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ABSTRACT 
An increasing number of applications are based on Semantic Web technologies 
and the amount of information available on the Web in the form of RDF is 
continuously growing. The adaption of the Semantic Web for Personal Information 
Management and the increasing desire for mobility is often accompanied by 
situations where no network connectivity is available and hence access to remote 
data is limited. Such situations could be obviated when mobile devices are able to 
operate on offline data replicas and synchronize changes when connectivity is re-
established. In this paper we present a framework allowing for adaptive RDF 
graph replication and synchronization on mobile devices. It extends the 
architecture of typical Semantic Web applications with components that analyze 
various information sources of semantic applications (including ontologies, queries, 
and expressed user interest) and use them for selecting parts of RDF data bases, 
which are then made available offline using a proxy SPARQL endpoint on a 
mobile device. Thus, we provide access to Semantic Web data without the need for 
permanent network connectivity. 
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1 INTRODUCTION 
 
  The original design of the World Wide Web is 
document-centric: digital information resources are 
published on servers and can be retrieved by using 
Uniform Resource Locators (URLs). Such 
documents are mainly HTML pages with embedded 
media like images, which are connected by 
hyperlinks. While there exist a large number of static 
documents (i.e., documents that reside on a server 
and are delivered to clients as-is), large amounts of 
data are embedded in the so-called hidden web, 
which consists of virtual documents that are created 
on request time using data that is stored in other 
systems, e.g. relational data bases. In most cases, 
these data are exposed via query forms and are 
available to clients also in the form of semi-
structured HTML documents. 
 If the consumer of such data is not a human 
(through the usage of a Web browser) but a machine, 
it is required to re-extract the raw data from the 
HTML representation, being optimized for human 
consumption, which is usually an expensive and 
error-prone task [8]. It is the goal of the Semantic 
Web [2] to eliminate this source of potential errors by 
providing the technical infrastructure to directly 
publish machine-interpretable information on the 
Web, thus making it data-centric. The Semantic Web 
                                                           
 * This paper is an extended version of [24]. 

builds upon the Web infrastructure [17] and extends 
it with a meta format for information representation 
(Resource Description Framework [16]) and 
languages that allow publishers to semantically 
describe their data (e.g., RDF Schema [5] and Web 
Ontology Language [11]). This technology stack has 
been complemented by the activities of the Linked 
Open Data initiative, which demonstrate how to 
publish and interlink data sets using Semantic Web 
technologies [3] and hence creating a world-wide 
distributed database.  
 Recently, the application of Semantic Web 
technologies to the problem of Personal Information 
Management (PIM) has gained lots of interest, most 
notably in the form of the Semantic Desktop [22], 
which has been investigated in the course of a 
number of projects (e.g., [14, 18, 23]). With the 
increasing proliferation of mobile devices like smart 
phones or netbooks, issues of Personal Information 
Management are no longer restricted to desktop 
machines. In mobile scenarios, users frequently face 
the problem that data are not available because of 
several reasons: first, there may be no physical 
network connectivity (e.g., because of the lack of 
mobile network coverage), and secondly, security 
restrictions may apply (e.g., a VPN connection to the 
company network cannot be established). In such 
situations it is desirable to make relevant data 
available on the mobile device so that applications 
can operate offline, and to synchronize changes back 
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to the base data set when connectivity is recovered. 
However, because of the still limited storage and 
computing power of mobile devices, it is advisable to 
carefully select the information to replicate; ideally 
in an automatic, transparent, and adaptive manner.  
 In this paper we present the MobiSem 
Replication and Versioning (MRV) framework that 
aims to provide this functionality. Its architecture 
consists of a number of middleware components that 
selectively replicate data from an RDF data base to a 
(mobile) client. This selection is done by considering, 
on the one hand, automatically derived metrics about 
the data set and its usage, and, on the other hand, 
manually defined rules that allow the user to specify 
subsets of the data to be replicated. On the mobile 
device, replicated data are wrapped by a SPARQL 
endpoint to be transparently used by applications. 
 
