
of

se

r.

e

le

,

grated

f engi-

mplex

9 is
Migration in Object-Oriented Database Systems -

A Practical Approach *

C. Huemer†, G. Kappel‡, S. Vieweg†

† Institute of Applied Computer Science and Information Systems, Department of Information

Engineering, University of Vienna. Liebigg. 4, A-1010 Vienna, Austria, {ch,sv}@ifs.univie.ac.at
‡ Institute of Computer Science, Department of Information Systems, University of Linz,

Altenbergerstr. 69, A-4040 Linz, Austria, gerti@ifs.uni-linz.ac.at

SUMMARY

Object-oriented database systems are designed to meet the requirements

advanced database applications such as computer-integrated manufacturing. The

requirements may evolve in the course of time and may require the migration of the

database application from one object-oriented database system to anothe

Traditional migration approaches for relational database systems fail when applied

to object-oriented database systems. The goal of this paper is to fill this gap. The

paper describes a framework for the migration of object-oriented database

applications. Our approach is based on a detailed analysis of the involved databas

systems, of the application’s database requirements, and of the resources availab

for the database migration. We illustrate our framework by means of a case study

which is migrating an electronic planning board system from the object-oriented

database system ONTOS to ObjectStore.

Key Words: object-oriented database systems, migration, electronic planning board application

INTRODUCTION

Advanced engineering applications such as computer-aided design and computer inte

manufacturing have emerged over the past decade. The database requirements o

neering applications extend those of traditional database applications and include co

* The support by FFF (Austrian Foundation for Research Applied to Industry) under grant No. 2/27
gratefully acknowledged.
All products mentioned herein are trademarks of their respective manufacturers.
1

a few.

d bring

is a

t

hanges

her is

rsion

atabase

lent’

.

from

tions

se

ted

is

C. The

o the

abase

of the

n and

record-

se limi-

nd the

rating

istent
object modeling, version management support and long transactions, to mention just

Object-oriented database systems (OODBS) are designed to meet these demands an

together traditional database functionality and object-oriented concepts. An OODBS

database system (DBS) based on an object-oriented data model1, 2. Since there does not exis

a single object-oriented data model, an exchange of an OODBS might cause severe c

to the applications involved. Moving an application from one database system to anot

commonly known as database migration.

Database migrationis the process of mapping a database application from asource DBSto a

target DBS. The migration process consists of a set of conversion operations or conve

techniques that are applied to the source database application and result in a target d

application. The application migrated to the target DBS is constrained to deliver ‘equiva

results. Equivalence in this context is informally defined by the application’s semantics

Current approaches to the migration of database applications focus on the migration

hierarchical to relational DBS or from applications without database support to applica

based on relational database systems3, 4, 5. The migration techniques for relational databa

applications are based on distinguishing two parts in a database application: adatabase

interactionpart and acomputationpart. The database interaction part is usually formula

in the high-level data definition and manipulation language (DDL/DML) SQL and

embedded in some program written in a socalled host programming language such as

computation part is programmed in the host programming language. Approaches t

migration of relational database applications benefit from this separation. The dat

queries are isolated and a conversion technique is applied. The computation part

application remains unchanged. However, the separation into database interactio

computation entails also disadvantages known as ‘impedance mismatch’2, such as different

data types, declarative versus procedural language concepts, and set-at-a-time versus

at-a-time processing. Object-oriented database systems are designed to overcome the

tations. There should not be a semantic gap between the DDL/DML on the one hand a

host programming language on the other hand. This can be achieved either by incorpo

database functionality into existing object-oriented programming languages, e.g., pers
2

epts,

n the

ween

es to

face

this

tween

does

n the

tabase

above

ause

d data

us

time,

rcial

rship,

ater

the

for

ld to

tion

easy

n on

a-

ion
Smalltalk, or by extending traditional database languages with object-oriented conc

e.g., object-oriented SQL. In any of these cases the degree of integration betwee

programming language and the DDL/DML increases. Consequently, the distinction bet

database interaction part and computation part is blurred and traditional approach

migrating database applications fail. Approaches to migrating OODBS applications

different problems and are still missing in literature. The purpose of this paper is to fill

gap. We introduce a framework for migrating object-oriented database applications be

different OODBS.

The relevance of the work is due to the state of art of OODBS technology. Firstly, there

not yet exist a unique data model for OODBS. Although there are similarities betwee

data models each OODBS uses its own approach. This fact and the fact that the da

interaction part can not be clearly separated from the computation part as explained

imply that the exchange of the underlying OODBS of an application is costly and may c

considerable changes in the application. Note, that there is a standard object-oriente

model under discussion6. However, the implementation of this standard in the vario

OODBS as well as the adherence to the standard by the applications will take some

and thus will not replace migration efforts in the near future. Secondly, the comme

OODBS market is currently booming. Several systems are competing for market leade

and it is not yet decided which of the systems will survive. Thus, in order to achieve gre

flexibility in the choice of the underlying OODBS as well as with respect to extensibility,

feasibility of migrating applications between different OODBS must be a prerequisite

deciding on one or the other of the existing OODBS. Lastly, OODBS applications are so

different customers who may own different OODBS. Thus, to make an OODBS applica

more competitive the application should either support various OODBS or it should be

to be migrated between various OODBS.

Two approaches to migration are possible: shallow migration and deep migration7. With

shallow migrationwe denote the task of re-engineering the source database applicatio

the target OODBS, whereasdeep migrationfocuses on the re-development of the applic

tion in order to exploit the whole functionality of the target OODBS. Shallow migrat
3

fferent

target

both

func-

tion

func-

ed in

ty of

ework

goal

on at

of all

mited

mpared

in the

d. To

of an

unique

DBS

ption.

data

data-

t

es

ting
requires a re-design of only those database components of the application that have di

semantics in the source OODBS and the target OODBS or that are missing in the

OODBS and, hence, have to be simulated. In our migration framework we consider

migration techniques.

The criteria for selecting one of the approaches can be grouped into two categories:

tional requirements and organizational restrictions. Additional functionality of informa

services is vital for any enterprise. A decision whether to use or not to use advanced

tionality is based on its contribution to the corporate goals and hence, must be includ

the decision model. Furthermore, organizational restrictions such as limited availabili

personnel must be considered. In our case study, based on the migration fram

presented below, we opted for the shallow migration for two reasons. Firstly, the main

of the case study was to investigate the applicability of several OODBS for the applicati

hand, rather than to re-develop the application totally every time to take full advantage

features of the target OODBS. Secondly, we had to perform the case study under li

personnel and time resources.

Object-oriented database systems have a short research and development history co

to relational database systems. Nevertheless, due to the amount and variety of OODBS

marketplace, migration strategies for OODBS applications are already badly neede

develop migration strategies properly we have to have a closer look at the features

OODBS. These are basically the same as for any other database system, but with a

meaning in the OODBS context. Table 1 gives a brief overview of the features of OO

providing both a general description of each DBS feature and a specific OODBS descri

Due to its influence on the understanding what OODBS really are we investigate the

model feature more closely in the following. An object-oriented database system is a

base system with anobject-oriented data model.At present, there exist several differen

object-oriented data models8, and thus, different data definition and manipulation languag

(DDL/DML). They are based either on object-oriented extensions of SQL, on exis

object-oriented languages like C++ (e.g., ONTOS9 and ObjectStore9, 10) and Smalltalk (e.g.,

Gemstone11), or they were newly developed such as the O2 data model9, 12.However, there is
4

uch as

iding

valu-

d to be

on of

1

term

m

p floor

rd” in

ating

rative

.

consensus that a data model to be called object-oriented has to exhibit core features s

complex object modeling, object identity, encapsulation, types, inheritance and overr

with late binding2. The features presented in Table 1 have also been used as top level e

ation schema for evaluating OODBS in Reference 13 and they have been demonstrate

a good starting point for evaluation in that context. A indepth discussion and comparis

OODBS is found in References 2, 9, 14, 15, 16 and 17.

The work reported in this paper was part of the ESPRIT project KBL (ESPRIT No. 51618,

19), whose goal was the design and development of KBL - aKnowledgeBasedLeitstand.

“Leitstand” is a german term referring to an electronic planning board system for short-

production scheduling and control20. In a computer-integrated manufacturing (CIM) syste

a Leitstand is located between the production planning and control system and the sho

control system. For a better understanding we use the term “electronic planning boa

the rest of the paper. In the KBL project the authors were responsible for incorpor

object-oriented database technology as underlying information store, and as integ

component between the electronic planning board and various other CIM components
5

. The

a data-

ally

of the

red for

rpose,

data-

volved

by the

ithin

rence

is a

erate

r steps

es are

S

nt, the

his

ting

, the

tion.
A FRAMEWORK FOR MIGRATING APPLICATIONS BETWEEN

OODBS

In this section we present a general outline for migrating applications between OODBS

proposed framework describes the phases that have to be performed when migrating

base application from a source OODBS to a target OODBS. The framework inform

describes what has to be done in each migration phase and it defines a useful order

steps. The framework helps to identify those database features that have to be conside

the migration leading to an implementation of the necessary code changes. For this pu

we have to look at all the components involved in the migration process: thesource OODBS,

the target OODBS, thesystem configurationand thedatabase application. A careful anal-

ysis of these components is absolutely necessary to gain insight into the application’s

base requirements and to explore how these requirements are met by each of the in

OODBS. The database features required by the application and the features supported

OODBS should be defined within the same set of criteria in order to be comparable. W

the proposed framework, these criteria are taken from the evaluation schema of Refe

13 presented in Table 1.

The careful selection of the set of criteria as an underlying basis for the migration

prerequisite for all further investigations, since all subtasks of the migration process op

on this set. These subtasks towards a successful migration may be grouped into fou

and ten substeps, which are shown in Table 2. Their input and output dependenci

depicted in Figure 1. The substeps are described in more detail below.

The analysis of the system configurationis of general interest. Since the source OODB

and the target OODBS are evaluated for a specific hardware and software environme

system configuration implicitly influences the evaluation of the OODBS involved. T

implies that, for example, the evaluation results of ObjectStore for the UNIX opera

system might be different from the evaluation results of ObjectStore for MS-DOS. Thus

analysis of the system configuration is an integrative component of the OODBS evalua
6

of

t of

sults in

sult of

e no

en-

anti-

t of

or

d in

ovide

tion).

ot

nsid-

hanges

when

ose to

nces in

defini-

rove

clus-

tures

mber-
The task of theanalysis of the OODBSis to evaluate, classify and compare the features

the two OODBS involved in the migration. The evaluation of the OODBS leads to a se

features supported by each system. Furthermore, a comparison of these features re

three subsets according to their effect on the migration. The three subsets are the re

mapping the source OODBS to the target OODBS (cf. also Figure 2):

• Overlapping featuresare supported by both OODBS in the same manner and hav

effects on the migration. Note, that two features might be syntactically similar or id

tical but semantically different. Only those features that are syntactically and sem

cally identical cause no problems for the migration and are included in the se

overlapping features.

• Candidate shallow migration featuresare supported only by the source OODBS

they are implemented differently in the two OODBS and thus, have to be simulate

the target OODBS. These features have to be considered in further detail to pr

the same database functionality as offered by the source OODBS (shallow migra

• Candidate deep migration featuresare only supported by the target OODBS but n

by the source OODBS and hence, would extend the database functionality if co

ered in the migration process (deep migration).

Due to the fact that there exist some interdependencies between different features, c

of the application code required by migrating one feature might cause changes

migrating another. Since related changes should be considered together we prop

cluster features that require associated changes. As an example, consider that differe

the storage management of the OODBS might require changes in the persistent class

tions. In this case the featurespersistenceand storage managementshould reside in the

same cluster. Such a cluster is calledcluster of interdependent functionalities. The clus-

ters of interdependent functionalities (CIF) relate the migration features in order to imp

the development of a strategy for the implementation process. Each of these resulting

ters forms a separate migration unit, which can be migrated independently from the fea

outside of this specific cluster. The membership in a cluster is independent of the me
7

ts of

ce and

ust be

deep

rated

ration

ion to

l

is of

have to

pplica-

f the

tlined

-

ently,

e

didate

quired

es are

rategy

ation

ration

plica-

set of

re not
ship in the set of shallow or deep migration features. Membership in one of the two se

migration features is determined by the semantics of the features provided by the sour

the target OODBS, whereas membership in a CIF is due to code dependencies that m

considered during the implementation of the migration. Note, that the migration of a

migration feature affects the shallow migration features in the same CIF, which are mig

in any case. However, the opposite is not true, since the decision to migrate deep mig

features is independent of their membership in a CIF and is solely based on the decis

benefit from the enhanced functionality of the target OODBS.

A carefulanalysis of the application’s database requirementsconsidering the data mode

requirements, querying and manipulation requirements, and integration requirements

great importance. It is a prerequisite to be able to select those database features that

be considered during the course of migration. The features that are necessary for the a

tion are collected in the set of database requirements (cf. Figure 2).

