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Abstract The most difficult and time consuming activity to perform during view integra-
tion is to find correspondences between different view specifications. Such correspond-
ences may be the source for conflicts when integrating the views and thus must be
detected and resolved. A manual inspection of the class definitions in each view and a
comparison with each class definition in the other views may result in an almost endless
process. To support a designer we propose a computerized tool to extract the semantics
from view definitions, to transform them into a unique vector representation of each
class, and to use the class vectors to train a neural network in order to determine catego-
ries of classes. The output of the tool is a ‘first guess’ which concepts in views may be
overlapping or which concepts do not overlap at all. This may be of tremendous value
because the designers are relieved from manual inspection of all the classes and can
direct their focus on classes grouped into the same category.

1. Introduction
For the development of large databases it is difficult to design the whole conceptual
database schema at once. Schema integration, i.e. the process of deriving an integrated
schema from a set of component schemata, is generally understood as an important
activity during database design. This activity may be necessary in two design scenar-
ios. The first is database schema integration for building database federations where a
uniform canonical database schema is derived from existing, possibly heterogeneous,
information systems and necessary to support interoperable access. The second is view
integration, a process in classical database design, which derives an integrated schema
from a set of user views. In general, if requirements on a database were developed by
different design teams and are stated on the basis of individual requirements docu-
ments and schema specifications, there is a need for integration. Although related to all
aspects our main focus in this paper is on the view integration process.
The view integration process can be divided into three main phases, namely view com-
parison, conflict resolution, and actual view integration. View comparison involves
analysis and comparison of schemes to determine correspondences, in particular dif-
ferent representations of the same concept. Conflict resolution involves modifying one
or more of the schemes to be integrated until each conflict is resolved and the conflict-
ing concept is represented equally in each schema. The actual view integration gener-
ates the integrated schema by merging the individual view schema representations.
The most difficult part of the schema integration process is view comparison. The fun-
damental problems here lie in the fact that one concept of reality can be modelled in
different views differently. This may be because the same phenomenon may be seen in
different views from different levels of abstraction or may be represented by using dif-
ferent properties. The key in detecting such conflicts is proper understanding of the
intended meaning of object classes and based on certain criteria to identify semantic
similarity between classes from different views.



In this paper we try to solve the view comparison problem by assuming that concepts
in different views that refer to the same real world semantics will have similar features,
such as their names, attributes, domains, links, functions, or occur in similar contexts.
Our assumption is that similarities may exist, yet we do not pretend to know them. We
make use of this assumption and train a neural network to recognize common patterns
in different views and to deliver a ‘first guess’ to the designer which concepts may be
overlapping with other concepts in other views. For view comparison we use neural
networks because of two reasons: First, neural networks are robust in the sense of tol-
erating ‘noisy’ input data (overlapping classes represented by similar features) and as a
second reason, we refer to their ability of generalization. Pragmatically speaking, a
neural network learns conceptually relevant features of the input domain and is thereby
able to structure the various concepts accordingly.
This paper is organized as follows: In the remaining part of Section 1 we give an over-
view of the proposed architecture for view comparison based on neural network tech-
nology. Section 2 presents related work performed in the area of view integration.
Section 3 contains a description of a case study. Section 4 shows how the view specifi-
cations to be compared are transformed in neural net input data and is devoted to the
analysis of the neural network, its learning process, and to a discussion of the experi-
mental results achieved. Section 5 contains our conclusions and hints on future research.

1.1 Overview of the proposed architecture for view comparison
For view comparison we propose an architecture consisting of four main building
blocks (see Fig. 1) and several major design activities. The main goal of the proposed
tool is to minimize human activities during view comparison. In our methodology only
manual input of view specifications and human interpretation of results is required.
Individual user views are specified using the object model of OMT [17]. The first com-
puterized activity is a translation of the OMT schema definitions into C++-like data-
base class definitions. The class definitions serve as an input to a specific parsing
activity during which the semantic meaningful and relevant information for view com-
parison is extracted from the C++ class definitions. This completes building-block 1
which we call the data extraction phase. Building-block 2 is called data transforma-
tion and is responsible for determining the input vector to train the neural network. We
refer to each semantically meaningful unit that is determined while performing build-
ing-block 1 as a classifier, and each classifier will serve as an element within the vector
representation of a class. The next activity is instantiating the vector and consists of
parsing the meta-data to determine for each class which of the classifiers are satisfied.
This completes building-block 2. During building-block 3, training process, the result-
ing class vectors are used to train the neural network to recognize categories of classes.
Human intervention is again necessary in building-block 4, cluster interpretation, to
check and confirm the results.

