
Ubiquitous Computing and Communication Journal 1

ADAPTIVE RDF GRAPH REPLICATION FOR
MOBILE SEMANTIC WEB APPLICATIONS*

Bernhard Schandl, Stefan Zander
University of Vienna

Department of Distributed and Multimedia Systems
{bernhard.schandl,stefan.zander}@univie.ac.at

ABSTRACT
An increasing number of applications are based on Semantic Web technologies
and the amount of information available on the Web in the form of RDF is
continuously growing. The adaption of the Semantic Web for Personal Information
Management and the increasing desire for mobility is often accompanied by
situations where no network connectivity is available and hence access to remote
data is limited. Such situations could be obviated when mobile devices are able to
operate on offline data replicas and synchronize changes when connectivity is re-
established. In this paper we present a framework allowing for adaptive RDF
graph replication and synchronization on mobile devices. It extends the
architecture of typical Semantic Web applications with components that analyze
various information sources of semantic applications (including ontologies, queries,
and expressed user interest) and use them for selecting parts of RDF data bases,
which are then made available offline using a proxy SPARQL endpoint on a
mobile device. Thus, we provide access to Semantic Web data without the need for
permanent network connectivity.

Keywords: Semantic Web, replication, synchronization, mobile systems

1 INTRODUCTION

 The original design of the World Wide Web is
document-centric: digital information resources are
published on servers and can be retrieved by using
Uniform Resource Locators (URLs). Such
documents are mainly HTML pages with embedded
media like images, which are connected by
hyperlinks. While there exist a large number of static
documents (i.e., documents that reside on a server
and are delivered to clients as-is), large amounts of
data are embedded in the so-called hidden web,
which consists of virtual documents that are created
on request time using data that is stored in other
systems, e.g. relational data bases. In most cases,
these data are exposed via query forms and are
available to clients also in the form of semi-
structured HTML documents.
 If the consumer of such data is not a human
(through the usage of a Web browser) but a machine,
it is required to re-extract the raw data from the
HTML representation, being optimized for human
consumption, which is usually an expensive and
error-prone task [8]. It is the goal of the Semantic
Web [2] to eliminate this source of potential errors by
providing the technical infrastructure to directly
publish machine-interpretable information on the
Web, thus making it data-centric. The Semantic Web

 * This paper is an extended version of [24].

builds upon the Web infrastructure [17] and extends
it with a meta format for information representation
(Resource Description Framework [16]) and
languages that allow publishers to semantically
describe their data (e.g., RDF Schema [5] and Web
Ontology Language [11]). This technology stack has
been complemented by the activities of the Linked
Open Data initiative, which demonstrate how to
publish and interlink data sets using Semantic Web
technologies [3] and hence creating a world-wide
distributed database.
 Recently, the application of Semantic Web
technologies to the problem of Personal Information
Management (PIM) has gained lots of interest, most
notably in the form of the Semantic Desktop [22],
which has been investigated in the course of a
number of projects (e.g., [14, 18, 23]). With the
increasing proliferation of mobile devices like smart
phones or netbooks, issues of Personal Information
Management are no longer restricted to desktop
machines. In mobile scenarios, users frequently face
the problem that data are not available because of
several reasons: first, there may be no physical
network connectivity (e.g., because of the lack of
mobile network coverage), and secondly, security
restrictions may apply (e.g., a VPN connection to the
company network cannot be established). In such
situations it is desirable to make relevant data
available on the mobile device so that applications
can operate offline, and to synchronize changes back

Ubiquitous Computing and Communication Journal 2

to the base data set when connectivity is recovered.
However, because of the still limited storage and
computing power of mobile devices, it is advisable to
carefully select the information to replicate; ideally
in an automatic, transparent, and adaptive manner.
 In this paper we present the MobiSem
Replication and Versioning (MRV) framework that
aims to provide this functionality. Its architecture
consists of a number of middleware components that
selectively replicate data from an RDF data base to a
(mobile) client. This selection is done by considering,
on the one hand, automatically derived metrics about
the data set and its usage, and, on the other hand,
manually defined rules that allow the user to specify
subsets of the data to be replicated. On the mobile
device, replicated data are wrapped by a SPARQL
endpoint to be transparently used by applications.