During migration analysis we compare these database requirements with the result o

DBS evaluation, which is represented by the three different sets of features as ou

above. The main task ofshallow migration analysis is to find the intersection of the data

base requirements with the candidate shallow migration features (cf. Figure 2). Equival

the main task of thedeep migration analysisis to find the intersection of the databas

requirements with the candidate deep migration features. Those features of the can

shallow migration features and the candidate deep migration features that are not re

by the application do not have to be considered anymore. Since the overlapping featur

provided by both OODBS in the same manner we do not have to develop a mapping st

for those and thus, we do not have to investigate them in the following steps of the migr

process. On the one hand, the result of the migration analysis is the set of shallow mig

features, which has to be migrated to obtain the same database functionality for the ap

tion as it had been available by the source OODBS. On the other hand, the result is the

deep migration features, which extend the database functionality because they a

provided by the source OODBS but are required by the application.
8

ions’

atures

ppears

rest to

ss and

duce

ndly,

tabase

deep

uish

t to

ther or

s on the

hat are

e the

BS.

the
One might argue that starting the migration process with the analysis of the applicat

database requirements and continuing the evaluation of the OODBS only with those fe

that are part of these requirements might reduce the analysis effort. This argument a

reasonable since in our proposal we analyze also features that are not of primary inte

the application. Yet, we selected this sequence of substeps for reasons of completene

to reduce the maintenance effort in case of future re-design projects. Firstly, it might re

the total effort when migrating other applications between the same OODBS. And seco

our approach has advantages in the case of future changes in the application’s da

requirements.

For the features residing in the set of shallow migration features and in the set of

migration features astrategy for their implementation into the target OODBS must be

developed. According to the two different kinds of migration features, we can disting

between amapping strategy for shallow migration and amapping strategy for deep

migration . By developing an implementation strategy one might realize that the effor

implement a specific feature exceeds the semantic gain provided by that feature. Whe

not a certain feature is migrated has to be decided on a case by case basis and depend

available resources. The result of this step is a mapping strategy for all those features t

included in the implementation of the migration.

The implementation step includes the coding of the necessary changes and furthermor

evaluation of the target application, i.e., the application running on top of the target OOD

The programmer is responsible forre-engineering the codeaccording to the developed

mapping strategies leading to the target application. The last substep comprises theevalua-

tion of the target application to verify if the desired database functionality is provided by

target application.
9

to

ility

. The

(see

rget

ased

ity of

We

DBS,

of the

onic

19.

for

trol

ure 3

.

lved

uction

cturing,

e the

then

y of

mplex

addi-
CASE STUDY: MIGRATING KBL FROM ONTOS TO OBJECTSTORE

In this section we describe the migration of the KBL application from ONTOS

ObjectStore. The main reason for studying migration in the realm of KBL, namely flexib

in terms of varying underlying OODBS, has already been discussed in the introduction

main reason for choosing ONTOS in the first place has been its support for flexibility

next section “A Brief Tour of ONTOS and ObjectStore”). ObjectStore was chosen as ta

OODBS due to a decision of our major industrial partners. The migration process is b

on the framework introduced in the previous section and demonstrates the applicabil

our approach. We first illustrate the functionality of the electronic planning board KBL.

then shortly present ONTOS and ObjectStore as the source OODBS and the target OO

respectively. Finally, we describe the migration process of KBL.

KBL - A Knowledge-Based Electronic Planning Board System

KBL was developed under the object-oriented paradigm and was implemented on top

OODBS ONTOS. The intention of this subsection is to give an overview of the electr

planning board system KBL.A further description of KBL is found in References 18 and

An electronic planning board is a computer aided graphical decision support system

interactive production scheduling. It interacts with the production planning and con

system on the one hand, and with the shop floor control system on the other hand. Fig

depicts the integration of an electronic planning board into the manufacturing process

At the production planning and control level a mean-term planning of products and invo

resources in the manufacturing process is carried out. As a result the master prod

schedule is used to co-ordinate related business services such as engineering, manufa

and finance. A further step called material requirements planning is used to determin

actual production requirements for a set of work orders. The work orders from MRP are

co-ordinated with the production facilities available. Due to changes in the availabilit

resources, like workforce and machine breakdowns, the capacity planning is a very co

task. Splitting of lots, lead times and alternative routings are only some of the arising
10

leased

hine

ed and

incon-

ntrol

e esti-

-line

uction

ed-

to the

timi-

st be

ue to

ter-

ulates

at the

elec-

nts:

others

shop

ace

s to

ance
tional problems. When capacity limitations have been compensated, the orders are re

for production. In order to cope with unforeseen circumstances in production, like mac

breakdowns and shortage of materials, the production process has to be supervis

controlled. Shop floor control manages the production process and keeps track of the

sistencies between the production plan and the actual production. A shop floor co

system requires information about the current location of parts, tools, and operators, th

mated completion time, and remaining operations. This information must be kept on

and gathered through shop floor data collection terminals connected with each prod

facility or workcell. Highly integrated with the shop floor control is the shop floor sch

uling. Shop floor schedulers or electronic planning board systems assign work orders

appropriate workcells20. The scheduling process has to be performed under certain op

zation criteria. The manufacturing throughput time has to be minimized, due dates mu

satisfied, and the utilization of resources must be optimized, to mention just a few. D

the complex task of multilevel optimization this is performed by heuristics at a highly in

active level. The system is used as an electronic planning board and the operator manip

Gantt diagrams representing work orders and resource data. Data collection systems

shop floor level for reporting machine breakdowns and order completion extend an

tronic planning board to a highly flexible scheduling tool.

KBL follows the functionality described above and is made up of the following compone

• Knowledge Representation and Acquisition: The information relevant for scheduling

and control needs to be represented in a flexible manner. It must support besides

the representation of scheduling heuristics, scheduling evaluation functions and

floor monitoring tools.

• Scheduling Control: The Scheduling Control subsystem represents the interf

between the application and the DBS. It provides DBS functionality, interface

other application processes and basic scheduling routines.

• Simulation: Various schedules can be simulated in order to evaluate the perform

of schedules under different constraints.
11

ly

rson-

ling

fined

nd

iative

in

duling

ning

shop

and

ments

en in

onsid-

i-

BS

hree
• Interactive Advisor: KBL is equipped with an Interactive Advisor, which constant

analyzes the status of the whole system. It provides the production scheduling pe

nel with scheduling data and advice for alternate actions.

• Evaluation: The Evaluation Component allows the assessment of different schedu

strategies. A detailed analysis based on built-in evaluation functions and user-de

evaluation criteria should help to improve the quality of the scheduling process.

• Communication Interfaces: Communication interfaces to the production planning a

control system as well as to the shop floor control system are supported.

Based on the functionality described aboveKBL’s database requirementscan be identified

as the following21, 22: advanced data models, meta data access, navigational and assoc

access, version management of schedules, and distributed data processing.Advanced data

modelsandmeta data managementare essential for modeling the scheduling information

the knowledge base. Given the tight integration of the knowledge base and the sche

control a planning board system must provide bothnavigational accessof highly interre-

lated data andassociative accessby querying collections of data.Version managementis

required for simulating different schedules of work orders. Since an electronic plan

board system is integrated with the production planning and control system and the

floor control systemdistributed data processingplays an important role. However, in the

current prototype of KBL it was not considered a main requirement on the critical path

thus, abandoned from the list of database requirements. When we refine these require

we come up with a list of relevant database features to be evaluated for KBL as giv

Table 3. These features serve as the basis for the migration framework and must be c

ered in detail during the migration process.

The current implementation of KBL contains theKnowledge Representation and Acquis

tion component, theScheduling Controlcomponent, and theSimulationcomponent. The

Interactive Advisor,theEvaluation, and theCommunication Interfaceare not included in the

prototype implementation. KBL was implemented on top of the object-oriented D

ONTOS in the first place. The implemented prototype is structured into the following t
12

ses

a and

e data-

duling

s use

base.

func-

e

ch as

as

ctivity

t, and

anu-

d in

nd

o the

ation
modules: Scheduling Toolkit Module, Planning Board Module and Simulation Module.

TheScheduling Toolkit Modulerepresents the core of the KBL system. It includes all clas

and methods necessary for the scheduling of orders. It contains all production dat

manages the constraints and capacity models. Furthermore, it controls access to th

base. The Knowledge Representation and Acquisition component, and the Sche

Control component are implemented by the Scheduling Toolkit Module. ThePlanning

Board Moduleimplements the graphical user interface. TheSimulation Moduleimplements

the Simulation component and allows to schedule orders automatically. All the module

the Scheduling Toolkit Module for the management of persistent objects in the data

The KBL database schema follows the class hierarchy depicted in Figure 4. The basic

tionality of the Scheduling Toolkit is implemented in the classesAgent, Activity, andSTRe-

source (highlighted in Figure 4). The classActivity is used to describe operations in th

planning board environment. These include the manufacturing specific operations su

‘drilling’, ‘milling’ etc. The class STResource describes any kind of resources, such

materials, machines and workers. Instances of the classAgent are used to relate activities

and resources and contain additional information about the status of the resource/a

relationship. This includes whether the activities have been already scheduled or no

whether the activities consume or produce resources and to which rate.

In conjunction with other classes such asTimeStateDescriptor, IntervalObject, andAgent-

Constraint the classes described above represent a flexible environment for modeling m

facturing processes. A detailed account of the KBL class hierarchy can be foun

Reference 19.

A Brief Tour of ONTOS and ObjectStore

In the following we briefly describe the main features of the OODBS ONTOS a

ObjectStore. For further information we point to References 9, 10, 13 and 14 and t

product literature. Based on our evaluation schema for OODBS we group the evalu

features of ONTOS and ObjectStore as depicted in Table 4.
13

++.

ata-

++. It

page

f the

rage

exten-

SQL-

logical

to meta

high

reex-

thods

-

and

server.

client/

major

C++

d as

h of

ts are

d. The

mount

ation,

pplica-

isting

tStore
ONTOS Release 2.2 is based on C++, which implies that the DDL/DML is basically C

According to our classification of constructing OODBS in the introduction, in ONTOS d

base functionality has been incorporated into the existing object-oriented language C

operates in a client/server environment, where the server architecture relies on the

server paradigm. It is available on the major workstation platforms. The strength o

product lies in its extensibility and in the flexible meta data management. The sto

manager and the transaction manager can be modified in order to support user-defined

sions. Databases can be accessed either with C++ as DDL/DML or with an interactive

Interface. The objects are accessed and referenced through indirect references called

object references or through direct references physical object references. The access

data is fully supported. The dynamic creation of new classes and methods provides a

degree of flexibility. Persistence is reached by inheritance from a system supplied p

isting object class. Each persistent class requires the implementation of several me

(get_direct_type, put_object, APL-Constructor, delete_object) in order to guarantee consis

tent management of persistent objects. ONTOS implements object level locking

provides transactions with checkpointing. A transaction may access a single database

Version management is not supported.

Similar to ONTOS, ObjectStore Release 2.0 is also based on C++ and operates in a

server environment. The ObjectStore server is a page server. It is also available on the

workstation platforms. It provides access to the database either with C++ or with a

extension called ObjectStore DML: Both C++ and ObjectStore DML can be regarde

DDL/DML of ObjectStore. An SQL-like query language is not supported. The strengt

ObjectStore is its memory architecture and the resulting performance benefits. Objec

mainly accessed via direct references, although indirect references are also supporte

use of direct references implies some restrictions on the size of the database, on the a

of data that is accessible within a single transaction, and on database reorganiz

however, the advantages of direct references dominate their weaknesses for certain a

tions. Persistence is orthogonal to the type system, i.e., independent of any preex

object class, and thus provides advantages in case of migrating applications to Objec
14

tional

rms of

OS.

odi-

via an

new

ts the

plicit

olved

dy to

ration

ema

re in

of the

f each

ctions

re. It’s

tures.

strat-

ds of

pical

S and

es’).
(for an in-depth discussion of this point see section 4). ObjectStore provides naviga

access via object references and associative access via queries over collections. In te

extensibility and schema access, ObjectStore does not provide the flexibility of ONT

The meta object protocol (MOP) only provides access to class descriptions. Dynamic m

fications of class descriptions are not supported. Static schema evolution is supported

object migration tool converting the instances of the old schema to conform to the

schema. ObjectStore provides a sophisticated versioning mechanism that suppor

versioning of configurations of objects. Concurrent database access is controlled by im

page level locking and closed nested transactions.

With the discussion of the database requirements of KBL and the evaluation of the inv

OODBS we have completed the first phase of the migration process and are rea

describe the migration analysis.

Migration Analysis

In this subsection we discuss the second step of the migration process, namely the mig

analysis for migrating KBL from ONTOS to ObjectStore. Based on the evaluation sch

of Reference 13, which is discussed in Table 1 and applied to ONTOS and ObjectSto

Table 4, we investigate the second step of the migration process. The input and output

second step is presented in Figure 5 and 6, respectively. Figure 5 shows the flow o

feature through the first two steps of the migration process. Figure 6 depicts the interse

of the database requirements and the features supported by ONTOS and ObjectSto

beyond the scope of this paper to discuss mapping strategies for all migration fea

Instead, after discussing the grouping of the features depicted in Figure 5 the mapping

egies for example features taken from each of the migration paths are introduced.

