
Autonomous RDF Replication on Mobile Devices

Bernhard Schandl, Stefan Zander
University of Vienna, Dept. of Distributed and Multimedia Systems

Liebiggasse 4/3-4, A-1010 Wien, Austria
firstname.lastname@univie.ac.at

ABSTRACT
Mobile applications are of increasing interest for research
and industry. The widespread use and improved capabilities
of portable devices enable the deployment of sophisticated
and powerful applications that provide the user with services
at any time and location. When such applications are built
on top of Linked Data, permanent network connectivity is
required, which is often not available or expensive to estab-
lish. Hence we propose a framework that uses RDF-based
context descriptions to selectively and proactively replicate
data to mobile devices. These replicas can be used when no
network connection can be established, thus making mobile
applications and users more autonomous and stable.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Distributed
systems

General Terms
Design, Management, Reliability

Keywords
Semantic Web, mobile systems, context, replication

1. INTRODUCTION
Linked Data sources become increasingly interesting for

end user applications as the amount and quality of data
published in this format is constantly growing. The advent
of powerful and easy-to-use mobile devices and platforms
has shown that the potential of mobile applications has been
underestimated in the past. To actively participate in this
field, Semantic Web research should consider mobile devices
as a major factor in the development of applications, and
a small number of interesting approaches in this direction
have already been published (e.g., [1, 2]).

Still, the capabilities of mobile devices are restricted in
terms of computing power, memory capacity, and network

.

bandwidth. Even if these parameters are sufficient for a spe-
cific application, their usage may be hindered by economical
factors (e.g., because data transfer is expensive), technical
restrictions (e.g., when no cellular radio coverage is avail-
able), or security considerations (e.g., when the network op-
erator does not permit to establish VPN connections). To
ensure data availability in such situations, and to enable the
implementation of more efficient search and reasoning algo-
rithms, local replicas of remote data sources are needed.

However, it is not feasible to replicate entire, potentially
very large data sets to mobile devices. Instead we can ex-
ploit the context information usually available on modern
mobile devices. In addition to general information like the
current time, we can utilize data retrieved from sensors (like
the current location or light conditions), information stored
on the device (like contacts and upcoming appointments), or
external services to determine future information needs and
proactively replicate appropriate subsets of remote sources.
In this paper we present an architecture for an autonomous
mobile RDF replication framework that collects various con-
text parameters, integrates them, and uses these aggregated
context models to selectively retrieve and replicate data from
remote sources.

2. SCENARIO AND ARCHITECTURE
As a use-case for our proposed architecture consider the

following scenario: Steve is preparing for an oversea business
trip. Because of costs, he will not be able to use mobile
data roaming, and he is not sure if his host organization
will be able to provide wireless internet access for his mobile
device. For the planned business meetings he needs several
documents and data sets, and for his spare time he wants to
be informed about local points of interest. In his calendar he
has entered all appointments during the trip together with
their topics, participants, and locations.

The autonomous data replication framework on his mo-
bile phone can detect from his calendar that he will be
abroad during the upcoming days. Based on the calendar en-
tries and their associated data, the framework automatically
replicates information (including documents and contact in-
formation) from corporate data repositories and his address
book that might be of interest during the trip. Addition-
ally the framework replicates data from public data sources
(e.g., DBpedia) about the target location and nearby points
of interest. During the trip, whenever network connectiv-
ity can be established (e.g., in the hotel that offers low-cost
wireless internet) the replicated data sets are updated and
adapted: for instance, during a meeting Steve got to know a

MobiSem Framework

...

MobiSem
Data

Access
API

Data
Provider

Data
Provider

Personal
Desktop

App

App

Data
Provider

Context
Provider

Context
Provider

Context
Provider...

...

 Context Dispatcher

GPS Time ...

Linked Open
Data

Replicated
RDF Data

Context
Description

Models

Aggregated
Context

Description
Model

Aggregation

Enrichment

Inference

Validation

Figure 1: Architecture of the MobiSem Mobile Con-
text Processing Framework

new interesting business partner; the replication framework
detects this change in his digital address book and updates
description about the person, their interest, and their orga-
nization so that it is ready for Steve to browse and use.