2 MOBILE RDF REPLICATION AND

SYNCHRONIZATION ARCHITECTURE

In Fig. 1 the typical architecture of RDF-based
applications is depicted. Such applications usually
consist of two main components:

• A SPARQL endpoint, which wraps an RDF
dataset and hides its implementation details
from a client. The data may actually be stored

in a relational database, in the file system, in
memory, or it may be accessible via a network
protocol. The endpoint implementation accepts
SPARQL query strings, executes them on the
actual RDF data, and returns the results in the
correct target format.

• An application or browser, which accesses
RDF data by issuing SPARQL queries to the
endpoint, and interprets the results1. Just as it is
the case with applications that build upon
relational databases, all details of generating
results and processing updates are delegated to
the SPARQL endpoint. The only defined
interface between the application and the data
set is the SPARQL language and its transport
protocol [9].

 Naturally, our proposed replication and
synchronization mechanisms are beneficial only in
situations where these components are distributed
over different physical machines and the network
link between them is potentially unstable (e.g., when
the SPARQL endpoint resides on a company server,
while the application is executed on an employee's
mobile device).
 To introduce a replication and synchronization
layer into such a semantic application, it is not
necessary to modify any of the existing system
components. Instead, we introduce two new
components that serve as mediator layer between the
client application and the SPARQL endpoint. We
denote these components the client-side replication
engine and the server-side replication manager. This
extended system architecture is depicted in Fig. 2
and described in the following.
 Replication Engine. The replication engine is
instantiated on the client machine and acts as a
transparent proxy for applications. The only change

1 We assume that update functionality will be included into
SPARQL in the near future; the current effort towards this
direction has been subsumed by a corresponding W3C member
submission, cf. http://www.w3.org/Submission/2008/
SUBM-SPARQL-Update-20080715/.

Figure 1: Typical Architecture of Semantic Web-
based Applications

Figure 2: Proposed Architecture Extension by an Intermediate SPARQL Proxy

Ubiquitous Computing and Communication Journal 3

to applications is a configuration modification:
applications must be re-configured to query the local
SPARQL endpoint instead of the original remote
endpoint.
 The replication engine is a fully-functional
SPARQL endpoint that is able to process queries and
return the results to the application. It is configured
to establish a connection to the original SPARQL
endpoint, as well as to a corresponding replication
manager. It has two operation modes, online and
offline mode. In online mode all queries are directly
passed to the original (remote) SPARQL endpoint,
and results from the endpoint are forwarded to the
application where the request originated. In offline
mode the replication engine answers queries from its
local cache, which holds a subset of the original data
set. The virtual endpoint is hence enabled to return at
least partial results for application queries, which is a
significant improvement compared to situations
where no data can be retrieved at all.
 Updates are processed in a similar manner: in
online mode they are forwarded to both the local
cache and the original data base, while in offline
mode changes are recorded on the mobile device for
subsequent synchronization between the cached copy
and the original data set.
 Replication Manager. The task of the
replication manager is to compute a ranking for the
selective replication; i.e., it determines which subset
of the data is to be replicated on the client. To
accomplish this it needs access to the whole RDF
data set, which can in general be achieved through
the SPARQL endpoint. In order to yield better
performance, it may however be necessary to

integrate these two components more tightly, as
SPARQL can not be used to notify the manager
about data updates. The degree of such an integration
is subject of further research.
 Replication Control Protocol. The replication
manager and the replication engine exchange
information about the current status of the original
endpoint and the client's cache via a replication
control protocol, which is also used to coordinate the
execution of data replication tasks. Possible reasons
for initiating a new data replication task include the
execution of a SPARQL query or a data update on
the client machine. The replication control protocol
should ensure a maximum of offline data availability
in the engine's cache at any time. This strategy is
preferred over manual synchronization on demand
because it also holds when the network connection is
unexpectedly interrupted. Additionally, it enables the
client to disconnect at any time, instead of requiring
it to start a tedious synchronization procedure before
a planned disconnect.