Both ONTOS and ObjectStore are based on the C++data model. They both use the C++

basic data types in addition to some complex data types, e.g., to support various kin

collections. Furthermore, in both OODBS the C++ data model is extended to provide ty

database features such as transaction support. Concerning basic data types, ONTO

ObjectStore have overlapping functionality (see also Section ‘Basic Data Typ
15

its own

n

data

n the

se

ships,

verse

This

are

ts and

ships

her-

allow

hereof

epa-

t. In

allow

and

n

to the

nt

bjects
Concerning complex data types and database extensions, each data model uses

syntax and semantics. Thus,data modelis included in the candidate shallow migratio

features. Since the functionality of the data model is crucial for the KBL application the

model is part of the application’s database requirements, and thus, it is included i

shallow migration features, for which a strategy must be developed.

The featureconstraints and triggersis not supported by ONTOS. Since we classify inver

relationships as a kind of constraints and since ObjectStore supports inverse relation

we add this feature to the candidate deep migration features. Note, ONTOS offers in

relationships only for dynamically created types but not for statically created ones.

feature is also included in KBL’s database requirements since some objects in KBL

related to each other by an inverse relationship. As a consequence, we add constrain

triggers to the set of deep migration features. The mapping strategy for inverse relation

are presented in Section ‘Inverse Relationships’.

Persistenceis required by any database application. In ONTOS it is implemented by in

itance and in ObjectStore by declaration. Thus, we have to include persistence in the sh

migration features and have to develop a mapping strategy. For a detailed account t

see Section ‘Persistence’ and Section ‘Evaluation Report’.

In ONTOS, it is possible to provide each object with a synonym, which is stored in a s

ratedata dictionary. The synonym can serve as unique identifier for the specific objec

ObjectStore, nothing similar exists. Therefore, the feature is part of the candidate sh

migration features. In KBL, synonyms are heavily used for the activation of objects

thus, this feature becomes a shallow migration feature.

The analysis of thetools is only interesting in terms of supporting the implementatio

process but it has no effects on the application itself. The feature has been added

candidate deep migration features, but it does not reside in any of the resulting sets.

Query management is implemented differently in both systems. In ONTOS, persiste

objects are retrieved via their synonyms or via an instance iterator over all persistent o
16

e data-

L, like

set of

des

opti-

n is a

tStore

ment of

e

icated

uired

is

n to

nts of

pti-

s, we
that belong to a specific class and its subclasses. In ObjectStore, the entry points of th

base are persistent root objects. Due to these different access methods and since KB

any other database application, requires query management, it is included in the

shallow migration features.

Query optimization is also part of the database requirements of KBL. ONTOS provi

only limited query optimization. ObjectStore supports indices and clustering for query

mization. Thus, query optimization is a member of the deep migration features.

Since C++ is thehost programming languagerequired by KBL and since both OODBS

provide an interface to C++, this feature is part of the overlapping features.

ONTOS and ObjectStore provide different concepts forschema evolutionbut it was not

considered a requirement in the KBL prototype implementation. Thus, schema evolutio

member of the candidate shallow migration features, only.

Both systems supply neither logical nor physical data independence, however, Objec

provides some object migration features. Thus,change controlresides in the set of candi-

date deep migration features. Since schema evolution has not been regarded a require

the KBL prototype, change control is not regarded either.

ONTOS does not support aversioning mechanism. As a consequence, in KBL th

versioning of the schedules has to be simulated. ObjectStore provides a sophist

versioning mechanism including linear and branching versions. Since versioning is req

by KBL but only supported by ObjectStore, it is part of the deep migration features.

Concerningconcurrency control, ONTOS is superior to ObjectStore since in ONTOS it

possible to explicitly lock objects and to specify an optimistic locking strategy in additio

a pessimistic one. The optimistic lock strategy is also part of the database requireme

KBL and thus, included in the shallow migration features. Since the simulation of an o

mistic lock strategy in ObjectStore would have gone far beyond our available resource

restricted the migrated KBL application to the use of a pessimistic lock strategy.
17

ver-

y from

ol is

cess is

cess

to be

lm of

ed

both

otype

mech-

and

ture

xport

ration

tore
Recoveryis part of the database requirements of any application. It is included in the o

lapping features since ONTOS and ObjectStore provide automatic database recover

volatile storage but do not provide disk crash recovery.

Authorization is also included in the overlapping features since data access contr

supported at the database level, both in ONTOS and in ObjectStore. Database ac

controlled by the UNIX file access protocol. KBL does not require any specific ac

control mechanisms.

Both systems support a client/serverarchitecture, which is required by KBL. Since

ONTOS and ObjectStore are based on a page server we consider the architecture

similar in both systems and to be part of the overlapping features.

One of the most important differences between ONTOS and ObjectStore in the rea

storage managementis the disk to in-memory mapping and the activation of referenc

objects. In addition, the facilities for the use of indices and clustering are different in

systems. Storage management is a shallow migration feature since the KBL prot

requires both the activation of referenced objects and the use of indices and clustering

anisms.

The featuredistribution is a candidate shallow migration feature because ONTOS

ObjectStore provide different concepts for distribution. It is not a shallow migration fea

since the KBL prototype disregards distribution.

ONTOS does not provide any import and exportinterfaces. ObjectStore offers a third party

tool to support an import interface from STEP/Express. Nevertheless, import and e

interfaces are not required by KBL. Thus, interfaces are part of the candidate deep mig

features but do not have to be considered for the migration of KBL.

KBL was developed for SUN workstations in a TCP/IP network. ONTOS and ObjectS

support this environment. Therefore, the featureoperational conditions is included in the

overlapping features.
18

luation

le paths

se the

DBS

d into

lication,

ata-

host

of the

nds.

f the

ts of

the

rce and

ng the

erated

tabase

called

TOS
Mapping Strategy for Selected Features

In this subsection we develop a mapping strategy for three selected features of the eva

schema. These (sub)features are chosen in such a way that each of the three possib

through the migration process is covered:

• shallow migration path:persistence

• deep migration path: inverse relationshipsas part of constraints & triggers

• overlapping path: basic data typesas part of the data model

In the following, we present the mapping strategy for each of these features. To increa

understanding on how to use OODBS we briefly investigate the development of OO

applications beforehand, both in general and based on the selected OODBS.

In general, the development of an object-oriented database application can be divide

the following phases: (a) development of the database schema and the database app

(b) registration of the schema in the OODBS, and (c) compilation and linking of the d

base application. Most of the commercial OODBS extend some object-oriented

programming language and generate the database schema during the compilation

application. Thus, the development of the application is controlled by Makefile comma

Table 5 and Table 6 show the relevant fragments of Makefiles for the compilation o

KBL application in ONTOS and in ObjectStore, respectively. Besides the typical conten

a Makefile such as compiling and linking instructions, they also include directives for

creation of the database schema. The database schema consisting of the C++ sou

header files is generated during compilation and stored for subsequent access duri

execution of the database application. In ObjectStore, the schema information is gen

by the compiler and is stored in dedicated databases called Compilation Schema Da

and Application Schema Database. ONTOS uses a database administration tool

DBATool for the creation and registration of database schemes. Furthermore, ON
19

s. In

ata-

ser is

abase

tion.

. In the

TOS

ions,

most

ent of

ted in

wing

te an
allows the assignment of physical disk space to databases via Makefile directive

ObjectStore, this task is controlled by the file system.

The two approaches mainly differ in the flexibility of database creation. In ONTOS, d

bases must be generated and specified with the DBATool while in ObjectStore, the u

free to generate databases during run-time of the application. However, from the dat

administration point of view this approach lacks single-point control of database genera

As mentioned above, the database schema is contained in C++ source and header files

following subsection, we describe the structure of the persistent class definitions in ON

and ObjectStore, respectively. Basically, the syntax is similar to C++ class definit

however, each of the OODBS extends the C++ syntax in order to specify persistence.

Persistence

In this subsection we demonstrate the development of a mapping strategy for one of the

interesting features in the set of shallow migration features of Figure 5, namelypersistence.

In ONTOS, persistence is achieved by inheritance from the ONTOS specific classObject. In

ObjectStore, it is achieved by the declaration of persistent variables. For the developm

a mapping strategy it is necessary to further investigate how persistence is implemen

ONTOS and ObjectStore, respectively. To achieve persistence in ONTOS, the follo

conditions must hold true:

• Classes must have an inheritance path through the ONTOS classObject.

• Classes must have a special constructor called “activation constructor” to activa

object from disk to cache memory.

• Classes must have a special member function calledgetDirectType().

• If the class has a destructor, it should have a function calledDestroy() to deactivate an

object from main memory but not from disk.

• Classes should have the functionsputObject() anddeleteObject() to

write / delete an object to / from the disk
20

tStore,

gh a

ct is

for the

ken

nsion

me-

s

This

at the

h an

e. The

efer-

Store

the

ular

at is

se of
If the definition of a class fulfills these requirements, and the member functionputObject is

invoked on an instance of this class, this specific instance is made persistent. In Objec

the class definition for a persistent object includes neither an inheritance path throu

specific predefined class nor specific functions similar to those in ONTOS. An obje

made persistent by declaration. There is no need to call an operation likeputObject to write

it to secondary storage.

The code fragments presented in Table 7 summarize the persistent class definitions

classScheduleAgent in ONTOS and ObjectStore, respectively. The examples were ta

from the KBL application and compare the definition of persistent classes and exte

management.

As the persistent class definition is also influenced by the featuresstorage management,

query management, anddata dictionary, we putpersistencetogether with these features into

a cluster of interdependent functionality (CIF) according to step 1 of the migration fra

work (see Table 2). Althoughconstraints & triggersand query optimizationare also

included in this CIF, these features are omitted when performing a shallow migration.

The clustering withstorage managementis due to the fact that in ONTOS direct reference

are main memory pointers and behave like main memory pointers in every respect.

implies that the traversal of a direct reference requires the programmer to ensure th

referenced object is already in main memory. Otherwise the program will terminate wit

exception raised in the best case, or continue with unexpected values, in the worst cas

other possibility is to use - as in KBL - indirect references via the classReference. Refer-

ence allows objects to be referenced by using a format that is valid whether or not the r

enced object is currently in main memory. TheBinding() function defined for the class

Reference returns a pointer to the referenced object and activates it if necessary. Object

provides a very comfortable concept called ‘Virtual Memory Mapping Architecture’ for

activation of referenced objects. In ObjectStore, all pointers take the form of reg

memory pointers, similar to direct references. A pointer to a persistent object th

currently not in main memory has an unmapped virtual-memory-address. In the ca
21

d the

ng the

irect

etween

ctStore

efer-

d

belong

tore,

here-

o this

m this

or

bjects.

simu-

ding

f

have

stance

rted
dereferencing the virtual-memory-pointer, a fault is signaled by the violation handler an

segment containing the object is transferred into the client’s cache. The page containi

object is mapped into the virtual memory. ObjectStore provides also some kind of ind

references. They are mainly used for dereferencing objects in other databases and b

transaction boundaries. Because of the convenience of using direct references in Obje

we decided to replace the indirect references in the ONTOS version of KBL by direct r

ences in the ObjectStore version.

The clustering withquery managementstems from the fact that ONTOS offers a so calle

instance iterator as entry point to the database, which allows access to all objects that

to a specific class and its subclasses. In order to simulate this functionality in ObjectS

each persistent class includes a static persistent class variable namedextent with domain

os_Set containing all the instances of this class and of all subclasses, respectively. T

fore, the constructor has to include a call that inserts each newly created object int

static set, and the destructor must include a call that removes each deleted object fro

set, equivalently.

The clustering withdata dictionaryis due to the fact that ONTOS provides synonyms f

each persistent object. These synonyms serve as unique identifiers for the specific o

The name spaces of the synonyms may be organized in hierarchies. This behavior is

lated in ObjectStore by embedding an identifying property (char *ivName) into the root

class of the KBL application,KBLObject (cf. Figure 4 and Table 7).

In Table 8, we exemplify the use of the instance iterator in ONTOS and the correspon

simulation in ObjectStore. The example methodgetScheduledSAList operates on the set o

ScheduleAgent objects that have been considered during the scheduling process and

already been scheduled on a specific resource. In ONTOS, it is possible to create an in

iterator for the classScheduleAgent to iterate over all objects belonging toScheduleAgent.

Those members ofthe ScheduleAgent extent that have already been scheduled are inse

into a list, which is returned by the functiongetScheduledSAList. Since ObjectStore does

not provide instance iterators we include the static persistent class variableextent in the
22

ped in

made

ties.

t

jects

hips

ps are

nship

rlying

lation-

bject

bject

Store

ter-

tically

ated

sible

on

sub-

re
ScheduleAgent class definition containing all instances of the classScheduleAgent. The

selection of the scheduledScheduleAgent objects isperformed by querying the setSched-

uleAgent::extent.

