). Support is
included in all main applications servers like JBoss, Tomcat,
WebSphere Application Server and Oracle Application Server
10G. The already mentioned WISEMAN has the ability to
expose MBeans via WS-Management protocols.

As depicted in Fig. 2 in section III and in Fig. 3 six
interfaces are available:

Interface (a) is a WSDM enabled interface, that also
contains the operations that spawn the activities.

We make use of the WSDM Advertisement capability. This
capability does not define any properties or operations, yet
four notification topics. Creation, discovery, destruction and
loss of resource connection.

The Advertisement capability is exposed by the Resource-
Manager because it is having knowledge of the creation or
destruction of the activities (resources). External Monitoring
and Repair Facilities will subscribe to the Resource Manager
to be notified whenever activities are created.

The interface may look like depicted in Fig. 4, class
”ResourceManager“. Operations and NumberOfRequests are
properties, book and unbook are the operations that are ex-
posed to the orchestration.

Interface (b) is a WSN enabled interface exposed by the
orchestration, to receive status updates and the result of the
operation (sent by the activity). WSRF specific operations are
needed.

Interface (c) exposes is a fully WSDM enabled interface
with custom State properties, containing the set of states
described in section II-B. The operations and properties are
depicted in Fig. 4, class ”Activity“, and are identical for every
activity created for any operation.

Interface (d) is a WSN enabled interface that receives no-
tifications about created activities and their state. The Monitor
can invoke the RepairEngine when it receives messages about
failure states.

Fig. 4. The API for a Simple Flight Example

Interface (e) is a WSN enabled interface that receives
notifications from affected activities only during a repair
process. The RepairEngine has to subscribe to this activities
when receiving a request for repair from the Monitor.

Interface (f) is a WSDM enabled interface that allows
interaction with the workflow engine, like stopping, injecting
tasks, change endpoints.

V. A THREE-STAGE REPAIR MECHANISM

Due the above described mechanisms it is possible to
introduce a three-stage repair mechanism to the system. In
order exemplify this mechanism we want to add a simple
“Airline” example. In Fig. 4 we have several fictional airlines,
that expose their booking systems through a simple API. Our
high level webservice ResourceManager exposes a simplified
API and spawns activities that then encapsulate one of the
airline APIs. The whole interaction between the orchestration
and ”Airline“ is done strictly through the Activity.

The ResourceManager does not expose the unbook oper-
ation as we assume that there is no additional information
for un-booking necessary, and therefore the Activity can call
unbook internally when compensate or undo is requested.

Errors can of course occur in the Orchestration, in the
Resource Manager and in an Activity, though for now we
concentrate on the Activity. When an Activity signals an error
to the Monitor, which then invokes the RepairEngine, the
repair Engine has the following possibilities:

Stage 1: use the properties and operations provided by the
Activity to possibly retry the Activity.

Stage 2: escalate the error to ResourceManager level.
This may include compensating/undoing activities
spawned by the ResourceManager for a certain or-
chestration. Repairing on ResourceManager level
means spawning Activities for a different “Air-
line”.

Stage 3: if the above stages fail, there is always the pos-
sibility to escalate the error to the orchestration
engine. The error may then be dealt with by
workflow exception handling, or the RepairEngine
can revoke the workflow structure (maybe by user
input) to deal with the error.

A possible invocation is depicted in Fig. 5. When the
Orchestration invokes the search operation a new activity is
created, the URL is returned to the orchestration advertised
to potential interested 3rd parties (Monitors, ...) trough the
WSDM Advertisement facility.

When the Orchestration has subscribed to the newly created
Activity it can start the Activity (which was in ”Idle”, after
creation). The Activity then signalizes ”Working” and finally
”Committed” along with the result of the operation. Although
it is finished it continues to exist, with the property stornotype
set to none, as storno is not necessary, because a search
operation has no side effects at all.

Lets imagine the Orchestration involves several Resource-
Managers and queries them all. In this scenario when the
first result returns, it could suspend all other searches, while
checking the validity of the result, and later on abort them.

The Orchestration internally deals with the result of the
search operation, and then calls the book operation of the
ResourceManager, which again spawns a new MEP of which
is then used by the Orchestration. For some reason (e.g. the
flight is no longer available) after some time period the Activity
notifies ”Failed”.

The Monitor catches the notification (it listens to all notifica-
tions), and activates the RepairEngine. Although the retryable
property is set to true, the RepairEngine may (because of
time constraints) decide to give up. As this operation had
consequences (the money is already charged from the bank
account), the stornotype is set to undo and RepairEngine has
to trigger the undo operation.

The Undone state is safe, the logic inside orchestration

Fig. 5. Booking a Flight

decides to terminate.
We keep undo and compensate separate mainly for informa-

tional reasons. Undo is available when after undoing is exactly
like before starting. In our case the whole money is returned.
Compensate on the other hand signalizes that their are bad side
effects (like cancellation fees). The Orchestration actually has
no choice than to call it.

Activities, represented by their own endpoint are not in-
tended to be terminated after their use, but they are destined to
stay till the end of the process. So the Process has to explicitly
call the terminate message and clean up all activities after it
finishes.

VI. RELATED WORK

We improve upon static workflow models [10] in that we
introduce runtime specific information about states to the
dynamic system imposed by the interaction of various partners
by the means of calls to webservices.

