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Abstract: The design of large database systems often is done by a large number of ana-
lysts with different perspectives on the problem domain. That is why the integration of
multiple views in database design is a task of tremendous importance. In this paper we
report on our experience in using a view comparison tool based on neural network tech-
nology. The tool automatically extracts semantic concepts from different view specifica-
tions and then transforms them into a vector representation understandable by a neural
network. The network is trained and thus performs the job of clustering similar concepts.
The output of our tool is a ‘first guess’ which concepts in views may overlap or which
concepts do not overlap at all. The two main contributions of our tool thus are first, that
the designer is relieved from the burden of manually comparing each semantic concept
of the different view specifications, and second, that human interference into the view
comparison process is minimized to the specification of views and the interpretation of
concept clusters. 

1. Introduction
The development of view integration techniques has now been a recognized research
area for some time and significant work has already been done to address involved
issues. The work presented in this paper is not yet another general integration method-
ology, rather, it reports on our experiences in using a specific software tool which was
developed to support some sort of database view integration, namely view comparison.
The tool assumes as input a set of definitions of potentially overlapping views and
classifies their concepts into several categories by using an artificial neural network.
From the viewpoint of the tool all concepts grouped into a single category may be
overlapping while concepts grouped into different categories are disjoint. The major
activity to be performed during view integration is to find corresponding concepts in
different views (i. e. concepts that refer to the same real world semantics) and to inte-
grate them into a single representation. The fundamental problem here is the fact that
one event of reality may be represented in different views differently. This simply
because the same phenomenon may be seen under different aspects, may be modelled
by using different levels of abstraction or may be described by using different proper-
ties. Our work is based on the following assumption: We assume, that concepts in dif-



ferent views that refer to the same real world semantics will have similar features, such
as their names, attributes, types, links, or occur in similar contexts. We assume, that
similarities may exist, yet we do not pretend to know them. We make use of this
assumption and train a neural network to recognize common patterns in different
views and to deliver a ‘first guess’ to the analyst which concepts may be overlapping
with other concepts in other views and which concepts do not overlap at all. For the
comparison we use artificial neural networks because of two reasons: First, neural net-
works have proven capabilities of being robust in the sense of tolerating ‘noisy’ input
data (overlapping classes represented by similar yet not equal features) and as a second
reason, we refer to their ability of generalization. The proposed methodology for view
comparison consists of several interrelated phases which will be explained in the fol-
lowing subsection. 

1.1 A process model for concept classification
We propose a structure for a schema comparison process consisting of four phases.
Figure 1 shows the process model. The overall objective is to minimize human inter-
ference during the integration.

In the first phase, schema parsing, semantic meaningful concepts for view integration
are extracted. In a first step, database designers develop views. Their semantics have to
be mapped onto a representation language enabling automated processing by our tool.
In a next step, data are restricted to concepts useful for view integration. We call this
semantic meaningful data classifiers. These classifiers represent the input for phase
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two, vector initialization and instantiation. The aim of this phase is to transform
semantic meaningful meta data into a representation understandable by a neural net.
This phase comprises two activities, namely the generation of a vector format as well
as the instantiation of a set of vectors representing the input data of the view compari-
son process in a form processable by the neural net. The third phase, train the net, is
determined by the neural network technology used and produces a grouping of data-
base view concepts. This grouping has to be explored by humans in order to find simi-
lar concepts. Explore results thus represents the last phase of our view integration
process model.
Our paper is outlined as follows. Section two gives a short introduction into the funda-
mental concepts of Kohonen nets, the neural network technology we used for our
experiments. Section three explains the structure of the case study we carried-out. Sec-
tion four then shows and discusses the results of this case study. Section five gives
hints on related work while section six concludes the paper.