Inverse Relationships

In the following we present the mapping strategy of the subfeatureinverse relationships,

which is part of the evaluation featureconstraints and triggers. Inverse relationships are

included in the deep migration features, for which a mapping strategy has to be develo

case of deep migration. In ObjectStore, declarations of inverse relationships have to be

within the persistent class definition. Due to this fact, the featureconstraints and triggers

and the featurepersistence must reside in the same cluster of interdependent functionali

Before presenting a strategy for the featureinverse relationships, we first define the concep

of inverse relationships. An inverse relationship is a binary relationship between two ob

or sets of objects being maintained in both directions. Accordingly, inverse relations

between database objects may be of arity 1:1, 1:n, or n:m. Usually, these relationshi

implemented by references between the related objects or by the use of explicit relatio

objects. The inverse relationships are automatically maintained according to the unde

semantics. Consider object A and object B to be related to each other by an inverse re

ship. Whenever a reference is established from object A to object B, a reference from o

B to object A must be also established. Conversely, when a reference from object A to o

B is deleted, the reference from object B to object A has to be deleted in turn. Object

allows the modelling of inverse relationships with pointer-valued or collection-of-poin

valued instance variables, called data members in ObjectStore. The OODBS automa

maintains the integrity of the inverse relationship. Binary relationships of statically cre

types in ONTOS do not provide this semantics. In ONTOS, the programmer is respon

for maintaining the integrity of binary relationships by explicit calls within the applicati

code.

As an example, consider the relationship between a manufacturing activity and the

activities into which it can be divided. In KBL, activities such as drilling or melting a
23

t of

each

t the

here

main-

ities

per-

ple-

hen-

re that

e, the

o this

to be

rs in

es are

efer-

d and

eature

exists

tegrity

set of

with

e rela-
structured in an activity hierarchy. This means that a root activity is built up by a se

subactivities, which can also be made up of subactivities and so on. Furthermore,

subactivity can be part of more than one superactivity. Therefore, each activity, excep

root activity, has one or more superactivities and it might have several subactivities. T

exists a n:m-relationship between the superactivities and the subactivities. In order to

tain the integrity it is necessary for each newly created activity to insert its superactiv

into the set of superactivities, and subsequently to insert the activity itself into all its su

activities’ sets of subactivities.

In the ONTOS implementation, the management of inverse relationships is explicitly im

mented in the constructor using references between the related objects (cf. Table 9). W

ever an activity is created and the constructor gets executed the programmer must ensu

references are installed from the newly created object to its superactivities. Furthermor

programmer is responsible for the installation of references from these superactivities t

newly created activity. In ObjectStore it is possible to define the set of superactivities

related to the set of subactivities by an inverse relationship, called inverse membe

ObjectStore (cf. Table 9). In this case the programmer has only to ensure that referenc

established from the newly created activity to its superactivities. The corresponding r

ences from the superactivities to the newly created activity are automatically establishe

maintained by the database system. Thus, the strategy for a deep migration of the f

inverse relationships should be the following:

(a) Define an inverse relationship between two data members whenever there

a binary relationship that should be automatically maintained.

(b) Remove the user-defined code segments that have been used to ensure in

so far.

In the left column of Table 9, we present the example of the constructor of the classActivity

described above. Note, that in the ONTOS application the set of superactivities and the

subactivities are implemented as lists. ObjectStore supports inverse relationships

system-maintained references between the related objects. The declaration of invers
24

perac-

ally

nta-

ionship

es that

y both

x data

There-

lop a
tionships affects each manipulation of these relationships. For example, whenever a su

tivity is removed from an activity’s set of superactivities, this activity is also automatic

removed from the superactivity’s set of subactivities. Thus, during migration impleme

tion code changes have to be made to all procedures that operate on the inverse relat

between superactivities and subactivities, such as the destructor and the procedur

remove and add new superactivities.

Basic Data Types

As mentioned above, ONTOS and ObjectStore are based on the C++ data model. The

use the C++ basic data types and in addition some database system-specific comple

types. Since these complex data types are different in both OODBS, the main featuredata

model is included in the set of shallow migration features. Yet, the subfeaturebasic data

typesis an overlapping feature because both systems use the C++ basic data types.

fore, calls that operate only on the C++ basic data types (e.g.,int foundSlotNum = 0;) do not

have to be changed during migration. As a consequence, we do not have to deve

mapping strategy for the (sub)feature basic data types.
25

plica-

appli-

tion

asize

. We

n of

ation

ource

on-

on the

and

anage-

facil-

ather

tems.

ersis-

stem-

imple-

mmer.

ns that

sistence

s not

omes
EVALUATION REPORT

In this section we discuss the experiences gathered during the migration of the KBL ap

tion from ONTOS to ObjectStore. The purpose of the case study was to investigate the

cability of the migration framework described above. Note, that neither the implementa

of the migration process was carried out in a production environment nor did we emph

the optimization of the application.

We first describe our experiences with the involved OODBS - ONTOS and ObjectStore

then present a qualitative evaluation of our migration framework including a discussio

our approach and an outlook on further scenarios that one may face in further migr

projects. Finally, we present a quantitative evaluation of our case study including the s

and target application as well as the involved personnel resources.

ONTOS and ObjectStore

In Section ‘A Brief Tour of ONTOS and ObjectStore’ a concise introduction of the functi

ality of the two OODBS has been given. We can conclude that both systems are based

same DDL/DML, namely C++, they operate in a distributed workstation environment,

they provide basic database functionality such as transaction management, query m

ment, and limited recovery. Due to the absence of user management facilities, security

ities, and ad-hoc querying facilities, both ONTOS and ObjectStore may be classified r

as persistent programming languages than as full-fledged database management sys

The main difference between ONTOS and ObjectStore is their approach to provide p

tence. ONTOS requires, firstly, that each persistent class inherits from a predefined sy

specific class, and secondly, that additional methods for each persistent class are

mented. Thus, in ONTOS persistence is not transparent at all to the application progra

In ObjectStore, persistence is reached by declaration of persistent variables. This mea

in the latter case persistence and types are orthogonal in the sense that the feature per

is realized without involvement of some predefined type, while in the former case this i

true. The main advantage of ObjectStore’s approach to provide persistence bec
26

another

t have

addi-

nging

tion’s

face

Store

jects.

much

e for

udy. A

nufac-

. The

base

ation

ed in

work

both

ct any

rt for

n of

ation
apparent when an application, having used no database system so far or having used

OODBS, is ported to ObjectStore. In this case, the application’s class hierarchy doesn’

to be changed. In contrast, this would be necessary with ONTOS in the sense that an

tional superclass, the predefined persistent classObject, has to be included in the list of

superclasses that a specific class inherits from. This may cause different problems, ra

from name clashes due to multiple inheritance to a complete change of the applica

class hierarchy if only single inheritance is supported. In our case study we did not

these problems, since we were migratingfrom ONTOSto ObjectStore.

In addition, ONTOS provides automatic management of class extensions while Object

requires the implementation of user-defined containers to collect persistent ob

However, it can be easily implemented (see Table 7 and 8). Furthermore, we noticed a

tighter integration of ObjectStore with the C++ programming language than it is the cas

ONTOS.

As mentioned above, we did not consider performance as a main issue in our case st

comparison of the two systems based on the OO1 benchmark23 and the OO7 benchmark24

can be drawn from the benchmark results published by the respective database ma

turers.

Discussion of the Framework

The migration of database applications is part of the software maintenance process

much tighter integration of host programming languages with object-oriented data

systems is one of the main characteristics of OODBS and thus requires novel migr

techniques. This was the starting point for developing the migration framework present

the previous sections. The experiences we gained are the following. Firstly, the frame

supports a structured thus observable approach to the migration problem by providing

shallow and deep migration. Due to this comprehensible approach it is easier to dete

missing link and thus it is less errorprone. Secondly, the framework reduces the effo

further migrations between OODBS because of the available analysis informatio

OODBS gained during the first step of the migration process. Lastly, the detailed evalu
27

d thus

hese

carried

sing

s and

hey do

y, yet

to

ion to

ation.

since

ee also

tion -

S

ation

ilar

former

ferent

anip-

ed on

ration
of OODBS shed some light on the intrinsics of object-oriented database systems an

help to combine applications with OODBS in a more comprehensible way. However, t

experiences have to be judged in the right context, i.e., only one case study has been

out so far, and we are not aware of any other OODBS migration experience without u

the presented framework. Migration analysis from non-relational to relational database

from relational databases to object-oriented databases are available but we feel that t

not serve as a serious basis for a comparison.

In the following we discuss scenarios that were not directly covered in our case stud

may be of concern when applying the presented framework.

What if ...

... the database systems follow different approaches to reach persistence?

The experiences mentioned above concern the migration of KBL from ONTOS

ObjectStore. As already stated, the architecture of ObjectStore supports the migrat

ObjectStore, not only but also due to the fact that persistence is implemented by declar

In addition, in the KBL case study the size of the application decreased considerably

several methods necessary to implement persistence in ONTOS could be deleted (s

next subsection on quantitative evaluation). Migrating applications in the reverse direc

from ObjectStore to ONTOS - is more difficult. Migrating from ObjectStore to ONTO

requires persistent classes to inherit from the ONTOS classObject and to implement addi-

tional methods (see Section ‘Persistence’). Consequently, the size of the applic

increases. In contrast, migrating applications between OODBS that follow a sim

approach to reach persistence, e.g., ONTOS and Versant, requires less effort than the

case and has minor effects on the size of the application code.

... the database systems provide different host programming languages and/or dif

DDL/DML?

A host programming language is the language in which the application to access and m

ulate the database is written. In contrast, the DDL/DML is the database language bas

the concepts of the underlying data model. Our case study has shown that the mig
28

host

ource

y the

of the

ould

If the

DDL/

f the

migra-

s. Last

target

of the

y is an

tics

rele-

s that

proach

lude

lt the

/Unix

e envi-

ration

cuses

ystem

xplic-
framework is well suited for the migration between OODBS supporting the same

programming language. If the set of host programming languages differs between the s

DBS and the target DBS, more specifically, if the host programming language used b

database application is not supported by the target DBS a complete re-development

application becomes necessary. In general, this is a very difficult and costly task. One w

try to use tools like cross-compilers to make the translation process less errorprone.

host programming language of the application is supported by the target DBS yet the

DML of the source DBS and the target DBS are considerably different, major changes o

database interaction part of the application become necessary. Examples include the

tions between SMALLTALK-based database systems and C++-based database system

but not least, if the host programming language of the application is supported by the

DBS and both DBS are based on similar yet not identical data models minor changes

database interaction part of the application are necessary. The presented case stud

example thereof. If the DDL/DML differ only in minor respects such as different seman

of a basic data type, e.g., different ranges of floating point variables, the behavior of the

vant parts of the application can be simulated by wrapper functions or wrapper classe

mimic the appropriate behavior. In all three cases discussed above, the structured ap

of the proposed framework helps to accomplish the migration.

... the database systems are operated in different system environments?

System downsizing from host-based computing to client/server computing may inc

changes of the operational conditions of the target database application. As a resu

underlying operating system or user-interface system may change, e.g., from a X

based to a Windows/MS-DOS based environment. These changes are reflected in th

ronment analysis of the migration framework; either as changes in the system configu

or as resulting changes in the database system’s functionality. Since our framework fo

on the database part of the application migration user interface specific or operating s

specific migration techniques such as interface gateways may be applied but are not e

itly mentioned in our framework.
29

the

y.

m’

the

s 61

total

for

vel-

n. This

te re-

C for

14%

uling

oC

also

of the

vely.

uling

ard

g. It

r the

ed in

tains

ns in
Quantitative Evaluation

In our quantitative evaluation we concentrate on two metrics: thesize of the application code

as a quantitative product metric and theinvolved personnelas a metric for man power

involved in the migration process. Both the comparison of the application sizes and

involved personnel are informative and provide a measure of productivity and efficienc

As pointed out in Section ‘KBL - A Knowledge-Based Electronic Planning Board Syste

the KBL application consists of three main modules: the Scheduling Toolkit Module,

Simulation Module, and the Planning Board Module. The source application comprise

classes (see Figure 4) and about 46000 lines of code (LoC, without comments). The

number can be divided into 27400 LoC for the Scheduling Toolkit Module, 10400 LoC

the Simulation Module, 7300 LoC for the Planning Board Module, and 830 LoC for de

opment utilities such as Makefiles and database loading tools.

