
Evaluation of Object-Oriented Database Systems

C. Huemer†, G. Kappel‡, S. Rausch-Schott‡, W. Retschitzegger‡, A Min Tjoa†,
S. Vieweg† , R. Wagner*

†Institute of Applied Computer Science and Information Systems. Department of Information
Engineering. University of Vienna, Austria

‡Institute of Computer Science. Department of Information Systems.
University of Linz, Austria

*FAW. Research Institute for Applied Knowledge Processing.
University of Linz, Austria

Abstract. Despite the fact that object-oriented database systems (OODBS) have
gained potential as promising database technology for non-standard applications
such as computer integrated manufacturing there does not yet exist broad experi-
ence with the use of OODBS in real-world applications. One reason is that the
features of OODBS, both functional and performance, haven't been exposed to a
broader audience. The goal of this chapter is to shed some light upon evaluating
the features of OODBS. In the first part of the chapter we discuss an extensive
evaluation catalogue for advanced database systems which has been developed
during the course of a real-world project. A discussion of the pros and cons of
using such evaluation catalogues summarizes our experience. The second part of
this chapter surveys existing performance benchmarks for OODBS. Special
emphasis is given to the requirements a benchmark has to fulfill, and to the prac-
tical applicability and usefulness of the proposed benchmarks.

Categories and Subject Descriptors: C.4 [Performance of Systems]; H.2.8
[Database Management] Database Applications; K.6.2 [Management of Com-
puting and Information Systems] Benchmarks

General Terms: Database Systems, Performance Evaluation, Advanced Data-
base Applications

Additional Key Words and Phrases: database requirements for CIM, func-
tional evaluation of object-oriented database systems, application benchmarks

1 Introduction

Advanced database applications such as computer integrated manufacturing have
emerged over the past decade [Cattell91, Encarnação90, Gupta91]. Object-oriented
database systems are designed to meet their database requirements.

The first prototype implementations of OODBS were hardly usable in production
environments. Recent developments and improvements of existing systems increase
the usability of OODBS in practice. Consequently, the demand for means to evaluate
this new technology has emerged.



In this chapter we describe the functional and performance evaluation of OODBS.
The functional evaluation of OODBS concerns the assessment of criteria that form the
core of object-oriented database technology whereas performance evaluation provides
means to measure database systems with respect to a given workload in a given appli-
cation domain. In the following we will present approaches to both functional and per-
formance evaluation of OODBS.

This chapter is organized as follows. In the next section we will describe a func-
tional evaluation framework for object-oriented database systems. Section 3.3 gives an
overview of performance benchmarks for object-oriented database systems. We con-
clude with a survey of the most popular approaches.

2 Evaluation Criteria for Object-Oriented Database Systems

Object-oriented database systems were designed to meet the database requirements
of advanced database applications. The functionality of OODBS can be characterized
by the features depicted in Table 1. These features are part of the evaluation frame-
work as developed by the authors in the course of an evaluation project [Kappel92].
The framework serves as the basis for our further investigations of the functional eval-
uation of OODBS. The developed criteria catalogue was designed to allow the qualita-
tive and quantitative assessment of object-oriented database systems. The presented
criteria have been developed through an extensive study of the literature [Ahmed92,
Atkinson89, Encarnaçao90, Kappel94, Stonebraker90] and from experience gathered
in previous projects. Our analysis of object-oriented database systems is made up of a
detailed list of questions. Note that our approach is not restricted to object-oriented
technology, but that it provides a framework for evaluating advanced database technol-
ogy in general. These questions are structured into sections representing the main fea-
tures of database technology. Each section is further refined into two or more levels of
subcriteria. The subcriteria allow a more detailed assessment of the evaluated systems.
The evaluation catalogue comprises 20 sections each with about 25 subcriteria. The
amount of information items (sections and subcriteria) totals to more than 500 ques-
tions.

OODBS Features

• Data Model
• Constraints & Triggers
• Persistence
• Data Dictionary
• Tools
• Query Management
• Host Programming Languages
• Schema Evolution
• Change Control
• Version Management

• Concurrency Control
• Recovery
• Authorization
• Architecture
• Storage Management
• Query Optimization
• Operational Conditions
• Distribution
• Interfaces
• Business Criteria

Table 1. Features of OODBS



A functional evaluation of the OODBS represents the starting point of any database
evaluation. We will therefore describe the evaluation features in more detail.

An object-oriented database system is a database system with an object-oriented
Data Model. At present, there exist several different object-oriented data models.
They are either based on existing object-oriented languages, like C++ and Smalltalk,
or they have been newly developed. There exists no single object-oriented data model
as it was the case for traditional (hierarchical, network, relational) database systems
[Maier89]. Nevertheless, there is consensus that a data model to be called object-ori-
ented has to exhibit the following core features [Atkinson89]: complex object model-
ing, object identity, encapsulation, types, inheritance, overriding with late binding,
extensible types, and computational completeness. Complex object modeling deals
with the specification of objects out of other objects which may also be complex by
nature. Object identity provides a system-defined unique key and thus, allows the shar-
ing of objects. The principle of encapsulation defines data (= structural information)
and accessing operations (= behavioral information) as one unit called object type (or
object class). It allows to distinguish the interface of the object type, i.e., the set of
operation signatures, from its implementation, i.e., the implementation of the opera-
tions and the underlying data structure. An operation signature consists of the name of
the operation, the types and names of its input parameters, and the type of its return
value. An object type defines structural and behavioral information of a set of objects
called instances of the object type. Inheritance supports incremental type specification
by specializing one or more existing object types to define a new object type. Overrid-
ing means redefinition of the implementation of inherited operations, and late binding
allows the binding of operation names to implementations at run time. The extensible
type requirement permits new object types consisting of structural and behavioral
information to be defined by the user and, furthermore, to be treated like any other pre-
defined type in the system. Finally, computational completeness requires that any com-
putable algorithm can be expressed in the data definition language (DDL) and/or the
data manipulation language (DML) of the database system. The features described
above have all been incorporated into the evaluation catalogue.

Constraints and Triggers represent an advanced technique to specify integrity
constraints for a database. Constraint and trigger specification is important in the con-
text of active database systems (see chapter „Active Object-Oriented Database Sys-
tems for CIM Applications). We therefore included it in our evaluation. The questions
mainly focus on how constraints and triggers are incorporated into the database sys-
tem. This includes the kinds of triggers and their enforcement.

Persistence is one of the main features of any database system. Object-oriented
database systems follow different approaches to reach persistence. Persistence can be
reached by declaration, by reachability from other persistent objects or by collection
membership. The way how objects may become persistent is a crucial issue in the con-
text of porting applications between OODBS and is therefore evaluated in detail. Fur-
thermore we included the deletion semantics, the orthogonality to types, and the
homogeneous handling of persistent and transient objects in our investigations.