To realize this scenario it is necessary to combine the au-
tonomous, local processing of context information with ef-
ficient replication of remote data sources. However, it is
also necessary to keep the framework design as flexible as
possible: it depends on the capabilities of the mobile device
which context information can be tracked; and the user’s
information needs might evolve over time, hence we cannot
restrict ourselves to a fixed set of remote data sources.

We have decided to couple the tasks of context elicita-
tion and data replication only via RDF-based context de-
scriptions (cf. Figure 1). Context parameters are retrieved
by dedicated components (called context providers) and are
converted into RDF-based context descriptions. These are
used by data provider components that replicate RDF data
to the device, where they are stored in a triple store. A
loose, data-based coupling between context providers and
data providers is realized through a context dispatcher, which
is notified every time a context provider detects a change in
a context value. In the following we describe in more detail
the individual system components.

Context Provider. Context providers convert any kind
of input information to an RDF-based context description.
Such input information can be derived from sensors that
are integrated into the mobile system (e.g., GPS sensor,
clock, camera), or they can be based on user input. Context
providers can make use of context descriptions from other
context providers as well as external data sources; e.g., a
component may use the GPS coordinates provided by an-
other context provider and an external web service to look
up names of the current location (cf. Fig. 2).

Context Dispatcher. The context dispatcher is noti-
fied by context providers whenever a context description
has changed. Before propagating updated and aggregated
context descriptions to data provider components, the dis-
patcher performs additional processing on the data, like
inference and consolidation. Context descriptions are for-
warded not only to data providers, but also back to context
providers, so that they are enabled to mutually reuse their

1 [] a mobisem:Context ;
2 context:currentLocation [
3 geo:lat "48.175443" ;
4 geo:long "16.375493" ;
5 geonames:nearby [
6 a geonames:Feature ;
7 rdfs:label "Vienna" .] .] .

Figure 2: Context description retrieved by a
GPS+Geonames sensor

context descriptions.
Data Provider. Data providers receive aggregated con-

text description models and subsequently provide data of
any kind to the triple store, whereas they individually de-
cide how to utilize context information to select data sets.
This data may be generated by the data provider itself; how-
ever, usually it may be retrieved from external sources. For
instance, a data provider may act upon changes of the cur-
rent location and retrieve information about nearby points
of interest. Each data provider is assigned a named graph
under which it stores its data in the triple store.

Triple Store. The framework provides a lightweight, effi-
cient storage and retrieval mechanism for RDF triples. It ab-
stracts over the concrete storage mechanism that is used by
the mobile platform and provides support for named graphs,
persistence, and RDF serialization and de-serialization.

Application Programming Interface. Applications
can use the API to access data stored in the device’s local
triple store. Currently, the framework provides read-only
access; write operations—where updates to data replicas are
locally buffered—will be implemented in upcoming versions.
This API hides the details of context processing and data
replication from applications; from the outside the MobiSem
frameworks looks like a common triple store whose data is
regularly updated.

3. EXPERIMENTS
An initial evaluation of our Java-based context processing

framework on a Google Android G1 device [3] shows that
mobile devices are capable of handling small RDF graphs of
up to several hundred triples, which we consider as sufficient
for the representation of contextually relevant information.
However, for retrieving and storing replicated data sets—
which are potentially larger—more efficient storage struc-
tures need to be developed; hence in the future we will in-
vestigate on how to exploit platform-specific storage mecha-
nisms (e.g., SQLite on the Android platform) to store RDF
graphs, and how RDBMS-RDF mapping approaches can be
applied on mobile platforms.

4. REFERENCES
[1] C. Becker and C. Bizer. DBpedia Mobile: A

Location-Enabled Linked Data Browser. In Workshop
on Linked Data on the Web (LDOW2008), 2008.

[2] S. Boehm, J. Koolwaaij, M. Luther, B. Souville,
M. Wagner, and M. Wibbels. Introducing IYOUIT. The
Semantic Web - ISWC 2008, pages 804–817, 2008.

[3] B. Schandl and S. Zander. Adaptive RDF Graph
Replication for Mobile Semantic Web Applications.
Ubiquitous Computing and Communication Journal (to
appear), 2009.

	Introduction
	Scenario and Architecture
	Experiments
	References