3 REPLICATION AND SYNCHRONIZA–

TION WORKFLOW

 Figure 3 shows the workflow of the MobiSem
Replication and Versioning framework. Basically,
data are processed within a cycle between the
replication manager residing on the server and the
replication engine running on the client.
 The MRV framework operates on data expressed
in RDF; however not all data are available in this
form. In this case the system can employ wrappers

Figure 3: Replication Workflow

Ubiquitous Computing and Communication Journal 4

that convert data from other formats into RDF, either
on-the-fly or by buffering them in a designated triple
store. Such converters are available 2 for a wide
variety of data sources, ranging from relational data
bases (e.g., D2R [4]) to OAI-PMH [15]. Once such a
conversion has been taken place, a Subversion3-like
management of changes is applied to the named
graphs contained therein. The versioning framework
treats named graphs as the subject of versioning;
each modification to a named graph creates a new
revision. Changesets are, depending on their size,
persisted either as diff or as full graph.
 The terminology for operations also follows
Subversion standards. During a checkout a client first
replicates data from the server. The client may send
context information describing its current situation to
the server, which then performs a ranking of the
triples contained in the requested graph (cf. Section
4). The top-k triples (where k depends on the storage
and processing capacity of the requesting client) are
taken from the ranked list and are sent to the client,
which buffers them in its local triple store.
 Now the client is able to work with, and update
its local data replica independent of any network
connection; i.e., it is enabled to operate in offline
mode. In this phase access to the replicated RDF
graph is provided by the client-side replication
engine, which also tracks modifications to the graph.
After reconnection the replication engine switches
back to online mode and initiates the synchronization
process. It contacts the server and merges all changes
from the server to its local replica (following
Subversion, this process is denoted as update).
Conflicts that may occur during the update process
are always resolved on the client side; if needed, user
input can be requested.
 After all conflicts have been resolved, the
client's changes can be written back to the server,
which is called commit. During the commit process a
new graph revision is created on the server, and the
changes are written to the graph history. From now
on the new graph revision is used whenever clients
issue checkout or update requests.
 Processing user-related contextual data provided
by the replication engine is another important task
and serves as the basis for the selection of RDF
subgraphs according to the user's current activities
and intentions. We introduce some of these selection
strategies in the following chapter.

4 SELECTION OF RDF REPLICA SETS

 It is not practicable to replicate entire data sets
under the restrictions of mobile devices imposed by

2 A list of RDF converters is maintained by the World Wide Web
Consortium at http://esw.w3.org/topic/Converter
ToRdf.
3 Subversion: http://subversion.tigris.org

technical and user-related context. To provide a
tradeoff in such situations, we have developed
algorithms for selective replication of RDF sub-
graphs. The goal of these algorithms is to provide a
subjective interest ranking of RDF triples, where we
take into account structural and semantic
characteristics of the dataset, as well as user
preferences and context information. In the following
we describe some of these input parameters in more
detail.

1. Graph Structure and Metrics. RDF is based on a

graph model; therefore, various metrics and
analysis algorithms can be applied to it (e.g.,
degrees of graph nodes). We are currently
investigating the applicability of these metrics for
deriving conclusions on the relevance of graph
elements for offline replication. Such metrics,
however, do not take into account the semantics
of the RDF model and ontologies [27], which is
addressed by the following two information
sources, ontology structure and queries.

