
Global Networked Organizations
Twelfth International Bled Electronic Commerce Conference

Bled, Slovenia, June 7 - 9, 1999

Modeling Inter-Organizational Systems with UML

Christian Huemer

Institute of Applied Computer Science and Information Systems,
University of Vienna, Liebiggasse 4, 1010 Vienna, Austria

Tel. +43-1-4277-38443, Fax +43-1-4277-38449
ch@ifs.univie.ac.at

Christian Huemer

Abstract

In 1998 CEFACT decided to use modeling in the development process of EDI
standards. On the basis of a careful analysis of various modeling techniques the
Techniques and Methodologies Working Group (TMWG) decided that the Unified
Modeling Language (UML) is be best suited for this purpose. The concepts of UML are
appropriate to introduce modeling into the current UN/EDIFACT standard
development process and also into a future process that may take advantage of new
technology such as Object Oriented EDI (OO-edi). UML is called a modeling language,
which uses a mainly graphical notation to express designs. It is not a method.
Therefore, a process is needed to advice which steps to take in doing a design. In this
paper we present a case study on modeling inter-organizational trade procedures based
on an UML methodology. The design process utilizes the following UML notations: use
case diagrams, class diagrams, activity diagrams and sequence diagrams. The
methodology is introduced by means of the international trade transaction model.

1. Introduction

In January 1998, the CEFACT Steering Group proposed the following resolution for
adoption by the UN/EDIFACT Working Group (EWG): ‘The UN/CEFACT Steering
Group (CSG) resolves that business and information modeling is an essential
requirement to the future of UN/EDIFACT and that the implementation of business and
information modeling is a critical objective of the CEFACT strategy and its attendant
work program' [4].

Christian Huemer

2

The Techniques and Methodology Working Group (TMWG) of UN/CEFACT
investigated in three different modeling techniques - namely IDEF [18], EXPRESS-G
[19] and UML [17] - as possible candidates in an EDI environment. According to a
careful analysis of these techniques TMWG selected the Unified Modeling Language
(UML) [13] as the technique for UN/CEFACT use in business process and information
modeling [21].
UML is called a modeling language, not a method. Most methods consist of both a
modeling language and a process. The modeling language is the mainly graphical
notation that methods use to express designs. The process is their advice on what steps
to take in doing a design [5, 6, 8]. What is required therefore, is a methodology for
applying UML modeling techniques within the EDI standards development process.
This methodology should be appropriate to be introduced into both the current
UN/EDIFACT standards development process and within a future process that may take
advantage of new technology such as Object Oriented EDI (OO-edi) [16]. Therefore,
TMWG has selected the Rational Unified Process [8] as candidate process.
Nevertheless, within the Rational Unified Process guidelines on how to exactly use the
models must be specified.
TMWG takes the view that the requirements phase and the analysis phase of the current
and the OO-edi standardization process are identical. Only at a later stage, once the
benefits of OO-edi have been tested, it will be possible to take the additional steps of
working more closely with service and software providers to finally implement off-the-
shelf software [20]. Therefore, the first step is to provide modeling guidelines for the
first two phases. Accordingly, the current focus is not on the development of software,
but on using UML to describe business transactions on a conceptual level. Since UML
has been designed to support the software development process, it was our goal to gain
experience on the suitability of UML to support business modeling with a special focus
on inter-organizational business modeling. Using UML for business modeling as well as
for a following software process to design off-the-shelf EDI software would eliminate a
paradigm shift necessary when using another design technique. Consequently, an UML-
base methodology will ensure a consistent overall design process.

2. UML for Inter-Organizational Systems

The development of EDI standards requires a full understanding of the problem domain.
In an EDI environment this problem domain is usually an inter-organizational system.
UML can be used to ensure a better understanding of the inter-organizational system.
UML models help to visualize an inter-organizational system and permit the
specification of its structure and behavior. Furthermore, the models document the
decisions that have been made [3].
In order to use UML for modeling inter-organizational systems we have to look at the
features of UML. A premise of UML is that no single type of diagram can provide, on
its own, a full representation of what goes on. So we need to use sets of related
diagrams. Different types of diagrams represent different ways of approaching the
problem, and see the system as being made up of a different set of 'things'. Each type of
diagram is only capable of showing certain aspects of a situation - everything else is
ignored [1].