 
2 MOBILE RDF REPLICATION AND 

SYNCHRONIZATION ARCHITECTURE 
 
In Fig. 1 the typical architecture of RDF-based 
applications is depicted. Such applications usually 
consist of two main components: 
 

• A SPARQL endpoint, which wraps an RDF 
dataset and hides its implementation details 
from a client. The data may actually be stored 

in a relational database, in the file system, in 
memory, or it may be accessible via a network 
protocol. The endpoint implementation accepts 
SPARQL query strings, executes them on the 
actual RDF data, and returns the results in the 
correct target format. 

• An application or browser, which accesses 
RDF data by issuing SPARQL queries to the 
endpoint, and interprets the results1. Just as it is 
the case with applications that build upon 
relational databases, all details of generating 
results and processing updates are delegated to 
the SPARQL endpoint. The only defined 
interface between the application and the data 
set is the SPARQL language and its transport 
protocol [9]. 

 
 Naturally, our proposed replication and 
synchronization mechanisms are beneficial only in 
situations where these components are distributed 
over different physical machines and the network 
link between them is potentially unstable (e.g., when 
the SPARQL endpoint resides on a company server, 
while the application is executed on an employee's 
mobile device). 
 To introduce a replication and synchronization 
layer into such a semantic application, it is not 
necessary to modify any of the existing system 
components. Instead, we introduce two new 
components that serve as mediator layer between the 
client application and the SPARQL endpoint. We 
denote these components the client-side replication 
engine and the server-side replication manager. This 
extended system architecture is depicted in Fig. 2 
and described in the following. 
 Replication Engine. The replication engine is 
instantiated on the client machine and acts as a 
transparent proxy for applications. The only change 

                                                           
1 We assume that update functionality will be included into 
SPARQL in the near future; the current effort towards this 
direction has been subsumed by a corresponding W3C member 
submission, cf. http://www.w3.org/Submission/2008/ 
SUBM-SPARQL-Update-20080715/. 

Figure 1: Typical Architecture of Semantic Web-
based Applications 

Figure 2: Proposed Architecture Extension by an Intermediate SPARQL Proxy 
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to applications is a configuration modification: 
applications must be re-configured to query the local 
SPARQL endpoint instead of the original remote 
endpoint.  
 The replication engine is a fully-functional 
SPARQL endpoint that is able to process queries and 
return the results to the application. It is configured 
to establish a connection to the original SPARQL 
endpoint, as well as to a corresponding replication 
manager. It has two operation modes, online and 
offline mode. In online mode all queries are directly 
passed to the original (remote) SPARQL endpoint, 
and results from the endpoint are forwarded to the 
application where the request originated. In offline 
mode the replication engine answers queries from its 
local cache, which holds a subset of the original data 
set. The virtual endpoint is hence enabled to return at 
least partial results for application queries, which is a 
significant improvement compared to situations 
where no data can be retrieved at all. 
 Updates are processed in a similar manner: in 
online mode they are forwarded to both the local 
cache and the original data base, while in offline 
mode changes are recorded on the mobile device for 
subsequent synchronization between the cached copy 
and the original data set. 
 Replication Manager. The task of the 
replication manager is to compute a ranking for the 
selective replication; i.e., it determines which subset 
of the data is to be replicated on the client. To 
accomplish this it needs access to the whole RDF 
data set, which can in general be achieved through 
the SPARQL endpoint. In order to yield better 
performance, it may however be necessary to 

integrate these two components more tightly, as 
SPARQL can not be used to notify the manager 
about data updates. The degree of such an integration 
is subject of further research. 
 Replication Control Protocol. The replication 
manager and the replication engine exchange 
information about the current status of the original 
endpoint and the client's cache via a replication 
control protocol, which is also used to coordinate the 
execution of data replication tasks. Possible reasons 
for initiating a new data replication task include the 
execution of a SPARQL query or a data update on 
the client machine. The replication control protocol 
should ensure a maximum of offline data availability 
in the engine's cache at any time. This strategy is 
preferred over manual synchronization on demand 
because it also holds when the network connection is 
unexpectedly interrupted. Additionally, it enables the 
client to disconnect at any time, instead of requiring 
it to start a tedious synchronization procedure before 
a planned disconnect. 
 