Web Services Choreography Description Language (WS-
CDL) [16] and WS-BPEL concentrate on describing possible
interactions and possible error situations that can occur during
the execution of a workflow. Our approach is not different but
complementary to this. WS-BPEL describes a workflow from
the point of view of one participant, in our case the Orchestra-
tion, WS-CDL could very well be used to describe he protocol
between Orchestration and ResourceManager. Our approach
focuses on the lifecycle of activities that are created during a
workflow, and makes them observable and repairable. Whereas

WS-CDL and WS-BPEL focus on information available at
design time, we try to make runtime information available.

On the technical side while we use WSDM to make
activities observable, there exist also alternatives that could
be used. The more important is WS-Management which
is a DTMF initiative supported by industry heavyweights
like Microsoft, Dell, Intel and AMD. It relies on similar
but different Standards like WS-Eventing and WS-Transfer.
Information about the resources is provided in CIM (Com-
mon Information Model) format, which is very generic and
allows therefore to represent all sorts of information. There
is also JMX (Java Management Extensions) which also fea-
tures widespread adoptions and is mainly intended for the
management and monitoring of applications. The management
interface is exposed by MBeans (Managed Beans). Support is
included in all main applications servers like JBoss, Tomcat,
WebSphere Application Server and Oracle Application Server
10G. The already mentioned WISEMAN has the ability to
expose MBeans via WS-Management protocols.

VII. CONCLUSIONS

We presented our approach to facilitate the interaction
between Workflow Engines and webservices. This leads to
several advantages, specifically when dealing with self-healing
systems:
• Monitors and Diagnosing Facilities can easily be added

to the system by subscribing to the ResourceManager and
to the Activities.

• Having a uniform representation of activities states is
a good starting point for creating a generalized repair
algorithm to facilitate self-healing systems.

• The abstraction should sustain the creation of distributed
and federated workflow systems, as choreography specific
information is no longer intertwined with process specific
information.
Future research will elaborate on the issues brought up

in this paper. E.g. with our model it becomes possible
to easily define Service Level Agreements between the
ResourceManager and Services [17], which than can easily
monitored and enforced.

ACKNOWLEDGMENTS

This work was partly supported by the Commission of
the European Union within the project WS-Diamond in FP6.
STREP.

REFERENCES

[1] J. Pasley, “How BPEL and SOA are changing web services develop-
ment,” IEEE Internet Computing, vol. 9, no. 3, pp. 60–67, 2005.

[2] F. Leymann, “Web services: Distributed applications without limits,”
Business, Technology and Web, Leipzig, 2003.

[3] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weer-
awarana, “Unraveling the web services web: an introduction to SOAP,
WSDL, and UDDI,” IEEE Internet computing, vol. 6, no. 2, pp. 86–93,
2002.

[4] W. OASIS, “Web Services Distributed Management V1.1,” 2006.
[5] C. Peltz, “Web services orchestration and choreography,” Computer,

vol. 36, pp. 46–52, 2003.
[6] W. van der Aalst, “Don’t go with the flow: Web services composition

standards exposed,” IEEE Intelligent Systems, vol. 18, no. 1, pp. 72–76,
2003.

[7] A. Barros, M. Dumas, and P. Oaks, Standards for Web Service Choreog-
raphy and Orchestration: Status and Perspectives, pp. 61–74. Springer,
2006.

[8] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros,
“Workflow Patterns,” Distributed and Parallel Databases, vol. 14, no. 1,
pp. 5–51, 2003.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software. Addison-wesley Reading,
MA, 1995.

[10] J. Eder and W. Liebhart, “The workflow activity model WAMO,”
in Proceedings of the 3rd international conference on Cooperative
Information Systems (CoopIs), Vienna, Austria, 1995.

[11] D. Ardagna, M. Comuzzi, E. Mussi, B. Pernici, and P. Plebani, “Paws:
A framework for executing adaptive web-service processes,” IEEE
Software, vol. 24, no. 6, pp. 39–46, 2007.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design Patterns:
Abstraction and Reuse of Object Oriented Design,” Ecoop’93-Object-
Oriented Programming: 7th European Conference Kaiserslautern, Ger-
many, July 26-30, 1993: Proceedings, 1993.

[13] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann,
K. Liu, D. Roller, D. Smith, S. Thatte, et al., “Business Process
Execution Language for Web Services, Version 1.1,” Standards proposal
by BEA Systems, International Business Machines Corporation, and
Microsoft Corporation, 2003.

[14] W. OASIS, “OASIS Web Services Resource Framework (WSRF) V1.2,”
2006.

[15] W. OASIS, “Web Services Notification (WSN) V1.3,” 2006.
[16] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, and Y. Lafon, “Web

service choreography description language (wscdl) 1.0,” W3C Working
Draft, 2004.

[17] M. Bichier and K.-J. Lin, “Service-oriented computing,” Computer,
vol. 39, pp. 99–101, March 2006.

	Introduction
	Workflow Activities as Stateful Resources
	Outline
	The Lifecycle of an Activity

	The Core Architecture
	Monitoring and Repair Using Webservice Management Standards
	A Three-Stage Repair Mechanism
	Related Work
	Conclusions
	References