Modeling Inter-Organizational Systems with UML

3

Therefore, the first step is to select appropriate UML models to support the design
process according to the requirements of inter-organizational business modeling. The
following requirements have been identified:
• The boundaries of the inter-organizational business system must be well

understood. It must be clear what is inside the scope of the business transaction and
what is outside.

• The models must be able to capture the communication processes between the
organizations. The order of the communication processes must be defined.

• The data structures supporting the information flows must be identified.
• The guidelines must support the modeling of different scenarios (including

different information flows and different data structures) based on different
situations (conditions) within the same business transaction.

• The sequence of the activities to be performed by each party in the business
transaction should be clearly identified. In particular, these activities that lead to
different scenarios must be expressed in the models. An 'easy to use' method should
ensure that business experts without modeling experience can deliver input to
design their organizations' business practices and express their requirements on
services from partners.

• The services provided by each organization to contribute to the business transaction
must be defined. It must be clear what an organization expects as input to perform a
service and what the organization returns as output to the requester of a service.

In order to support these requirements we apply use case diagrams, class diagrams,
activity diagrams and sequence diagrams in our project. Furthermore, guidelines on how
to use these UML diagrams to support the requirements must be developed. In this
paper we propose guidelines that are well suited to support the design process of inter-
organizational systems. It is important to note that these guidelines reflect the author's
proposal to TMWG. But they are not agreed within TMWG.
In the following section we describe in detail the proposed guidelines for each of the
above mentioned diagram types. Furthermore, we use step 3 of the international trade
transaction model (ITT) Preparation for Export as practical example to illustrate the
proposed guidelines. Note that we have not investigated the processes of the ITT itself,
because it was our goal to show the applicability of UML to model the transactions and
not to design the transactions from scratch. Thus, all the information about these
transactions has been extracted from the UK's ITT model [15] and from the InterProcs
ITT models [9], which use documentary petri nets to model processes [2, 10]. We
follow the naming conventions of these models.

3. UML-based Guidelines

3.1 Use Case Diagrams

A use case is a coherent unit of functionality provided by a system or class as
manifested by sequences of messages exchanged among the system and one or more
outside interactors (called actors) together with actions performed by the system. A use

Christian Huemer

4

case describes what a system (or a subsystem) does but it does not specify how it does it
[3]. Nevertheless, result of value to an actor should be identified within a use case. An
actor is a role of object or objects outside of a system that interacts directly with it as
part of a coherent work unit (a use case). An actor element characterizes the role played
by an outside object [11].
The use case model represents functionality of a system as manifested to external
interactors with the system [12, 14]. In case of EDI the functionality regarded is the
inter-organizational information exchange between organizations involved in a trade
transaction. Therefore, the system to be developed must define the necessary
interactions between organizations to perform trade transaction (which is the observable
result of value).
Thus, only those services of an involved organization that provide interfaces to the
overall inter-organizational system will be considered. Consequently, the internal
operations performed by an involved organization are not of interest as long as they do
not directly effect the inter-organizational transaction. Therefore, the organizations are
in some respect outside the inter-organizational system and are modeled as actors
according to their role in the international trade transaction. Accordingly, it is important
to note that the boundaries of the inter-organizational system to be defined in the ITT
use case model must be distinguished from the information system boundaries of
applications used by the organizations.

