Migration in Object-Oriented Database Systems -

A Practical Approach

C. Huemer™, G. Kappeli, S. ViewegT

T Institute of Applied Computer Science and Information Systems, Department of Information
Engineering, University of Vienna. Liebigg. 4, A-1010 Vienna, Austria, {ch,sv}@ifs.univie.ac.at
¥ Institute of Computer Science, Department of Information Systems, University of Linz,

Altenbergerstr. 69, A-4040 Linz, Austria, gerti@ifs.uni-linz.ac.at

SUMMARY

Object-oriented database systems are designed to meet the requirements of
advanced database applications such as computer-integrated manufacturing. These
requirements may evolve in the course of time and may require the migration of the
database application from one object-oriented database system to another.
Traditional migration approaches for relational database systems fail when applied
to object-oriented database systems. The goal of this paper is to fill this gap. The
paper describes a framework for the migration of object-oriented database
applications. Our approach is based on a detailed analysis of the involved database
systems, of the application’s database requirements, and of the resources available
for the database migration. We illustrate our framework by means of a case study,
which is migrating an electronic planning board system from the object-oriented

database system ONTOS to ObjectStore.

Key Words: object-oriented database systems, migration, electronic planning board application

INTRODUCTION

Advanced engineering applications such as computer-aided design and computer integrated
manufacturing have emerged over the past decade. The database requirements of engi-

neering applications extend those of traditional database applications and include complex

* The support by FFF (Austrian Foundation for Research Applied to Industry) under grant No. 2/279 is
gratefully acknowledged.
All products mentioned herein are trademarks of their respective manufacturers.

object modeling, version management support and long transactions, to mention just a few.
Object-oriented database systems (OODBS) are designed to meet these demands and bring
together traditional database functionality and object-oriented concepts. An OODBS is a
database system (DBS) based on an object-oriented data hfo8éhce there does not exist

a single object-oriented data model, an exchange of an OODBS might cause severe changes
to the applications involved. Moving an application from one database system to another is

commonly known as database migration.

Database migratiois the process of mapping a database application freouece DBSo a

target DBS The migration process consists of a set of conversion operations or conversion
techniques that are applied to the source database application and result in a target database
application. The application migrated to the target DBS is constrained to deliver ‘equivalent’

results. Equivalence in this context is informally defined by the application’s semantics.

Current approaches to the migration of database applications focus on the migration from
hierarchical to relational DBS or from applications without database support to applications
based on relational database systém$. The migration techniques for relational database
applications are based on distinguishing two parts in a database applicatiatalzase
interactionpart and acomputationpart. The database interaction part is usually formulated

in the high-level data definition and manipulation language (DDL/DML) SQL and is
embedded in some program written in a socalled host programming language such as C. The
computation part is programmed in the host programming language. Approaches to the
migration of relational database applications benefit from this separation. The database
gueries are isolated and a conversion technique is applied. The computation part of the
application remains unchanged. However, the separation into database interaction and
computation entails also disadvantages known as ‘impedance misfatabh as different

data types, declarative versus procedural language concepts, and set-at-a-time versus record-
at-a-time processing. Object-oriented database systems are designed to overcome these limi-
tations. There should not be a semantic gap between the DDL/DML on the one hand and the
host programming language on the other hand. This can be achieved either by incorporating

database functionality into existing object-oriented programming languages, e.g., persistent

Smalltalk, or by extending traditional database languages with object-oriented concepts,
e.g., object-oriented SQL. In any of these cases the degree of integration between the
programming language and the DDL/DML increases. Consequently, the distinction between
database interaction part and computation part is blurred and traditional approaches to
migrating database applications fail. Approaches to migrating OODBS applications face
different problems and are still missing in literature. The purpose of this paper is to fill this
gap. We introduce a framework for migrating object-oriented database applications between
different OODBS.