The target application comprises the same number of classes as the source applicatio

is due to the fact that a shallow migration has been carried out rather than a comple

design of the application. No additional classes had to be implemented. The total Lo

the migrated application was reduced to about 40000. This yields a reduction of

compared to the original size of the application. In the target application, the Sched

Toolkit Module comprises about 21000 LoC (76%), the Simulation Module 10500 L

(101%), and the Planning Board Module 7200 (99%). The development utilities

decreased in the amount of code (680 LoC) (82%). Table 10 gives a detailed overview

application’s size and code modifications based on ONTOS and ObjectStore, respecti

Our analysis of the application sizes shows a considerable reduction for the Sched

Toolkit Module while the other modules, namely Simulation Module, Planning Bo

Module, and utilities, show only minor differences in size. This analysis is not surprisin

mainly stems from a simpler class definition in ObjectStore. The additional methods fo

manipulation of persistent objects that must be implemented in ONTOS can be omitt

ObjectStore (-29%). A code inspection showed that the Scheduling Toolkit Module con

most of the class definitions and thus benefits from the simpler class declaratio
30

had

TOS

ss are

upport

ue to

code

es in

ent of

rably

men-

, and

n 14

d the

with

sider-

es a

tion

hole

tion

lved

other

ration

ctivity

plica-

ps to
ObjectStore. The remaining modules contain only few class definitions. In contrast, we

to implement extension management for persistent classes in ObjectStore (+5%). ON

provides an automatic management of class extensions. The instances of a cla

collected in a container with the same name as the class. Since ObjectStore does not s

this feature it has to be provided by the application programmer. Yet the reduction d

simpler class definitions exceeded the effort for implementing class extensions. The

changes in the Simulation Module and the Planning Board Module are due to differenc

the implementation of query management (see Table 7 and 8) and in the managem

inverse relationships (see Table 9). The size of the Utilities Module changed conside

due to the different makefiles of the two database systems (see Table 5 and 6).

Considering the personnel involved in the migration process we distinguish three imple

tation phases: analysis of the application and the involved OODBS, migration analysis

implementation of the migration. The whole migration process could be carried out i

weeks with 40 hours per week. The analysis of the application and of the OODBS, an

migration analysis took about 8 weeks. Note, that there was hands-on experience

ObjectStore beforehand, which helped to reduce the time to evaluate ObjectStore con

ably. The implementation of the migration was carried out in 6 weeks. Table 11 giv

detailed overview of the human resources involved. In the initial planning of the migra

we scheduled a bigger effort for the actual implementation process. Evaluating the w

migration process we have identified two reasons for the comparably low total migra

effort of 14 weeks. On the one hand, knowledge of the application and/or of the invo

database systems saves time and thus increases migration productivity locally. On the

hand, adherence to the migration framework supports a structured thus observable mig

process, which saves time throughout all phases and increases migration produ

globally.

CONCLUSION & FURTHER WORK

In this paper we have presented a framework for the deep and shallow migration of ap

tions between different OODBS. Our framework is based on several analysis ste
31

e, the

ocess.

are

ping

d data-

ration

d the

the

to

sell

the

oped

rent

atic

tion.

ported

of a

ort for

rease
perform a controlled migration process, namely the analysis and evaluation phas

migration analysis, the development of a mapping strategy, and the implementation pr

In theanalysis and evaluation phasethe application’s database requirements, the hardw

and software environment, and the involved database systems are considered. Duringmigra-

tion analysis the information gathered during the previous phase, namely overlap

features, candidate shallow migration features, candidate deep migration features an

base requirements, is used to figure out shallow migration features and deep mig

features. Based on the financial and time restrictions imposed by the organization an

requirements with respect to functionality, animplementation strategyfor shallow and deep

migration features is developed and carried out in theimplementation process. The migra-

tion framework has been successfully tested by migrating the KBL application from

OODBS ONTOS to ObjectStore.

The driving force behind the KBL migration has been to investigate the flexibility

exchange the underlying object store of the KBL application. It has been intended to

KBL to different customers, which presumably would possess different OODBS. With

development of the migration framework and its test within a first case study we have h

to gain insight into both a structured migration process and the intrinsics of diffe

OODBS. Both expectations have been fulfilled.

Further investigations of this topic should include approaches for the (semi-)autom

migration of OODBS applications and the development of strategies for deep migra

Several tasks such as the re-implementation of the class definitions can be easily sup

by the use of application conversion programs while others such as the selection

mapping strategy require more effort. The latter case requires knowledge based supp

the migration process. The resulting expert system based migration advisor could inc

both the productivity and the quality of the migration process.

ACKNOWLEDGMENT

J. Thaler and A. Berger migrated the KBL prototype to ObjectStore.
32

d

Con-

Pro-

-

,

or

S,

, C.

O

er, S.

-21,
REFERENCES

1. K. Dittrich, ‘OODBS: The Next Miles in the Marathon’,Information Systems, 15, (1), (1990)

2. M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, S. Zdonik, ‘The object-oriente

database manifesto’ in: W. Kim, J.-M. Nicolas, S. Nishio (eds.),Proc. of the 1st Conf. on

Deductive and Object-Oriented Databases, Kyoto, North-Holland, December 1989

3. J. Netze, H. Seelos, ‘Scenes and strategies of data migration’ (in german),Wirtschaftsinforma-

tik, 35, (4), (1993)

4. B. Shneiderman, G. Thomas, ‘An Architecture for Automatic Relational Database System

version’,ACM Transactions on Database Systems, 7, (2), (1982)

5. S. Su, H. Lam, D. Lo, ‘Transformation of Data Traversals and Operations in Application

grams to Account for Semantic Changes of Databases’,ACM Transactions on Database Sys

tems, 6, (2), (1981)

6. R. Cattell (ed.),The Object Database Standard ODMG-93, Morgan Kaufmann Publishers

1993

7. K. Dittrich, ‘Migrating from conventional to object-oriented databases: a “can”, a “must” -

none of both?’ (in german),Wirtschaftsinformatik, 35, (4), (1993)

8. D. Maier, ‘Why isn’t there an object-oriented data model?’ in: G. X. Ritter (ed.),Information

Processing 89 - IFIP World Computer Congress, North-Holland, 1989

9. V. Soloviev, ‘An Overview of Three Commercial Object-Oriented DBMSs ONTO

ObjectStore, and O2’, ACM SIGMOD Record, 21, (1), (1992)

10. C. Lamb, G. Landis, J. Orenstein, D. Weinreb, ‘The ObjectStore Database System’,Communi-

cations of the ACM, 34, (10), (1991)

11. P. Butterworth, A. Otis, J. Stein, ‘The GemStone Object Database Management System’,Com-

munications of the ACM, 34, (10), (1991)

12. P. Kanellakis, C. Lecluse, P. Richard, ‘Introduction to the Data Model’ in: F. Bancilhon

Delobel, P. Kanellakis (eds.),Building an Object-Oriented Database System: The Story of2,

Morgan Kaufmann, 1992

13. G. Kappel, S. Rausch-Schott, W. Retschitzegger, M. Schrefl, U. Schreier, M. Stumptn

Vieweg, ‘Object-Oriented Database Management Systems - An Evaluation’ ODB/TR 92

Institute of Applied Computer Science and Information Systems, Univ. of Vienna, 1993
33

stems

ech,

tand

tand

del,

ontrol:

y

-

14. S. Ahmed, A. Wong, D. Sriram, R. Logcher, ‘Object-oriented database management sy

for engineering: A Comparison’,Journal of Object-Oriented Programming (JOOP), 5, (1992)

15. W. Kim, F. Lochovsky (eds.), ‘Object-Oriented Concepts, Databases, and Applications’,ACM

Press, Reading MA, Addison-Wesley, 1989

16. M. Stonebraker, L. Rowe, B. Lindsay, J. Gray, M. Carey, M. Brodie, P. Bernstein, D. Be

‘Third-Generation Database System Manifesto’, ACMSIGMOD Record, 19, (3), (1990)

17. S. Zdonik, D. Maier (eds.),Readings in Object-Oriented Database Systems, San Mateo, CA.

Morgan Kaufmann, 1989

18. KBL Esprit 5161,Design, Development and Implementation of a Knowledge-based Leits

(KBL), Deliverable Milestone 3, Commission of the European Community (CEC), 1992

19. KBL Esprit 5161,Design, Development and Implementation of a Knowledge-based Leits

(KBL), Final Deliverable, Commission of the European Community (CEC), 1993

20. A. Scheer, A. Hars, ‘The Leitstand - A new tool for decentral production control’ in: G. Fan

G. Zäpfel (eds.),Modern Production Concepts, Springer Berlin, 1991

21. G. Kappel, S. Vieweg, ‘Database Requirements for CIM Applications’,Journal of Integrated

Manufacturing Systems,5, (4/5), (1994)

22. U. Schreier, ‘Database Requirements of Knowledge-based Production Scheduling and C

A CIM Perspective’ in: R. Agrawal (ed.),Proc. of the 19th International Conference on Ver

Large Data Bases,Dublin, August 1993

23. R. Cattell and J. Skeen, ‘Object Operations Benchmark’,ACM Transactions on Database Sys

tems; 17, (1), (1992)

24. M. Carey, D. DeWitt, J. Naughton, ‘The OO7 Benchmark’,Proc of the ACM SIGMOD Conf.

ACM SIGMOD Record,22, (2), (1993)
34

Figures:

Figure 1: Model of the Migration Process

Database
Application

Source OODBS

System
Configuration

Target OODBS

Requirements

Analysis

OODBS

Database
Requirements

Candidate

Candidate
Deep Migration

Overlapping

Shallow

Features

Features

M
ig

ra
tio

n
A

na
ly

si
s

Shallow

Deep
Migration
Features

Migration
Features

D
ev

el
op

m
en

t o
f a

Strategy
for

Shallow
MigrationMigration

Features

Im
pl

em
en

ta
tio

n

S1 S2 S3 S4

Strategy
for

Deep
Migration

M
ap

pi
ng

 S
tr

at
eg

y

Environment

Clustering

Analysis

Evaluation

process input/output

process

Legend:

data flow
35

Figure 2: OODBS Features and Database Requirements

Source OODBS

Target OODBS

Database Requirements

overlapping features

deep migration features

shallow migration features

candidate deep
migration features

candidate shallow
migration features

Direction of the Migration Process
36

Figure 3: Integration of an Electronic Planning Board System

Production Planning & Control

Electronic Planning Board

Production Planning & Control Level:
performs mean-term production
planning and control of work orders

Planning Board Level:
performs short-term production
scheduling

Shop Floor Control Level:
controls the manufacturing process

...

workcells

work orders

work orders

data collection

data collection

data flow

Legend:
37

Figure 4: KBL Class Hierarchy

KBL Object

StateNode

SimulatedObject

Simulator

SimulationEvent

MessageQueue

MessageDefinition

MQS

FunctionDef

EvVariable

EvInstruction

Agent

Rule

MessageField

EVSpecification

ConstraintPurpose

AgentConstraint

DispatchRule

AgentRelationship

EventList

Activity

MessageTypeDictionary

ShopFloorReport

STResource

Message

TimeStateDescriptor

RuleSet

IntervalObject

SimulatedResource

SimulatedAgent

StartEvent

PickEvent

EndAgentEvent

InitAgentsEvent

ReleaseAgentEvent

StopEvent

BeginAgentEvent

ShopFloorAgent

MasterDataAgent

EVSpecUserdefined

EVSpecPredefined

SingleActivity

ActivityGroup

AgentTimeConstraint

SingleResource

ResourceGroup

ShiftIntervalObject

CostIntervalObject

ScheduleAgent

NonPeriodicStateDescriptor

OverlapAbleMasterDataAgent

AgentTimeRelationship AgentSlotSequence

AgentFixTimeConstraint

AgentBetweenTimeConstraint

OverlapAbleScheduleAgent

ConventionalScheduleAgent

CostTimeStateDescriptor

CostNonPeriodicStateDescriptor

Dates
SlotDescription

subtype_of relationship

Legend:

implements basic functionality of
the scheduling toolkit module
38

Figure 5: Migration Process of KBL from ONTOS to ObjectStore

Host Prog. Lang.
Recovery

Architecture

Distribution

Authorization
Operational Conditions

Data Model

Data Dictionary
Persistence

Query Management
Schema Evolution

Concurrency Control

Storage Management

Constraints & Triggers

Version Management

Query Optimization

Interfaces

Data Model

Data Dictionary
Persistence

Query Management

Concurrency Control

Storage Management

Constraints & Triggers

Version Management

Query Optimization

Data Model
Constraints & Triggers
Persistence
Data Dictionary
Query Management

Host Prog. Lang.

Concurrency Control
Recovery
Architecture
Storage Management

Query Optimization Operational Conditions

Version Management

Overlapping Features

Candidate Shallow
Migration Features

Database Requirements

Shallow
Migration Features

Deep

R
eq

ui
re

m
en

ts
A

na
ly

si
s

M
ig

ra
tio

n
A

na
ly

si
s

O
O

D
B

S
 E

va
lu

at
io

n

D
ev

el
op

m
en

t
S

tr
at

eg
y

Migration Features

of
 a

 M
ap

pi
ng

Clusters of Interdependent Functionalities

Tools

process input/output

process

data flow

S 1 S 2 S 3

Change Control
Candidate Deep

Migration Features

Legend:
39

Figure 6: KBL Database Requirements and OODBS Features

ONTOS
ObjectStore

KBL Database Requirements

overlapping features

deep migration features

shallow migration features

Data Model

Data Dictionary
Persistence

Storage Management
Concurrency Control
Query Management

Host Prog. Lang.