Contract Negotiations

Payment Negotiations

Exportation

Transport

Importation

Payment final Phase

Preparation for Export

International Trade Transaction
(ITT) CarrirBooking TransportCarIns

FrFwEx

LiAuEx

HeAuEx

ChmCom

Consul

CustEx

Consignment Insurance

Organize Transport

Obtain Export Licence

Obtain Health Certificate

Obtain Certificate of Origin

Obtain Consular Invoice

Obtain Preference Certificate Exprtr

Preshipment Inspection

PSICom

NaImCtObtain Import LicenceImprtr

FrFwImForward Import Licence

Figure 1: Use Case Model - Preparation for Export

Modeling Inter-Organizational Systems with UML

5

For the ITT model we use several use case diagrams to show elements from the use case
model. Each use case diagram is a graph of actors, a set of use cases enclosed by a
system boundary, communication (participation) associations between the actors and the
use cases [11]. The overall transaction comprises the following stages: Contract
Negotiations, Payment Negotiations, Preparation for Export, Exportation, Transport,
Importation and Payment Final Phase. The international trade transaction can be
regarded as a package covering uses cases for each of these stages. This fact is depicted
on the left side of Figure 1. Note that we have not depicted the actors involved in these
use cases for reasons of simplicity. Each of these use cases will again be built by a set of
subtasks resulting in use case models on the next level of abstraction. In Figure 1 we
have chosen the task Preparation for Export to be refined in more detail. Therefore
Figure 1 also shows the use case diagram for Preparation for Export. The actors have
been assigned to the (sub-) use cases they are involved in.
Use Cases are an essential tool in requirement capture and in palling and controlling an
iterative project. Capturing use cases is one of the primary tasks of the elaboration phase
[6]. Therefore, we start with use case diagrams in order to define what is inside the
scope of the business transaction and what is outside. But in order to capture all the
requirements a solely graphical notation might not be enough. Therefore, a textual
description covering the essentials of the use case should be added to each use case
diagram. This text has to be clear enough for an outsider (business expert without
modeling expertise) in order to be easily understood. For the purpose of modeling inter-
organizational business transactions textual description covering a summary, involved
actors, pre-conditions, start event, basic information flows, end event, post-conditions,
exceptions and information about tracability seems to be appropriate. The following
table provides an example description for the (sub-) use case Consignment Insurance
that is a subtask of Preparation for Export.

Name Consignment Insurance
Summary The exporter will insure the transport of consignments. An insurance

contract will be established.
Actor(s) The exporter, who requests insurance, and the carriage insurance.
Pre-Conditions The Contract should be undertaken with an underwriter or insurance

company of good repute and, failing express agreement to the contrary,
be in accordance with the minimum cover of the INSTITUTE CARGO
CLAUSES.

Begins When The Use case begins when the exporter issues a request for insurance.
Description The Carriage insurance draws up the contract

The contract is returned to the exporter for signature.
Ends When The Use case ends when the exporter acknowledges the contract or when

the contract is rejected by the exporter for any allowed reason.
Exceptions Carriage insurance not able to insure the good/transport

trouble immediately found
Post-Conditions The contract is approved to the exporter’s satisfaction.
Traceability Requirement {I.1,2,3,4,5,6} Requirement {II.100}

3.2 Class Diagrams

A class diagram is a graphic view of the static structural model. It is a collection of
(static) declarative model elements, such as classes, interfaces, and their relationships,
connected as a graph to each other and to their contents. A class is the descriptor for a