2. Self-Organizing Feature Maps - A Brief Introduction
Kohonen’s self-organizing feature map [14] is one of the most prominent unsupervised
learning methods in the area of artificial neural networks. The self-organizing feature
map consists of a layer of input units each of which is connected with a grid of output
units. These output units are arranged in some topological order which is application-
dependent. Input units take the input in terms of a data vector and propagate the input
to the output units. Each of the output units is assigned a weight vector with the same
dimensionality as the input data.The learning algorithm of self-organizing maps can be
regarded as an extension to competitive learning. Pragmatically speaking, the key idea
of competitive learning is to adapt the unit with the highest activity level with respect
to a randomly selected input, i.e. the winning unit, in a way to exhibit even higher acti-
vation with this very input in future. Adaptation occurs during each of the learning
steps. As an addition to competitive learning the units in the neighborhood of the win-
ning neuron are also adapted to exhibit higher activation with respect to the given input
in self-organizing feature maps. This learning rule leads to a clustering of closely
related items, i.e. input data with a highly similar vector representation, in the input
domain. In general, self-organizing feature maps determine the activity level of the
output units by computing the Euclidean distance between the currently presented
input and the weight vectors of the various units. Hence, the winning unit is those with
the smallest distance between the vectors. This unit and its topological neighbors is
adapted in the course of the learning process. The adaptation as such is performed by
gradually reducing the difference between the respective components of the unit’s
weight vector and the current input vector leading to a topographic arrangement of the
input data. As a result, similar input data are mapped onto neighboring parts of the out-
put grid. For a more detailled exposition we refer to [14].
3. A view comparison case study
In order to evaluate our approach to view comparison, we carried out a case study.



Usually, schema integration is necessary if a number of database designers model
partly overlapping areas of a large real world domain containing hundreds of classes
and relationships. The problem we faced was to find an example which first is com-
plex and large enough to show the usefulness and applicability of our approach to view
comparison and second is small enough to be presented in this paper. We feel that the
central point of such an example problem is not the number of classes and relation-
ships that are necessary to model the problem, but rather to find an example allowing a
number of designers to model overlapping as well as very different areas of the same
real world problem domain. This is necessary to show that our approach is able to find
concepts representing similar areas of the problem domain on the one hand and con-
cepts representing different areas on the other hand. We decided to use an example
from [7] as a core problem specification representing the overlapping area to be mod-
eled by each analyst and to enforce the modelers to extend the core problem by at least
three concepts of their choice representing the areas which do not overlap. We passed
the problem specification to a number of experts and undergraduate students and used
their results to evaluate our approach. [7]Figure 2 shows the core problem specifica-
tion from [7] as well as an example solution to the whole problem in OMT notation
[19].

Core problem description [7]: “In this example we are assuming that the company maintains an education department
whose function is to run a number of training courses. Each course is offered at a number of different locations within the
company. The database contains details both of offerings already given and of offerings scheduled to be given in future.
The details are as follows: For each course: course number (unique), course title, course description, details of prerequisite
courses (if any), and details of all offerings (past and planned); For each prerequisite course for a given course: course num-
ber and title; For each offering of a given course: date, location, format (e.g., full-time or half-time), details of all teachers,
and details of all students; For each teacher of a given offering: employee number and name; For each student of a given
offering: employee number, name, and grade”

Fig. 2: The core problem specification and a possible solutions to the whole problem

core problem (overlapping area)

C
ou

rs
e

C
ou

rs
en

o:
ch

ar
 *

C
ou

rs
et

itl
e:

ch
ar

 *
D

es
cr

ip
tio

n:
ch

ar
 *

O
ff

er
in

gs
:B

oo
le

an

Pe
rs

on
N

am
e:

