
A Conceptual Model for Aggregation and Validation of SLAs in Business Value Networks

Irfan Ul Haq, Altaf Ahmed Huqqani, and Erich Schikuta

Department of Knowledge and Business Engineering, University of Vienna, Austria
Email: {irfan.ul.haq, huqqana3, erich.schikuta}@univie.ac.at

Abstract: The notions of Service Oriented Computing and
Virtual Organizations have facilitated novel business scenar-
ios such as Business Value Networks and Extended Enter-
prises. In these business scenarios, services orchestrate in a
producer-consumer manner, forming hierarchical structures of
added value. Service Level Agreements (SLAs), which are
contracts between consumers and providers, guarantee the ex-
pected quality of service (QoS) to different stake holders at
various levels in this hierarchy. So far, the aggregation of SLAs
has been treated as a single layer composition. There is a strong
requirement of a hierarchical SLA aggregation model to enable
such value-chain business scenarios. In this paper we propose
an architectural model to enable multi-layered SLA orchestra-
tion, aggregation, and validation.
Keywords: SLA Aggregation, Service Orchestration, SLA
Validation, Business Value Networks.

1. Introduction

The work presented in this paper aims for the business enabled
Internet of Services, which opens up the doors for totally new
business processes for consumers and producers. In our vision,
we believe that in the near future, it may be possible to sell
software and resources as service and not as good. For exam-
ple, “Writing a letter” can be as simple as using a telephone:
Forget buying software and hardware! All we need is a simple
interface to the services on the Internet, both the wordproces-
sor functionality (downloadable code) and the necessary phys-
ical resources (processor cycles and storage space); and every-
thing is paid transparently via our telephone bill. The research
community has identified Service Level Agreements (SLA) as
the key factor for enabling such new business models. There-
fore we aim for delivering a formalized basis which allows
for the specification and management of SLAs for the provi-
sioning, delivery and monitoring of services and their highly
dynamic and scalable consumption. Our approach will enable
the dynamic creation of Business Value Networks [7] in a ser-
vice oriented infrastructure autonomously and automatically.
A Service Level Agreement (SLA) is a formally negotiated
contract between service provider and service consumer to en-
sure the expected level of service. The service consumer can
be a client or another service. In the process of dynamic ser-
vice composition e.g automated workflows, services are or-
chestrated to integrate related activities. During these service
compositions, Service Level Agreements are made among dif-
ferent partners at various points on the orchestration. These
partners include the client, the Virtual Organizations (VO)
and the services. Service composition implies the composi-

tion of their corresponding SLAs. So far, SLA composition
has been considered [8] as a single layer process. This sin-
gle layer SLA composition model is insufficient to describe
multilayered aggregation of services in supply-chain type of
business networks. In a supply-chain, a service provider may
have sub-contractors and some of those sub-contractors may
have further sub-contractors making a hierarchical structure.
This supply-chain business network spanned across various
Virtual Organisations, may emerge as a Business Value Net-
work. Business Value Networks [7] [20] are ways in which
organizations interact with each other forming complex chains
including multiple providers/administrative domains in order
to drive increased business value. To enable these supply chain
networks on Service Oriented Infrastructures (SOI), the case
of the SLA aggregation needs to be elaborated and its issues
resolved. SLA@SOI [5] is a European project that focusses on
SLA issues in SOI. Its agenda promises the provision of such
Service aggregators, that offer composed services, manageable
according to higher-level customer needs.

In addition to the notion of Business Value Networks,
NESSI (Networked European Software and Services Initia-
tive), which is a consortium of over 300 ICT industrial part-
ners [20], has pointed out various other possibilities for similar
inter-organizational business models: Hierarchical Enterprises,
Extended Enterprises, Dynamic Outsourcing, and Mergers to
name a few. The process of SLA aggregation in such enter-
prises must be a hierarchical process.

There is no SLA aggregation model available till this date
that can describe the hierarchical orchestration of SLAs. In the
rest of the paper, we will use the term SLA Orchestration, in
accordance with the Service Orchestration. The SLA hierar-
chy in Fig.1 is a direct consequence of a supply chain type
of service orchestration. These layers also bound the visibil-
ity levels of service providers and the client in the sense that
the client has concern only with the services immediately con-
nected to it and can not see beyond. Similarly a service can see
its coordinating services i.e. its providers and its consumers
with which it is making Service Level Agreements and has no
information about the rest of the service orchestration. Despite
of its privacy concerns, a service is dependent upon the ser-
vices beneath it in the chain. The effects of this dependency
are “bubbled up” through the upper layers. There are many is-
sues needed to be resolved in order to realize such complex
business scenarios. Some of the very basic questions are:

•How can we describe this SLA-Orchestration in a more
formal manner?

•How can we build trust among different partners of a
Business Value Network?

Aggreegated
SLA

SLA (cl→b3)

Level1 Level 3Level 2 Level 5

SLA (X→A) = SLA btween the client X and service provider A

SLA (cl→c4)

SLA (cl→a2) SLA (a2→aj)

Level 4

SLA (cl→a3)

SLA (i2→a1)

SLA (a3→i2)

SLA (i2→j2)

SLA (b3→b1)

SLA (b3→c3)

SLA (c3→b4)

SLA (c3→jj)

SLA (i2→i1)

Fig. 1. Hierarchical SLA Orchestration

•Who will manage this SLA orchestration?
•How can we aggregate SLAs in an incremental way within

the SLA-Orchestration?
•How to monitor and validate this SLA orchestration?