2. Related work
View integration has been a research topic for more than fifteen years. A survey of the
area can be found in [2] in which the authors discuss twelve methodologies for data-
base or view integration. Early work has been done in the context of the relational
model [3], the functional model [15] or more recently in the context of the Entity-Rela-
tionship model [5] (see for example [12], [19], [8]). Early work has focused on how to
merge a given number of schemes by using a given set of correspondences. More
recently, the interest of researchers has changed and more work is done for providing
assistance during the view comparison phase. [16] was the first who developed a tax-



onomy for types of conflicts that might occur by integrating different schemes. [1]
compares by means of a unification process concepts in different schemes by analysing
similarities among names, structures, and constraints. In [18] a method for identifying
schema similarities based on using a semantic dictionary and a taxonomy structure is
proposed while [9] uses conceptual graph theory to support schema integration.
Another idea is to use linguistic tools, such as thesauri and information retrieval tech-
niques to build dictionaries and to support the view comparison. In [4] such experi-
ences are reported. In [7] fuzzy and incomplete terminological knowledge together
with schema knowledge is used to determine the similarity of object classes. An inno-
vative and new approach is reported by [13] in which semantic integration in heteroge-
neous databases is achieved by using neural networks. Although their work is related
to the approach reported in this paper there are fundamental differences. While [13]
focus on the integration of existing databases we do focus on view integration. Their
goal was to find equivalencies between fields in different existing databases while we
address to capture a much higher level of real world semantics. Their input into the
neural net is driven by data content and a flat table file structure while we use concep-
tual database structures expressed in a high level data model as input to train the net.
Their results may be applicable to develop a canonical data model for a database feder-
ation while the results of our efforts may be seen as a ‘first guess’ which concepts in
user views may be overlapping in other views. In large design teams and in database
environments with a large set of heterogeneous users this information may be of tre-
mendous value because the designers are relieved from manual inspection of a great
variety of different object classes.

3. A view comparison case study
In order to evaluate our approach to view comparison, we carried out a case study.
Usually, view comparison is necessary if a number of analysts model partly overlap-
ping areas of a large real world domain containing hundreds of classes and relation-
ships. The problem we faced was to find an example which first is complex and large
enough to show the usefulness and applicability of our approach to view comparison
and second is small enough to be presented in this paper. We feel that the central point
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of such an example problem is not the number of classes and relationships that are nec-
essary to model the problem, but rather to find an example allowing a number of ana-
lysts to model overlapping as well as very different areas of the same real world
problem domain. This is necessary to show that our approach is able to find concepts
representing similar areas of the problem domain on the one hand and concepts repre-
senting different areas on the other hand. We used the well-known Date example [6] as
a core problem specification representing the overlapping area ) to be modeled by each
analyst and to enforce the modelers to extend the core problem by at least three con-
cepts of their choice representing the areas which do not overlap. We passed the prob-
lem specification to a number of experts and undergraduate students and used their
results to evaluate our approach. Fig. 2 shows the core problem specification from [6]
as well as sample solutions to the example in OMT notation [17].

4. A ‘neural’ tool supporting view comparison
4.1 Data Extraction
Determine C++-like class definitions.
As mentioned in Section 3 we use the OMT technique for the description of the data
schema, or more specific the OMT object model, which describes the static structural
and relationship aspects of a system. The utilities which the object model provides to
capture those concepts from the real world that are important to the system have to be
mapped into C++-like constructs: Each class of the OMT model is expressed as a C++
class. The names and types of attributes are expressed as data member names and
types in the C++ header file. A generalization is converted according to the C++ syn-

Core problem [6]: “In this example we are assuming that the company maintains an education department
whose function is to run a number of training courses. Each course is offered at a number of different locations
within the company. The database contains details both of offerings already given and of offerings scheduled to
be given in future. The details are as follows: For each course: course number (unique), course title, course
description, details of prerequisite courses (if any), and details of all offerings (past and planned); For each pre-
requisite course for a given course: course number and title; For each offering of a given course: date, location,
format (e.g., full-time or half-time), details of all teachers, and details of all students; For each teacher of a given
offering: employee number and name; For each student of a given offering: employee number, name, and grade”