The relevance of the work is due to the state of art of OODBS technology. Firstly, there does
not yet exist a unique data model for OODBS. Although there are similarities between the
data models each OODBS uses its own approach. This fact and the fact that the database
interaction part can not be clearly separated from the computation part as explained above
imply that the exchange of the underlying OODBS of an application is costly and may cause
considerable changes in the application. Note, that there is a standard object-oriented data
model under discussiof However, the implementation of this standard in the various
OODBS as well as the adherence to the standard by the applications will take some time,
and thus will not replace migration efforts in the near future. Secondly, the commercial
OODBS market is currently booming. Several systems are competing for market leadership,
and it is not yet decided which of the systems will survive. Thus, in order to achieve greater
flexibility in the choice of the underlying OODBS as well as with respect to extensibility, the
feasibility of migrating applications between different OODBS must be a prerequisite for
deciding on one or the other of the existing OODBS. Lastly, OODBS applications are sold to
different customers who may own different OODBS. Thus, to make an OODBS application
more competitive the application should either support various OODBS or it should be easy

to be migrated between various OODBS.

Two approaches to migration are possible: shallow migration and deep migfatigith
shallow migrationwe denote the task of re-engineering the source database application on
the target OODBS, whereakeep migratiorfocuses on the re-development of the applica-

tion in order to exploit the whole functionality of the target OODBS. Shallow migration

requires a re-design of only those database components of the application that have different
semantics in the source OODBS and the target OODBS or that are missing in the target
OODBS and, hence, have to be simulated. In our migration framework we consider both

migration techniques.

The criteria for selecting one of the approaches can be grouped into two categories: func-
tional requirements and organizational restrictions. Additional functionality of information
services is vital for any enterprise. A decision whether to use or not to use advanced func-
tionality is based on its contribution to the corporate goals and hence, must be included in
the decision model. Furthermore, organizational restrictions such as limited availability of
personnel must be considered. In our case study, based on the migration framework
presented below, we opted for the shallow migration for two reasons. Firstly, the main goal
of the case study was to investigate the applicability of several OODBS for the application at
hand, rather than to re-develop the application totally every time to take full advantage of all
features of the target OODBS. Secondly, we had to perform the case study under limited

personnel and time resources.

Object-oriented database systems have a short research and development history compared
to relational database systems. Nevertheless, due to the amount and variety of OODBS in the
marketplace, migration strategies for OODBS applications are already badly needed. To
develop migration strategies properly we have to have a closer look at the features of an
OODBS. These are basically the same as for any other database system, but with a unique
meaning in the OODBS context. Table 1 gives a brief overview of the features of OODBS
providing both a general description of each DBS feature and a specific OODBS description.
Due to its influence on the understanding what OODBS really are we investigate the data
model feature more closely in the following. An object-oriented database system is a data-
base system with anbject-oriented data modeAt present, there exist several different
object-oriented data modélsand thus, different data definition and manipulation languages
(DDL/DML). They are based either on object-oriented extensions of SQL, on existing
object-oriented languages like C++ (e.g., ONP@8d ObjectStoel® and Smalltalk (e.g.,

Gemston#&), or they were newly developed such as thed@a modét > However, there is

consensus that a data model to be called object-oriented has to exhibit core features such as
complex object modeling, object identity, encapsulation, types, inheritance and overriding
with late binding?. The features presented in Table 1 have also been used as top level evalu-
ation schema for evaluating OODBS in Reference 13 and they have been demonstrated to be
a good starting point for evaluation in that context. A indepth discussion and comparison of
OODBS is found in References 2, 9, 14, 15, 16 and 17.

The work reported in this paper was part of the ESPRIT project KBL (ESPRIT No.!$161

19), whose goal was the design and development of KBLKnawledgeBasedLeitstand.
“Leitstand” is a german term referring to an electronic planning board system for short-term
production scheduling and contrl In a computer-integrated manufacturing (CIM) system

a Leitstand is located between the production planning and control system and the shop floor
control system. For a better understanding we use the term “electronic planning board” in
the rest of the paper. In the KBL project the authors were responsible for incorporating
object-oriented database technology as underlying information store, and as integrative

component between the electronic planning board and various other CIM components.

A FRAMEWORK FOR MIGRATING APPLICATIONS BETWEEN
OODBS

In this section we present a general outline for migrating applications between OODBS. The
proposed framework describes the phases that have to be performed when migrating a data-
base application from a source OODBS to a target OODBS. The framework informally
describes what has to be done in each migration phase and it defines a useful order of the
steps. The framework helps to identify those database features that have to be considered for
the migration leading to an implementation of the necessary code changes. For this purpose,
we have to look at all the components involved in the migration processotitree OODBS

the target OODBS the system configuratioand thedatabase applicationA careful anal-

ysis of these components is absolutely necessary to gain insight into the application’s data-
base requirements and to explore how these requirements are met by each of the involved
OODBS. The database features required by the application and the features supported by the
OODBS should be defined within the same set of criteria in order to be comparable. Within
the proposed framework, these criteria are taken from the evaluation schema of Reference

13 presented in Table 1.