2. Ontology Structure and Metrics. Ontologies are
used to express shared conceptualizations
between communicating partners. In our work we
focus on the Web Ontology Language (OWL)
[11], which is one of the standard languages for
ontology modeling on the Semantic Web. OWL
ontologies consist of three types of elements:
classes, individuals, and properties. Their
structure as well as the semantics of the
relationships between them is expressed using
different OWL language constructs, e.g.,
subClassOf or equivalentProperty.
From the analysis of these expressions we are
able to infer information about the importance of
instance data that adheres to these ontologies, and
to detect redundant data that does not need to be
replicated on the client.

3. Queries. As described in Section 2, applications
usually access RDF data through issuing
SPARQL queries. Hence, the structure of these
queries as well as the vocabularies used therein
are indicators which data are relevant for an
application. To exploit this information we will
analyze the syntactic and semantic structure of
queries (with the help of ontologies, as described
before) and draw conclusions regarding the
importance of the data sets that these queries are
applied to.

4. User Context. Context and context-awareness
play a critical role in interactive information
systems [10,12]. Recent research in this area
reveals that the prevailing system-centric view of
context-awareness should be replaced by a user-
centric view [25]. Intelligent and adaptive RDF
subgraph selection must therefore elaborate on
the user's tasks and information needs on a
semantic level to provide appropriate and

Ubiquitous Computing and Communication Journal 5

valuable data. For instance, based on upcoming
appointments or events in the user's calendar, the
replication engine could infer on the data
probably needed. We investigate further
approaches on how to utilize user behavior and
contextual information to enhance the quality of
the data retrieval process.

5. Explicit User Interest. The end of the Semantic
Web information chain is the human user. In
every situation, the user should have the
possibility to overrule or supplement
automatically replicated datasets. This selection
may be carried out on various levels, e.g., using
elements from an ontology, using range
definitions for attribute values, or even (on the
lowest level) the selection of single triples out of
the graph. Depending on the user's experience,
sophisticated user interfaces are required for this
task, especially in cases where the amount of data
exceeds certain sizes.

 From the analysis of these data it may be possible
to derive information that is relevant not only to
replication and synchronization, but also for other
aspects of the stored data: for instance, the analysis
algorithms might reveal that certain parts of a data
set are never queried. In this case, it could be
advisable to move these parts from the live data store
into a long-term archive. On the other hand, analysis
of data graphs may evidence that sub-graphs are
disconnected, therefore semantic relations between
resources are missing. If such a graph is generated
from an external data source, this may indicate a
potential error in the mapping or in the
transformation algorithm.

5 IMPLEMENTATION

 As a starting point for a reference
implementation we have conducted a survey on
existing mobile Semantic Web frameworks. We have
analyzed two XML parsers for mobile environments,
NanoXML for J2ME4 and kXML5, as well as two
mobile RDF frameworks, Mobile RDF6 and µJena7.

4 NanoXML: http://sourceforge.net/projects/
nanoxml-j2me
5 kXML: http://kxml.sourceforge.net
6 Mobile RDF: http://www.hedenus.de/rdf
7 µJena: http://poseidon.elet.polimi.it/ca/

Our survey revealed that µJena is the most advanced
framework providing ontology and inference support,
although its API is currently in prototypical status
and only allows for processing RDF data serialized
in N-Triples format8. However, none of the evaluated
frameworks supports queries on RDF data via
SPARQL or other query languages. A serialization
mechanism between RDF and the internal storage
mechanisms used by certain mobile devices for
storing data permanently could also not be found.
Such mechanisms are however needed since many
mobile platforms do not use a file system for storing
application data, but provide platform-specific
storage systems, such as the Record Management
System (RMS) in case of J2ME MIDP9 applications.
 Client. We have developed an initial version of
our framework on the Google Android platform10
since the underlying operating system and
application model provide substantial advantages
compared to other mobile operating system
architectures. Android itself is an environment for
running Java applications on the Dalvik Virtual
Machine11 which is especially optimized for mobile
environments. It includes SQLite, a lightweight and
powerful relational database engine, and makes use
of some advanced software design patters such as the
Model-View-Controller (MVC) pattern to separate
application logic from user interface design and
underlying data models. Android provides access to
the core system operating functions through standard
APIs as well as a complete multitasking environment
where each application is executed within its own
thread, thus providing the possibility to implement
background services, like a synchronization process
that is automatically activated when the mobile
device has online connectivity to its home network
(e.g., by automatically establishing a VPN
connection within a public wireless local area
network).
 Server. The replication manager is able to
process contextual information, such as the number
of triples expected by the replication engine, the
user's current location, or information about the