Recovery

Authorization

Architecture

Distribution

Operational Conditions

Constraints & Triggers

Version Management

Query Optimization

InterfacesSchema Evolution candidate deep
migration features

candidate shallow
migration features

Direction of the Migration Process

Tools
Change Control
40

Tables:

DBS Feature Description OODBS Consideration

Data Model theoretical foundation for the specifi-
cation of database schemes

complex object modelling, object
identity, encapsulation, types, inher-
itance, overriding, late binding

Constraints & Triggers specification and enforcement of
integrity constraints

inverse relationships, object-ori-
ented event/condition/action models

Persistence data survives process boundaries can be provided by inheritance, by
declaration, by reachability from
other persistent objects, and by col-
lection membership

Data Dictionary access to database schema infor-
mation

access to database schema infor-
mation using a meta object protocol

Tools tools for application development
(CASE), database inspection, user
management, database archiving,
and data dictionary management

(no specific OODBS consideration
necessary)

Query Management data manipulation language for
insertion, deletion, update, and
retrieval of database objects

navigational access via inter-object
references, associative access via
the specification of predicates rang-
ing over collections

Query Optimization efficient execution of database que-
ries

object related indices such as class
hierarchy index, nested index, path
index, and multi-index

Host Programming
Language

programming language for writing
programs to manipulate the data-
base

interfaces to object-oriented and
non-object-oriented programming
languages

Schema Evolution management of database schema
changes

global changes to the class hierar-
chy and local changes to single
class descriptions

Change Control techniques that are used to convert
the database contents in order to
conform to the evolved database
schema; logical and physical data
independence

object migration,
schema versioning

Version Management management of semantically mean-
ingful snapshots in the evolution of
the database contents

linear or branching version trees,
static/dynamic references to ver-
sioned objects

Concurrency Control transactions, management to relia-
bly handle concurrent access to
restricted resources, consistent
management of system/media fail-
ures, user access control

advanced transaction management
(e.g. nested transactions, long
transactions, cooperative transac-
tions)

Recovery

Authorization

Architecture
host-based/client-server/distributed architecture, disk placement and clus-
tering techniques, disk to in-memory mappingStorage Management

Distribution

Interfaces interfaces to other database systems and description standards

Operational Conditions hardware and software requirements

Table 1: Features of OODBS
41

Steps Substeps

(1) analysis and evaluation • analysis of the system configuration
• analysis of the OODBS
• development of clusters of interdependent functionalities
• analysis of the application’s database requirements

(2) migration analysis • shallow migration analysis
• deep migration analysis

(3) development of a mapping strategy • shallow migration strategy
• deep migration strategy

(4) implementation • coding
• evaluation

Table 2: Steps and Substeps of the Migration Process

OODBS Features

relevant for KBL not relevant

Data Model
Constraints & Triggers
Persistence
Data Dictionary
Query Management
Query Optimization
Host Programming Languages

Version Management
Concurrency Control
Recovery
Architecture
Storage Management
Operational Conditions

Tools
Schema Evolution
Change Control
Authorization
Distribution
Interfaces

Table 3: KBL Database Requirements
42

DBS Feature ONTOS Rel. 2.2 ObjectStore Rel. 2.0

Data Model C++ data model
meta-data access

C++ data model
meta-data access

Constraints & Triggers inverse members for dynamically
created types only; no triggers

inverse members; no triggers

Persistence persistence by inheritance persistence by declaration

Data Dictionary synonyms for objects -

Tools schema designer and browser schema designer and browser

Query Management navigational/associative access
via C++; Object SQL

navigational/associative access
via C++ and ObjectStore DML

Query Optimization - indexing of collections, clustering

Host Prog. Language C++ C++

Schema Evolution (partially) dynamic schema evolu-
tion

static schema evolution

Change Control not supported object migration supported but vio-
lating logical and physical data
independence

Version Management not supported linear and branching versions of
configurations of objects

Concurrency Control transactions with checkpoints;
object level locking

closed nested transactions;
page level locking

Recovery from volatile storage only from volatile storage only

Authorization UNIX-like database protection UNIX-like database protection

Architecture client/server environment client/server environment

Storage Management direct and indirect references direct and indirect references

Distribution transaction may access a single
database server

transaction may access multiple
database servers

Interfaces - STEP-Express

Operational Conditions SUN workstations, TCP/IP net-
work

SUN workstations, TCP/IP net-
work

Table 4: Evaluation of ONTOS and ObjectStore
43

Fragment of a Makefile for ONTOS
Linker flags and required libraries
CFLAGS = -Div2_6_compatible
LFLAGS = -g
ONTOSLIBRARY = -Bstatic -L$(LIB_DIR) -lONTOS
IV30LIBRARY = - Bdynamic -L/interviews/lib/SUN4 -lUnidraw -lIV
X11R5LIBRARY = -L/home/X11R5/lib -lXext -lX11 -lm
LIBRARY = $(ONTOSLIBRARY) $(IV30LIBRARY) $(X11R5LIBRARY)
Source files of the application
SOURCES = Activity.cc \

Agent.cc \
STResource.cc \
...

Object files
OBJECTS = ${SOURCES:.cc=.o}
main: $(OBJECTS) cplus $(LFLAGS) -o main -QUIET $(OBJECTS) $(LIBRARY)
...
Creation of a database with the DBATool and registration of the database schema NAME in
the directory DB_DIR managed by the database server SERVER. Every database consists of
a kernel area and several data areas.
$(REGISTER_FLAG):

cp $(KERNEL_DB) $(DB_DIR)/$(NAME)_Kernel
chmod a+w $(THE_DB_DIR)/$(NAME)_Kernel
DBATool -e register kernel $(NAME)_kern on $(SERVER) at $(DB_DIR)/$(NAME)_Kernel
DBATool -e register database $(NAME) with kernel $(NAME)_kern
DBATool -e create area $(NAME)_A1 at $(DB_DIR)/$(NAME)_area1 on $(SERVER)
DBATool -e create area $(NAME)_A2 at $(DB_DIR)/$(NAME)_area2 on $(SERVER)
DBATool -e add area $(NAME)_A1 to $(NAME)
DBATool -e add area $(NAME)_A2 to $(NAME)
DBATool -e set db $(NAME) primary $(NAME)_kern

...

Table 5: Fragment of the Makefile for ONTOS
44

Fragment of a Makefile for ObjectStore
including ObjectStore specific compiler directives
include $(OS_ROOTDIR)/etc/ostore.mk
Registration of the database schema in the data dictionary
OS_COMPILATION_SCHEMA_DB_PATH= /home/KBL/compilation_schema_db
OS_APPLICATION_SCHEMA_DB_PATH= /home/KBL/application_schema_db
Compiler and linker flags and required libraries
CCFLAGS = -gx
LDFLAGS = -g
LDLIBS = -losmop -loscol -los
Source files of the application
SOURCES = Activity.cc \

Agent.cc \
STResource.cc \
...

Object files
OBJECTS = ${SOURCES:.cc=.o}
Executables
EXENAME = main
...

Table 6: Fragment of the Makefile for ObjectStore
45

ON

// K
cla
{

.
};

// In
cla
{

.
};

// S
cla
{
pri

/
R
/
R
/
/
S
/
/
v

pu
/
v
/
v
/
/
v
/
/
L
/
S
.
/
/
S
/
~
/
/
v
/
v
/
v

};

ds

t)

ns
TOS ObjectStore

BLObject directly inherits from Object
ss KBLObject : public Object

..

tervalObject indirectly inherits from Object
ss IntervalObject : public KBLObject

..

cheduleAgent indirectly inherits from Object
ss ScheduleAgent : public IntervalObject

vate :
/ indirect Reference to a MasterDataAgent object
eference ivMasterDataAgent;

/ indirect reference to a Resource object
eference ivResource;

/ Constructor which is called by the constructor
/ of the related MasterDataAgent
cheduleAgent (MasterDataAgent *);

/ ONTOS required function for deleting the
/ object from the database
irtual void deleteObject (Boolean deallocate = FALSE);

blic :
/ returns a pointer to the related MasterDataAgent object
irtual MasterDataAgent *getMasterDataAgent ();
/ schedules the Agent object on the Resource object
irtual void putSingleResource (SingleResource *);
/ returns a pointer to the Resource object on which
/ the Agent object is scheduled
irtual SingleResource *getSingleResource ();
/ returns a list including the ScheduleAgent
/ objects already scheduled
ist* ScheduleAgent::getScheduledSAList();

/ constructor
cheduleAgent ();

..
/ ONTOS required functions
/ activation constructor to activate the object from disk
cheduleAgent (APL *);

/ destructor
ScheduleAgent ();

/ returns a pointer to the object representing the
/ class information
irtual Type *getDirectType ();
/ deactivate the object from main memory
irtual void Destroy (Boolean aborted = FALSE);
/ write the object to the database
irtual void putObject(Boolean deallocate = FALSE);

extern os_database *KBLdb;

class KBLObject
{
public :

// static persistent set which includes all instances
persistent <KBLdb> os_Set<KBLObject*> * extent;
...
// implementation of the object naming
char *ivName;
...

};

class IntervalObject : public KBLObject
{
public :

// static persistent set which includes all instances
// of IntervalObject
persistent <KBLdb> os_Set<IntervalObject*>* extent;
...

};

// neither IntervalObject nor ScheduleAgent inherit from
// any predefined class
class ScheduleAgent : public IntervalObject
{
private :

// direct reference to a MasterDataAgent object
MasterDataAgent *ivMasterDataAgent;
// direct reference to a Resource object
STResource *ivResource;
// constructor like in ONTOS but implemented differently
ScheduleAgent (MasterDataAgent *);

public :
// static persistent set which includes all instances of
// ScheduleAgent
persistent <KBLdb> os_Set<ScheduleAgent*>* extent;
// like in ONTOS
virtual MasterDataAgent *getMasterDataAgent ();
virtual void putSingleResource (SingleResource *);
virtual SingleResource *getSingleResource ();
os_List<ScheduleAgent*>

*ScheduleAgent::getScheduledSAList();
...
ScheduleAgent (); // constructor
~ScheduleAgent (); // destructor
// ObjectStore does not require any system specific metho

};
// ObjectStore implementation of the constructor
ScheduleAgent::

ScheduleAgent (MasterDataAgent * theMasterDataAgen
{

...
// Insertion of the created ScheduleAgent object into the
// class extent
extent->insert(this);

};

Table 7: ONTOS and ObjectStore Class Definitio
46

ONTOS ObjectStore

List* ScheduleAgent::getScheduledSAList()
{

List *scheduledSAList;

// Creation of the instance iterator for the
// class ScheduleAgent
InstanceIterator scheduleAgentIterator ((Type*)

OC_lookup (''ScheduleAgent''));
// The iterator function moreData returns the next value
// If there is no further value the iteration will terminate.

while (scheduleAgentIterator.moreData())
{

// The function getSingleResource returns a pointer to
// the Resource object on which the Agent object is
// scheduled. If a Resource object exists the object
// is inserted into the appropriate list.

if (scheduleAgentIterator->getSingleResource) != 0
scheduledSAList->Insert ((Argument) (Entity*)

scheduleAgentIterator);
}
// returns the resulting list
return scheduledSAList;
}

os_List<ScheduleAgent*> * ScheduleAgent::
getScheduledSAList()

{
os_List<ScheduleAgent*> * scheduledSAList;
ScheduleAgent* currentScheduleAgent;
// The foreach-statement allows to iterate over the
// elements of the set specified as second argument.
// The element of each iteration will be referenced by
// the first specified argument

foreach (currentScheduleAgent, ScheduleAgent::
extent)

{
// selection criteria like in ONTOS
if (currentScheduleAgent->getSingleResource) != 0

scheduledSAList->insert(currentScheduleAgent);
}
// returns the resulting list
return scheduledSAList;
}

Table 8: ONTOS and ObjectStore Extension Management
47

O

O
c
{
p

p

p

}
O
A

{

}

NTOS ObjectStore

NTOS class definition:
lass Activity: public KBLObject

rivate :
// reference to the list of superactivities
List *ivSuperActivityList;
// reference to the list of subactivities
List *ivSubActivityList;
...

rotected:
Activity (char *name = (char *)0, ActivityGroup

*superActivity = (ActivityGroup *) 0);
...

ublic :
Boolean addSubActivity (Activity &activity);
...

;
NTOS implementation of the constructor:
ctivity::Activity (char *name, ActivityGroup *superActivity):

KBLDirectParentClass (name)

...
ivSuperActivityList->

Insert ((Argument)(Entity*) superActivity);

// call to maintain referential integrity
superActivity->addSubActivity(*this);
...