All these questions are mutually related so their answers are
also highly inter-dependent.

In this paper we propose a conceptual architecture to model
SLA aggregations and its related issues across heterogeneous
Virtual Organizations, in order to enable Business Value Net-
works and similar business scenarios. The key components of
this architecture are:

•a formal model to describe SLA aggregation
•a distributed trust model and
•a runtime validation model
section 2 introduce our architecture and explains how its

different components are related with each other. In section 3
we describe the aggregation and formal model, in section 4 the
distributed trust model, and in section 5 the validation model.
Section 6 gives a survey of the related work and finally, Section
7 winds up the paper with the conclusion and the future work.

2. An Architecture for Hierarchical SLA
Aggregation and Validation

Figure 2 shows our proposed architecture that tackles the ques-
tions raised in Section I by elaborating relationships among
these issues and proposing solutions to resolve these issues.
The overall goal of this architectural model is to elaborate the
role of SLAs as an enabling technology for Business Value
Networks. The proposed architecture consists of three main
components:

1.Formal Model for Hierarchical SLA Orchestration and
Aggregation

2.Distributed Trust Model
3.Rule based Validation Model

A formal model of SLA orchestration is required not only
for a better understanding of the problem but also to pro-
vide a comprehensive platform for computation design and
implementation of the system. It is also required to devise for-
mal functions describing the hierarchical aggregation of SLAs.
At the same time the formal model must be in compliance
with the WS-Agreement standard. In the formal model, we
introduce the concept of SLA-views. The inspiration for the
SLA-views concept comes from the notion of business pro-

Secured By

Third party Trust
Manager

PKI/X.509

Trust Model

SLA Views

Hierarchical SLA
orchestration

Formal Model

Validation Model

Agent System
ECA Rules

comprises of
based on

employs

enabled
by

based on

described by

Service
Orchestration

Validated by Enabled
by

Correspond to

SLA

= SLA AggregationSLA∫

Fig. 2. Architecture for Hierarchical SLA Aggregation and
Validation

cess views [17][18]. Each business partner has its own view
comprising of its local SLA information. The aggregated ef-
fect of these views emerges as the overall SLA orchestration.
From a service provider’s point of view, it is not possible to
expose the complete information of SLAs spanning across the
whole chain of services to the consumer. Not only it does not
make sense to reveal the information of a business partner’s
sub-contractors but also it would endanger business processes
creating added value. With the help of SLA Views, the SLA
information pertaining to different providers is veiled at var-
ious levels in the SLA orchestration. At the same time the
partners of a Business Value Network, need to share their re-
sources on the basis of mutual trust. Such a balance between
trust and privacy of the stake holders requires a distributed trust
model. The Distributed Trust model binds all the stake holders
together with a Business Value Network. Some of the direct
implications of this distributed trust may be realized during
the validation, the fault tolerance and the renegotiation pro-
cesses. Especially, the validation process is frequently invoked
to confirm the availability and reliability of the dynamic SLA
Orchestrations. The Validation model is a rule based intelli-
gent system and coordinates very closely with the Trust model
and the formal descriptive model. A distributed query is de-
composed across the SLA orchestration getting validated in
various SLA-Views which are scattered across different VOs
and are connected via the distributed trust model. In the next
sections we will discuss these components in detail.

3. Formal Model for Hierarchical SLA
Orchestration and Aggregation

WS-Agreement [3], a standard SLA language from OGF
(Open Grid Forum) [4], defines the structure of an SLA to
consist of three parts: the Name, the Context and the Terms.
Every SLA has an official name. Agreement Context contains
information about the initiator, responder and provider of the
agreement; expiration time of the agreement; and its template
Id. Service Terms define the functional attributes of the agree-

ment whereas the Guarantee Terms contain the non functional
attributes. Guarantee terms further describe the conditions,
service level objectives and business value list related to the
agreement. Business value list may express the importance of
meeting an objective as well as information regarding penalty
or reward. In our architecture, we will base the SLA aggrega-
tion process on the Service Terms and the process of Valida-
tion will be carried out by expressing the Guarantee Terms in
logical rules. Let us define and construct formal relationships
among these terms.
Definition 1 (Service Term) A service term denoted by terms

is an element of the set Service Terms denoted by STerms. A
terms ∈ STerms is a tuple such that,

terms < name, value, typea >
where name and value denote the name and value of a service
term and typea describes its aggregation type.
We have taken the liberty to implant a new mandatory element
to the WS-Agreement standard, namely, typea. The typea el-
ement corresponds to the aggregation function that helps us
automate the aggregation of SLAs. We postpone its definition
to the latter part of the paper where we will discuss the aggre-
gation process.
Definition 2 (Guarantee Term) A guarantee term denoted by
termg is an element of the set Guarantee Terms i.e, GTerms.
A termg ∈ GTerms is a tuple such that:

termg < SLO, conditionq, BV L >
where SLO that represents Service Level Objectives, conditionq

that represents Qualifying Conditions and BVL representing
Business Value List may be expressed as a set of logical rules
based on Horn Logic and Event Condition Action(ECA) rules.
We will explain these terms with examples in section VII.
Combining the above two definitions, now we can define the
notion Terms of the WS-Agreement.
Definition 3 (Term) A term ∈ Terms is a pair such that

term = (terms, termg)
where terms ∈ STerms and termg ∈ GTerms and
Terms = STerms ∪GTerms.