?page_id=59
8 N-Triples Syntax for RDF: http://www.w3.org/TR/rdf-
testcases/#ntriples
9 Mobile Information Device Profile (MIDP):
http://java.sun.com/products/midp
10 Google Android Platform: http://code.google.com/
android
11 Dalvik Virtual Machine: http://www.dalvikvm.com

Figure 4: MRV Server Processing Pipeline

Ubiquitous Computing and Communication Journal 6

serialization formats the client is able to process.
Based on this information it selects a subset of the
RDF data set and transmits it to the client. An RDF
abstraction layer has been introduced in the
replication manager (cf. Section 4) so that its
implementation is independent from the underlying
RDF store. The client locally caches the data and
hence makes it available to applications, and changes
made to this cache are subsequently forwarded to the
replication manager.
 We have implemented a processing pipeline (cf.
Figure 4) that allows to customize the ranking
applied to RDF triples. Each triple in the graph is
assigned an absolute rank r ∈ ℝ, which can be
normalized to rn, -1 ≤ rn ≤ 1. The ranked graph runs
through a pipeline of ranking modules, each of which
may modify the rank for every triple. A number of
ranking modules have been developed so far; a
detailed description of their underlying algorithms is
out of the scope of this work.

• RDF Base Vocabulary Ranker. RDF provides a
set of core terms, which are often crucial for
correct data processing (e.g., rdf:type,
which is needed to determine the classes a
resource belongs to). This ranker increases the
rank of all terms that are in the RDF core
vocabulary.

• Annotation Property Ranker. A number of
RDFS and OWL terms are annotation
properties, i.e., they describe aspects of
resources that may be less important for search
and retrieval (e.g., owl:versionInfo or
rdfs:isDefinedBy). This ranker decreases
the rank of triples that contain these terms on
the property position.

• Ontology Ranker. Based on the assumption that
classes and properties from formalized
ontologies are more important than terms that
are freely chosen, this component increases the
rank of triples whose predicate and object
conform to a given formalized ontology.

• Resource Ranker. This component ranks triples
using an algorithm similar to PageRank [6]
where the rank of a resource (and the triples it
participates in) depends on the rank of
resources that refer to this resource.

• Information Gain Ranker. This component
ranks triples based on the information entropy
of each property found in the graph.

• SPARQL Ranker. This component analyzes
SPARQL [21] queries that have been issued
against the data set, and increases the rank of
those triples that are required to correctly and
completely evaluate the query.

 An initial analysis of the results of these rankers
indicates that there exists no generically applicable
strategy for ranking triples, since for this task we