Usually, advanced database applications operate in a complex environment. A
Data Dictionary supports the management of such an environment by providing
access to schema information. Furthermore, Tools for application development, user
management, report generation, database archiving, database integrity checking, and
for accessing the data dictionary were investigated.

The flexible access to the database and thus Query Management is one of the
most important requirements for advanced database applications. With flexible data-
base access we address the need for varying and demanding database manipulation
requirements. The database access strategies differ from task to task. Some of the
tasks, such as engineering design may require the access to objects via inter-object ref-
erences (navigational access) while others such as the manipulation of incoming orders
require associative access via the specification of predicates (associative access). In
order to allow flexible access to the database, both access strategies must be supported
within the same language. [Bancilhon89] discusses several requirements for an
advanced (object-oriented) query language. These include ad-hoc facilities to state
queries and updates in a high level language without using a programming language.
In addition, multi-database queries and recursive query processing were considered
important. Thus, the query language must have equal expressive power as conven-
tional programming languages. Therefore, we also investigated the supported Host
Programming Languages. Object-oriented programming languages such as C++,
Smalltalk, Eiffel, and CLOS and non-object-oriented programming languages such as
C, Modula-2, and Ada were included in this section.

Besides query facilities a flexible data management should also include the support
for Schema Evolution. Schema evolution describes the mechanisms to cope with
changes in the data definition of a given database. The database schema is the result of
requirements specification and conceptual (and logical) database design. It thus
reflects the ‘real-world’ entities elaborated in these design steps. These entities are
subject to more or less frequent changes due to the evolving nature of ‘real-world’ sit-
uations. Schema evolution provides a framework to manage these changes in a con-
trolled manner. Our analysis of schema evolution features included conceivable
changes in the database schema and invariants in order to preserve the database
schema’s structural consistency. We assume that the database is populated whenever
changes occur. With Change Control we denote the mechanisms that are used for the
database conversion in order to conform to the new schema resulting from the schema
evolution process. Thus, we investigate mechanisms for preserving the behavioral con-
sistency in the course of schema changes. This includes strategies for the adaption of
instances, methods, and queries.

The section Version Management investigates how the evolvement of database
instances is supported. Our analysis of version models includes the specification of the
structure and behavior of versioned objects. The structure describes the way in which
versionable objects are composed and the basic granularity of the versioning mecha-
nisms. The dynamic component of version models describes the intra- and inter-object
relationships of versioned objects. Intra-object relationships define how object ver-
sions are created and how they relate to each other. Inter-object relationships charac-



terize the versioned design object as referenced from other objects. The referencing
objects may be other versioned objects or non-versioned objects.

Concurrency Control, Recovery, and Authorization provide means for the man-
agement of multiple users accessing the same database under restricted resources. The
scheduling of these resources requires a measure of consistency and correctness. The
concept of transactions provide a framework to ensure this. Transactions are a collec-
tion of actions that access the database. They are logical units that group together oper-
ations to form a complete task and they are atomic units preserving the consistency of
the database. They also serve as unit for recovery to a consistent database state in case
of failures. Our analysis in these sections therefore includes lock types, lock granular-
ity, deadlock detection, the logging concept, access control, and authorization.

The achievements in workstation and network technology forced the shift from the
host based computing paradigm to the client/server computing paradigm. The Archi-
tecture of the database system and the Storage Management are strongly connected
to this computing paradigm. Our analysis is based on the supported client/server con-
cept, disk management, and the memory architecture. We investigated which paradigm
is followed in the client/server communication; whether pages, files, or objects are
transferred from the client to the server. Furthermore, we investigated the main mem-
ory layout, and how disk replicas, indexing and clustering are supported. These issues
mainly address performance considerations at the physical level.

Query Optimization addresses the efficient execution of queries. Our investiga-
tions in this section mainly focus on the use of the above mentioned features (indexes,
clustering) as well as the management of the query optimizer (tuning and interrogat-
ing).

In the section Operational Conditions we analyzed the hardware and software
requirements for each of the database systems. Object-oriented database systems
mainly operate in a distributed hardware and software environment. The section Dis-
tribution addresses how data and control may be distributed. We investigated whether
data distribution is transparent to the user. Furthermore, remote-database access, multi-
database queries, and the heterogeneous environment were investigated.

Advanced database applications do not operate in an isolated environment. They
are integrated into various communication and information services. Therefore, we
included the supported Interfaces in our analysis. This comprises the database inter-
face to CASE tools, and standardized description languages such as STEP-Express.

Business Criteria such as reference installations, customer support, documenta-
tion, pricing, and the support of standards (ANSI C++, ODMG [Cattell94], etc.) are of
great importance in a production environment. However, it is quite difficult to assess
most of these features.

As mentioned above, all of these features are relevant to the evaluation of any
OODBS. The presented evaluation schema is used as a starting point for the evaluation
framework. The evaluation is carried out in three phases:

(a) Functional Evaluation of the OODBS



(b) Assessment of the Database Requirements
(c) Rating of the Database System

In the first step the evaluation catalogue is filled in by database experts in order to
rate the evaluation features. The functional evaluation is carried out either by means of
interviews with product experts or by an extensive study of the product literature. In
addition to the ‘on-paper’ evaluation simple benchmark programs that emphasize a
particular feature may be implemented to judge controversial evaluation features. In
the second step the evaluation features are assigned weights corresponding to the
importance of the evaluation features as rated by the application domain expert. This
task is highly dependent on the intended use of the OODBS and eminently relies on
the database requirements of the application domain. In the last step, the results of the
functional evaluation and of the assessment of the database requirements are joined.
This task may be accomplished either with qualitative or quantitative methods. In the
former case the decision is taken on the basis of informally stated evaluation ratings
such as ‘suitable/non-suitable’ and ‘high/low’. In the latter case the overall rating of
the evaluated products is computed by summing up the evaluation ratings weighted
with the importance of the evaluation features. In both cases, the result represents a
sound basis for the final decision process.

Besides functional requirements performance considerations may influence the
decision process as well. In the following we will describe the issues that are relevant
to performance evaluation in non-standard application domains. We will then discuss
the approaches to benchmark advanced database applications; namely, the Sun bench-
mark, the HyperModel benchmark, the OO1 benchmark, the OO7 benchmark, and the
SEQUOIA 2000 benchmark.

3 How to Benchmark Object-Oriented Database Systems?

The need for new approaches to database management systems for advanced appli-
cations has been widely reported. Besides the advanced functionality, one of the cen-
tral issues for the acceptance of advanced database systems is performance. Thus,
measuring performance is an important topic. In this section we will present some of
the main issues that effect on the evaluation of OODBS and thus, should be included in
any OODBS benchmark.

Domain-specific benchmarks should follow some key criteria. In general, an appli-
cation benchmark should be

• relevant,
• portable,
• scalable, and
• simple.