Following the above definitions, SLA can now be formally
defined as:
Definition 4 (SLA) A service Level Agreement (SLA) denoted
by sla is a tuple

sla < Context, Terms >
where Terms = STerms ∪GTerms
and Context is a list of strings. Context defines the names of the
SLA provider, the consumer and the initiators. It also contains
the duration of the SLA. To construct a formal model that
describes the SLA orchestration on the whole while catering
the privacy concerns of the service providers at the same time,
we introduce the concept of SLA-Views.

The concept of Views originated from the databases but has
been widely used in business workflows [9][17][18]. In work-
flows, a view can be a subset of that workflow or can be a repre-
sentation of that workflow in aggregated or abstracted fashion
[12]. But in case of SLAs, we need to consider a few differ-
ences. An SLA-Orchestration is not a workflow so the rules of
workflows are not applicable on it. For instance, in a workflow,
rules such as: there should be a single start and single exit or
every split should have a join, do not apply on SLA aggrega-

ap-c3

Cl-b3

GSLA

Cl-b4 Cl-a3 Cl-a2

c3-j1

b3-b1b3-c3 a3-i2 a2-aj

i2-a1i2-i1i2-j2c3-b4

ap-b3 ap-a3 ap-a2

ap-i2

Client

Client’s View of
SLA Orchestration

Stakeholder (service) i2's
View of SLA Orchestration

ap-Client

Fig. 3. SLA-Views

tion structure. A view in an SLA-Orchestration represents the
visibility of a business partner. Every service provider is lim-
ited only to its own view. A partner (for example a service)
makes two kinds of SLAs: the SLAs for which it acts as a con-
sumer and the SLAs for which it is a provider. For clarity, we
name these two types as the consumer-oriented SLAs and the
producer-oriented SLAs respectively. In Figure 3, SLAs are
connected to small circles,which we call Aggregation Points,
by certain edges called Dependencies. There are two types of
dependencies. Consumer-oriented SLAs are connected to the
aggregation points from below by the sink dependencies and
the producer-oriented SLAs are connected from above by the
source dependencies. To understand the overall picture of the
SLA Orchestration, we need to formalize these concepts.
Definition 5 (Aggregation Point) An Aggregation Point ap is
an object such that

ap < aggsla >
where aggsla is the aggregated SLA produced by aggregating
the consumer-oriented SLAs connected to it. In Figure 3, ap-
i2 is an aggregation point. An aggregation point is the point
where the consumer-oriented SLAs (of the consumer service)
are aggregated and on the basis of their aggregated content, the
service is able to decide what it can offer as a provider.
Definition 6 (Dependency) A dependency Dep is a set that is
the union of two sets namely Depsrc and Depsink i.e

Dep = Depsrc ∪Depsink

In Fig. 3,Dependencies are shown as edges joining the aggre-
gation point ap-i2 with three consumer-oriented SLAs and one
producer-oriented SLA.
Definition 7 (Source Dependency) A source dependency
depsrc ∈ Depsrc is a tuple

depsrc < ap, sla >
where ap is the aggregation point and sla is the producer-
oriented SLA. In Figure 3, it is represented by the directed
edge from the aggregation point ap-i2 to the producer-oriented
SLA a3-i2. Depsrc is the set of all source dependencies within
the SLA-Orchestration. Let

source : (ap)→ depsrc

source(api) is the unique s ∈ Depsrc with s.ap = api.
This means that the function source maps each aggregation
point api to a unique source dependency s.

GSLA

Rendering
Algorithm

Client’s
SLA-View

ap-client

Computing
Service

Video
Rendering

Service

Hosting
Service

ap-S1

ap-S2

Rendering Service’s
 SLA-View

Min(resolution)
Σ(cost)

Σ(response time)

SLO={B/W, Cost, Response-time, Resolution}

SLO={Cost, Response-time, Resolution}

Fig. 4. Example Scenario for Aggregation and Validation

Definition 8 (Sink Dependency) A sink dependency depsink

is a tuple
depsink < sla, ap >

where ap is the aggregation point and sla is the consumer-
oriented SLA. In Figure 3, it is represented by the directed
edge from the consumer-oriented SLA i2-i1 to the aggrega-
tion point ap-i2. The aggregation point ap-i2 is connected with
three sink dependencies. Depsink is the set of all sink depen-
dencies. Let

sink : (ap)→ P (depsrc)
sinks(api) is the set Ssink ⊆ Depsink i.e. Ssink ∈ P (Depsink),
such that
for each si ∈ Ssink si.ap = api

where P (Depsink) is the power set of Depsink. This means
that the function sink() maps each aggregation point api to a
set of sink dependencies Ssink and each member of this set is
mapped to the unique aggregation point, i.e. api.