must always consider the requirements of the
concrete application scenario. However, with our
architecture and a number of basis ranker
components we intend to provide a generic
framework that can be customized and extended to
fit concrete needs.
 Preliminary Results. In a tentatively conducted
evaluation we analyzed the performance of
processing RDF on a Google Android G1 device,
which was the first physically available Android
device on the market. It represents the latest
generation of mobile devices in terms of technical
capabilities such as processing power, memory
capacity, screen size and resolution, etc. The G1 is
equipped with a 32-bit Qualcomm MSM7201A
RISC CPU running at a nominal clock speed of 528
MHz12. All tests were performed with the standard
memory capacity of 192 MB.
 For a first performance evaluation, we measured
the processing times needed for building and
maintaining RDF documents of different sizes. Every
test has been repeated ten times for each RDF
document, all containing a different amount of triples.
First results show that processing times were rather
low (<200ms) when reading and parsing small RDF
documents containing a few hundred triples.
Accessing specific RDF elements such as properties,
subjects, or entire statements within an RDF
document also performs reasonably well: accessing a
specific statement in an RDF document containing
129 triples took around 50ms in average. However,
the overall performance of the system significantly
decreased when larger RDF documents consisting of
several hundred triples have been processed.
According to our observations, a doubling in the
amount of triples causes approximately 4 times
longer processing times. The processing times we
have observed are currently far from being
acceptable in real-world scenarios where replication
tasks are commonly performed with much larger
documents. Especially for the efficient provision of
larger RDF data sets, the efficiency of the underlying
RDF processing framework needs to be significantly
improved.
 First investigations revealed that the
performance drops have been caused by the internal
data structures used by the µJena framework, which
need to be adapted to the Android environment and
operating system specifics. Provisional adaptation
efforts reduced processing times by 50%, whereas a
slight increase in memory consumption was
observed. In future work, we will concentrate on
tailoring the µJena framework towards the operating
specifics of the Android platform so that building
and maintaining realistic amount of triples occurs
within reasonable amounts of time.

12 Due to battery saving reasons, the G1’s CPU runs at a clock
speed of only 350 MHz.

Ubiquitous Computing and Communication Journal 7

6 RELATED WORK

 Although RDF databases are gaining industry
strength in terms of performance and memory
efficiency, mechanisms for synchronization and
offline replication can hardly be found. To the best
of our knowledge, many of today's state-of-the-art
triple stores, such as Jena13, Sesame14, and Redland15,
do not include support for (selective) offline
replication.
 Most of the systems mentioned before can be
configured to make use of a relational data base to
store RDF data. For this, they employ mapping
algorithms in order to represent RDF graphs as
relations. One could make use of a RDBMS's
replication and synchronization facilities; however,
this has two drawbacks: (1) they do not consider the
special aspects of RDF and semantic graphs,
including ontologies, and (2) performing selective
replication is difficult unless the developer analyzes
the exact mapping algorithms for the target system.
Usually, those systems do not provide facilities to
elaborate on the meaningfulness and semantics of
RDF data sets. Larger-scale database systems like
OpenLink Virtuoso [13], Oracle [1], and
OpenAnzo16 do not solely focus on RDF but may
serve as a data integration point for different sources,
including RDF. While these systems often provide
support for replication and synchronization, they are
not designed to be deployed on mobile devices.
 A different approach for selective distribution
and replication of RDF data is the Peer-to-Peer (P2P)
paradigm, where multiple equal systems exchange
data over a network. Such systems (e.g., Edutella
[19] and RDFPeers [7]) provide valuable knowledge
about efficient distribution and exchange of RDF
data, but do not focus on selective replication.
Tumarrello et al. [26] describe an algorithm for
selective exchange of RDF data, based on P2P
systems. We aim to extend the results presented by
them and apply them to non-P2P environments.
 The Open Mobile Alliance (OMA) provides the
SyncML framework for data synchronization [20],
which allows data of different kinds (including
contacts, calendars, and e-mail messages) to be
synchronized between devices. The framework also
specifies a number of bindings to protocols that are
commonly used in the context of mobile devices, as
well as limited means to express device context
information, e.g., the available memory or the
supported databases. Since this framework does not
consider a generic data format like RDF, we will
analyze potential synergies and links between our
approach and the OMA activities.

13 Jena Semantic Web Framework:
http://jena.sourceforge.net
14 Sesame Framework: http://www.openrdf.org
15 Redland RDF Libraries: http://librdf.org
16 OpenAnzo: http://www.openanzo.org

7 CONCLUSIONS

In this paper we have outlined the MobiSem
Replication and Versioning framework for selective
replication of RDF data sets to mobile devices. The
goal of this framework is to provide access to RDF
data sets in situations where there is no network
connectivity available and hence communication
with remote data sources is impossible. Our
proposed architecture extends current Semantic Web
applications with intermediate components that
handle SPARQL queries transparently, either by
forwarding them to the actual data store if
connectivity is up, or by answering them from a
locally cached partial replica of the data set on the
mobile device, if there is no connectivity. We have
discussed our proposed architecture and its
associated workflow, as well as an initial reference
implementation together with preliminary evaluation
results.