Furthermore it should provide a clear measure and both vendors and users should
embrace it [Gray91, Gray93]. Relevance means that a benchmark should measure the
performance of a system when performing typical operations within that problem
domain. The benchmark should be portable, i.e. easy to implement in different sys-



tems and architectures. The benchmark should apply to computer systems in any size.
Scaling the benchmark must be possible. The measurement of benchmark operations
should result in a clear metric that allows insight into the performance of the system
under test. Finally, the benchmark should be simple and understandable in order to be
accepted by the audience. Within this framework, the main characteristics of an appli-
cation domain must be mapped onto a benchmark specification.

When given the complexity of advanced database applications, it is obvious that
traditional approaches to benchmarking DBS [Bitton83, Turbyfill91, TPCA92,
TPCB92, TPCC92] lack relevance when measuring the performance of advanced data-
base applications. Relevance can be expressed in terms of database requirements for a
given application domain. These requirements include both functional requirements
and performance requirements. The requirements form the basis of the database
schema and the operations included in a benchmark. Consider CIM as an example for
a complex application domain. Database systems represent a key technology for the
realization of CIM. The database requirements for CIM applications can be grouped
into three basic requirement clusters: data modeling issues, querying and manipulation
issues, and integration issues (see chapter „Database Requirements of CIM Applica-
tions“ in this book). Table 2 gives an overview of these requirements. The data model-
ing requirements comprise extended attribute domains, complex object support,
relationships and dependencies between the modeled objects, and active consistency
checking and knowledge-base support. The querying and manipulation requirements
are widespread and include advanced transaction management issues, flexible database
access structures, change management issues like versioning and schema evolution,
and interfaces to various data formats. Due to the distributed nature of manufacturing
systems the integration aspect of computer integrated manufacturing deserves particu-
lar emphasis. Distributed data management and multi data management are the key
requirements for distributed computing in this field. Reverse engineering and inte-
grated data and process modeling are rather concerned with the logical integration of
manufacturing and business applications.

Data Modeling
Requirements

• Extended Attribute Domains
• Complex Object Support
• Relationships and Dependencies
• Active Consistency Checking and Knowledge-

Base Support

Querying and
Manipulation
Requirements

• Advanced Transaction Management
• Flexible Database Access
• Change Management
• Interfaces

Table 2. Database Requirements for CIM Applications



A database requirements analysis as presented above forms the basis of any data-
base application benchmark. The characteristic functional requirements, typical data-
base operations, and the database size requirements are then merged into a benchmark
suite. We will now investigate the approaches that have been chosen for advanced
database application benchmarks. Therefore, we have identified the following issues as
a framework for our analysis:

• Database Schema
• Database and its Generation Process
• Benchmark Operations
• Measurement Guidelines
• Reporting of Benchmark Results

The database schema describes the structure of the database and represents the
complexity of the application domain under investigation. With generation process we
denote the way how the benchmark database has to be constructed, and the restrictions
to be met. Additionally, we describe the database size which is relevant for an applica-
tion domain. The benchmark operations describe the operations that form the opera-
tional basis for the benchmark suite. They usually represent a mix of the most common
and most characteristic queries and manipulations of an application domain. More-
over, we describe the measurement guidelines of the benchmark suite. They indicate
how the results of the benchmark must be derived and which metric is used. As
described above, the full mentioning of the system environment is very important in
order to get comparable results from any benchmark run. Therefore, we also included
the disclosure requirements for the reporting of the benchmarking results. In the fol-
lowing, each benchmark approach is investigated with respect to the above described
characteristics. We will survey the Sun Benchmark [Rubenstein87], the HyperModel
benchmark [Anderson90], the OO1 benchmark [Cattell92], the OO7 benchmark
[Carey93a], and the SEQUOIA 2000 storage benchmark [Stonebraker93]. For all these
approaches we will analyze the underlying database schema, the generation of the
database, the operations, how the measurements must be performed and finally, how
the benchmark results must be reported.

3.1 The Sun Benchmark

The Sun benchmark is one of the first approaches to measure database performance
for OODBS. It thus represents a starting point for further approaches presented below.

Database Schema
The Sun benchmark database schema (Figure 1) describes a simple library data-

Integration
Requirements

• Distributed Data Management
• Multi Data Management
• Reverse Engineering of Data
• Integrated Data and Process Modeling

Table 2. Database Requirements for CIM Applications



base and consists of three basic concepts. The Person class describes persons in terms
of person_ID, name, and birthdate. The Document class consists of
document_ID, title, page_count, document_type, publi-
cation_date, publisher, and a document description. The Authorship
relationship associates each person to 0 or more documents and each document to
exactly 3 authors.

Figure 1. The Sun Benchmark Database Schema

Database Contents and Generation
The benchmark database is generated in a small and a large version. The small

database consists of 20000 Persons, 15000 Authors, and 5000 Documents. The large
database comprises 200000 Persons, 150000 Authors, and 50000 Documents.

Operations
The Sun benchmark consists of seven operations. These operations can be grouped

into lookups (NameLookup, RangeLookup, GroupLookup), inserts, database scan, and
database open. The NameLookup operation selects a person with a randomly selected
person_ID. The RangeLookup operation selects all persons with birthdate within a
randomly generated range of 10 days. The GroupLookup query finds the person which
authored a given document. The Reference Lookup finds a person object that is refer-
enced by a randomly selected author object. RecordInsert inserts a new person in the
database. SequentialScan scans all document objects in the database. Furthermore, the
time for the database initialization is measured.

Measurements
The measurement for the operations described above work as follows. The opera-

tions are repeated 50 times. This operation set is then repeated 10 times. This results in
500 queries and 50 open database operations. The average elapsed time for these oper-
ations is then reported.

Disclosure Report
No disclosure report for benchmark results is specified. The authors “hope” that

anyone will report the used indexes, the access methods, and the total space required
for the database.

OMT is an object-oriented modeling technique [Rumbaugh91]. For further details
the interested reader is referred to the literature.

Person

person_ID
name
birthdate

Document

document_ID
title
page_count
document_type
publication_date
publisher
description

Author



3.2 The HyperModel Benchmark

The HyperModel benchmark is based on the Sun benchmark described above. The
extensions include a more complex database schema and additional benchmark opera-
tions. As pointed out in [Gray91], the benchmark provides more than a single perfor-
mance measure. The operations cover a wide spectrum of database operations, each
focusing on special queries.

Figure 2. The HyperModel Database Schema

Database Schema
The conceptual schema of the HyperModel Benchmark (Figure 2) is based on an

aggregation and generalization hierarchy of HyperModel documents. A HyperModel
document consists of a number of sections each of which is represented by an object of
type Node. Node has two sub-types: TextNode and FormNode. The instances
of type Node have 5 attributes (uniqueID, ten, hundred, thousand, and
million). In addition, a TextNode has a text attribute and a FormNode has a
bitmap, width, and height attribute.