Christian Huemer

6

set of objects with similar structure, behavior, and relationships. Classes have data
structure and behavior and relationships to other elements. The attributes assigned to a
class and the relationships to other classes define the data structure whereas the
operations assigned to a class represent the common behavior of the class objects [11].
From a conceptual viewpoint two different sets of classes would be meaningful in
describing the interactions in an inter-organizational system. The first set represents
those classes which describe the data structures of information exchanged within each
interaction. Consider for example the classes used to describe the data structure of an
insurance contract, which is sent from an insurance company to the exporter in return to
the request for consignment insurance. Although these classes are of great importance -
especially for developing Open-edi standards leading to off-the-shelf software - we have
not developed them at this stage of the project. This is due to the fact that we
concentrate on the pure business processes in the first phase of the project.
The second set comprises those classes which interface the organizations' internal
(information) systems and the inter-organizational system. Conceptually speaking these
classes describe the services of the organizations' internal systems that are offered to the
public world. Accordingly, there will be a class for each organization which provides a
service in an international trade transaction.
Each interface class covers a description of the operations of an organization as offered
to the public. These interface classes are part of the system, which is the inter-
organizational system. Those operations that do not provide services to the public would
not be part of the inter-organizational system and are therefore external to the inter-
organizational system. Thus, operations must be assigned to classifiers outside the
system. Since actors are classifiers that can perform operations, the organizations'
internal operations should be assigned to the actors, who are external to the inter-
organizational system.
From an UML purist viewpoint we need two different classifiers to describe
organizations: interface classes covering operations that provide an external interface to
the organization (and are internal to the inter-organizational system) and actors covering
operations that are internal to the organization (and external to the inter-organizational
system). Since we feel that a distinction between interface classes and actors is more
confusing than helpful in the business analysis phase, we decided to use only one
classifier concept for inter-organizational business process modeling.
Consequently, we have chosen the actor as classifier concept to model the behavior of
an organization. Thus, we use the actor stereotype in the class diagram to denote all
operations performed by an organization. This ensures an easier understanding for a
non-UML expert. Furthermore, this solution strongly expresses the trade facilitation
aspect of the UML models for ITT. This means that the ITT models will be valid even if
the involved organizations do not make use of information systems. Otherwise, it will
still be very easy to derive the requirements of the information systems to support the
international trade transaction.
The differentiation between operations providing an interface to the inter-organizational
system and those performing organization-internal tasks will still be possible even if
only one classifier concept is used. The interface functions that standardize the
organizations' external behavior are declared as public operations and can be invoked by
an external organization. Organization-internal operations are always private to the
respective actor. Private operations should be included for a better understanding of the
business process.

Modeling Inter-Organizational Systems with UML

7

Figure 2 depicts three example definitions of organizations involved in the use case
Preparation for Export: exporter (Exprtr), freight forwarder (FrFwEx) and carrier
(Carrir). The definition of the exporter includes one private operation (characterized by
the lock symbol in front of the operation's signature) that is called
preparation_for_export. This operation is internal to the exporter and does not provide
any service to other organizations. It implements all the necessary steps that an exporter
has to perform to be prepared for export (see 3.3 Activity Diagrams). Its implementation
also includes invocations of operations (services) offered by other organizations
involved in this transaction. For example, to request transport it will call
organize_transport of the freight forwarder. The organization of a transport is a service
provided by the exporter and is consequently a public operation in the class diagram. To
perform this task the exporter calls services from the carrier, which are the booking of
the transport and the creation of a delivery contract.
There is a public operation for each main business function an organization contributes
to the overall transaction in question. In addition, public operations that do not have a
corresponding major business function are assigned to the actor. These public
operations reflect the asynchronous way of business interactions. For example, if an
exporter asks the freight forwarder to organize the transport, he is expecting an answer
from the freight forwarder. The exporter must be prepared for receiving all answers to
service requests. Thus, there will be public operations to receive returns to all service

Carrir

booking_of_transport(iftmbf, iftmbp)
create_delivery_contract(iftmin)

FrFwEx

organize_transport(book_req_335, iftmin, inst_610, orders, order_220)
receive_booking_confirmation(iftmbc, iftmcs)

receive_delivery_contract(book_conf_770, ifcsum, iftmcs)

Figure 2: Class diagramms for interface classes

Exprt r

preparation_for_export()
receive_insurance(cer_ins_520, cont_315)

receive_transport_details(iftmcs)
receive_export_licence(lic_811)

receive_health_certificate(cert_852, sancrt)
receive_certificate_of_origin(cert_861)

receive_consular_invoice(inv_870)
receive_preferential_certificates(gsp_861)

receive_report_of_findings(crf_856)