We have already implemented a number of
ranking components that select RDF triples based on
various criteria (including graph metrics and
knowledge from formal ontologies), and we are
currently in the process of evaluating and extending
their underlying algorithms so that they can be
applied to real-world scenarios and application
requirements. In parallel we are working on further
improvements of the client-side part of our
framework; namely the optimization of processing
and storing larger RDF graphs on mobile devices.

 Acknowledgements. Parts of this work have been
funded by FIT-IT grants 812513 and 815133 from
Austrian Federal Ministry of Transport, Innovation,
and Technology.

REFERENCES

[1] Omar Alonso, Sandeepan Banerjee, and Mark

Drake. GIO: A Semantic Web Application
Using the Iinformation Grid Framework. In
Proceedings of the 15th international
conference on World Wide Web, pages 857–
858, New York, NY, USA, 2006. ACM.

[2] T. Berners-Lee, J. Hendler, and O. Lassila. The
Semantic Web. Scientific American Magazine,
284(5):34–43, 2001.

[3] Chris Bizer, Richard Cyganiak, and Tom
Heath. How to Publish Linked Data on the
Web, 2007. Available at http://www4.
wiwiss.fu-berlin.de/bizer/pub/LinkedData-
Tutorial/, retrieved 02-Dec-2008.

[4] Chris Bizer and Andy Seaborne. D2RQ -
Treating Non-RDF Databases as Virtual RDF
Graphs. Poster at the 3rd International
Semantic Web Conference (ISWC2004), 2004.

[5] Dan Brickley and R.V. Guha. RDF Vocabulary

Ubiquitous Computing and Communication Journal 8

Description Language 1.0: RDF Schema (W3C
Recommendation 10 Februar 2004). World
Wide Web Consortium, 2004.

[6] Sergey Brin and Larry Page. The Anatomy of a
Large-Scale Hypertextual Web Search Engine.
In Seventh International World-Wide Web
Conference (WWW 1998), 1998.

[7] Min Cai and Martin Frank. RDFPeers: A
Scalable Distributed RDF Repository Based on
a Structured Peer-to-peer Network. In WWW
’04: Proceedings of the 13th international
conference on World Wide Web, pages 650–
657, New York, NY, USA, 2004. ACM Press.

[8] Chia-Hui Chang, Mohammed Kayed, Moheb
Ramzy Girgis, and Khaled F. Shaalan. A Survey
of Web Information Extraction Systems. IEEE
Transactions on Knowledge and Data
Engineering, 18(10):1411–1428, 2006.

[9] Kendall Grant Clark, Lee Feigenbaum, and
Elias Torres. SPARQL Protocol for RDF (W3C
Recommendation 15 January 2008). World
Wide Web Consortium, 2008.

[10] Joëlle Coutaz, James L. Crowley, Simon
Dobson, and David Garlan. Context is Key.
Commun. ACM, 48(3):49–53, 2005.

[11] Mike Dean and Guus Schreiber. OWL Web
Ontology Language Reference (W3C
Recommendation 10 February 2004). World
Wide Web Consortium, February 2004.
Available at http://www.w3.org/TR/owl- ref/.

[12] Paul Dourish. What We Talk About When We
Talk About Context. Personal Ubiquitous
Comput., 8(1):19–30, 2004.

[13] Orri Erling and Ivan Mikhailov. RDF Support
in the Virtuoso DBMS. In Sören Auer, Christian
Bizer, Claudia Müller, and Anna V. Zhdanova,
editors, CSSW, volume 113 of LNI, pages 59–
68. GI, 2007.