 
3 REPLICATION AND SYNCHRONIZA–

TION WORKFLOW 
 
 Figure 3 shows the workflow of the MobiSem 
Replication and Versioning framework. Basically, 
data are processed within a cycle between the 
replication manager residing on the server and the 
replication engine running on the client.  
 The MRV framework operates on data expressed 
in RDF; however not all data are available in this 
form. In this case the system can employ wrappers 

Figure 3: Replication Workflow 
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that convert data from other formats into RDF, either 
on-the-fly or by buffering them in a designated triple 
store. Such converters are available 2  for a wide 
variety of data sources, ranging from relational data 
bases (e.g., D2R [4]) to OAI-PMH [15]. Once such a 
conversion has been taken place, a Subversion3-like 
management of changes is applied to the named 
graphs contained therein. The versioning framework 
treats named graphs as the subject of versioning; 
each modification to a named graph creates a new 
revision. Changesets are, depending on their size, 
persisted either as diff or as full graph. 
 The terminology for operations also follows 
Subversion standards. During a checkout a client first 
replicates data from the server. The client may send 
context information describing its current situation to 
the server, which then performs a ranking of the 
triples contained in the requested graph (cf. Section 
4). The top-k triples (where k depends on the storage 
and processing capacity of the requesting client) are 
taken from the ranked list and are sent to the client, 
which buffers them in its local triple store.  
 Now the client is able to work with, and update 
its local data replica independent of any network 
connection; i.e., it is enabled to operate in offline 
mode. In this phase access to the replicated RDF 
graph is provided by the client-side replication 
engine, which also tracks modifications to the graph. 
After reconnection the replication engine switches 
back to online mode and initiates the synchronization 
process. It contacts the server and merges all changes 
from the server to its local replica (following 
Subversion, this process is denoted as update). 
Conflicts that may occur during the update process 
are always resolved on the client side; if needed, user 
input can be requested.  
 After all conflicts have been resolved, the 
client's changes can be written back to the server, 
which is called commit. During the commit process a 
new graph revision is created on the server, and the 
changes are written to the graph history. From now 
on the new graph revision is used whenever clients 
issue checkout or update requests. 
 Processing user-related contextual data provided 
by the replication engine is another important task 
and serves as the basis for the selection of RDF 
subgraphs according to the user's current activities 
and intentions. We introduce some of these selection 
strategies in the following chapter. 
 
 
4 SELECTION OF RDF REPLICA SETS 
 
 It is not practicable to replicate entire data sets 
under the restrictions of mobile devices imposed by 
                                                           
2 A list of RDF converters is maintained by the World Wide Web 
Consortium at http://esw.w3.org/topic/Converter 
ToRdf. 
3 Subversion: http://subversion.tigris.org 

technical and user-related context. To provide a 
tradeoff in such situations, we have developed 
algorithms for selective replication of RDF sub-
graphs. The goal of these algorithms is to provide a 
subjective interest ranking of RDF triples, where we 
take into account structural and semantic 
characteristics of the dataset, as well as user 
preferences and context information. In the following 
we describe some of these input parameters in more 
detail. 
 
1. Graph Structure and Metrics. RDF is based on a 

graph model; therefore, various metrics and 
analysis algorithms can be applied to it (e.g., 
degrees of graph nodes). We are currently 
investigating the applicability of these metrics for 
deriving conclusions on the relevance of graph 
elements for offline replication. Such metrics, 
however, do not take into account the semantics 
of the RDF model and ontologies [27], which is 
addressed by the following two information 
sources, ontology structure and queries. 

2. Ontology Structure and Metrics. Ontologies are 
used to express shared conceptualizations 
between communicating partners. In our work we 
focus on the Web Ontology Language (OWL) 
[11], which is one of the standard languages for 
ontology modeling on the Semantic Web. OWL 
ontologies consist of three types of elements: 
classes, individuals, and properties. Their 
structure as well as the semantics of the 
relationships between them is expressed using 
different OWL language constructs, e.g., 
subClassOf or equivalentProperty. 
From the analysis of these expressions we are 
able to infer information about the importance of 
instance data that adheres to these ontologies, and 
to detect redundant data that does not need to be 
replicated on the client. 

3. Queries. As described in Section 2, applications 
usually access RDF data through issuing 
SPARQL queries. Hence, the structure of these 
queries as well as the vocabularies used therein 
are indicators which data are relevant for an 
application. To exploit this information we will 
analyze the syntactic and semantic structure of 
queries (with the help of ontologies, as described 
before) and draw conclusions regarding the 
importance of the data sets that these queries are 
applied to. 