Based on the above concepts, now we are in a position to
provide a formal definition of the SLA-View.
Definition 9 (SLA-View) An SLA-View denoted by slaview
is a tuple such that

slaview < slap, depsr, apointo, SLAc, Depsn >
where slap = producer-oriented SLA, SLAc= Set of consumer-
oriented SLAs, depsr= source dependency, Depsn= set of sink
dependencies, and apointo= aggregation point.
In Figure 3, the SLA-Views of the client and a service are
highlighted.
Definition 10 (SLA-Orchestration) An SLAorch is a tuple
such that:

SLAorch < SLA, APoints, Deps >
where SLA is set of all sla within an SLA-Orchestration,
APoints is set of aggregation points ap and Deps is set
of dependencies dep. Another way to describe the SLA-
Orchestration is in terms of SLA-Views, i.e.

SLAorch = ∪n
i=1slaviewi

This means that the whole SLA-Orchestration may be seen as
an integration of several SLA-Views.

In the aggregation process, terms of the consumer-oriented
SLAs are aggregated. WS-agreement has no direct support for
such an aggregation so we introduced an attribute for aggrega-
tion type namely, ”typea” in the Definition 1. WS-Agreement
gives the liberty to incorporate any external schema. Therefore
typea can be made an essential part of the service terms and
will describe how the corresponding service will behave dur-

ing the aggregation process. We can define typea in a formal
way, as follows:
Definition 11 (The function typea) A typea ∈ Types is a
function that maps a set of tuples to a single tuple which is the
aggregation of that set.

typea : tuples(term)→ term

typea(term1, ...termn) = termagg

We define typea as an aggregation function that aggregates
n terms into one term. Its result is aggsla in the aggregation
point (please see Definition 5). Each term in aggsla is com-
puted by applying the type function for that term to the values
of the terms for all the dependent (consumer-oriented) SLAs
which define that term. In the present context, we define four
types of terms namely sumtype, maxtype, mintype and neu-
tral but new types can be added according to the situation. The
function sumtype can be defined as follows.
Definition 11.1 (The function sumtype)

sumtype ∈ Types(⇔ sumtype : tuples(term)→ term

sumtype(term1, ...termn) =
∑n

i=1 termi

typea is an aggregation function that aggregates n number
of terms into one term. sumtype is of the type of typea and
takes the summation of all terms. Examples include terms for
storage space, memory, availability and cost. The functions for
mintype, maxtype are also aggregation functions and can be
defined in a similar fashion. Neutral may be another function
that does not change any value and represents all the terms
separately.
Example 1: Formalization of Aggregation

We have demonstrated these aggregation function in sce-
nario depicted in Figure 4. Suppose there is a client who re-
quires a video rendering service coupled with high speed com-
putation facility. The client would also like to host this video
online and expects a high download demand which requires
high bandwidth. During the aggregation process, aggregation
functions depending upon the typea of the service term will
be applied at each aggregation point. For instance, cost and re-
sponse time are declared sumtype, so summation function will
be performed at the aggregation points. The response time at
ap-S1 is the sumtype function for the response time is a func-
tion of the temporal complexity of the rendering algorithm, the
response time of the computational service, the size of the in-
put data and the latencies of communication. This aggrega-
tion of consumer oriented SLAs is strictly from the service
provider’s point of view and a variation in values, in cost for
example is quite likely to happen in the provider oriented SLA.
We have also shown the resolution is a mintype function and
the resultant resolution at ap-client will be the minimum from
the rendered one and the one offered by the hosting service.
During the aggregation of the service terms, the corresponding
guarantee terms are accordingly aggregated. At each aggrega-
tion point, the Service Level Objectives (SLOs) can be repre-
sented as a set of logical rules. We have also shown two sets of
SLOs corresponding to the two SLA-Views in the Figure. We
will see in section 5, how a set of SLOs will be represented as
a conjunction of premises in a logical rule.

VO-A

VO-I

VO-CVO-B

VO-J

Root CAClient

Authenticed by Root
Authenticed by partner VO

Fig. 5. PKI based Distributed Trust Model.

4. Trust Model

In order to understand what kind of Trust Model is suitable for
SLA Orchestrations, let us review the situation. SLA Orches-
trations may span across various VOs forming a distributed
infrastructure. This means that the corresponding trust model
should be a distributed trust model. One of the best candi-
dates is the Cross-CA Hierarchical Trust Model [16][28]. This
model employs the Public Key Infrastructure based certificates
for authentication. Every member must possess such a certifi-
cate that will be issued from a Certification Authority (CA).
In the Cross-CA Hierarchical Trust Model the top most CA
is called the root CA that provides certificates to its subordi-
nate CAs. These subordinates can further issue certificates to
other CAs (subordinates), services or users. Unless a CA au-
thenticates a candidate, it can not earn the membership of that
organization. There is one root CA that authenticates all the
CAs within the organization. But in case of Business Value
Networks where multiple VOs are cooperating, some questions
arise. For instance, a very common question would be: Which
VO will have the root CA? The answer could be very simple
if one of the VOs is playing the central role. But in dynamic
ad hoc enterprizes, this is not that simple. During service or-
chestrations, services may form temporary composition with
any other service present in any VO. Whose parent VO will
act as the root CA in this case? A solution for dynamic ad hoc
networks is the inclusion of a Third Party Trust Manager act-
ing as a root CA. In our architecture we have suggested a Third
Party Trust Manager that will act as a root CA and authenticate
member VOs. Some of those authenticated members may fur-
ther authenticate other members and services and so on. This
Trust Model will be based on the PKI based system. Public
Key Infrastructure (PKI) provides a secure and reliable way to
authenticate an entity through certificates. The certificate con-
tains the name of the certificate holder and the holder’s public
key, as well as the digital signature of a Certification Authority
(CA) for authentication. The PKI technology is used to authen-
ticate a user, having a verified copy of public key across many
domains. The requirement of distributed PKI based trust man-
agement system arises because of the SLA details lying across
multiple Virtual Organizations. It employs the concept of pub-
lic and private keys. The public keys are distributed among all
the trusted parties packaged in digital certificates. Digital Cer-
tificates are issued by a Certification Authority (CA). These
certificates help to build a trust chain. A CA can also issue cer-
tificates to other CAs. The VOs authenticated by the third party
root CA may be termed as Partner VOs. This situation is de-