Nodes are interrelated by three relationships: the parent/children relationship (1:N),
the partOf/parts relationship (M:N), and the refTo/refFrom relationship (M:N). The
parent/children relationship is used to model the recursive aggregation structure of sec-
tions within a document. The children are ordered. The partOf/parts relationship is
constrained to be hierarchical. Parts may share subparts but the relationship forms an
acyclic graph. The refTo/refFrom relationship has been designed to model hypertext
links, when attributes are attached to each link to describe the offset of each ending
point within a node. The two attributes offsetFrom and offsetTo describe the
starting/ending point of these links.

Database Contents and Generation
A HyperModel database consists of a single document composed of a network of

nodes with the relationships described.

FormNode

bitMap
width
height

Node

unique
ten
hundred
thousand
million

refTo/RefFrom

offsetFrom
offsetTo

TextNode

text

partOf/Part

parent/children

{ordered}



The parent/children relation forms a hierarchy that is made up of 7 levels (0-6).
Each non-leaf node has 5 successors. The nodes are numbered starting with 1 (level 0)
and ending with 10471 (last node at level 6). The total amount of nodes is 19531.

The partOf/parts relation is created by relating each node at level k to five ran-
domly chosen (uniformly distributed) nodes of level k+1 in the tree structure built up
in the parent/children relation.

The refTo/refFrom relation is built up by visiting each node in the parent/children
hierarchy and connecting the node to a randomly chosen node of the entire hierarchy.
The values of the attributes (offsetFrom, offsetTo) are initialized randomly
(between 0 and 10).

The nodes in the parent/children hierarchy are numbered sequentially. The
attributes are initialized with a randomly selected integer value from the interval 0 to
the number specified by the “attribute name” (i.e. ten, hundred, thousand, million).

The lowest level in the hierarchy consists of TextNodes and FormNodes. There is
one FormNode per 125 TextNodes (125 FormNodes, 15500 TextNodes).
TextNodes contain a string of a random number (10-100) of words. Words are sep-
arated by a space and consist of a random number (1-10) of lowercase alphabetic char-
acters. The first, middle and last word must be “version1”. Each FormNode has a
bitMap attribute which is initially white (0s). The size varies between 100x100 and
400x400 (always a square). Clustering (if possible) has to be done on the parent/chil-
dren relationship.

Operations
The HyperModel benchmark consists of 7 groups of operations (20 operations).

The operations can be grouped into Name Lookup Operations (nameLookup,
nameOIDLookup), Range Lookup Operations (rangeLookupHundred, rangeLookup-
Million), Group Lookup Operations (groupLookup1N, groupLookupMN, groupLook-
upMNAtt), Reference Lookup Operations (refLookup1N, refLookupMN,
refLookupMNAtt), Sequential Scan (seqScan), Closure Traversal Operations
(closure1N, closureMN, closureMNAtt, closure1NAttSum, closure1NAttSet,
closure1NPred, closureMNAttLinkSum), and Editing Operations (textNodeEdit,
formNodeEdit).

• Name Lookup Operations
The nameLookup selects a node instance with a randomly chosen uniqueId value and
returns the value of the hundred attribute. The nameOIDLookup operation finds the
node instance given a random reference to a node.

• Range Lookup Operations
The rangeLookupHundred query selects 10 % of the nodes with the hundred attribute
in the range of 10. The rangeLookupMillion selects 1 % of the nodes with the million
attribute in the range of 10000.

• Group Lookup Operations
All group lookup operations follow the parent/children relationship, the partOf/parts



relationship and the refTo/refFrom relationship. The groupLookup1N selects the
children of a randomly chosen node and returns a set of five objects. The groupLook-
upMN selects all part nodes of a random node. The groupLookupMNAtt selects the
related node of the refTo/refFrom relationship.

• Reference Lookup Operations
The reference lookup operations (refLookup1N, refLookupMN, refLookupMNAtt)
operate like the group lookup operations, except that they select the nodes in the
reverse direction.

• Sequential Scan
The seqScan operation visits each node object in the database and accesses the ten
attribute value of each node. The sum of all ten attribute values is returned.

• Closure Traversal Operations
The closure traversal operations retrieve a node from the database and transitively
visit related nodes. All operations start off with a randomly chosen node on level 3 of
the node hierarchy.
The closure1N operations selects a random node and follows the parent/children
relationship in pre-order to the leaves of the tree. The closureMN selects a random
node and traverses the partOf/part relationship recursively to the nodes of the tree.
The closureMNAtt selects a random node and follows the refTo/refFrom relationship
25 times. The closure1NAttSum sums the hundred attribute values for all nodes
reachable from a random node via the parent/children relationship. The
closure1NAttSet visits all nodes reachable from the starting node via the parent/chil-
dren relationship and updates the hundred attribute value to (99 - the actual value).
The closure1NPred visits all nodes reachable by the parent/children relationship.
Only those nodes (and their children) are retrieved that are out of the range 10000 of
their million attribute values. The closureMNAttLinkSum performs the clo-
sureMNAtt operation and sums up the offsetTo attribute values of the nodes.

• Editing Operations
The editing operations test the interface to other programming languages and the
updating of a node. The textNodeEdit operation selects a random TextNode and
updates all three occurrences of the string “version1” to “version-2”. The formNode-
Edit operation inverts a 50 x 50 subrectangle (starting at position (25, 25)) in a ran-
domly chosen FormNode. The operation is performed 10 times per node in order to
emulate interactive editing.

Measurements
The time of each operation is measured in seconds. In order to achieve correct

results in case of extensive cache use of the OODBS the operations are run with empty
memory (cold run) and full cache memory (warm run). Basically, the benchmark suite
consists of three phases, the setup, the cold run, and the warm run. The following
sequence must be followed. First, perform the database setup. This incudes the prepa-
ration of the inputs to the benchmark operations. Then perform the “cold run”. The
operations must be run 50 times. If the operation is an update operation, the changes



must be committed once for all 50 operations. The entire cold run is timed and divided
by 50. This number is reported as the “cold run” result. The “warm run” repeats the
operations 50 times with the same inputs. If the operation is an update operation, then
the changes are committed once for all 50 operations. The total time is divided by 50
and reported as the “warm run” result.

Disclosure Report
The specification of the HyperModel benchmark does not require a disclosure

report.

3.3 The OO1 Benchmark

As in the case of the HyperModel benchmark, the OO1 benchmark is based on the
Sun benchmark. The improvements in the OO1 approach rather focus on simplifying
the earlier approach. The benchmark is designed to measure the performance in the
domain of engineering database applications.

Figure 3. The OO1 Database Schema

Database Schema
The database schema of the OO1 benchmark (Figure 3) consists of two basic com-

ponents: the part relation and the connection relationship. Parts are built up by
partID, type, x-pos, y-pos, and date. The connection relationship itself
contains information about the connected parts (type and length).