The careful selection of the set of criteria as an underlying basis for the migration is a
prerequisite for all further investigations, since all subtasks of the migration process operate
on this set. These subtasks towards a successful migration may be grouped into four steps
and ten substeps, which are shown in Table 2. Their input and output dependencies are

depicted in Figure 1. The substeps are described in more detail below.

The analysis of the system configuratioris of general interest. Since the source OODBS
and the target OODBS are evaluated for a specific hardware and software environment, the
system configuration implicitly influences the evaluation of the OODBS involved. This
implies that, for example, the evaluation results of ObjectStore for the UNIX operating
system might be different from the evaluation results of ObjectStore for MS-DOS. Thus, the

analysis of the system configuration is an integrative component of the OODBS evaluation.

The task of theanalysis of the OODBSIs to evaluate, classify and compare the features of

the two OODBS involved in the migration. The evaluation of the OODBS leads to a set of
features supported by each system. Furthermore, a comparison of these features results in
three subsets according to their effect on the migration. The three subsets are the result of
mapping the source OODBS to the target OODBS (cf. also Figure 2):

» Overlapping featuresare supported by both OODBS in the same manner and have no
effects on the migration. Note, that two features might be syntactically similar or iden-
tical but semantically different. Only those features that are syntactically and semanti-
cally identical cause no problems for the migration and are included in the set of

overlapping features.

» Candidate shallow migration featuresare supported only by the source OODBS or
they are implemented differently in the two OODBS and thus, have to be simulated in
the target OODBS. These features have to be considered in further detail to provide

the same database functionality as offered by the source OODBS (shallow migration).

» Candidate deep migration featuresare only supported by the target OODBS but not
by the source OODBS and hence, would extend the database functionality if consid-

ered in the migration process (deep migration).

Due to the fact that there exist some interdependencies between different features, changes
of the application code required by migrating one feature might cause changes when
migrating another. Since related changes should be considered together we propose to
cluster features that require associated changes. As an example, consider that differences in
the storage management of the OODBS might require changes in the persistent class defini-
tions. In this case the featurgersistenceand storage managemerstould reside in the

same cluster. Such a cluster is caltddster of interdependent functionalities The clus-

ters of interdependent functionalities (CIF) relate the migration features in order to improve
the development of a strategy for the implementation process. Each of these resulting clus-
ters forms a separate migration unit, which can be migrated independently from the features

outside of this specific cluster. The membership in a cluster is independent of the member-

ship in the set of shallow or deep migration features. Membership in one of the two sets of
migration features is determined by the semantics of the features provided by the source and
the target OODBS, whereas membership in a CIF is due to code dependencies that must be
considered during the implementation of the migration. Note, that the migration of a deep
migration feature affects the shallow migration features in the same CIF, which are migrated
in any case. However, the opposite is not true, since the decision to migrate deep migration
features is independent of their membership in a CIF and is solely based on the decision to

benefit from the enhanced functionality of the target OODBS.

A carefulanalysis of the application’s database requirementsonsidering the data model
requirements, querying and manipulation requirements, and integration requirements is of
great importance. It is a prerequisite to be able to select those database features that have to
be considered during the course of migration. The features that are necessary for the applica-

tion are collected in the set of database requirements (cf. Figure 2).

During migration analysis we compare these database requirements with the result of the
DBS evaluation, which is represented by the three different sets of features as outlined
above. The main task athallow migration analysisis to find the intersection of the data-

base requirements with the candidate shallow migration features (cf. Figure 2). Equivalently,
the main task of theleep migration analysisis to find the intersection of the database
requirements with the candidate deep migration features. Those features of the candidate
shallow migration features and the candidate deep migration features that are not required
by the application do not have to be considered anymore. Since the overlapping features are
provided by both OODBS in the same manner we do not have to develop a mapping strategy
for those and thus, we do not have to investigate them in the following steps of the migration
process. On the one hand, the result of the migration analysis is the set of shallow migration
features, which has to be migrated to obtain the same database functionality for the applica-
tion as it had been available by the source OODBS. On the other hand, the result is the set of
deep migration features, which extend the database functionality because they are not

provided by the source OODBS but are required by the application.