WS-Agreement
Guarantee Term

Service
Scope

Qualifying
Condition

Service Level
Objectives

Business
Value List

Reward Penality Preference
Importance

Parameter

Value
Unit

Value
Expression

Value Unit

Assessment
Interval

Time Interval Count

Fig. 6. Structure of Guarantee Term in WS-Agreement

picted in figure 5. The SLA management framework depicted
as the Client, is also authenticated by the root CA.

In case of PKI based authentication each service will have
a possession of an X.509 format certificate that will be issued
by its corresponding Certification Authority (CA). The authen-
tication layer in each VO middle-ware may be based on Grid
Security Infrastructure (GSI) where all resources need to in-
stall the trusted certificates of their CAs. GSI uses X.509 proxy
certificates (PCs) to provide X.509 Public Key Cryptography
standard (PKCs) for identification [16] and to enable Single
sign-on and Delegation.With Single Sign-On, the user does not
have to bother to sign in again and again in order to traverse
along the chain of trusted partners (VOs and services). SLA
views integrate very closely with the trust model to maintain
a balance between trust and security. While the trust model
promises trust and security, the SLA views protect privacy.

5. Validation Model

Service Level agreements are frequently validated throughout
their life cycle. Runtime Validation ensures that the Service
Level Objectives and guarantees are in complete conformance
with the expected levels. Figure 6 describes the structure of
Guarantee Terms in WS-Agreement. The most important con-
stituents are Service Level Objectives that define the desired
quality of service; Qualifying Conditions that expresse asser-
tions over service attributes and penalty and reward expres-
sions.

The process of validation is performed by first representing
the Guarantee Terms as logical rules and then using these rules
as distributed queries. During the validation process, queries
are decomposed making their premises as subgoals. This back-
ward chaining propagates throughout the SLA Orchestration.
If all the subgoals are satisfied then the validation is successful.
This whole scheme is enabled by

1.the distributed trust model,
2.the SLA views, and
3.Rule Responder [24] based Multi Agent System

Referring to distributed trust model, facilitated with the single
sign on and delegation, the validation process may be termed
as the Delegation of Validation. The trust model facilitates the
distributed query to travel across various domains through a
single sign-on and delegation mechanism. The agent enabled
rule based system has been inspired from the Rule Respon-
der Project [24]. We apply the findings of this project by in-

troducing User Level Agent (ULA), which generates the dis-
tributed query or validation request. The distributed query is
received and redirected by two types of agents: (i) VO Level
Agents (VOLA) and (ii) Provider Level Agent (PLA). VOLA
intercepts the query at the boundary of a VO and redirects it
towards the PLA, which is a service provider’s agent and has
access to service provider’s view.

The validation process completes when the validation query
is propagated to all the SLA-views in the SLA orchestration.
To understand how the Guarantee Terms can be expressed
as rules and how the rules are transformed into distributed
query, we refer to the formal definition of Guarantee Terms.
In Definition 2, we defined Guarantee Terms as termg <
SLO, conditionq, BV L >. Now we will describe how these
arguments can be formally expressed.

SLOs can be conveniently expressed through conjunctive
derivation rules. Lets revisit the scenario depicted in Figure 4.
In that scenario, we learned how service terms are aggregated
using sumtype, mintype, maxtype and neutral functions. These
functions are applied on the basis of aggregation type of a
service term, identified by typea attribute. We also learned that
the SLOs can be represented as conjunctive premises of logical
rules.
Example 2: Formalization of Validaton

In our scenario, the user is interested to render her videos
and then host them on the web. Her requirements include
a maximum cost of 45 Euros, maximum response time of
5 seconds, minimum resolution of 640x480 pixels and the
minimum bandwidth (from the hosting service) of 50 Mbps.
In Figure 7, we have depicted this scenario from validation
point of view and have expressed the SLOs of final aggregated
SLA in form of a derivation rule at the top of the Figure. It
must be kept in mind that the SLOs refer to an established SLA
and their ranges are meant to be guarded in order to maintain
desired levels of service. VOLA and PLA are agents which
automate the distributed querying process. In Figure 7, the set
of SLOs belonging to the final aggregated SLA are represented
in form of a logical rule. The predicates lt and gt denote
lesser-than and greater-than respectively. This conjunctive set
of SLOs is expressing the minimum required Bandwidth i.e 50
Mbps, minimum cost, i.e. 45 Euros, and maximum response
time, i.e. 5 seconds, and the minimum resolution i.e. 640X480
pixels in the following rule:
SLO()← ¬gt(Cost, 45, euro) ∧ ¬gt(Resptime, 5, sec)∧
¬lt(Resol, 640X480, pixels) ∧ ¬lt(BW, 50, mbps).