4. User Context. Context and context-awareness 
play a critical role in interactive information 
systems [10,12]. Recent research in this area 
reveals that the prevailing system-centric view of 
context-awareness should be replaced by a user-
centric view [25]. Intelligent and adaptive RDF 
subgraph selection must therefore elaborate on 
the user's tasks and information needs on a 
semantic level to provide appropriate and 
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valuable data. For instance, based on upcoming 
appointments or events in the user's calendar, the 
replication engine could infer on the data 
probably needed. We investigate further 
approaches on how to utilize user behavior and 
contextual information to enhance the quality of 
the data retrieval process. 

5. Explicit User Interest. The end of the Semantic 
Web information chain is the human user. In 
every situation, the user should have the 
possibility to overrule or supplement 
automatically replicated datasets. This selection 
may be carried out on various levels, e.g., using 
elements from an ontology, using range 
definitions for attribute values, or even (on the 
lowest level) the selection of single triples out of 
the graph. Depending on the user's experience, 
sophisticated user interfaces are required for this 
task, especially in cases where the amount of data 
exceeds certain sizes. 

 
 From the analysis of these data it may be possible 
to derive information that is relevant not only to 
replication and synchronization, but also for other 
aspects of the stored data: for instance, the analysis 
algorithms might reveal that certain parts of a data 
set are never queried. In this case, it could be 
advisable to move these parts from the live data store 
into a long-term archive. On the other hand, analysis 
of data graphs may evidence that sub-graphs are 
disconnected, therefore semantic relations between 
resources are missing. If such a graph is generated 
from an external data source, this may indicate a 
potential error in the mapping or in the 
transformation algorithm. 
 
 
5 IMPLEMENTATION 
 
 As a starting point for a reference 
implementation we have conducted a survey on 
existing mobile Semantic Web frameworks. We have 
analyzed two XML parsers for mobile environments, 
NanoXML for J2ME4 and kXML5, as well as two 
mobile RDF frameworks, Mobile RDF6 and µJena7. 
                                                           
4 NanoXML: http://sourceforge.net/projects/ 
nanoxml-j2me 
5 kXML: http://kxml.sourceforge.net 
6 Mobile RDF: http://www.hedenus.de/rdf 
7 µJena: http://poseidon.elet.polimi.it/ca/ 

Our survey revealed that µJena is the most advanced 
framework providing ontology and inference support, 
although its API is currently in prototypical status 
and only allows for processing RDF data serialized 
in N-Triples format8. However, none of the evaluated 
frameworks supports queries on RDF data via 
SPARQL or other query languages. A serialization 
mechanism between RDF and the internal storage 
mechanisms used by certain mobile devices for 
storing data permanently could also not be found. 
Such mechanisms are however needed since many 
mobile platforms do not use a file system for storing 
application data, but provide platform-specific 
storage systems, such as the Record Management 
System (RMS) in case of J2ME MIDP9 applications. 
 Client. We have developed an initial version of 
our framework on the Google Android platform10 
since the underlying operating system and 
application model provide substantial advantages 
compared to other mobile operating system 
architectures. Android itself is an environment for 
running Java applications on the Dalvik Virtual 
Machine11 which is especially optimized for mobile 
environments. It includes SQLite, a lightweight and 
powerful relational database engine, and makes use 
of some advanced software design patters such as the 
Model-View-Controller (MVC) pattern to separate 
application logic from user interface design and 
underlying data models. Android provides access to 
the core system operating functions through standard 
APIs as well as a complete multitasking environment 
where each application is executed within its own 
thread, thus providing the possibility to implement 
background services, like a synchronization process 
that is automatically activated when the mobile 
device has online connectivity to its home network 
(e.g., by automatically establishing a VPN 
connection within a public wireless local area 
network). 
 Server. The replication manager is able to 
process contextual information, such as the number 
of triples expected by the replication engine, the 
user's current location, or information about the 
                                                                                       