ch
ar

 *
Pe

rs
on

no
:c

ha
r *

St
ud

en
t

G
ra

de
:in

t

C
er

tif
ic

at
e

M
ar

k:
in

t

in
cl

ud
es

as
si

gn
ed

St
ud

y
St

ud
yN

o:
ch

ar
 *

St
ud

yT
itl

e:
ch

ar
 *

R
oo

m
R

oo
m

no
:in

t
Pl

ac
es

:in
t

O
ff

er
in

gs

C
ou

rs
ep

tr

Lo
ca

tio
n

C
ou

rs
es

ba
se

_f
or

pr
er

eq
ui

si
te

T
ea

ch
er

Te
ac

he
r

Te
ac

he
s

St
ud

en
ts

C
ou

rs
e

C
ou

rs
eO

ff
er

in
g

D
at

e:
ch

ar
*

Ty
pe

:c
ha

r *



4. Concept Classification
4.1 View Parsing
Mapping the semantics to the representation language
As mentioned in Section 3 we use the OMT object model for the description of the
data model. The semantics of the static aspects (object classes, relationships between
classes, attributes of object classes and their method signatures) are candidates for
integration in a view comparison process. After several experiments we decided not to
incorporate method signatures because they do not really contribute to find similarities
between structural concepts, which is the task of our investigations. This is because
first, one and the same method might be assigned to a number of object classes. Con-
sider the following example. The application working on the data of our example
should provide functionality to establish the assignment of teachers to courses and thus
creating a specific course to be offered. The resulting method might be assigned
equally well to a class representing a teacher or to a class representing a course. Sec-
ond, a given functionality may be decomposed and distributed over a number of
smaller methods which collectively perform this function. Yet, since various different
decomposition strategies are possible, the surface representation of the functionality as
given by the respective signatures might be rather different. Therefore, method signa-
tures alone are not enough to cover the methods intention or the task of a set of meth-
ods representing one functional component.When comparing different views not only
for the purpose of database view integration but for application development, func-
tional aspects have to be compared as well. But the application aspects are beyond our
approach and thus we have omitted the functional aspects.
Consequently, we only focus on the object classes, relationships between object
classes and attributes of object classes in our approach. These concepts have to be
translated into a representative language which is able to capture the semantics of the
OMT model. In our approach we decided to translate into C++ like class definitions
following the rules specified below: Each class of the OMT model builds one C++
class in the header file. The names and types of attributes are also expressed directly as
data member names and types in the corresponding C++ class. A generalization is also
converted following the C++ syntax for the definition of super- and subclass relation-
ships. Associations and aggregations are both resolved in C++ by pointers if the num-
ber of participating classes is 1 or by a set of pointers to the related class otherwise. If
a link attribute is attached to a relationship the pointers do not reference to the related
class, but to the class which is built from the link attribute. The translation of OMT
into C++ header files is illustrated in Figure 3 which includes all classes related to a
student.
Extract semantic meaningful concepts
The next task is to identify and resolve all the semantic meaningful concepts of the
view definition included in the C++ like representation language. To classify the
semantic similarity and dissimilarity between the object classes we parse the header
files to extract names of the classes, names of the attributes, types of the attributes and



links to other classes. We suppose that classes are assigned with meaningful names.
Therefore, the strongest indicator of the real world correspondence between object
classes is the equality of their class names. Nevertheless, there might exist different
synonyms to identify similar classes, which are not detected in a syntactically analysis.
One way to overcome this problem is to use a thesaurus. Since such a thesaurus must
be context specific and thus cannot be generated automatically, we omitted to use this
kind of synonym lexicon. Therefore, we better have a look inside the class definition.
Similar to the concept described above it is assumed that at least some attributes
owned by corresponding classes are labeled with equal names. Consequently, knowl-
edge about the terminology used for their attributes names might be an indicator for
the similarity between object classes. Additionally, information about the types of
attributes used within a class can be regarded as a discriminator to determine the likeli-
hood that two classes describe similar real world objects. This is due to the fact, that
database designers using the same technology have comparable know-how in design-
ing a well-structured database and thus incline to create similar views for a similar
problem specification. Owing to the same reason, the links to other object classes
might conform. Since these links are resolved to pointers or sets of pointers in the rep-
resentation language, they can be treated like data types. Moreover the naming of the
links can be handled like the naming of the class attributes. According to the above
mentioned criteria we have to parse the C++ header files to extract the so-called classi-
fiers to characterize an object class: class name classifiers (set of class names),
attribute name classifiers (set of attribute names and labels of links), attribute type
classifiers (set of attribute types and of types of links to other object classes).

4.2 Vector Initialization and Instantiation
Initialize the vector
In order to train a neural network with the view information, it is necessary to create a
vector describing the semantics of each class. Therefore, we first have to initialize the
format of such a class vector, which will be made up by the classifiers included in the
three classifier sets. Since the equivalence of the class names is a stronger classifier
than the equivalence of one attribute name, which is itself a more powerful criteria
than the occurrence of an equal data type, the vector has to include a weight value for
each sort of vector element that represents the relative importance of the various classi-
fiers. In particular, we used a weight value of 3 for the class name, a weight value of 2
for the attribute names and finally, a weight value of 1 for the attribute types. Notice
that such a weighting strategy was selected heuristically and proved to be reasonable
during our experiments. 