Fig. 2: The core problem specification and two possible solutions
core problem (overlapping area)
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tax for the definition of super- and subclass relationships. Associations and aggrega-
tions are both resolved in C++ by pointers if the number of participating classes is 1 or
by a set of pointers to the related class otherwise. If a link attribute is attached to a rela-
tionship the pointers do not reference to the related class, but to the class which is built
from the link attribute. Note, at the moment our approach is based on the static struc-
ture of the data model and thus, we do not use the notation of operations.
The two view definitions presented in Fig. 3 include a subset of the classes depicted in
Fig. 2. Both views include among others a class CourseOffering. View 1 includes
the class Student, whereas view 2 includes a similar class CourseStudent. Fur-
thermore, view 1 includes the class Certificate and view 2 the class Project.
Consider the classes of view 1 for a closer inspection. CourseOffering directly
adopts the attribute names and types from Date and Type of the OMT model. Since
the number of the related Code, Room and Teacher is 1 in each case, pointers to
these classes are established and designated by the relationship attribute. Note, the
class instance specifying the room is termed Location in both views, but is a pointer
to a separate class Room in view 1 and a simple char* in view 2. The same rules are
applied to the class Student, but since it is a subclass of Person the statement
‘public Person’ is added at the beginning of the class definition. Since a certifi-
cate is issued for each course the link attribute Certificate is added to the n:m
relationship between Student and CourseOffering. Therefore, Students
and CourseOffering do not have a set of pointers referencing each other, but
each one has a set referencing to Certificate. Each Certificate includes
exactly one pointer to each Student and to each CourseOffering. The n:m
relationship is split up into two 1:n relationships via the link attribute Certificate.

Extract class information.
It is difficult to identify and resolve all the semantic heterogeneity among components.
In our approach we use three features to classify semantic similarity and dissimilarity:
the names of the classes, the names of the attributes and the types of the attributes.
It is assumed that some classes or at least some of their attributes and/or relationships
are assigned with meaningful names. Therefore, the knowledge about the terminologi-
cal relationship between the names can be used as an indicator of the real world corre-
spondence between the objects. However, similar classes and attributes might have
different synonyms, which are not detected by inspection. This shifts the problem to
building a synonym lexicon. A general purpose synonym lexicon cannot be specified,
the synonyms must rather be specified according to the semantics of the problem

class CourseOffering {
 protected:
  char* Date;
  char * Type;
  Course* Courseptr;
  Room* Location;
  Teacher* Teacher;
  Set<Certificate*> Students; };

class Student : public Person {
 protected:
  int Grade;
  Set<Certificate*> Course; };

class Certificate {
 protected:
  Student* Students;
  CourseOffering* Course;
  int Mark; };

class CourseOffering {
 protected:
  Course* offers;
  CourseTeacher*

is_offered_by;
  char* Date;
  char* Location;
  char* Type;
  Set<CourseStudent*>

is_attended_by; };

class CourseStudent :
public Person {

 protected:
  int Salary;
  Set<CourseOffering*> attends; };

class Project {
 protected:
  int PNo;
  char* PTitle;
  char* PDescr;
  Set<Person*>

is_performed_by;
  Set<ProjectPartner*>

is_supported_by;
  Set<Sponsor*> is_paid_by; };

View 1:

View 2:

Fig. 3: C++-like class definitions



description. Thus, such a lexicon cannot be generated automatically and is expensive
to build. Consequently, we omitted a synonym lexicon in our approach. Furthermore, it
is assumed that given a database design application, different designers tend to pro-
duce similar schemata because they use the same technology and have comparable
knowledge about designing a ‘good’ database. Thus, information about the types of
attributes used within a class can be regarded as a discriminator to determine the likeli-
hood that two classes describe similar real world objects.
To extract the semantic meaningful meta-data all C++ header files including the class
definitions have to be parsed. The result of the parsing process are sets containing all
meta-data: class names set, attribute names set, data types set. Each element of these
sets serves as a so-called classifier to characterize a class according to the above men-
tioned criteria. Fig. 4 shows these sets, if only the views of Fig. 2 were parsed.