?page_id=59 
8 N-Triples Syntax for RDF: http://www.w3.org/TR/rdf-
testcases/#ntriples 
9 Mobile Information Device Profile (MIDP): 
http://java.sun.com/products/midp 
10 Google Android Platform: http://code.google.com/ 
android 
11 Dalvik Virtual Machine: http://www.dalvikvm.com 

Figure 4: MRV Server Processing Pipeline 
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serialization formats the client is able to process. 
Based on this information it selects a subset of the 
RDF data set and transmits it to the client. An RDF 
abstraction layer has been introduced in the 
replication manager  (cf. Section 4) so that its 
implementation is independent from the underlying 
RDF store. The client locally caches the data and 
hence makes it available to applications, and changes 
made to this cache are subsequently forwarded to the 
replication manager. 
 We have implemented a processing pipeline (cf. 
Figure 4) that allows to customize the ranking 
applied to RDF triples. Each triple in the graph is 
assigned an absolute rank r ∈ ℝ, which can be 
normalized to rn, -1 ≤ rn ≤ 1. The ranked graph runs 
through a pipeline of ranking modules, each of which 
may modify the rank for every triple. A number of 
ranking modules have been developed so far; a 
detailed description of their underlying algorithms is 
out of the scope of this work. 
 

• RDF Base Vocabulary Ranker. RDF provides a 
set of core terms, which are often crucial for 
correct data processing (e.g.,  rdf:type, 
which is needed to determine the classes a 
resource belongs to). This ranker increases the 
rank of all terms that are in the RDF core 
vocabulary. 

• Annotation Property Ranker. A number of 
RDFS and OWL terms are annotation 
properties, i.e., they describe aspects of 
resources that may be less important for search 
and retrieval (e.g., owl:versionInfo or 
rdfs:isDefinedBy). This ranker decreases 
the rank of triples that contain these terms on 
the property position. 

• Ontology Ranker. Based on the assumption that 
classes and properties from formalized 
ontologies are more important than terms that 
are freely chosen, this component increases the 
rank of triples whose predicate and object 
conform to a given formalized ontology. 

• Resource Ranker. This component ranks triples 
using an algorithm similar to PageRank [6] 
where the rank of a resource (and the triples it 
participates in) depends on the rank of 
resources that refer to this resource. 

• Information Gain Ranker. This component 
ranks triples based on the information entropy 
of each property found in the graph. 

• SPARQL Ranker. This component analyzes 
SPARQL [21] queries that have been issued 
against the data set, and increases the rank of 
those triples that are required to correctly and 
completely evaluate the query. 

 
 An initial analysis of the results of these rankers 
indicates that there exists no generically applicable 
strategy for ranking triples, since for this task we 

must always consider the requirements of the 
concrete application scenario. However, with our 
architecture and a number of basis ranker 
components we intend to provide a generic 
framework that can be customized and extended to 
fit concrete needs. 
 Preliminary Results. In a tentatively conducted 
evaluation we analyzed the performance of 
processing RDF on a Google Android G1 device, 
which was the first physically available Android 
device on the market. It represents the latest 
generation of mobile devices in terms of technical 
capabilities such as processing power, memory 
capacity, screen size and resolution, etc. The G1 is 
equipped with a 32-bit Qualcomm MSM7201A 
RISC CPU running at a nominal clock speed of 528 
MHz12. All tests were performed with the standard 
memory capacity of 192 MB. 
 For a first performance evaluation, we measured 
the processing times needed for building and 
maintaining RDF documents of different sizes. Every 
test has been repeated ten times for each RDF 
document, all containing a different amount of triples. 
First results show that processing times were rather 
low (<200ms) when reading and parsing small RDF 
documents containing a few hundred triples. 
Accessing specific RDF elements such as properties, 
subjects, or entire statements within an RDF 
document also performs reasonably well: accessing a 
specific statement in an RDF document containing 
129 triples took around 50ms in average. However, 
the overall performance of the system significantly 
decreased when larger RDF documents consisting of 
several hundred triples have been processed. 
According to our observations, a doubling in the 
amount of triples causes approximately 4 times 
longer processing times. The processing times we 
have observed are currently far from being 
acceptable in real-world scenarios where replication 
tasks are commonly performed with much larger 
documents.  Especially for the efficient provision of 
larger RDF data sets, the efficiency of the underlying 
RDF processing framework needs to be significantly 
improved. 
 First investigations revealed that the 
performance drops have been caused by the internal 
data structures used by the µJena framework, which 
need to be adapted to the Android environment and 
operating system specifics. Provisional adaptation 
efforts reduced processing times by 50%, whereas a 
slight increase in memory consumption was 
observed. In future work, we will concentrate on 
tailoring the µJena framework towards the operating 
specifics of the Android platform so that building 
and maintaining realistic amount of triples occurs 
within reasonable amounts of time. 
 