During the validation process, this rule will be decomposed
such that each premise will become a subgoal thus forming
rule chains. The initial steps of decomposition procedure are
depicted at the bottom of the Figure. In the Figure, VO-level-
Agents (VOLA) have been shown to receive and track the dis-
tributed query whenever it enters a new VO. For each service
provider there is a Provider Level Agent (PLA). A PLA af-
ter finishing its job, would redirect the distributed query to
the service provider’s PLA that comes next in the hierarchi-
cal chain. The process continues until the whole SLA Orches-
tration is validated. In our scenario, VOLA-B receives a sub-
goal ¬gt(Resptime, 5, sec) representing the requirement that
the total response time of the system should not be more that

SLO ┐gt(Cost, 45, euro) ^ ┐gt(Resptime, 5, sec) ^ ┐lt(Resol, 640X480, pixels)^ ┐lt(BW, 50, Mbps) .

 ┐gt(Resptime, 5, sec) ┐gt(Complexity, 20, points) ^
 ┐gt(Resptime-compute, 2, sec) ^
 ┐gt(Datasize, 30, MB) ^
 ┐gt(Latency, 0.5, sec).

 ┐gt(Rcost, 25, euro) ┐gt(cost(Computation), 7,euro) ^
 ┐gt (cost(Render-algo), 11, euro).

Query (a)
Query (b)

(Distributed Query)

VO-B containng Rendering service
provider

VO-A containng Hosting service
provider

PLA
PLA

ULA

VOLA-A

┐gt(Hcost, 20, Euro) ┐gt(cost(Hosting), 12,euro) ^
 ┐gt(cost(LocalBW),3,euro)).

VOLA-B

PLA

Rule-based
Validation

ModelRule
Responder

PKI
Based
Trust

SLA
Views

┐lt(Resol, 640X480, pixels) ┐lt(ResolR, 640X480, pixels) ^
 ┐lt(ResolH, 640X480, pixels).

Fig. 7. Validation through distributed query decomposition

5 seconds. The SLO depends on several factors such as the
complexity of the rendering algrithm, size of the data, latency
and response time of the computational hardware which is ex-
pressed as the new subgoal:
¬gt(Resptime, 5, secs) ← ¬gt(Complexity, 20, points) ∧
¬gt(Resp-compute, 2, sec)∧ ¬gt(Datasize, 30, mb)∧
¬gt(Latency, 0.5, sec)

During the aggregation process the premises in the above
rule were being summed up because their corresponding typea

attribute has been declared as a sumtype function. The SLO
expressing the cost will be divided between the two service
providers as shown in the Figure 7. The service cost at the level
of VOLA-A should be less than 20 and is dependent on the sum
of the cost for hosting and the cost for local bandwidth. The
varying upper limit of cost at different levels reflect the profit
margins of different providers e.g. the provider in VOLA-A
has a profit margin of 5 Euros.

It should be noted that in accordance with the WS-Agreement
standard, there are three arguments in each SLO, denoting:
the SLO name, its value and its unit respectively. VOLA-B
receives its subgoal and connects it with the corresponding
derivation rule in a similar fashion. The delegation of valida-
tion will continue until the whole SLA orchestration is val-
idated. At each level, the corresponding reward and penalty
conditions will also be checked and if required then appropri-
ate action will be taken.

Qualifying Conditions and penalty and reward expressions
can be expressed through Event Condition Action (ECA) rules.
For example, if we want to express the statement ”If the re-
sponse time of the service is not less than 30 seconds then
there is a penalty of 5 Euros”, we can write its WS-Agreement
equivalent as follows:

<wsag:Penalty>
<wsag:AssesmentInterval>
<wsag:TimeInterval> 30 </wsag:TimeInteval>
<wsag:Count>1</wsag:Count>

</wsag:AssesmentInterval>
<wsag:Value Unit>Euro</wsag:ValueUnit>
<wsag:ValueExpr>5</wsag:ValueExpr>
</wsag:Penalty>

This can also be represented by ECA rules:
timer(second, T)← Timer(T) ∧ seconds(T)mod30 = 0
event(V iolate)← ¬ping(Service1, RT) ∧RT > 30
action(Penalty)← penalty(Obligation, 5)

Now combining together:
ECA(monitor) ← timer(second, T) ∧ event(V iolate) ∧
action(Penalty)

Similar approach can be used for the renegotiation, fault tol-
erance and breach management processes. During renegotia-
tion, the distributed query traverses in the same way towards
the service providers, offering those terms which are desired
to be renegotiated. During fault tolerance and breach manage-
ment, violations are localized through a similar invocation of
the distributed query. The advantage of having derivation rules
is that they are much more structured and can be very easily
transformed in a rule based markup language, thus becoming
processable in autonomic and autonomous way.