Database Contents and Generation
The database consists of N parts and 3*N connections. Parts have a unique identi-

fier (partID) ranging from 1 to N. There are exactly three connections to other
parts. The random connections between parts are selected to produce some locality of
reference (90 % of the connections are randomly selected among the 1 % of the “clos-
est” parts, the remaining connections are made to any randomly selected part. Close-
ness is defined by using the parts with the numerically closest partIds).

The algorithm for the database generation is provided by the authors. Three bench-
mark databases are provided: small, large, and huge (see Table 3). The unformatted
small database comprises approximately 2 megabytes of data. The authors claim the
database to be a good representative of engineering databases. The benchmark results
are mostly reported for the small database only. It is assumed that the database resides
on a (remote) server and that the application runs on a workstation. There are no

Part

partId
type
x-pos
y-pos
date

Connection

type
length

to

from



restrictions on indexes, cache-sizes, and network architectures.

Operations
The OO1 benchmark suite consists of three operations: LOOKUP, TRAVERSAL,

and INSERT. The LOOKUP operation generates 1000 random Part-IDs and fetches
the parts from the database. For each part a null procedure is called (in any host pro-
gramming language) passing the x,y position and type of the part. The TRAVERSAL
operation scheme finds all parts connected to a randomly selected part, or to a part con-
nected to it (7-level closure = 3280 parts with possible duplicates). For each part a null
procedure is called passing the x,y position and the type. The time for REVERSE
TRAVERSAL (swapping the from and to directions) is also measured. The
INSERT operation inserts 100 parts and three connections from each to other ran-
domly selected parts into the database. Time must be included to update indices or
other access structures used in LOOKUP or TRAVERSAL. A null procedure to obtain
the x,y position for each insert must be called. The changes must be committed to the
disk.

Measurements
The benchmark measures the response time of a single user from the instant when a

program calls the database system with a particular query until the results of the query
have been placed into the program’s variables. Each measure is run 10 times, and the
response time is measured for each run to check consistency and caching behavior.

General order of execution
The general execution order in the OO1 benchmark is similar to that of the Hyper-

Model benchmark. The benchmark run also consists of a “cold run” and a “warm run”.
The cold run results report the time of the first execution of the benchmark operations
starting off with an empty cache memory. The warm run results are derived from 9
subsequent executions of the operations without clearing the database cache memory.
For the insert operation, the database has to be restored to its original state.

Disclosure Report
The work does not define specific requirements. The information which should be

included in a benchmark report is listed in Table 4:

Database Parts Connections Scale

small 20000 60000 1

large 200000 600000 10

huge 200000
0

6000000 100

Table 3. The OO1 Database Sizes



3.4 The OO7 Benchmark

The OO7 benchmark has been designed to overcome the limitations of the OO1
and the HyperModel approach for benchmarking OODBS. This includes complex
object operations, associative object access and database reorganization.

Figure 4. The OO7 Database Schema

Area Types of reportable information

Hardware CPU type, amount of memory, controller, disk type/size

Software O/S version, size of cache

DBMS

Transaction properties (whether atomic, level of supported concurrency,
level of read consistency, lock modes used etc.); recovery and logging
properties; size of database cache; process architecture (communication
protocol, number of processes involved, etc.); security features (or lack
thereof); network protocols; access methods used

Benchmark
any discrepancy to the implementation described here; real “wall-clock”
run-time, CPU time and disk utilization time are also useful; size of the
database

Table 4. The OO1 Disclosure Report

DesignObject

id
type
buildDate

Manual

title
id
text
textLen

ComplexAssembly

Assembly

Module

Document

title
id
text

AtomicPart

X
Y
docId

CompositePart

BaseAssembly

Connection

type
lengthSubAssemblies

DesignRoot

Assemblies

Man
Documentation

partsrootPartComponentsPriv
ComponentsShared



Database Schema
The OO7 benchmark [Carey93a, Carey93b] database consists of a set of composite

parts. The composite parts have a number of attributes (id, buildDate, type)
and are connected to a set of atomic parts. The number of interconnected atomic parts
depends on the database parameters. The degree of connectivity varies between 3, 6,
and 9 connections to other atomic parts. Furthermore, a document object contains doc-
umentation information (title, string) for each composite part. Composite
parts are referred to by base assemblies that form a 7-level complex assembly hierar-
chy. Complex assembly hierarchies are compiled to modules each of which has an
associated manual object that contains additional information. Figure 4 shows the
complete database schema of the OO7 benchmark specification.

Database Contents and Generation
The size of the OO7 benchmark database varies between small, medium, and large

scale. The connectivity of the atomic parts, the assemblies, and the modules are shown
in Table 5.

Operations
The OO7 benchmark includes three clusters of operations; traversals, queries, and

structural modifications.

• Traversals

T1: Raw traversal: This traversal query scans each assembly and visits the asso-
ciated composite parts. A depth-first search is performed on the atomic
parts. The number of the visited atomic parts is returned.

T2: Traversal with updates: The traversal query T2 operates like traversal T1. In
addition, the objects are updated during the traversal. Three types of

Parameter Small Medium Large

NumAtomicPerComp 20 200 200

NumConnPerAtomic 3, 6, 9 3, 6, 9 3, 6, 9

DocumentSize (bytes) 2000 20000 20000

ManualSize (bytes) 100K 1M 1M

NumCompPerModule 500 500 500

NumAssmAssm 3 3 3

NumAssmLevels 7 7 7

NumCompPerAssm 3 3 3

NumModules 1 1 10

Table 5. OO7 benchmark database parameters



updates are specified: (T2a) update one atomic part per composite part,
(T2b) update every atomic part, (T2c) update each atomic part of a compos-
ite part four times. The traversal query returns the number of update opera-
tions that were performed.

T3: Traversal with indexed field updates: T3 performs the same steps as T2,
except that the updates are performed on the indexed field buildDate
(increment if odd, decrement if even).

T6: Sparse traversal speed: This traversal query scans each assembly and visits
the associated composite parts. The root atomic parts are visited. The num-
ber of the visited atomic parts is returned.

T8: Operations on manual: T8 scans the manual object and counts the number
of occurrences of the character “I”.

T9: Operations on manuals: T9 checks the manual text if the first and the last
characters are the same.

TCU: Cached update: This traversal operation first performes T1, then T2a.
Both traversal operations are performed in a single transaction. The total
time minus the T1 hot time minus the T1 cold time is reported.

• Queries

Q1: Exact match lookup: The exact match lookup query selects atomic parts by
a lookup of their randomly generated id fields. An index can be used for the
lookup. The number of atomic parts processed is returned.

Q2: Range query: Q2 performes a 1 % selection of the atomic parts via the
buildDate field.

Q3: Range query: The range query Q3 performs a 10 % selection of the atomic
parts via the buildDate field.

Q7: Range query: Query Q7 scans all atomic parts.