Christian Huemer

8

requests. If the freight forwarder has completed the organization of the transport, he will
send the details of the transport to the exporter by invoking receive_transport details, a
public operation assigned to the exporter (see 3.3 Activity diagrams).
As mentioned above we have concentrated so far on the business processes in the
international trade transaction. Nevertheless, it is important to note that each interaction
results in an information exchange. The information expected by an actor to fulfill his
services must be defined for each interaction. Thus, the input for an operation is
declared within the parentheses of its signature. Since we have modeled the transaction
in an asynchronous way an operation has no output, instead the output is provided as
input to the invocation of a receiving operation of the originator. The way the input to
operations is described depends on the purpose of the transaction model.
At this point of our project we just look at the business processes to be carried out by
organizations and do not concentrate on the data structures which support these
processes. It is our opinion that a careful analysis of the business processes has always
to precede the definition of the data structures. Having carefully analyzed the business
processes in a succeeding step the data structures to support these processes have to be
identified. This can be argued by the fact that the data structures have to support the
business processes and not the business processes have to support the data structures.
Since our project focuses on business processes at a conceptual level the information
exchange can be described at a very high level of abstraction, e.g. by listing the
documents to be exchanged. Therefore UML models might be used to define the
business processes even if no interfaces to information systems are considered and the
information exchange definition references only paper documents. In our UML model
we assume that organizations make use of information systems, but we still concentrate
on business processes. This means that we do not care about the data structure of
information to be exchanged, but reference to existing EDI messages. Therefore, input
to operations is defined by already existing EDI messages. The EDI messages which are
meaningful for each operation have not been validated by ourselves, but have been
extracted from the documentary petri nets approach used in the InterProcs project [9].
In a further stage of the project we will also concentrate on the data structures of
information to be exchanged. The data structure will be based on UML class diagrams
to define data items and their interrelationship without any concern about the physical
representation in an information exchange. This approach corresponds to the business-
oriented view (BOV) of the Open-edi reference model [7]. Having defined the
conceptual structure of data to be exchanged, it would be easy to map the data structure
to a physical design required by an electronic data interchange method. Consequently,
the UML models can serve as basis for various purposes: development and maintenance
of EDI messages and implementation guidelines, definition of XML/EDI messages or
development of component-based architectures to support EDI.
Consequently, the purpose of the so far developed class diagrams is to give an overview
of the services provided by each organization. Note that the definition of the class
diagrams does not precede the definition of activity diagrams and sequence diagrams.
Rather the definition of these diagrams has to occur in parallel.

3.3 Activity diagrams

An activity diagram is a special case of a state diagram in which states are action states
and in which transitions are triggered by completion the actions in the source states. The

Modeling Inter-Organizational Systems with UML

9

entire activity diagram is attached to a class or to the implementation of an operation or
a use case. The purpose of this diagram is to focus on flows driven by internal
processing [11].
In the proposed guidelines we use activity diagrams to model activities to take place
within both public and private operations. Consequently, each activity diagram focuses
on the implementation of an operation defined in the class diagram. An activity diagram
defines all the activities and their sequence to perform an operation. But activities are
not necessarily in a sequential list. Decision activities are used to model alternative
flows within one operation. Synchronization bars denote that several activities can occur
in parallel.
Since each activity diagram implements an operation that belongs to exactly one actor,
it is internal to that actor. In a business context this means that activity diagrams outline
actions to be performed internally to one organization. As a consequence, they can be
built from the viewpoint of the organization in question. This fact might help when
designing an inter-organizational system, because activity diagrams assist to detect the
business and the communication requirements of a certain organization in fulfilling its
task.
To perform a certain activity it is often necessary to demand a service of another
organization. A service provided by another organization is defined as an operation
assigned to the actor of the relevant organization. Therefore, the activity requiring a
service and the operation accomplishing this service must be synchronized. This
synchronization is realized by indicating the invocation of a foreign operation
(^Actor.operation()) beside the activity in the activity diagram. But we have not
indicated the input to the operation, which is defined in the corresponding class
diagram. Note, that for an organization it is not of interest how the co-operating
organization performs its service. The only relevant information is that the co-operating
organization offers the required service and the input the co-operating organization
expects to provide the service.