6. Related Work

The related work spans across many research areas. These
research areas include aggregation and formalization of SLAs,
workflow views, trust models for VOs and Rule based SLA
validation. In fact, we have introduced a new concept namely
SLA views in this paper for which we had to dig in the research
on workflow views to extract the relevant knowledge.

6.1 SLA Aggregation

SLAs were originally used by Information Technology (IT) or-
ganizations and adopted by telecommunications providers [19]
to manage the quality of service(QoS) expectations and the
perception of their contributions to the company’s productiv-
ity and bottom-line success. Telecommunication Information
Networking Architecture Consortium (TINA-C) [2] defines
a service architecture providing guidelines for constructing
deploying and withdrawing TINA services. WSLA [1], WS-
Agreement[3] and SLANG [14] are some popular languages
of Service Level Agreement. Service composition direclty im-
plies the SLA composition. However a little research [8], [13]
has been carried out towards dynamic SLA composition. Blake
and Cummings [8] have defined three aspects of SLAs which
are Compliance, Sustainability and Resiliency. They assume
services to exist only at one level. The research area corre-
sponding to the management of such aggregated SLAs is still
wide open. Ganna Frankova [13] has highlighted the impor-
tance of this issue but she has just described her vision instead
of any concrete model. Unger et al’s work [27] is directly rel-
evant to our focus of research. They focus on aggregation of
SLAs in context of Business Process Outsourcing (BPO). They
synchronize their work with Business Process Execution Lan-
guage (BPEL) and WS-Policy. Their model is based on SLO
aggregation of SLAs. One of the limitation of their approach
is that they take into account services related to one process
in one enterprise because they focus on BPO. Our approach
describes cross-VO SLA aggregation and strictly adheres to
WS-Agreement.

6.2 Formal Description of SLA

Aiello et al [6] present a formal description of SLA. Their
approach is based on WS-Agreement. They extend the WS-
Agreement standard by introducing a new catagory of terms
called Negotiation Terms. They build automaton representa-

tion of SLA states to describe the negotiation process. Their
formal model is too vague and they do not explain how this
model will describe the sub-entities in WS-Agreement. Unger
et al [27] present a rigorous formal model for SLA aggrega-
tion. They follow BPEL and WS-Policy whereas our formal
model adheres to WS-Agreement standard.

6.3 Workflow Views

The concept of Workflow Views is used to maintain the
balance between trust and security among business partners
[9][17][18]. Schulz et al [25] have introduced the concept of
view based coalition workflows. Chiu et al [10] present a meta
model of workflow views and their semantics based on sup-
ply chain e-service but their model lacks an integrated cross-
organizational perspective. Other authors [26][15], however,
do propose a global view or a decomposition process based
on the views. But none of them have focussed on the dynamic
workflows in their approach. Chiu et al [11] describe a contract
model based on workflow views. They demonstrate how man-
agement of contracts can be facilitated. Based on the views of
participating organizations they construct an e-contract model
that defines e-contracts in plain text format. Modern Service
Level Agreements are XML based, more complex and more
dynamic due to features such as negotiation, renegotiation,
and fault tolerance, etc.

6.4 Distributed cross-VO Trust Models

The Grid Security Infrastructure (GSI) and the security mod-
ules of middle-ware, provide a set of security protocols for
achieving mutual entity authentication between a user (actu-
ally a user’s proxy) and resource providers [28]. Each party
has a public-key based cryptographic credential in the formu-
lation of a certificate. GSI uses X.509 proxy certificates (PCs)
to enable Single sign-on and Delegation [16]. PCs can be cre-
ated on the fly without requiring any intervention from conven-
tional CAs. In the cross-CA Hierarchical trust model [16][28],
the top most CA is called the root CA that provides certificates
to it subordinate CAs. These subordinates can further issue CA
to other CAs (subordinates), services or users.

6.5 Rule based Validation of SLAs

Adrian Paschke and Martin Bichler have done an extensive
work on RBSLA (Rule Based SLA) project [23]. RBSLA
transforms SLAs into logical rules to automate their manage-
ment and monitoring. They discuss knowledge representation
of SLAs with complex business rules and policies. RBSLA
[22][23] uses a combination of Horn Logic, Deontic Logic
and ECA (Event-Condition-Action) rules. RBSLA also cov-
ers many related areas such as the breach management, au-
thorization control, conflict detection and resolution, service
billing, reporting, and other contract enforcements. RBSLA
employs query driven, backward reasoning for SLA manage-
ment. RBSLA is a useful tool to transform text based SLAs.
Our approach adheres to the WS-Agreement standard which
is a structured document thus making the challenge of au-
tomation more convenient. Oldham et al [21] have extended
WS-Agreement by building a rule based ontology on the WS-

Agreement. Their SWAPS schema [21] transforms constructs
from the Guarantee terms into predicate based markup lan-
guage. They admit that their schema is limited to a specific
domain. In our architecture we propose a distributed validation
model for an SLA orchestration in Business Value Networks.

7. Conclusion and Future Work

We have presented a conceptual architecture to enable SLA
Orchestrations in Business Value Networks. It consists of a
formal model for SLA Orchestration, and SLA-Views, a dis-
tributed trust model and a rule based validation system. This
approach allows automatic and dynamic creation of Business
Value Networks in Service Oriented Infrastructure. In the fu-
ture, we plan to elaborate the distributed rule based validation
system while adhering to the WS-Agreements standard. We
plan to integrate our validation model as a use case in the Rule
Responder Project [24]. We also plan to implement the com-
plete system through an iterative design phase.

