
ViPIOS� The Vienna Parallel Input�Output
System�

Erich Schikuta� Thomas Fuerle and Helmut Wanek

Institute for Applied Computer Science and Information Systems
Department of Data Engineering� University of Vienna�

Rathausstr� ����� A��	�	 Vienna� Austria
schiki
ifs�univie�ac�at

Abstract� In this paper we present the Vienna Parallel Input Output
System �ViPIOS�� a novel approach to enhance the I�O performance of
high performance applications� It is a client�server based tool combin�
ing capabilities found in parallel I�O runtime libraries and parallel 
le
systems�

� Introduction

In the last few years the applications in high performance computing �Grand
Challenges ���� shifted from being CPU�bound to be I	O�bound
 Performance
can not be scaled up by increasing the number of CPUs any more� but by
increasing the bandwidth of the I	O subsystem
 This situation is commonly
known as the I	O bottleneck in high performance computing �����

In reaction all leading hardware vendors of multiprocessor systems provided
powerful concurrent I	O subsystems
 In accordance researchers focused on the
design of appropriate programming tools to take advantage of the available hard�
ware resources


��� The ViPIOS approach

Conventionally two di�erent directions in developing programming support are
distinguished
 Runtime libraries for high�performance languages �e
g
 Passion
���� and parallel �le systems� �e
g
 IBM Vesta ����


We see a solution to the parallel I	O problem in a combination of both
approaches� which results in a dedicated� smart� concurrently executing runtime
system� gathering all available information of the application process both during
the compilation process and the runtime execution
 Initially it can provide the
optimal �tting data access pro�le for the application and may then react to
the execution behavior dynamically� allowing to reach optimal performance by
aiming for maximum I	O bandwidth


� This work was carried out as part of the research project �Language� Compiler� and
Advanced Data Structure Support for Parallel I�O Operations� supported by the
Austrian Science Foundation �FWF Grant P��		��MAT�



This approach led to the design and development of the Vienna Input Output
System� ViPIOS ���� ���


ViPIOS is an I	O runtime system� which provides e�cient access to persistent
�les� by optimizing the data layout on the disks and allowing parallel read	write
operations
 ViPIOS is targeted as a supporting I	O module for high performance
languages �e
g
 HPF�


� System Architecture

The basic idea to solve the I	O bottleneck in ViPIOS is de�coupling
 The disk
access operations are de�coupled from the application and performed by an inde�
pendent I	O subsystem� ViPIOS
 This leads to the situation that an application
just sends general I	O requests to ViPIOS� which performs the actual disk ac�
cesses in turn
 This idea is caught by �gure �


app.

coupled I/O de-coupled I/O

accesses
requests

accesses

data

disk

disk

app.

ViPIOS

Fig� �� Disk access de�coupling

ViPIOS
servers

disk sub-system

...

requests

data
access

ViPIOS

processesapplication

VI VI VI

VSVS

APAP AP

Fig� �� ViPIOS system architecture

Thus ViPIOS�s system architecture is built upon a set of cooperating server
processes� which accomplish the requests of the application client processes
 Each
application process AP is linked by the ViPIOS interface VI to the ViPIOS
servers VS �see �gure ��


The server processes run independently on all or a number of dedicated pro�
cessing nodes on the underlying MPP
 It is also possible that an application
client and a server share the same processor


Generally each application process is assigned exactly one ViPIOS server
�which is called the buddy server to the application�� but one ViPIOS server
can serve a number of application processes� i
e
 there exists a one�to�many
relationship between the application and the servers �see �gure ��
 The other
ViPIOS servers are called foe server to the application




A is 
’buddy’
to app.

ViPIOS
interface

app.

A B

D1 D2 D3 D4

B is ’foe’ to application

Fig� �� �Buddy� and �Foe� Servers

disk manager

hw spec.MPI-IO ADIO ...

interfaceproprietory ViPIOS

MPI-IOHPF ...

message manager

fragmenter
directory
manager

memory manager

Fig� �� ViPIOS server architecture

��� ViPIOS server

A ViPIOS server process consists of several functional units as depicted by �gure
�


Basically we di�erentiate between � layers


� The Interface layer provides the connection to the �outside world��i
e
 appli�
cations� programmers� compilers� etc
�
 Di�erent interfaces are supported by
interface modules to allow �exibility and extendibility
 Until now we imple�
mented an HPF interface module �aiming for the VFC� the HPF derivative
of Vienna FORTRAN� a �basic� MPI�IO interface module� and the speci�c
ViPIOS interface which is also the interface for the specialized modules


� The Kernel layer is responsible for all server speci�c tasks

� The Disk Manager layer provides the access to the available and supported
disk sub�systems
 This layer too is modularized to allow extensibility and to
simplify the porting of the system
 At the moment ADIO ���� MPI�IO� and
Unix style �le systems are supported


The ViPIOS kernel layer is built up of four cooperating functional units


� The Message manager is responsible for the external �to the applications�
and internal �to other ViPIOS servers� communication


� The Fragmenter can be seen as �ViPIOS�s brain�
 It represents a smart data
administration tool� which models di�erent distribution strategies and makes
decisions on the e�ective data layout� administration� and ViPIOS actions


� The Directory Manager stores the meta information of the data
 We designed
� di�erent modes of operation� centralized �one dedicated ViPIOS directory
server�� replicated �all servers store the whole directory information�� and
localized �each server knows the directory information of the data it is storing
only� management
 Until now only localized management is implemented


� TheMemory Manager is responsible for prefetching� caching and bu�er man�
agement




Requests are issued by an application via a call to one of the functions of
the ViPIOS interface� which in turn translates this call into a request message
which is sent to the buddy server


The local directory of the buddy server holds all the information necessary
to map a client�s request to the physical �les on the disks
 The fragmenter uses
this information to decompose �fragment� a request into sub�requests which can
be resolved locally and sub�requests which have to be communicated to other
ViPIOS�servers �foe servers�
 The I�O subsystem actually performs the necessary
disk accesses and the transmission of data to	from the AP


��� System Modes

ViPIOS can be used in � di�erent system modes� as

� runtime library�
� dependent system� or
� independent system


These modes are depicted by �gure �


runtime library dependent system independent system

ViPIOS ViPIOS ViPIOS

app. app. app.