H

request
insurance

receive
insurance

request
transport

reservation

receive
transport

details

prepare
invoice

obtain
export licence

apply for
health

certificate
...

...

Exporter Exprtr.preparation_for_export

^CarIns.insure_transport()

^FrFwEx.organize_transpor()t

t̂his.receive_insurance()

^this.receive_transport_details()

^LiAuEx.... ^HeAuEx...

H

prepare
for shipping

request for
booking

confirmation

receive
booking

confirmation

prepare
delivery

instructions

receive
delivery
contract

confirm
transport

H

^Carrir.booking_oftransport()

^Carrir.create_delivery_contract()

^Exprtr.receive_transport_details()

^this.receive_booking_confirmation()

^this.receive_delivery_contract()

Freight Forwarder
of the Exporter

FrFwEx.organize_transport

Figure 3: Examples of Activity Diagrams

Christian Huemer

10

Furthermore, a request for a service will most likely result in an answer to that request.
Hence, the requesting activity is usually followed by an activity expecting the response.
This activity usually corresponds to a public operation assigned to the own actor, which
is invoked by the implementation of the co-operating organization's operation. This fact
is denoted in the activity diagram by indicating the own operation (^this.operation())
beside the activity. Note that we use the keyword this instead of actor to announce that
it is the own instance of the actor and not another instance of the same actor definition
(e.g. our export organization and not another exporter).
The whole inter-organizational system gains its cohesion from well-designed operation
calls among the involved actors (see also 3.4 Sequence Diagrams). Thus, there is a need
for harmonizing the originator's expectations on a service including the deliverable
input and the responder's readiness to fulfil the service including the expected input.
The required services can be derived from the originator's activity diagram(s) and the
offered services are defined in the responder's class diagram. Therefore, the
development of an inter-organizational system requires an iterative design process
between activity diagrams and class diagrams.
Figure 3 depicts two examples of activity diagrams. On the left an extract of the
activities to be executed by an exporter when preparing for export
(Exprtr.preparation_for_export) is shown. The organization of the transport by its
freight forwarder (FrFwEx.organize_transport) is given on the right.
The exporter starts his internal operation to prepare for export by requesting a carriage
insurance company to insure the consignment. For this purpose it calls
CarIns.insure_transport(). After having received the insurance license via its own
operation this.receive_insurance(), the exporter requests its freight forwarder to make a
transport reservation by invoking FrFwEx.organize_transport(). The freight forwarder
organizes the transport according to the description below. The exporter expects to
receive the details of the transport (this.receive_transport_details()). Afterwards the
exporter prepares the invoice and will now be able to go on with further activities that
might be executed in parallel. Due to space limitations we omitted the remaining
activities.
When the exporter calls the operation organize_transport() the freight forwarder will
execute the activities as defined in the underlying activity diagram. First of all he
prepares himself for shipping. Then the freight forwarder requests the carrier to book
the transport (Carrir.booking_of_transport()) and waits for the booking confirmation
(this.receive_booking_confirmation()). Afterwards the freight forwarder prepares the
delivery instructions including a call to the carrier to create a delivery contract
(Carrir.create_delivery_contract()). After the freight forwarder receives the delivery
contract (^this.receive_delivery_contract()) he has finishes most of its activities. Finally,
the freight forwarder confirms the transport and sends the transport details back to the
exporter by invoking Exprtr.receive_transport_details() of the exporter.