Fig. 3: C++ like class definitions

class Person
{
char* Name;
char* Personno;
char* Position;

};

class Student : public Person
{
int Grade;
Set<Certificate*> Course;

};

class Certificate
{
Student* Students;
CourseOffering* Course;
int Mark;

};



Instantiate the vector
Having now defined the format of the class vector, we parse the header files of the rep-
resentation language again to instantiate a vector for each object class. In consideration
of the weights of the vector elements we use the following rules for the instantiation:
Vector elements describing the class name are set to 3, if the class is specified with the
name in question or left 0 otherwise. Vector elements describing the attribute names
are set to 2, if the class includes an attribute or a link with the corresponding name or
are left 0 otherwise. Vector elements describing the attribute types are set to the num-
ber of occurrences of the corresponding type or link in the class. In the case of a gener-
alization hierarchy the vector(s) of the superclass(es) is (are) added to the vector of the
subclass to take advantage of the inheritance feature. This means that e.g. a student is
also a person and therefore also inherits all the semantics of a person. Consequently,
we have to add the semantics of a person to the student specific semantics to describe
the student. Figure 4 states an example vector format and shows the transformation of
the semantics included in the representation language to the corresponding vector rep-
resentation of the class Student. As mentioned above, the vector representation of
Student is built by the addition of the vector representation of Person and the
vector representation resulting from the Student specific semantics. Note, that the
vector elements not explicitly depicted in Figure 5 are all set to 0.

4.3 Training the net
Based on the basic description of the self-organizing feature map as provided in Sec-
tion 2 we are now able to describe the learning process in terms of our application
domain. The ultimate goal of the learning process is to provide the designer with a
classification of the various class descriptions according to their mutual similarities.
Obviously, we expect that classes modeling closely related objects of the real world
are recognized by the self-organizing feature map. More precisely, the training a self-
organizing feature map is a repetitive process consisting of the presentation of a ran-
domly selected class description, i.e. the input vector, and a subsequent adaptation of
the weight vectors of units in vicinity of the winning unit, i.e. the unit with the weight
vector most closely resembling the current input vector. In other words, the winning
unit may be regarded as the unit with the most similar internal representation of the
input at hand. Such a point of view is certainly justifiable since the weight vectors may
be regarded as approximations to the input vectors. The subsequent adaptation refers
to the reduction of distance between the input and weight vectors and thus, to an
improved correspondence between the class description at hand and its internal repre-
sentation.
4.4 Exploring the Results
One typical training result of the self-organizing feature map is depicted in Figure 5. In
particular, this figure represents the final arrangement of the various class descriptions
mapped onto a 3×3 self-organizing feature map. In this figure we provide the names of
the classes represented by the various units. Additionally, each unit is further desig-



nated by a number. At this point we should state that there is no formal justification of
using a self-organizing feature map of exactly that size, it rather turned out to be prac-
ticable during a number of test runs with various sizes of the map.  At first sight we
may realize that two units, i.e. 7 and 8, represent a rather large set of classes. As might
be expected, these units represent exactly the overlapping part of the case study
namely the classes modeling persons and the classes modeling courses. More pre-
cisely, unit 7 comprises the persons whereas unit 8 represents the courses. The remain-
ing units are used to represent classes that are not contained in the core problem
description and thus, classes that are highly dissimilar since they represent the subjec-
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Fig. 4: Vector representation of class Student
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course ... person ... student certificate

0 ... 5 ... 11 12

offers ... name ... course ...

13 ... 25 ... 54 ...

personno position ... grade course ...

56 57 ... 61 62 ...

char* ... int ... set<certificate>

64 ... 66 ... 80

class Student : public Person
{
int Grade;
Set<Certificate*>Course;

};

class Person
{
char* Name;
char* Personno;
char* Position;

};



tive view of the various designers on the description of the case study. The advantages
of using the self-organizing feature map are obvious from a view integration point of
view. By assigning the input classes to the output units, the self-organizing feature map
was able to group the potentially overlapping input classes that originate from different
view specifications into categories of related object classes. Thus, the units represent
clusters of similar object classes referring to closely related concepts of the real world.
Hence, a tool for view integration is now available that facilitates the determination of
classes referring to similar real world objects. This apparently is of considerable value
because the designers can direct the attention on classes grouped into the same cate-
gory by the self-organizing feature map. If we reconsider that the main manual effort
involved during view integration is uncovering the correspondences between various
view specifications and this process is now reduced to a subset of all possible inspec-
tions. By using this tool, the designer is able to distinguish between reasonable and
unreasonable candidates for integration and thus, integration can be performed with
less manual interference and consequently at less time and cost.