Fig� �� ViPIOS system modes

Runtime Library� Application programs can be linked with a ViPIOS runtime
module� which performs all disk I	O requests of the program
 In this case ViP�
IOS is not running on independent servers� but as part of the application
 The
ViPIOS interface is therefore not only calling the requested data action� but
also performing it itself
 This mode provides only restricted functionality due to
the missing independent I	O system
 Parallelism can only be expressed by the
application �i
e
 the programmer�


Dependent System� In this case ViPIOS is running as an independent module
in parallel to the application� but is started together with the application
 This



��
��
��
��

��
��
��
�� ��������

��
��
��

���
���
���
���
���
���
���
���
���
���
���
�����������

��
��
��
��

��
��
��
��

��
��
��
��������

mapping functions

ViPIOS servers
local pointer

persistent file
global pointer

application clients
view pointer

Data layer

File layer

Problem layer

Fig� �� ViPIOS data abstraction

is in�icted by the MPI� speci�c characteristic that cooperating processes have
to be started together in the same communication world
 Processes of di�erent
worlds can not communicate until now
 This mode allows smart parallel data
administration but objects a preceeding preparation phase


Independent System� This is the mode of choice to achieve highest possible I	O
bandwidth by exploiting all available data administration possibilities
 In this
case ViPIOS is running similar to a parallel �le system or a database server
waiting for applications to connect via the ViPIOS interface
 This connection is
realized by a proprietary communication layer bypassing MPI
 We implemented
two di�erent approaches� one by using PVM� the other by patching MPI
 A third
promising approach is just evaluated by employing PVMPI� a possibly uprising
standard under development for coupling MPI worlds by PVM layers


� Data Abstraction in ViPIOS

ViPIOS provides a data independent view of the stored data to the application
processes


Three independent layers in the ViPIOS architecture can be distinguished�
which are represented by �le pointer types in ViPIOS


� Problem layer
 De�nes the problem speci�c data distribution among the
cooperating parallel processes �View �le pointer�


� File layer
 Provides a composed view of the persistently stored data in the
system �Global �le pointer�


� The MPI standard is the underlying message passing tool of ViPIOS to ensure
portability



� Data layer
 De�nes the physical data distribution among the available disks
�Local �le pointer�


Thus data independence in ViPIOS separates these layers conceptually from
each other� providing mapping functions between these layers
 This allows logical
data independence between the problem and the �le layer� and physical data
independence between the �le and data layer


This concept is depicted in �gure � showing a cyclic data distribution


� Conclusions and future work

In this paper we presented the Vienna Parallel Input Output System �ViPIOS�� a
novel approach to parallel I	O based on a client server concept which combines
the advantages of existing parallel �le systems and parallel I	O libraries
 We
described the underlying design principles of our approach and gave an in�depth
presentation of the developed system


References

�� A Report by the Committee on Physical� Math�� and Eng� Sciences Federal Coor�
dinating Council for Science� Eng� and Technology� High�Performance Computing
and Communications� Grand Challenges ���� Report� pages �� � ��� Committee on
Physical� Math�� and Eng� Sciences Federal Coordinating Council for Science� Eng�
and Technology� Washington D�C�� October �����

�� Peter Brezany� Thomas A� Mueck� and Erich Schikuta� Language� compiler and
parallel database support for I�O intensive applications� In Proceedings of the In�
ternational Conference on High Performance Computing and Networking� volume
��� of Lecture Notes in Computer Science� pages ����	� Milan� Italy� May �����
Springer�Verlag� also available as Technical Report of the Inst� f� Software Technol�
ogy and Parallel Systems� University of Vienna� TR����� �����

�� Peter Brezany� Thomas A� Mueck� and Erich Schikuta� A software architecture
for massively parallel input�output� In Third International Workshop PARA���
	Applied Parallel Computing � Industrial Computation and Optimization
� volume
���� of Lecture Notes in Computer Science� pages ������ Lyngby� Denmark� August
����� Springer�Verlag� Also available as Technical Report of the Inst� f� Angewandte
Informatik u� Informationssysteme� University of Vienna� TR ���	��

�� Peter F� Corbett and Dror G� Feitelson� The Vesta parallel 
le system� ACM
Transactions on Computer Systems� �������������� August �����

�� Juan Miguel del Rosario and Alok Choudhary� High performance I�O for parallel
computers� Problems and prospects� IEEE Computer� ������������ March �����

�� Rajeev Thakur� Alok Choudhary� Rajesh Bordawekar� Sachin More� and Sivara�
makrishna Kuditipudi� Passion� Optimized I�O for parallel applications� IEEE
Computer� �������	���� June �����

�� Rajeev Thakur� William Gropp� and Ewing Lusk� An abstract�device interface for
implementing portable parallel�I�O interfaces� In Proceedings of the Sixth Sympo�
sium on the Frontiers of Massively Parallel Computation� pages ��	����� October
�����

This article was processed using the LATEX macro package with LLNCS style