3.4 Sequence Diagrams

A sequence diagram represents an interaction, which is a set of messages exchanged
among objects within a collaboration to effect a desired operation or result. It shows the
objects participating in the interaction by their “lifelines” and the messages that they
exchange arranged in time sequence. A sequence diagram has two dimensions: the
vertical dimension represents time, the horizontal dimension represents different

Modeling Inter-Organizational Systems with UML

11

objects. Sequence diagrams come in several slightly different formats intended for
different purposes [11].
In the proposed guidelines we use sequence diagrams to give an overall picture of the
communication between organizations involved in a transaction defined by a use case.
As mentioned in the previous section the whole system gains its cohesion from well-
designed operation calls among the involved actors. Activity diagrams describe the
necessary interactions only from the viewpoint of a single organization. By representing
the involved actors on the horizontal dimension of a sequence diagram it is possible to
show all operation calls among the actors in order to carry out an inter-organizational
trade transaction.
Since we concentrate on the invocation of operations, we do not include any internal
activities of the actors (e.g. prepare invoice that is internal to the exporter). The
requirement for sequence diagrams to present the timeline on the vertical dimension
must in some respect be undermined. The fact that an actor might call multiple
operations in parallel (no explicit order to call the services is defined) cannot be
represented in sequence diagrams. Furthermore, it is rather complex to represent
alternative paths in the implementation of an operation resulting in different operation
calls. In this case multiple sequence diagrams must be developed.
For the above mentioned reasons the complete information on invocation of operations
and their interdependencies is only described in the full set of activity diagrams.
Sequence diagrams do not add any further information to the definitions made in the
class diagrams and in the activity diagrams. Nevertheless, sequence diagrams provide a
meaningful concept to aggregate the information included in the full set of activity
diagrams and in the class diagrams in order to show the interactions between multiple
actors.
Figure 4 presents an extract of the sequence diagram for the use case Preparation for
Export. It shows the interactions between exporter, carriage insurance, freight forwarder
and carrier. For a detailed description of these interactions we refer to the section 3.3
Activity Diagrams. For this example we have omitted to show any further interactions
between the exporter and other organizations.

 : Carrir : FrFwEx : CarIns
 : Exprtr

insure_transport(orders
)

receive_insurance(cer_ins_520,
31)

organize_transport(book_req_335, iftmin, inst_610, orders,
d 220)booking_of_transport(iftmbf,

ift b)
receive_booking_confirmation(iftmbc,
ift)

create_delivery_contract(iftmin
)

receive_delivery_contract(book_conf_770, ifcsum,
ift)

receive_transport_details(iftmcs
)

Figure 4: Example of a Sequence Diagram

Christian Huemer

12

4. Summary

In this paper we propose guidelines based on UML to support the design process of
inter-organizational systems. The approach takes advantage of use case diagrams, class
diagrams, activity diagrams and sequence diagrams. The experience on the
applicability of using UML for the design of inter-organizational systems can be
summarized as follows:
The boundaries of the inter-organizational system can be defined by use case diagrams
and an accompanying structured description including pre-conditions, start event, basic
information flows, end event, post-conditions, exceptions and information about
tracability. The main activities (and their sequence) that have to be carried out by an
organization to fulfill a service can be modeled with activity diagrams. A separate
activity diagram for each main business function allows to describe the inter-
organizational system from the viewpoint of each organization. The contribution of each
organization to the whole process is defined by all the activity diagrams for its services.
Furthermore, activity diagrams use a rather simple notation to be easily understood by
domain experts in order to state their requirements on the process as well as to validate
the process. A total overview of the services provided by each organization and the
expected input to these services is given in the class definition of the organization in
question.
The communication processes between the organizations are captured on the one hand
by the above mentioned activity diagrams and on the other hand by sequence diagrams.
To incorporate the communication processes into activity diagrams we extend their
notation by mentioning the required service of another organization beside the activity
in question. This defines the communication processes always from the viewpoint of
one organization. Sequence diagrams that depict all the service calls between all
organizations give an overall picture of the whole process. A weakness of sequence
diagrams is the fact that it is not easy to denote operation calls that can occur in parallel.
Furthermore, sequence diagrams can get overloaded and confusing when alternative
paths to the information flow are described. In the current project we only have modeled
a 'perfect' scenario without alternative paths. But when extending the project to real
world situations further investigations on how to incorporate this information into
sequence diagrams must follow.
Furthermore, the current models have to be extended to incorporate the data structures
supporting the information flows. UML allows to define these data structures within
class diagrams. Nevertheless, it will be a challenge to describe views on the data
structures for different scenarios in a clearly arranged manner.
It should be noted that use case diagrams, class diagrams, activity diagrams and
sequence diagrams were able to provide the concepts according to the requirements of
our current state of the project. When incorporating data structures into the approach or
going from the conceptual level to the implementation level, it has to be verified if other
UML concepts and diagram types must be supported by the guidelines as well.