Acknowledgements

We are extremely thankful to Prof. Harold Boley (University
of New Brunswick, Canada) for a fruitful discussion and valu-
able suggestions in connection with the Rule Based Validation
Model, which helped a lot to improve this paper.

References
[1] WSLA language specification, version 1.0, IBM corporation

january 2003.
[2] Service architecture version 5.0, tina baseline, TINA Consortium.
[3] Web Service Agreement (WS-Agreement) Specifications, Open

Grid Forum (OGF), 2007.
[4] Open Grid Forum (OGF), [http://www.ogf.org/], last access: Feb

9, 2009.
[5] SLA@SOI Project, [http://www.sla-at-soi.org/index.html], last

access Feb. 9, 2009.
[6] M Aiello, G Frankova and D Malfatti, What’s in an agreement?

a formal analysis and an extension of WS-Agreement, Lecture
Notes in Computer Science, catagory Security and SLA, Springer
Berlin Germany.

[7] V Allee, Reconfiguring the value network. Journal of Business
Strategy, Vol. 21, No. 4, Jul-Aug 2000.

[8] M B Blake and D J Cunnings, Workflow composition of
service level agreements, International Conference on Services
Computing (SCC2007).

[9] I Chebbi, S Dustdar and S Tata, The view based approach to
dynamic inter-organizational workflow cooperation. Data and
Knowledge Engineering, Vol. 56, 2006, pp. 139–173.

[10] D Chiu, S Cheung, S Till, K Karalapalem, Q Li and E Kafeza,
Workflow view driven cross-organisational interoperability in
a web service environment. Information Technology and
Management, Vol. 5, 2004, pp. 221–250.

[11] D Chiu, K K Q Li and E Kafeza, Workflow view based
e-contracts in a cross-organisational e-services environment.
Distributed and Parallel Databases, Vol. 12, 2002, pp. 193–216.

[12] J Eder and A Tahamatan, Temporal consistency of view
based interorganizational workflows, 2nd International United
Information Systems Conference, Austria.

[13] G Frankova, Service Level Agreements: Web services and
security. Springer Verlag, Berlin Heidelberg, 2007, pp. 556–562.

[14] D Lamanna, J Skene and W Emmerich, SLAng: A Language for
Defining Service Level Agreements., In Proc. of the 9th IEEE
Workshop on Future Trends in Distributed Computing Systems -
FTDCS 2003 (Puerto Rico, May 2003). IEEE-CS Press.

[15] Q Li, D Chiu, Z Shan, P Hung and S Cheung, Flows and views
for scalable scientific process integration, First International
Conference on Scalable Information Systems, Hong Kong.

[16] A Lioy, M.Marian, N.Moltchanova and M Pala, PKI past,
present and future. International Journal of Information Security,
Springer Berlin, pages 1829, p. 2006.

[17] D R Liu and M Shen, Workflow modeling for virtual processes:
an order-preserving process-view approach. Information Sys-
tems, Vol. 28, 2002, pp. 505–532.

[18] D R Liu and M Shen, Business-to-business workflow interopera-
tion based on process-views. Decision Support Systems, Vol. 38,
2004, pp. 399–419.

[19] Marilly, E Martinot, O Betge-Brezetz and S Delegue, Require-
ments for service level agreement management, IEEE Workshop
on IP Operations and Management, ALCATEL CIT, Marcoussis,
France.

[20] NESSI-Grid, Grand vision and strategic agenda (sra 3.0), 2008.
[21] N Oldham, K Verma, A Sheth and F Hakimpour, Semantic

WS-Agreement partner selection, Proceedings of the 15th
international conference on World Wide Web, Edinburgh,
Scotland.

[22] A Paschke and M Bichler, SLA representation management
and enforcement, The 2005 IEEE International Conference on
e-Technology, e-Commerce and e-Service.

[23] A Paschke and M Bichler, Knowledge representation concepts
for automated SLA management. Int. Journal of Decision
Support Systems (DSS), March 2006.

[24] A Paschke, H Boley, A Kozlenkov and B Craig, Rule responder:
RuleML-based agents for distributed collaboration on the
pragmatic web, Proceedings of the 2nd international conference
on Pragmatic web Tilburg, The Netherlands.

[25] K A Schulz and M E Orlowska, Facilitating cross-organisational
workflows with a workflow view approache. Data and Knowl-
edge Engineering, Vol. 51, 2004, pp. 109–147.

[26] M Shen and D R Liu, Discovering role-relevant process-views
for disseminating process knowledge. Expert Systems with
Applications, Vol. 26, 2004, pp. 301–310.

[27] T Unger, F Leyman, S Mauchart and T Scheibler, Aggregation
of Service Level Agreement in the context of business processes,
Enterprise Distributed Object Computing Conference (EDOC
’08) Munich, Germany.

[28] S Zhao, A Aggarwal and R D Kent, PKI-based authentication
mechanisms in grid systems, International Conference on
Networking, Architecture, and Storage.