Q4: Path lookup: Query Q4 generates 100 randomly selected document titles
and performs the following lookup query. For each title retrieve all base
assemblies that belong to the composite part associated with the corre-
sponding document object. The number of base assemblies is reported.

Q5: Single-level make: Q5 performs a selection of base assemblies that have a
component part of a more recent buildDate than that of the base assem-
bly. The number of qualifying base assemblies is reported.

Q8: Ad-hoc join: Q8 performs a join over document ids between documents
and atomic parts.

• Structural Modification Operations

SM1: Insert: The insert operations create five new composite parts (with the cor-
reponding number of atomic parts) and inserts them into the database.
References from base assemblies to these composite parts are randomly
generated.



SM2: Delete: SM2 deletes the five previously created composite parts (and its
associated atomic parts and document objects) from the database.

SM3: Database reorganization: All composite parts are scanned. For each com-
posite part 50 % of its atomic parts are deleted and then newly inserted.

SM4: Database reorganization: This reorganization operation deletes and re-
inserts all composite parts and their associated atomic parts.

Measurements
The benchmark measures the elapsed time for each operation. Measurement

include a “cold” run with empty cache memory and the average execution time of
three further “warm” runs.

Disclosure Report
The authors do not give an explicit procedure for a disclosure report, but they

describe the testbed configuration of the hardware and software that were being used
in the benchmark runs.

3.5 The SEQUOIA 2000 Benchmark

The SEQUOIA 2000 Storage Benchmark addresses the application domain of
engineering and scientific databases. It has been developed in the SEQUOIA 2000
research project that searches to investigate DBS support for Earth Scientists. Earth
Scientists are mainly investigating issues that have effects on the condition of our envi-
ronment. These investigations can be divided into three areas: field studies, remote
sensing, and simulation. The SEQUOIA 2000 benchmark has evolved from those
areas and addresses these application domains by specifying a set of databases and
queries in order to measure the performance of databases for this application domain.
Note that the benchmark data is not synthetic data as in the previous approaches but
real data collected for scientific use. In the following we will describe the SEQUOIA
2000 benchmark according to the benchmark characteristics we identified above.

Database Schema
The kind of data that is mainly used by Earth Scientists can be divided into four

categories: raster data, point data, polygon data, and directed graph data. The bench-
mark database is thus made up of these kinds of data sets. Figure 5 shows an OMT dia-
gram of the SEQUOIA 2000 benchmark database schema; Figure 6 shows the
corresponding Postgres schema.

The raster data represents data from the Advanced Very High Resolution Radiome-
ter (AVHRR) sensor on NOAA satellites. The observed data is divided into so-called
tiles, each of which is 1 square km. Two integers represent the relative position of a
point within the corresponding tile. The satellite sensors observe 5 wavelength bands
for each tile. The benchmark database consists of 26 observations per year.



Figure 5. The SEQUOIA 2000 Benchmark Database Schema

The point data consists of names and locations taken from the United States Geo-
logical Survey (USGS) and from the Geographic Names Information System (GNIS).
Each name in the database (with an average of 16 bytes) and its location (two 4-byte
integers) are recorded.

The polygon data consists of homogeneous landuse/landcover data (available from
USGS). Each item in the polygon database consists of a variable number of points
(two 4-byte integers) and a landuse/landcover type (4-byte integer). An average poly-
gon has 50 sides.

The graph data represents USGS information about drainage networks. Each river
is represented as a collection of segments. Each segment is a non-closed polygon. For
each segment the segment geometry and the segment identifier are recorded.

Raster(time=int4, location=box, band=int4,
data=int2[][])
Point(name=char[], location=point)
Polygon(landuse=int4, location=polygon)
Graph(identifier=int4, segment=open-polygon)

Figure 6. Postgres Schema of the SEQUOIA 2000 Benchmark

Database Contents and Generation
Usually, geological, geographical, and environmental database systems operate on

a huge amount of data. This fact was taken into account in the SEQUOIA 2000 bench-
mark. The scales of the benchmark data cover the regional database, the national data-
base, and the world database. Table 6 gives an overview of the benchmark sizes for
each of the benchmark databases. The regional database consists of data of a 1280km x
800km rectangle. The national database comprises the benchmark data for the whole
United States (5500km x 3000km). The world database covers all the world data for
each of the types of data described above. The overall database size for the regional
database is 1.1 GBytes, for the national database 18.4 GBytes, and more than 200

Open-PolygonGraph
identifier

segment

Polygon
landuse

Box
Raster
time
band
data

location

Point
name

location

location



TBytes for the world database. The authors claim this approach to be durable with
respect to technological progress in hardware. Up to now, SEQUOIA 2000 benchmark
results are only available for the regional database [Stonebraker93].

There are no restrictions on the layout of the database schema in the target DBS as
long as AVHRR elements are 16 bit objects and point objects are pairs of 32 bit
objects. In addition, the users are free to decompose the data for storage needs. Any
necessary indexing or clustering technique may be used.

Operations
The SEQUOIA benchmark queries can be grouped into 5 collections of benchmark

queries. Data loading, raster queries, polygon and point queries, spatial joins, and
recursion. We will now describe each of these queries that form the basis of the bench-
mark suite.

• Data Load

Q1: Create and load the data base and build any necessary secondary indexes:
This benchmark measure includes the loading of the data from the disk into
the database system and the construction of the necessary indexes. It pro-
vides a measure for the efficient loading of bulk data into the DBS.

• Raster Queries

Q2: Select AVHRR data of a given wavelength band and rectangular region
ordered by ascending time

Q3: Select AVHRR data of a given time and geographic rectangle and then cal-
culate an arithmetic function of the five wavelength band values for each
cell in the study rectangle.

Q4: Select AVHRR data of a given time, wavelength band, and geographic rect-
angle. Lower the resolution of the image by a factor of 64 to a cell size of 4

Database Scale

Benchmark Data

raster
data

point
data

polygon
data

directed
graph data

regional
database

1 GB 1.83 MB 19.1 MB 47.8 MB 1.1 GB

national
database

17 GB 27.5 MB 286 MB 1.1 GB
18.4
GB

world database 200 TB numbers not available

Table 6. The SEQUOIA 2000 Database Size



square km and store it persistently as a new object.

This type of queries is dedicated to the analysis of raster data. Q2 retrieves raster
data of a specified region within a specified time. Q3 emphasizes the retrieval of raster
data followed by an arithmetic analysis of the data. Q4 retrieves raster data, computes
a lower resolution image of the data, and stores it in the database.

• Polygon and Point Queries

Q5: Find the POINT record that has a specific name.

Q6: Find all polygons that intersect a specific rectangle and store them in the
DBS.

Q7: Find all polygons of more than a specific size and within a specific circle.

The polygon and point queries represent queries about geographic points or poly-
gons. Q5 represents a simple lookup operation given a point name. Q6 computes the
intersection of polygons. Q7 combines spatial and non-spatial queries; by retrieving
the polygons that satisfy spatial and non-spatial restrictions.