ObjectStore class definition:
class Activity: public KBLObject
{
private :

// related data members are marked ‘inverse_member’
// followed by the corresponding data member
os_List<ActivityGroup*> *ivSuperActivityList

inverse_member ivSubActivityList;
os_List<Activity*> *ivSubActivityList

inverse_member ivSuperActivityList;
...

protected:
Activity (char *name = (char *)0, ActivityGroup

*superActivity = (ActivityGroup *) 0);
...

public :
Boolean addSubActivity (Activity &activity);
...

}
ObjectStore implementation of the constructor:
Activity::Activity (char *name, ActivityGroup *superActivity):

KBLDirectParentClass (name)
{

...
// no need for further code to ensure referential integrity
ivSuperActivityList->insert (superActivity);
...

}

Table 9: Inverse relationships in ONTOS and ObjectStore
48

Modules ONTOS
Implementation

ObjectStore Implementation Total
%added deleted modified Total

Scheduling Toolkit 27400 1500 5% 8000 29
%

200 1% 20900 ~ 76%

Simulation 10400 300 3% 200 2% 370 4% 10500 ~ 101%

Planning Board 7300 0 0% 100 1% 250 3% 7200 ~ 99%

Utilities 830 400 48
%

550 66
%

0 0% 680 ~ 82%

Total 45930 2200 5% 8850 19
%

820 2% 39280 ~ 86%

Table 10: Migration Statistics (Lines of Code)

Task Manpower (in
weeks)

Application Analysis 3

ONTOS Analysis 2

ObjectStore Analysis 1

Migration Analysis 2

Implementation 6

Total Migration Effort 14

Table 11: Migration Effort (Manpower)
49

	Migration in Object-Oriented Database Systems - A Practical Approach
	C. Huemer†, G. Kappel‡, S. Vieweg†
	† Institute of Applied Computer Science and Information Systems, Department of Information Engine...
	‡ Institute of Computer Science, Department of Information Systems, University of Linz, Altenberg...
	SUMMARY
	Object-oriented database systems are designed to meet the requirements of advanced database appli...
	Key Words: object-oriented database systems, migration, electronic planning board application
	Introduction

	Advanced engineering applications such as computer-aided design and computer integrated manufactu...
	Database migration is the process of mapping a database application from a source DBS to a target...
	Current approaches to the migration of database applications focus on the migration from hierarch...
	The relevance of the work is due to the state of art of OODBS technology. Firstly, there does not...
	Two approaches to migration are possible: shallow migration and deep migration 7. With shallow mi...
	The criteria for selecting one of the approaches can be grouped into two categories: functional r...
	Object-oriented database systems have a short research and development history compared to relati...
	The work reported in this paper was part of the ESPRIT project KBL (ESPRIT No. 516118, 19), whose...
	A Framework for Migrating Applications between OODBS

	In this section we present a general outline for migrating applications between OODBS. The propos...
	The careful selection of the set of criteria as an underlying basis for the migration is a prereq...
	The analysis of the system configuration is of general interest. Since the source OODBS and the t...
	The task of the analysis of the OODBS is to evaluate, classify and compare the features of the tw...
	• Overlapping features are supported by both OODBS in the same manner and have no effects on the ...
	• Candidate shallow migration features are supported only by the source OODBS or they are impleme...
	• Candidate deep migration features are only supported by the target OODBS but not by the source ...
	Due to the fact that there exist some interdependencies between different features, changes of th...
	A careful analysis of the application’s database requirements considering the data model requirem...
	During migration analysis we compare these database requirements with the result of the DBS evalu...
	One might argue that starting the migration process with the analysis of the applications’ databa...
	For the features residing in the set of shallow migration features and in the set of deep migrati...
	The implementation step includes the coding of the necessary changes and furthermore the evaluati...
	Case Study: Migrating KBL from ONTOS to ObjectStore

	In this section we describe the migration of the KBL application from ONTOS to ObjectStore. The m...
	KBL - A Knowledge-Based Electronic Planning Board System

	KBL was developed under the object-oriented paradigm and was implemented on top of the OODBS ONTO...
	An electronic planning board is a computer aided graphical decision support system for interactiv...
	At the production planning and control level a mean-term planning of products and involved resour...
	KBL follows the functionality described above and is made up of the following components:
	• Knowledge Representation and Acquisition: The information relevant for scheduling and control n...
	• Scheduling Control: The Scheduling Control subsystem represents the interface between the appli...
	• Simulation: Various schedules can be simulated in order to evaluate the performance of schedule...
	• Interactive Advisor: KBL is equipped with an Interactive Advisor, which constantly analyzes the...
	• Evaluation: The Evaluation Component allows the assessment of different scheduling strategies. ...
	• Communication Interfaces: Communication interfaces to the production planning and control syste...
	Based on the functionality described above KBL’s database requirements can be identified as the f...
	The current implementation of KBL contains the Knowledge Representation and Acquisition component...
	The Scheduling Toolkit Module represents the core of the KBL system. It includes all classes and ...
	In conjunction with other classes such as TimeStateDescriptor, IntervalObject, and AgentConstrain...
	A Brief Tour of ONTOS and ObjectStore

	In the following we briefly describe the main features of the OODBS ONTOS and ObjectStore. For fu...
	ONTOS Release 2.2 is based on C++, which implies that the DDL/DML is basically C++. According to ...
	Similar to ONTOS, ObjectStore Release 2.0 is also based on C++ and operates in a client/ server e...
	With the discussion of the database requirements of KBL and the evaluation of the involved OODBS ...
	Migration Analysis

	In this subsection we discuss the second step of the migration process, namely the migration anal...
	Both ONTOS and ObjectStore are based on the C++ data model. They both use the C++ basic data type...
	The feature constraints and triggers is not supported by ONTOS. Since we classify inverse relatio...
	Persistence is required by any database application. In ONTOS it is implemented by inheritance an...
	In ONTOS, it is possible to provide each object with a synonym, which is stored in a separate dat...
	The analysis of the tools is only interesting in terms of supporting the implementation process b...
	Query management is implemented differently in both systems. In ONTOS, persistent objects are ret...
	Query optimization is also part of the database requirements of KBL. ONTOS provides only limited ...
	Since C++ is the host programming language required by KBL and since both OODBS provide an interf...
	ONTOS and ObjectStore provide different concepts for schema evolution but it was not considered a...
	Both systems supply neither logical nor physical data independence, however, ObjectStore provides...
	ONTOS does not support a versioning mechanism. As a consequence, in KBL the versioning of the sch...
	Concerning concurrency control, ONTOS is superior to ObjectStore since in ONTOS it is possible to...
	Recovery is part of the database requirements of any application. It is included in the overlappi...
	Authorization is also included in the overlapping features since data access control is supported...
	Both systems support a client/server architecture, which is required by KBL. Since ONTOS and Obje...
	One of the most important differences between ONTOS and ObjectStore in the realm of storage manag...
	The feature distribution is a candidate shallow migration feature because ONTOS and ObjectStore p...
	ONTOS does not provide any import and export interfaces. ObjectStore offers a third party tool to...
	KBL was developed for SUN workstations in a TCP/IP network. ONTOS and ObjectStore support this en...
	Mapping Strategy for Selected Features

	In this subsection we develop a mapping strategy for three selected features of the evaluation sc...
	• shallow migration path: persistence
	• deep migration path: inverse relationships as part of constraints & triggers
	• overlapping path: basic data types as part of the data model
	In the following, we present the mapping strategy for each of these features. To increase the und...
	In general, the development of an object-oriented database application can be divided into the fo...
	Table 5 and Table 6 show the relevant fragments of Makefiles for the compilation of the KBL appli...
	The two approaches mainly differ in the flexibility of database creation. In ONTOS, databases mus...
	As mentioned above, the database schema is contained in C++ source and header files. In the follo...
	Persistence

	In this subsection we demonstrate the development of a mapping strategy for one of the most inter...
	In ONTOS, persistence is achieved by inheritance from the ONTOS specific class Object. In ObjectS...
	• Classes must have an inheritance path through the ONTOS class Object.
	• Classes must have a special constructor called “activation constructor” to activate an object f...
	• Classes must have a special member function called getDirectType().
	• If the class has a destructor, it should have a function called Destroy() to deactivate an obje...
	• Classes should have the functions putObject() and deleteObject() to write / delete an object to...
	If the definition of a class fulfills these requirements, and the member function putObject is in...
	The code fragments presented in Table 7 summarize the persistent class definitions for the class ...
	As the persistent class definition is also influenced by the features storage management, query m...
	The clustering with storage management is due to the fact that in ONTOS direct references are mai...
	The clustering with query management stems from the fact that ONTOS offers a so called instance i...
	The clustering with data dictionary is due to the fact that ONTOS provides synonyms for each pers...
	In Table 8, we exemplify the use of the instance iterator in ONTOS and the corresponding simulati...
	Inverse Relationships

	In the following we present the mapping strategy of the subfeature inverse relationships, which i...
	Before presenting a strategy for the feature inverse relationships, we first define the concept o...
	As an example, consider the relationship between a manufacturing activity and the sub- activities...
	In the ONTOS implementation, the management of inverse relationships is explicitly implemented in...
	(a) Define an inverse relationship between two data members whenever there exists a binary relati...
	(b) Remove the user-defined code segments that have been used to ensure integrity so far.

	In the left column of Table 9, we present the example of the constructor of the class Activity de...
	Basic Data Types

	As mentioned above, ONTOS and ObjectStore are based on the C++ data model. They both use the C++ ...
	Evaluation Report

	In this section we discuss the experiences gathered during the migration of the KBL application f...
	We first describe our experiences with the involved OODBS - ONTOS and ObjectStore. We then presen...
	ONTOS and ObjectStore

	In Section ‘A Brief Tour of ONTOS and ObjectStore’ a concise introduction of the functionality of...
	The main difference between ONTOS and ObjectStore is their approach to provide persistence. ONTOS...
	In addition, ONTOS provides automatic management of class extensions while ObjectStore requires t...
	As mentioned above, we did not consider performance as a main issue in our case study. A comparis...
	Discussion of the Framework

	The migration of database applications is part of the software maintenance process. The much tigh...
	In the following we discuss scenarios that were not directly covered in our case study, yet may b...
	What if ...

	... the database systems follow different approaches to reach persistence?
	The experiences mentioned above concern the migration of KBL from ONTOS to ObjectStore. As alread...
	... the database systems provide different host programming languages and/or different DDL/DML?
	A host programming language is the language in which the application to access and manipulate the...
	... the database systems are operated in different system environments?
	System downsizing from host-based computing to client/server computing may include changes of the...
	Quantitative Evaluation

	In our quantitative evaluation we concentrate on two metrics: the size of the application code as...
	As pointed out in Section ‘KBL - A Knowledge-Based Electronic Planning Board System’ the KBL appl...
	The target application comprises the same number of classes as the source application. This is du...
	Our analysis of the application sizes shows a considerable reduction for the Scheduling Toolkit M...
	Considering the personnel involved in the migration process we distinguish three implementation p...
	Conclusion & Further Work

	In this paper we have presented a framework for the deep and shallow migration of applications be...
	The driving force behind the KBL migration has been to investigate the flexibility to exchange th...
	Further investigations of this topic should include approaches for the (semi-)automatic migration...
	Acknowledgment

	J. Thaler and A. Berger migrated the KBL prototype to ObjectStore.
	References

	1. K. Dittrich, ‘OODBS: The Next Miles in the Marathon’, Information Systems, 15, (1), (1990)
	2. M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, S. Zdonik, ‘The object-oriented d...
	3. J. Netze, H. Seelos, ‘Scenes and strategies of data migration’ (in german), Wirtschaftsinforma...
	4. B. Shneiderman, G. Thomas, ‘An Architecture for Automatic Relational Database System Conversio...
	5. S. Su, H. Lam, D. Lo, ‘Transformation of Data Traversals and Operations in Application Program...
	6. R. Cattell (ed.), The Object Database Standard ODMG-93, Morgan Kaufmann Publishers, 1993
	7. K. Dittrich, ‘Migrating from conventional to object-oriented databases: a “can”, a “must” - or...
	8. D. Maier, ‘Why isn’t there an object-oriented data model?’ in: G. X. Ritter (ed.), Information...
	9. V. Soloviev, ‘An Overview of Three Commercial Object-Oriented DBMSs ONTOS, ObjectStore, and O2...
	10. C. Lamb, G. Landis, J. Orenstein, D. Weinreb, ‘The ObjectStore Database System’, Communicatio...
	11. P. Butterworth, A. Otis, J. Stein, ‘The GemStone Object Database Management System’, Communic...
	12. P. Kanellakis, C. Lecluse, P. Richard, ‘Introduction to the Data Model’ in: F. Bancilhon, C. ...
	13. G. Kappel, S. Rausch-Schott, W. Retschitzegger, M. Schrefl, U. Schreier, M. Stumptner, S. Vie...
	14. S. Ahmed, A. Wong, D. Sriram, R. Logcher, ‘Object-oriented database management systems for en...
	15. W. Kim, F. Lochovsky (eds.), ‘Object-Oriented Concepts, Databases, and Applications’, ACM Pre...
	16. M. Stonebraker, L. Rowe, B. Lindsay, J. Gray, M. Carey, M. Brodie, P. Bernstein, D. Beech, ‘T...
	17. S. Zdonik, D. Maier (eds.), Readings in Object-Oriented Database Systems, San Mateo, CA. Morg...
	18. KBL Esprit 5161, Design, Development and Implementation of a Knowledge-based Leitstand (KBL),...
	19. KBL Esprit 5161, Design, Development and Implementation of a Knowledge-based Leitstand (KBL),...
	20. A. Scheer, A. Hars, ‘The Leitstand - A new tool for decentral production control’ in: G. Fand...
	21. G. Kappel, S. Vieweg, ‘Database Requirements for CIM Applications’, Journal of Integrated Man...
	22. U. Schreier, ‘Database Requirements of Knowledge-based Production Scheduling and Control: A C...
	23. R. Cattell and J. Skeen, ‘Object Operations Benchmark’, ACM Transactions on Database Systems;...
	24. M. Carey, D. DeWitt, J. Naughton, ‘The OO7 Benchmark’, Proc of the ACM SIGMOD Conf. ACM SIGMO...
	Figures:
	Figure 1: Model of the Migration Process
	Figure 2: OODBS Features and Database Requirements