                                                           
12 Due to battery saving reasons, the G1’s CPU runs at a clock 
speed of only 350 MHz. 
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6 RELATED WORK 
 
 Although RDF databases are gaining industry 
strength in terms of performance and memory 
efficiency, mechanisms for synchronization and 
offline replication can hardly be found. To the best 
of our knowledge, many of today's state-of-the-art 
triple stores, such as Jena13, Sesame14, and Redland15, 
do not include support for (selective) offline 
replication. 
 Most of the systems mentioned before can be 
configured to make use of a relational data base to 
store RDF data. For this, they employ mapping 
algorithms in order to represent RDF graphs as 
relations. One could make use of a RDBMS's 
replication and synchronization facilities; however, 
this has two drawbacks: (1) they do not consider the 
special aspects of RDF and semantic graphs, 
including ontologies, and (2) performing selective 
replication is difficult unless the developer analyzes 
the exact mapping algorithms for the target system. 
Usually, those systems do not provide facilities to 
elaborate on the meaningfulness and semantics of 
RDF data sets. Larger-scale database systems like 
OpenLink Virtuoso [13], Oracle [1], and 
OpenAnzo16 do not solely focus on RDF but may 
serve as a data integration point for different sources, 
including RDF. While these systems often provide 
support for replication and synchronization, they are 
not designed to be deployed on mobile devices.  
 A different approach for selective distribution 
and replication of RDF data is the Peer-to-Peer (P2P) 
paradigm, where multiple equal systems exchange 
data over a network. Such systems (e.g., Edutella 
[19] and RDFPeers [7]) provide valuable knowledge 
about efficient distribution and exchange of RDF 
data, but do not focus on selective replication. 
Tumarrello et al. [26] describe an algorithm for 
selective exchange of RDF data, based on P2P 
systems. We aim to extend the results presented by 
them and apply them to non-P2P environments.  
 The Open Mobile Alliance (OMA) provides the 
SyncML framework for data synchronization [20], 
which allows data of different kinds (including 
contacts, calendars, and e-mail messages) to be 
synchronized between devices. The framework also 
specifies a number of bindings to protocols that are 
commonly used in the context of mobile devices, as 
well as limited means to express device context 
information, e.g., the available memory or the 
supported databases. Since this framework does not 
consider a generic data format like RDF, we will 
analyze potential synergies and links between our 
approach and the OMA activities. 

                                                           
13 Jena Semantic Web Framework: 
http://jena.sourceforge.net 
14 Sesame Framework: http://www.openrdf.org 
15 Redland RDF Libraries: http://librdf.org 
16 OpenAnzo: http://www.openanzo.org 

7 CONCLUSIONS 
 

In this paper we have outlined the MobiSem 
Replication and Versioning framework for selective 
replication of RDF data sets to mobile devices. The 
goal of this framework is to provide access to RDF 
data sets in situations where there is no network 
connectivity available and hence communication 
with remote data sources is impossible. Our 
proposed architecture extends current Semantic Web 
applications with intermediate components that 
handle SPARQL queries transparently, either by 
forwarding them to the actual data store if 
connectivity is up, or by answering them from a 
locally cached partial replica of the data set on the 
mobile device, if there is no connectivity. We have 
discussed our proposed architecture and its 
associated workflow, as well as an initial reference 
implementation together with preliminary evaluation 
results.  

We have already implemented a number of 
ranking components that select RDF triples based on 
various criteria (including graph metrics and 
knowledge from formal ontologies), and we are 
currently in the process of evaluating and extending 
their underlying algorithms so that they can be 
applied to real-world scenarios and application 
requirements. In parallel we are working on further 
improvements of the client-side part of our 
framework; namely the optimization of processing 
and storing larger RDF graphs on mobile devices. 
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