• Spatial Joins

Q8: Show the landuse/landcover in a 50 km quadrangle surrounding a given
point.

Q9: Find the raster data for a given landuse type in a study rectangle for a given
wavelength band and time.

Q10: Find the names of all points within polygons of a specific vegetation type
and store them as new DBS objects.

The collection of spatial joins emphasizes the database system’s ability to perform
joins to different spatial data types. Q8 joins polygon and point data. Q9 joins raster
data and polygon data. Q10 combines point and polygon data.

• Recursion

Q11: Find all segments of any waterway within 20 km downstream of a specific
geographic point.

Q11 represents a restricted recursive query of the graph data. It computes all
affected regions of a waterway that are 20 km downstream of a specific point.

Measurements
The metric of the benchmark results is the elapsed time in seconds for each of the

queries described above. In addition, a performance/price ratio is reported. The overall
performance of the database system is computed as the total elapsed time divided by
the retail price of hardware. Software and maintenance costs etc. are neglected.

The elapsed time of the benchmark operations does not include the display of the
retrieved data on the screen. The measurement includes the time from the start of the
query until the placement of the results in the application memory. There are no
restrictions as to the language in which the benchmark queries are coded. In case of
using low-level DBS interface routines, the results must also be reported for the high-



level interface. Furthermore, the DBS and the application must operate within different
system domains in order to ensure the minimum security requirements.

Disclosure Report
The authors do not explicitly give a procedure for a disclosure report, but describe

the testbed configuration of the hardware and software that were being used in the
benchmark runs.

4 Conclusion

In the previous sections we described approaches to the evaluation of OODBS. We
presented an approach to the functional evaluation based on the presented criteria cat-
alogue. This catalogue comprises about 500 criteria that allow the functional assess-
ment of OODBS. We also surveyed the most popular object-oriented database
benchmarks, namely the Sun Benchmark, the HyperModel benchmark, the OO1
benchmark, the OO7 benchmark, and the SEQUOIA 2000 benchmark. We classified
the approaches according to the database schema, the database generation, the bench-
mark operations, the measurement guidelines, and the reporting of the results. A sum-
mary of the approaches described above is presented in Table 10.



S
u

n
 B

en
ch

m
ark

H
yp

erM
o

d
el

B
en

ch
m

ark
O

O
1 B

en
ch

m
ark

O
O

7 B
en

ch
m

ark
S

eq
u

o
ia 2000

B
en

ch
m

ark

Benchmark Description
T

he S
un benchm

ark database
describes 

a 
sim

ple 
library

database. It consists of a per-
son 

class 
that 

describes
authors and a docum

ent class
that 

describes 
docum

ents.
T

he 
authorship 

concept
describes 

the 
relationship

betw
een docum

ents and per-
sons. In the sm

all version the
database 

consists 
of 

20000
persons, 15 000 authors, and
5000 

docum
ents. 

T
he 

large
database scales these num

-
bers by the factor ten.

T
he 

H
yperM

odel 
database

consists of an aggregation
hierarchy and a generaliza-
tion 

hierarchy 
of 

N
odes.

E
ach N

ode has 5 succes-
sors (7 levels); thus form

ing
a hierarchy of 19531 N

odes.
T

he low
est level consists of

15500 TextN
odes and 125

F
orm

N
odes 

(subtypes 
of

N
ode). 

In 
addition 

to 
the

parent/children 
relation-

ship, a partO
f/parts and a

refTo/refF
rom

 
relation 

is
generated.

N
 

parts 
form

 
the

basis 
of 

the 
O

O
1

database. E
ach part

is 
connected 

w
ith

exactly 3 other parts
(N

*3 connections).
S

m
all 

(20000 
parts,

60000 
connections),

m
edium

 
(200000

parts, 
600000 

con-
nections), 

and 
large

(2000000 
parts,

6000000 
connec-

tions) 
database 

size
is specified.

T
he O

O
1 database consists

of com
posite parts w

hich are
connected 

to 
a 

docum
enta-

tion object and a set of inter-
connected atom

ic parts. T
he

com
posite 

parts 
form

 
the

leaves of a com
plex assem

bly
hierarchy. 

E
ach 

of 
the 

con-
nections 

is 
based 

on 
the

benchm
ark database param

e-
ters.
S

m
all, 

m
edium

, 
and 

large
database size is specified.

T
he 

S
E

Q
U

O
IA

 
2000

database 
consists 

of
four sets of data: R

aster
D

ata, P
oint D

ata, P
oly-

gon 
D

ata, 
and 

G
raph

D
ata. 

T
he 

data 
repre-

sents 
geological 

and
geographical 

data.
T

hree 
scales 

of 
the

database 
sets 

are
specified: regional data-
base (1.1 G

B
), national

database 
(18,4 

G
B

),
and 

w
orld 

database
(over 200 T

B
)

Database Schema

Person

person_ID
name
birthday

Document

document_ID
title
page_count
document_type
publication_date
publisher
description

F
orm

N
ode

bitM
ap

w
idth

height

N
ode

unique
ten
hundred
thousand
m

illion

refT
o/R

efF
rom

offsetF
rom

offsetT
o

T
extN

ode

text

partO
f/P

art

parent/children{ordered}

P
art

P
artId

type
x-pos
y-pos
date

C
onnection

type
length

to

from

DesignObject
id
type
buildDate

Manual
title
id
text
lextLen

Complex

Assembly

Module

Document
title
id
text

AtomicPart
X
Y
docId

CompositePart

BaseAssembly

Sub

Design

Assemblies

Man Documentation

partsroot

Connection
type
length

Components

Components

Assemblies

Assembly

Root

Shared

Priv Part

Open-PolygonGraph
identifier

segment

Polygon
landuse

Box
Raster
time
band
data

location

Point
name

location

location

Tab
le 10.A

n O
verview

 of A
dvanced D

B
S A

pplication B
enchm

arks



S
u

n
 B

en
ch

m
ark

H
yp

erM
o

d
el

B
en

ch
m

ark
O

O
1 B

en
ch

m
ark

O
O

7 B
en

ch
m

ark
S

eq
u

o
ia 2000

B
en

ch
m

ark

Restrictions
T

here 
are 

no 
restric-

tions 
on 

the 
database

schem
a, indexing, clus-

tering 
for 

the 
bench-

m
ark m

easurem
ents.

T
here 

are 
no 

restric-
tions on the location of
the 

database 
(local 

or
rem

ote). C
lustering has

to be done on the par-
ent/children 

relation-
ship (if possible).

T
he database is assum

ed
to 

reside 
on 

a 
rem

ote
server; 

the 
application

runs 
on 

a 
w

orkstation.
T

here 
are 

no 
restrictions

on 
indexing, 

clustering,
cache-sizes etc.