	Production Planning & Control Level:
	performs mean-term production planning and control of work orders
	Figure 3: Integration of an Electronic Planning Board System
	Figure 4: KBL Class Hierarchy
	Figure 5: Migration Process of KBL from ONTOS to ObjectStore
	Figure 6: KBL Database Requirements and OODBS Features

	Tables:
	DBS Feature
	Description
	OODBS Consideration
	Data Model
	theoretical foundation for the specification of database schemes
	complex object modelling, object identity, encapsulation, types, inheritance, overriding, late bi...
	Constraints & Triggers
	specification and enforcement of integrity constraints
	inverse relationships, object-oriented event/condition/action models
	Persistence
	data survives process boundaries
	can be provided by inheritance, by declaration, by reachability from other persistent objects, an...
	Data Dictionary
	access to database schema information
	access to database schema information using a meta object protocol
	Tools
	tools for application development (CASE), database inspection, user management, database archivin...
	(no specific OODBS consideration necessary)
	Query Management
	data manipulation language for insertion, deletion, update, and retrieval of database objects
	navigational access via inter-object references, associative access via the specification of pred...
	Query Optimization
	efficient execution of database queries
	object related indices such as class hierarchy index, nested index, path index, and multi-index
	Host Programming Language
	programming language for writing programs to manipulate the database
	interfaces to object-oriented and non-object-oriented programming languages
	Schema Evolution
	management of database schema changes
	global changes to the class hierarchy and local changes to single class descriptions
	Change Control
	techniques that are used to convert the database contents in order to conform to the evolved data...
	object migration,
	schema versioning
	Version Management
	management of semantically meaningful snapshots in the evolution of the database contents
	linear or branching version trees, static/dynamic references to versioned objects
	Concurrency Control
	transactions, management to reliably handle concurrent access to restricted resources, consistent...
	advanced transaction management (e.g. nested transactions, long transactions, cooperative transac...
	Recovery
	Authorization
	Architecture
	host-based/client-server/distributed architecture, disk placement and clustering techniques, disk...
	Storage Management
	Distribution
	Interfaces
	interfaces to other database systems and description standards
	Operational Conditions
	hardware and software requirements
	Table 1: Features of OODBS

	Steps
	Substeps
	(1) analysis and evaluation
	• analysis of the system configuration
	• analysis of the OODBS
	• development of clusters of interdependent functionalities
	• analysis of the application’s database requirements
	(2) migration analysis
	• shallow migration analysis
	• deep migration analysis
	(3) development of a mapping strategy
	• shallow migration strategy
	• deep migration strategy
	(4) implementation
	• coding
	• evaluation
	Table 2: Steps and Substeps of the Migration Process

	OODBS Features
	relevant for KBL
	not relevant
	Data Model
	Constraints & Triggers
	Persistence
	Data Dictionary
	Query Management
	Query Optimization
	Host Programming Languages
	Version Management
	Concurrency Control
	Recovery
	Architecture
	Storage Management
	Operational Conditions
	Tools
	Schema Evolution
	Change Control
	Authorization
	Distribution
	Interfaces
	Table 3: KBL Database Requirements

	DBS Feature
	ONTOS Rel. 2.2
	ObjectStore Rel. 2.0
	Data Model
	C++ data model
	meta-data access
	C++ data model
	meta-data access
	Constraints & Triggers
	inverse members for dynamically created types only; no triggers
	inverse members; no triggers
	Persistence
	persistence by inheritance
	persistence by declaration
	Data Dictionary
	synonyms for objects
	-
	Tools
	schema designer and browser
	schema designer and browser
	Query Management
	navigational/associative access via C++; Object SQL
	navigational/associative access via C++ and ObjectStore DML
	Query Optimization
	-
	indexing of collections, clustering
	Host Prog. Language
	C++
	C++
	Schema Evolution
	(partially) dynamic schema evolution
	static schema evolution
	Change Control
	not supported
	object migration supported but violating logical and physical data independence
	Version Management
	not supported
	linear and branching versions of configurations of objects
	Concurrency Control
	transactions with checkpoints;
	object level locking
	closed nested transactions;
	page level locking
	Recovery
	from volatile storage only
	from volatile storage only
	Authorization
	UNIX-like database protection
	UNIX-like database protection
	Architecture
	client/server environment
	client/server environment
	Storage Management
	direct and indirect references
	direct and indirect references
	Distribution
	transaction may access a single database server
	transaction may access multiple database servers
	Interfaces
	-
	STEP-Express
	Operational Conditions
	SUN workstations, TCP/IP network
	SUN workstations, TCP/IP network
	Table 4: Evaluation of ONTOS and ObjectStore

	# Fragment of a Makefile for ONTOS
	# Linker flags and required libraries
	CFLAGS = -Div2_6_compatible LFLAGS = -g ONTOSLIBRARY = -Bstatic -L$(LIB_DIR) -lONTOS IV30LIBRARY ...
	# Source files of the application
	SOURCES = Activity.cc \ Agent.cc \ STResource.cc \ ...
	# Object files
	OBJECTS = ${SOURCES:.cc=.o}
	main: $(OBJECTS) cplus $(LFLAGS) -o main -QUIET $(OBJECTS) $(LIBRARY)
	...
	# Creation of a database with the DBATool and registration of the database schema NAME in # the d...
	$(REGISTER_FLAG):
	cp $(KERNEL_DB) $(DB_DIR)/$(NAME)_Kernel chmod a+w $(THE_DB_DIR)/$(NAME)_Kernel DBATool -e regist...
	...
	Table 5: Fragment of the Makefile for ONTOS

	# Fragment of a Makefile for ObjectStore
	# including ObjectStore specific compiler directives
	include $(OS_ROOTDIR)/etc/ostore.mk
	# Registration of the database schema in the data dictionary
	OS_COMPILATION_SCHEMA_DB_PATH= /home/KBL/compilation_schema_db OS_APPLICATION_SCHEMA_DB_PATH= /ho...
	# Compiler and linker flags and required libraries
	CCFLAGS = -gx LDFLAGS = -g LDLIBS = -losmop -loscol -los
	# Source files of the application
	SOURCES = Activity.cc \ Agent.cc \ STResource.cc \ ...
	# Object files
	OBJECTS = ${SOURCES:.cc=.o}
	# Executables
	EXENAME = main
	...
	Table 6: Fragment of the Makefile for ObjectStore

	ONTOS
	ObjectStore
	// KBLObject directly inherits from Object class KBLObject : public Object { ... };
	// IntervalObject indirectly inherits from Object class IntervalObject : public KBLObject { ... };
	// ScheduleAgent indirectly inherits from Object class ScheduleAgent : public IntervalObject
	{ private:
	// indirect Reference to a MasterDataAgent object Reference ivMasterDataAgent;
	// indirect reference to a Resource object Reference ivResource;
	// Constructor which is called by the constructor // of the related MasterDataAgent ScheduleAgent...
	// ONTOS required function for deleting the // object from the database virtual void deleteObject...
	public:
	// returns a pointer to the related MasterDataAgent object virtual MasterDataAgent *getMasterData...
	// schedules the Agent object on the Resource object virtual void putSingleResource (SingleResour...
	// returns a pointer to the Resource object on which // the Agent object is scheduled virtual Sin...
	// returns a list including the ScheduleAgent // objects already scheduled List* ScheduleAgent::g...
	// constructor ScheduleAgent (); ...
	// ONTOS required functions
	// activation constructor to activate the object from disk ScheduleAgent (APL *);
	// destructor ~ScheduleAgent ();
	// returns a pointer to the object representing the // class information virtual Type *getDirectT...
	// deactivate the object from main memory virtual void Destroy (Boolean aborted = FALSE);
	// write the object to the database virtual void putObject(Boolean deallocate = FALSE); };
	extern os_database *KBLdb;
	class KBLObject { public: // static persistent set which includes all instances persistent<KBLdb>...
	// implementation of the object naming char *ivName; ... };
	class IntervalObject : public KBLObject { public: // static persistent set which includes all ins...
	// neither IntervalObject nor ScheduleAgent inherit from // any predefined class class ScheduleAg...
	private: // direct reference to a MasterDataAgent object MasterDataAgent *ivMasterDataAgent;
	// direct reference to a Resource object STResource *ivResource;
	// constructor like in ONTOS but implemented differently ScheduleAgent (MasterDataAgent *);
	public:
	// static persistent set which includes all instances of // ScheduleAgent persistent<KBLdb> os_Se...
	// like in ONTOS virtual MasterDataAgent *getMasterDataAgent (); virtual void putSingleResource (...
	// ObjectStore does not require any system specific methods };
	// ObjectStore implementation of the constructor
	ScheduleAgent:: ScheduleAgent (MasterDataAgent * theMasterDataAgent) { ... // Insertion of the cr...
	Table 7: ONTOS and ObjectStore Class Definitions

	ONTOS
	ObjectStore
	List* ScheduleAgent::getScheduledSAList() { List *scheduledSAList; // Creation of the instance it...
	// The iterator function moreData returns the next value // If there is no further value the iter...
	while (scheduleAgentIterator.moreData()) { // The function getSingleResource returns a pointer to...
	if (scheduleAgentIterator->getSingleResource) != 0 scheduledSAList->Insert ((Argument) (Entity*) ...
	return scheduledSAList;
	}
	os_List<ScheduleAgent*> * ScheduleAgent:: getScheduledSAList() { os_List<ScheduleAgent*> * schedu...
	// The foreach-statement allows to iterate over the // elements of the set specified as second ar...
	foreach(currentScheduleAgent, ScheduleAgent:: extent) { // selection criteria like in ONTOS if (c...
	Table 8: ONTOS and ObjectStore Extension Management

	ONTOS
	ObjectStore
	ONTOS class definition:
	class Activity: public KBLObject { private: // reference to the list of superactivities List *ivS...
	// reference to the list of subactivities List *ivSubActivityList; ...
	protected: Activity (char *name = (char *)0, ActivityGroup *superActivity = (ActivityGroup *) 0);...
	public: Boolean addSubActivity (Activity &activity); ... };
	ONTOS implementation of the constructor:
	Activity::Activity (char *name, ActivityGroup *superActivity): KBLDirectParentClass (name) {
	ObjectStore class definition:
	class Activity: public KBLObject { private: // related data members are marked ‘inverse_member’ /...
	os_List<ActivityGroup*> *ivSuperActivityList inverse_member ivSubActivityList; os_List<Activity*>...
	protected: Activity (char *name = (char *)0, ActivityGroup *superActivity = (ActivityGroup *) 0);...
	public: Boolean addSubActivity (Activity &activity); ... }
	ObjectStore implementation of the constructor:
	Activity::Activity (char *name, ActivityGroup *superActivity): KBLDirectParentClass (name) {
	Table 9: Inverse relationships in ONTOS and ObjectStore

	Modules
	ONTOS Implementation
	ObjectStore Implementation
	Total
	%
	added
	deleted
	modified
	Total
	Scheduling Toolkit
	27400
	1500
	5%
	8000
	29 %
	200
	1%
	20900
	~ 76%
	Simulation
	10400
	300
	3%
	200
	2%
	370
	4%
	10500
	~ 101%
	Planning Board
	7300
	0
	0%
	100
	1%
	250
	3%
	7200
	~ 99%
	Utilities
	830
	400
	48 %
	550
	66 %
	0
	0%
	680
	~ 82%
	Total
	45930
	2200
	5%
	8850
	19 %
	820
	2%
	39280
	~ 86%
	Table 10: Migration Statistics (Lines of Code)

	Task
	Manpower (in weeks)
	Application Analysis
	3
	ONTOS Analysis
	2
	ObjectStore Analysis
	1
	Migration Analysis
	2
	Implementation
	6
	Total Migration Effort
	14
	Table 11: Migration Effort (Manpower)