4.2 Data Transformation
Classify meta data for vector format.
Training a neural network with the class information requires the creation of the for-
mat of the vectors describing the classes. In particular, each of the different class
names, attribute names and attribute types used as a classifier will be an element of the
vector. The classifiers 1 to n (n represents the number of different class names) are
used to mark the class name. The elements n+1 to n+m (m represents the number of
different attribute names) indicate the use of the corresponding attribute names within
the corresponding class. The elements n+m+1 to n+m+p (p represents the number of
different attribute types) are used to describe the types of attributes used in the class at
hand. Fig. 5 depicts the vector formats resulting from the classifiers in Fig. 4.

Determine class vectors.
An additional parsing of the C++ class definitions creates a vector for each class. The
vector elements describing the class name are set to 1, if the class is specified with the
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name in question or left 0 otherwise. Similarly, the elements describing the attribute
names are set to 1, if the class includes an attribute with the corresponding name or are
left 0 otherwise. The elements describing the attribute types are set to the number of
occurrences of the corresponding type in the class. Fig. 6 shows the transformation of
the semantics included in OMT to the corresponding vector representation of the class
by using class CourseOffering of view 1 as an example. Note, the vector ele-
ments not explicitly depicted in Fig. 6 are set to 0.

4.3 Training process
We selected the self-organizing map (SOM) [10], [11] as the architecture to represent
similarities within the classes obtained from different designers. The motivation to use
exactly the SOM is mainly due to its unsupervised learning rule. Unsupervised learn-
ing refers to adaptation of the neural network’s structure in order to enable the con-
struction of internal models capturing the regularities of the input domain without any
additional information. With additional information we refer to concepts such as a
desired output that has to be specified with supervised learning models. For an over-
view of neural networks in general we refer to [14].
The utilization of neural networks is justified in that they are robust, i.e. they tolerate
noisy input data. This fact is of essential importance during view comparison since dif-
ferent designers tend to model the same fact of reality slightly different, e.g. names of
classes, names of attributes, types of attributes. These at first sight minor differences
constitute major obstacles for conventional approaches, e.g. keyword matching. More-
over, we feel that an adequate representation of these differences for a knowledge-
based system is not achievable with satisfactory generality and in reasonable time.
Basically, the SOM consists of a layer of n input units and a grid of output units each
of which has assigned an n-dimensional weight vector. The task of the input units is to
propagate the input vectors as they are onto the grid of output units. Each output unit
computes exactly one output value which is proportional to the similarity between the
current input vector, i.e. the description of one class in our application domain, and the
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unit’s weight vector. This value is commonly referred to as the unit’s activation (the
unit’s response). Commonly, similarity is measured in terms of the Euclidean distance
between the two vectors. In terms of our application domain we may regard the activa-
tion of an output unit as the degree of correspondence between the description of a
class, i.e. the input vector representing the class, and the internal representation of that
very class, i.e. the weight vector of the output unit.
The SOM learning rule may be described in three steps which are to be performed
repeatedly. First, one input vector at a time is randomly selected. In other words, one
class description is taken as input to the SOM. Second, this input vector is mapped
onto the grid of output units of the SOM and the unit with the strongest response is
determined. This very unit is further referred to as the winning unit, the winner in
short. Notice that in case of Euclidean distance metric the unit with the smallest dis-
tance between input and weight vector is selected as the winner. Hence, the winner is
the output unit representing the most similar internal representation of the class
description at hand. Third, the weight vector of the winner as well as weight vectors of
units in topological neighborhood of the winner are adapted such that these units will
exhibit an even stronger response with the same input vector in future. This third step
refers to the reduction of distance between input and weight vectors of a subset of the
output units and thus, to the improved correspondence between the description of a
class and its internal representation. The distance reduction may easily be accom-
plished by a gradual reduction of the difference between corresponding vector compo-
nents. The adaptation is further guided by a learning-rate in the interval [0, 1]
determining the amount of adaptation and a neighborhood-rate determining the spatial
range of adaptation. In order to guarantee the convergence of the learning process, i.e.
a stable arrangement of weight vectors, the learning-rate as well as the neighborhood-
rate have to shrink in the course of time. In other words, the amount of adaptation of
weight vectors decreases during the learning process with respect to a decreasing
learning-rate. Furthermore, the number of units that are subject to adaptation, i.e. the
spatial range of adaptation, decreases as well during the learning process such that
towards the end of learning only the winner is adapted. Given these two restrictions it
is obvious that the learning process will converge towards a stable arrangement of
weight vector entries. Moreover, the SOM will assign highly similar input data, i.e.
classes that have a highly similar description, to neighboring output units thanks to the
inclusion of a spatial dimension to the learning process. It is the spatial dimension that
distinguishes the SOM the most from other unsupervised learning architectures and
thus makes it suitable for an application such as view comparison.