5. Related Work 
View integration has already a long tradition as a research discipline. A comprehensive
survey of the area can be found in [1] in which the authors discuss twelve methodolo-
gies for database or view integration. Early work has been done in the context of the
relational model [3], the functional model [17], or more recently the Entity-Relation-
ship model (see for example [15], [21], [10]), or the object-oriented data model (see
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Fig. 5: Arrangement of classes within a 3x3 self-organizing map
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for example, [12], [2] or [13]). Most of the early work has focused on how to merge a
given number of views by using a given set of correspondences. More recently, the
interest of researchers has changed and more work is done for providing assistance
during the view comparison phase. [18] was the first who developed a taxonomy for
types of conflicts that might occur by integrating different views. [4] compares by
means of a unification process concepts in different views by analysing similarities
among names, structures, and constraints. In [20] a method for identifying view simi-
larities based on using a semantic dictionary and a taxonomy structure is proposed
while [11] uses conceptual graph theory to support view integration. Using concepts
from the field of artificial intelligence to support view integration has also been done.
[6] proposes an expert system approach to view integration. In [5] experiences are
reported in using linguistic tools, such as thesauri and information retrieval techniques
to build dictionaries and to support the view comparison process. In [9] fuzzy and
incomplete terminological knowledge together with view knowledge is used to deter-
mine the similarity of object classes. Another approach is reported by [16] in which
semantic integration in heterogeneous databases is achieved by using neural networks.
Although their work is closely related to the approach reported in this paper there are
fundamental differences. While [16] focus on the integration of populated databases
we do focus on view integration and thus make no use of data that might be available.
Their goal was to find equivalencies between fields in different databases by analysing
the data while we address to capture a much higher level of real world semantics by
analysing alternative view specifications.
The work presented in this paper is also related to our earlier work as described in [8].
In particular, the work presented in this paper extends our previous work in the follow-
ing aspects: We include inheritance in class structures and study their impacts on inte-
gration. This is of particular interest in object-oriented views or views expressed in
data models supporting generalization or subset hierarchies. We also considered meth-
ods of object classes as useful information for view comparison. But we encountered
that the information included in the method signatures do not contribute to our com-
parison process. We experimented with extending the learning process by the follow-
ing ways: After a first learning phase of the net and inspection of the resulting feature
map we reduced the input into the net to only those classes that were grouped into the
same category and trained the net again. By doing so we wanted to see if it is possible
to increase the granularity of grouping. Unfortunately, the results were not promising.
As a consequence we omitted this extension and finally experimented with the size of
the output matrix.

6. Conclusion
Many organizations maintain different (often large and complex structured) databases
with partly overlapping contents and there is an ever increasing need for supporting
interoperable access. To fulfil this strong demand the views of the databases consid-
ered for building a federation need to be integrated into a single conceptual representa-
tion. In this paper we proposed a semi-automatic integration methodology which



significantly supports the manual integration task. The main contribution is that we use
neural network technology to group related classes from different views based on their
similarity into categories. The results of our experiments as described in this paper
give a strong indication in the direction that our tool successfully identifies related
classes as belonging to the same category. For large integration efforts this certainly is
of important value because the designers are now relieved from the burden of manual
inspection of all the classes and can direct their focus on a considerable subset of all
the candidates for integration. Our approach is based on the following major features:
Minimal input from a human analyst is required. The static semantic concepts of
classes and their attributes supported by the data model under consideration is repre-
sented and included. We consider relationships and generalizations in the view com-
parison process. Extensibility to a variety of data models. To include a new data model
only an interface to the representation language is to be developed, whereas the core
component of the tool remains the same. Finally, the core component of the methodol-
ogy proposed in this paper is also applicable to the schema integration process.
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