T
here 

are 
no 

restric-
tions 

on 
the 

database
schem

a, indexing, clus-
tering 

for 
the 

bench-
m

ark m
easurem

ents.

T
here are no restrictions

on 
the 

database
schem

a, indexing, clus-
tering for the benchm

ark
m

easurem
ents.

Operations

7 operations:
•

N
am

e Lookup
•

R
ange Lookup

•
G

roup Lookup
•

R
eference Lookup

•
R

ecord Insert
•

S
equential S

can
•

D
atabase O

pen

7 groups of operations
(20 operations):
•

N
am

eLookup
•

R
angeLookup

•
G

roupLookup
•

R
eferenceLookup

•
S

equential S
can

•
C

losure Traversal
•

E
diting O

perations

3 operations:
•

Lookup
•

Traversals
•

Inserts

3 groups of operations:
•

Traversals
•

Q
ueries

•
S

tructural 
M

odifica-
tion O

perations

5 groups of operations
(11 operations):
•

D
atabase Loading

•
R

aster Q
ueries

•
P

olygon 
and 

P
oint

Q
ueries

•
S

patial Joins
•

R
ecursion

Measurements

T
he 

tim
e 

(response-
tim

e) 
is 

m
easured 

for
each 

operation. 
C

old
and 

w
arm

 
tim

es 
are

reported.

T
he 

tim
e 

(response-
tim

e) 
is 

m
easured 

for
each 

operation. 
C

old
and 

w
arm

 
tim

es 
are

reported.

T
he 

tim
e 

(response-tim
e)

is m
easured for each oper-

ation. 
C

old 
and 

w
arm

tim
es are reported.

T
he 

tim
e 

(response-
tim

e) 
is 

m
easured 

for
each 

operation. 
C

old
and 

w
arm

 
tim

es 
are

reported.

T
he 

elapsed 
tim

e 
for

each benchm
ark opera-

tion is reported. A
n over-

all perform
ance num

ber
m

ay 
be 

reported
(elapsed 

tim
e 

for 
all

benchm
ark 

queries 
/

retail cost of hardw
are).

Reporting

no 
disclosure 

report
required

no 
disclosure 

report
required

T
he authors specify types

of reportable inform
ation.

no 
disclosure 

report
required

no 
disclosure 

report
required

Tab
le 10.

A
n O

verview
 of A

dvanced D
B

S A
pplication B

enchm
arks



References

[Ahmed92] S. Ahmed, A. Wong, D. Sriram, R. Logcher; Object-oriented
database management systems for engineering: A Compari-
son; JOOP, June 1992

[Anderson90] T. Anderson, A. Berre, M. Mallison, H. Porter III, B.
Schneider; The HyperModel Benchmark; Proc. of the EDBT
Conf., 1990

[Atkinson89] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier,
S. Zdonik; The object-oriented database manifesto; Proc. of
the Conf. on Deductive and Object-Oriented Databases; 1989

[Banc89 A. F. Bancilhon; Query Languages for Object-Oriented Data-
base Systems: Analysis and a Proposal; Datenbanksysteme in
Büro, Technik und Wissenschaft, Springer, IFB 204, Zürich,
March 1989

[Bitton83] D. Bitton, D. DeWitt, C. Turbyfill; Benchmarking Database
Systems, A Systematic Approach; Proc. of the VLDB Conf.;
1983

[Carey93a] M. Carey, D. DeWitt, J. Naughton; The OO7 Benchmark;
Proc. of the ACM SIGMOD Conf. 1993

[Carey93b] M. Carey, D. DeWitt, J. Naughton; The OO7 Benchmark;
Tech. Report, CS Dept., Univ. of Wisconsin-Madison; 1993

[Cattell91] R. Cattell; Object data management: object-oriented and
extended database systems; Addison-Wesley; 1991

[Cattell92] R. Cattell, J. Skeen; Object Operations Benchmark; ACM
TODS; Vol. 17, No. 1; 1992

[Cattell94] R. Cattell, The Object Database Standard: ODMG-93, Morgan
Kaufmann Publishers, San Mateo, California, 1994

[Encarnação90] J. Encarnação, P. Lockemann; Engineering Databases, Con-
necting Islands of Automation Through Databases; Springer
Verlag; 1990

[Gray91] J. Gray; Standards are a Prerequisite for Interoperability and
Portability; Tutorial Notes; held at the EDBT Summer School,
Alghero/Italy; 1991

[Gray93] J. Gray; A Tour of Popular DB and TP Benchmarks; Tutorial
Notes, held at the ACM SIGMETRICS Conf.; 1993

[Gupta91] R. Gupta, E. Horowitz (eds.); Object-Oriented Databases with
Applications to CASE, Networks, and VLSI CAD; Prentice-
Hall; 1991

[Kappel92] G. Kappel, S. Rausch-Schott, W. Retschitzegger, M. Schrefl,
U. Schreier, M. Stumptner, S. Vieweg; Object-Oriented Data-
base Management Systems - An Evaluation; Tech. Rep. ODB/
TR 92-21; Institute of Applied Computer Science and Infor-
mation Systems; Univ. of Vienna; 1992

[Kappel94] G. Kappel, S. Vieweg; Database Requirements of CIM Appli-
cations; in this book; 1994

[Maier89] D. Maier; Why isn’t there an object-oriented data model?
Information Processing 89 - IFIP World Computer Congress;
G.X. Ritter; North-Holland; 1989

[Rubenstein87] W. Rubenstein, M. Kubicar, R. Cattell; Benchmarking Simple
Database Operations; Proc. of the ACM SIGMOD Conf.,
1987



[Rumbaugh91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen;
Object-Oriented Modeling and Design; Prentice Hall; 1991

[Stonebraker90] M. Stonebraker, L. Rowe, B. Lindsay, J. Gray, M. Carey, M.
Brodie, P. Bernstein, D. Beech; Third-Generation Database
System Manifesto; SIGMOD Record, Vol. 19, No. 3; 1990

[Stonebraker93] M. Stonebraker, J. Frew, K. Gardels, J. Meredith; The Sequoia
2000 Storage Benchmark; Proc. fo the ACM SIGMOD Conf.;
1993

[TPCA92] TPC Benchmark™ A, Standard Specification, Revision 1.1,
Transaction Processing Performance Council (TPC); March 1,
1992

[TPCB92] TPC Benchmark™ B, Standard Specification, Revision 1.1,
Transaction Processing Performance Council (TPC); March 1,
1992

[TPCC92] TPC Benchmark™ C, Standard Specification, Revision 1.1,
Transaction Processing Performance Council (TPC); August
13, 1992

[Trapp93] G. Trapp; The emerging Step standard for production-model
data exchange; IEEE Computer; Vol. 26, No. 2; 1993

[Turbyfill91] C. Turbyfill, C. Orji, D. Bitton; AS3AP: An ANSI SQL Stan-
dard Scaleable and Portable Benchmark for Relational Data-
base Systems