[14] Tudor Groza, Siegfried Handschuh, Knud
Moeller, Gunnar Grimnes, Leo Sauermann,
Enrico Minack, Cedric Mesnage, Mehdi
Jazayeri, Gerald Reif, and Rosa Gudjonsdottir.
The NEPOMUK Project — On the Way to the
Social Semantic Desktop. In Proceedings of I-
Semantics’07, pages pp. 201–211. JUCS, 2007.

[15] Bernhard Haslhofer and Bernhard Schandl. The
OAI2LOD Server: Exposing OAI-PMH
Metadata as Linked Data. In International
Workshop on Linked Data on the Web
(LDOW2008), 2008.

[16] Patrick Hayes. RDF Semantics (W3C
Recommendation 10 February 2004). World
Wide Web Consortium, 2004.

[17] Ian Jacobs and Norman Walsh. Architecture of
the World Wide Web, Volume One (W3C
Recommendation 15 December 2004). World
Wide Web Consortium, 2005. Available at
http://www.w3.org/TR/webarch/.

[18] David R. Karger. Haystack: Per-User

Information Environments Based on
Semistructured Data. In Victor Kaptelinin and
Mary Czerwinski, editors, Beyond the Desktop
Metaphor, pages 49–100. Massachusetts
Institute of Technology, 2007.

[19] Wolfgang Nejdl, Boris Wolf, Changtao Qu,
Stefan Decker, Michael Sintek, Ambjörn
Naeve, Mikael Nilsson, Matthias Palmér, and
Tore Risch. EDUTELLA: A P2P Networking
Infrastructure Based on RDF. In WWW ’02:
Proceedings of the 11th international
conference on World Wide Web, pages 604–
615, New York, NY, USA, 2002. ACM Press.

[20] Open Mobile Alliance. OMA Data
Synchronization V1.2.1, 2007. Available at
http://www.openmobilealliance.org/Technical/r
elease_program/ds_v12.aspx.

[21] Eric Prud’hommeaux and Andy Seaborne.
SPARQL Query Language for RDF (W3C
Recommendation 15 January 2008). World
Wide Web Consortium, 2008.

[22] Leo Sauermann, Ansgar Bernardi, and Andreas
Dengel. Overview and Outlook on the Semantic
Desktop. In Proceedings of the 1st Semantic
Desktop Workshop, volume 175, Galway,
Ireland, November 2005. CEUR Workshop
Proceedings.

[23] Bernhard Schandl. SemDAV: A File Exchange
Protocol for the Semantic Desktop. In
Proceedings of the Semantic Desktop and
Social Semantic Collaboration Workshop,
volume 202, Athens, GA, USA, November
2006. CEUR Workshop Proceedings.

[24] Bernhard Schandl and Stefan Zander. A
Framework for Adaptive RDF Graph
Replication for Mobile Semantic Web
Applications. In Proceedings of the
JointWorkshop on Advanced Technologies and
Techniques for Enterprise Information Systems
(Session on Managing Data with Mobile
Devices), Milano, Italy, 2009.

[25] Hong-Siang Teo. An Activity-driven Model for
Context-awareness in Mobile Computing. In
MobileHCI ’08: Proc. of the 10th international
conference on Human computer interaction
with mobile devices and services, pages 545–
546, New York, NY, USA, 2008. ACM.

[26] Giovanni Tummarello, Christian Morbidoni,
Joackin Petersson, Paolo Puliti, and Francesco
Piazza. RDFGrowth, a P2P Annotation
Exchange Algorithm for Scalable Semantic
Web Applications. In Ilya Zaihrayeu and
Matteo Bonifacio, editors, P2PKM, volume 108
of CEUR Workshop Proceedings. CEUR-
WS.org, 2004.

[27] Denny Vrandecic and York Sure. How to
Design Better Ontology Metrics. In Proceedings
of the 4th European Semantic Web Conference
(ESWC2007), 2007.