4.4 Cluster interpretation
Based on the description of the various classes as described above we trained a SOM
to structure the classes according to their similarity. In the following we will present
one typical arrangement of the classes in Fig. 7. The figure represents the result
obtained from a 3×3 SOM. In other words, we mapped the class description onto a
square of nine output units. For each unit we provide the list of classes that are repre-
sented by the unit. Additionally, each unit is further designated by a number. Please
note that there is no formal justification to use a SOM of exactly that size. This size
rather turned out to be useful in a number of training runs.
Just to start the description of the result with the units representing only one input, i.e.
units 2, 5, 8, and 9, we may arrive at the following conclusion. As described in Section
3 we asked all designers to specify additional classes that may be relevant to the basic
example but are not contained in the core problem specification. It is obvious that these
classes represent a highly subjective view of the various designers on the problem at



hand and thus no correspondence to other designers may be found. As expected, the
SOM successfully identifies these classes and assigns them exclusively to output units.
With a simple ‘manual’ analysis of the problem description we may realize that the
most important aggregations of classes refer on the one hand to persons, be it teachers
or students, and on the other hand to courses. The latter group is represented by units 1
and 4. Thus, the person who has the responsibility of performing view comparison is
pointed to a reasonable subset of the modelled classes that are all related to the real-
world concept of a course. Turning now to the ‘human aspect’ of the problem descrip-
tion, most of the classes that model the real-world concept of a person are mapped onto
units 3 and 6. Moreover, unit 3 comprises mostly students whereas unit 6 represents
mostly lecturers. However, some distortion in the mapping may be observed. In this
sense it is only unit 7 that represents a mix of rather unrelated concepts, namely some
course classes and some person classes. Yet, such a distortion is still negligeable since
the intention of the classification is to provide the designer with a ‘first guess’ on
classes that may be integrated. Pragmatically speaking, due to the fact that the only
alternative is manual inspection of all classes our classification provides substantial
assistance to the designer.

The advantages of using neural network technology are obvious from a data modelling
point of view. The SOM was able to group the potentially overlapping input classes
that originate from different view specifications into categories of related object
classes. Each category represents a cluster of similar object classes referring to closely
related concepts of the real world. Hence, a tool for view comparison is now available
that facilitates the determination of classes referring to similar real world objects. This
apparently is of considerable value because the designers can direct their attention on
classes grouped into the same category by the SOM. Please note, the main manual
effort involved during view comparison is uncovering the correspondences between
various view specifications and this process is now reduced to a subset of all possible
inspections. By using the tool, the designer is able to distinguish between reasonable
and unreasonable candidates for integration and thus, integration can be performed
with less manual interference and consequently at less time and cost.

5. Conclusion and further work
In this paper we reported on a novel approach to view comparison by means of neural
network technology. As an illustrative example we used the description of an educa-
tion department modelled by a number of people. Hence, the task of view comparison
may be paraphrased as determining the correspondences between the views of differ-
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ent designers onto the same reality. The distinguished features of our approach are an
automated transformation of an OMT-style class description to a vector based class
representation that is further utilized as the input to an unsupervised neural network.
The neural network performs a classification of the various input classes based on their
mutual similarity. In other words, classes referring to the same real world concept are
grouped within the same cluster. As a consequence, the process of view comparison
may now be regarded as the manual inspection of a subset of the input classes instead
of the whole range of classes that are modelled by various designers. We were able to
show that such a classification was performed to a highly promising degree.
Future work will concentrate on improved vector representation of the various input
classes. At the moment we achieved the results provided in this paper on the basis of
the static structure of the OMT data model. We may arrive at further improvements by
an inclusion of the dynamic structure as well. Currently, we are investigating the possi-
bilities to enlarge the vector representation to cover methods that are defined for the
various classes as well.
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