Modeling Inter-Organizational Systems with UML

13

 References

1. Benson T. (1998). Short Strategic Sudy: Enabling Technologies - UML (Final
Report). CEN TC 251 Health Informatics, CEN/TC 251/N98-082

2. Bons R.W.H., Lee R.M., Wagenaar R.W. (1995). Modelling Inter-organisational
Trade Procedures Using Documentary Petri Nets. Proceedings of Hawaii
International Conference on System Sciences (HICSS) 28, Hawaii, January 1995

3. Booch G., Jacobson I., Rumbaugh J (1998). The Unified Modeling Language User
Guide. Addison Wesley Longman

4. CEFACT (1998). Report of the CEFACT Steering Group Chair to the CEFACT
Plenary. Trade/CEFACT/1998/10

5. D'Souza D.F., Wills A.C. (1998). Objects, Components and Frameworks with Uml:
The Catalysis Approach. Addison-Wesley Object Technology Series

6. Fowler M., Scott K. (1997). UML Distilled. Addisson Wesley
7. ISO (1996). The Open-edi Reference Model. IS 14662,

ISO/IEC JTC1/SC30
8. Kruchten P. (1998). Rational Unified Process. Addison-Wesley Object Technology

Series
9. Lee R.M., et al. (1998). WWW-Homepage of InterProcs.

http://abduction.euridis.fbk.eur.nl/projects/InterProcs.html
10. Lee R.M. (1998). Distributed Electronic Trade Scenarios: Representation, Design,

Prototyping. Internal Report RP 1998.09.01 of Erasmus University Research
Institute EURIDIS, Rotterdam, The Netherlands

11. OMG (1997). UML Notation Guide, Version 1.1. OMG
http://www.rational.com/uml

12. Rosenberg D., Scott K. (1999). Use Case Driven Object Modeling with UML: A
Practical Approach. Addison-Wesley Object Technology Series

13. Rumbaugh J. (1998). The Unified Modeling Language Reference Manual.
Addisson Wesley Object Technology Series

14. Schneider G., Winters J.P., Jacobson I. (1998) Applying Use Cases: A Practical
Guide. Addisson Wesley Object Technology Series

15. SITPRO. The International Trade Transaction Model (ITT Model).
http://www.unece.org/trade/itt/uk/intro.html

16. TMWG (1998). Reference Guide - "The Next Generation of UN/EDIFACT"
(Revision 12). CEFACT/TMWG/N010/R1
http://www.harbinger.com/resource/klaus/tmwg/documentlist.html

17. TMWG (1998). Assessment of UML for use as the Technique for Next Generation
EDI Standards. CEFACT/TMWG/N026/R1

18. TMWG (1998). ASC X12/SITG Analysis of Modelling Techniques: IDEF0,
IDEF1X and IDEF3. CEFACT/TMWG/N034

19. TMWG (1998). Main characteristics of EXPRESS-G and assessment as a
Technique for Next Generation EDI Standards. CEFACT/TMWG/N036

20. TMWG (1998). Business and Information Modelling Impact Study.
CEFACT/TMWG/N043/R1

21. TMWG (1998). Explanation of TMWG decision to use UML for Business Process
and Information Modeling. CEFACT/TMWG/N65