One might argue that starting the migration process with the analysis of the applications’
database requirements and continuing the evaluation of the OODBS only with those features
that are part of these requirements might reduce the analysis effort. This argument appears
reasonable since in our proposal we analyze also features that are not of primary interest to
the application. Yet, we selected this sequence of substeps for reasons of completeness and
to reduce the maintenance effort in case of future re-design projects. Firstly, it might reduce
the total effort when migrating other applications between the same OODBS. And secondly,
our approach has advantages in the case of future changes in the application’s database

requirements.

For the features residing in the set of shallow migration features and in the set of deep
migration features atrategy for their implementation into the target OODBS must be
developed. According to the two different kinds of migration features, we can distinguish
between amapping strategy for shallow migration and amapping strategy for deep
migration. By developing an implementation strategy one might realize that the effort to
implement a specific feature exceeds the semantic gain provided by that feature. Whether or
not a certain feature is migrated has to be decided on a case by case basis and depends on the
available resources. The result of this step is a mapping strategy for all those features that are

included in the implementation of the migration.

Theimplementation step includes the coding of the necessary changes and furthermore the
evaluation of the target application, i.e., the application running on top of the target OODBS.
The programmer is responsible fog-engineering the codeaccording to the developed
mapping strategies leading to the target application. The last substep comprisealtize

tion of the target application to verify if the desired database functionality is provided by the

target application.

CASE STUDY: MIGRATING KBL FROM ONTOS TO OBJECTSTORE

In this section we describe the migration of the KBL application from ONTOS to
ObjectStore. The main reason for studying migration in the realm of KBL, namely flexibility

in terms of varying underlying OODBS, has already been discussed in the introduction. The
main reason for choosing ONTOS in the first place has been its support for flexibility (see
next section “A Brief Tour of ONTOS and ObjectStore”). ObjectStore was chosen as target
OODBS due to a decision of our major industrial partners. The migration process is based
on the framework introduced in the previous section and demonstrates the applicability of
our approach. We first illustrate the functionality of the electronic planning board KBL. We
then shortly present ONTOS and ObjectStore as the source OODBS and the target OODBS,

respectively. Finally, we describe the migration process of KBL.

KBL - A Knowledge-Based Electronic Planning Board System

KBL was developed under the object-oriented paradigm and was implemented on top of the
OODBS ONTOS. The intention of this subsection is to give an overview of the electronic

planning board system KBL.A further description of KBL is found in References 18 and 19.

An electronic planning board is a computer aided graphical decision support system for
interactive production scheduling. It interacts with the production planning and control
system on the one hand, and with the shop floor control system on the other hand. Figure 3

depicts the integration of an electronic planning board into the manufacturing process.

At the production planning and control level a mean-term planning of products and involved
resources in the manufacturing process is carried out. As a result the master production
schedule is used to co-ordinate related business services such as engineering, manufacturing,
and finance. A further step called material requirements planning is used to determine the
actual production requirements for a set of work orders. The work orders from MRP are then
co-ordinated with the production facilities available. Due to changes in the availability of
resources, like workforce and machine breakdowns, the capacity planning is a very complex

task. Splitting of lots, lead times and alternative routings are only some of the arising addi-

10

tional problems. When capacity limitations have been compensated, the orders are released
for production. In order to cope with unforeseen circumstances in production, like machine
breakdowns and shortage of materials, the production process has to be supervised and
controlled. Shop floor control manages the production process and keeps track of the incon-
sistencies between the production plan and the actual production. A shop floor control
system requires information about the current location of parts, tools, and operators, the esti-
mated completion time, and remaining operations. This information must be kept on-line
and gathered through shop floor data collection terminals connected with each production
facility or workcell. Highly integrated with the shop floor control is the shop floor sched-
uling. Shop floor schedulers or electronic planning board systems assign work orders to the
appropriate workcell&. The scheduling process has to be performed under certain optimi-
zation criteria. The manufacturing throughput time has to be minimized, due dates must be
satisfied, and the utilization of resources must be optimized, to mention just a few. Due to
the complex task of multilevel optimization this is performed by heuristics at a highly inter-
active level. The system is used as an electronic planning board and the operator manipulates
Gantt diagrams representing work orders and resource data. Data collection systems at the
shop floor level for reporting machine breakdowns and order completion extend an elec-

tronic planning board to a highly flexible scheduling tool.
KBL follows the functionality described above and is made up of the following components:

» Knowledge Representation and Acquisitidime information relevant for scheduling
and control needs to be represented in a flexible manner. It must support besides others
the representation of scheduling heuristics, scheduling evaluation functions and shop

floor monitoring tools.

e Scheduling Control The Scheduling Control subsystem represents the interface
between the application and the DBS. It provides DBS functionality, interfaces to

other application processes and basic scheduling routines.

» Simulation Various schedules can be simulated in order to evaluate the performance

of schedules under different constraints.

11

» Interactive AdvisarKBL is equipped with an Interactive Advisor, which constantly
analyzes the status of the whole system. It provides the production scheduling person-

nel with scheduling data and advice for alternate actions.

» Evaluation The Evaluation Component allows the assessment of different scheduling
strategies. A detailed analysis based on built-in evaluation functions and user-defined

evaluation criteria should help to improve the quality of the scheduling process.

» Communication Interface€ommunication interfaces to the production planning and

control system as well as to the shop floor control system are supported.

Based on the functionality described abd{BL's database requirementan be identified

as the following?! 22 advanced data models, meta data access, navigational and associative
access, version management of schedules, and distributed data procédsamred data
modelsandmeta data managemeate essential for modeling the scheduling information in

the knowledge base. Given the tight integration of the knowledge base and the scheduling
control a planning board system must provide botlvigational accessf highly interre-

lated data an@ssociative accedsy querying collections of data/ersion managemenmsg
required for simulating different schedules of work orders. Since an electronic planning
board system is integrated with the production planning and control system and the shop
floor control systendistributed data processinglays an important role. However, in the
current prototype of KBL it was not considered a main requirement on the critical path and
thus, abandoned from the list of database requirements. When we refine these requirements
we come up with a list of relevant database features to be evaluated for KBL as given in
Table 3. These features serve as the basis for the migration framework and must be consid-

ered in detail during the migration process.

The current implementation of KBL contains tK@owledge Representation and Acquisi-
tion component, theScheduling Controcomponent, and th&imulationcomponent. The
Interactive Advisorthe Evaluation and theCommunication Interfacare not included in the
prototype implementation. KBL was implemented on top of the object-oriented DBS

ONTOS in the first place. The implemented prototype is structured into the following three

12

modules: Scheduling Toolkit Module, Planning Board Module and Simulation Module.

The Scheduling Toolkit Moduleepresents the core of the KBL system. It includes all classes
and methods necessary for the scheduling of orders. It contains all production data and
manages the constraints and capacity models. Furthermore, it controls access to the data-
base. The Knowledge Representation and Acquisition component, and the Scheduling
Control component are implemented by the Scheduling Toolkit Module. Alaaning

Board Moduleimplements the graphical user interface. Bimulation Modulemplements

the Simulation component and allows to schedule orders automatically. All the modules use
the Scheduling Toolkit Module for the management of persistent objects in the database.
The KBL database schema follows the class hierarchy depicted in Figure 4. The basic func-
tionality of the Scheduling Toolkit is implemented in the classgsnt, Activity, andSTRe-

source (highlighted in Figure 4). The classctivity is used to describe operations in the
planning board environment. These include the manufacturing specific operations such as
‘drilling’, ‘milling’ etc. The class STResource describes any kind of resources, such as
materials, machines and workers. Instances of the elgsst are used to relate activities

and resources and contain additional information about the status of the resource/activity
relationship. This includes whether the activities have been already scheduled or not, and

whether the activities consume or produce resources and to which rate.

In conjunction with other classes suchsieStateDescriptor, IntervalObject, and Agent-
Constraint the classes described above represent a flexible environment for modeling manu-
facturing processes. A detailed account of the KBL class hierarchy can be found in

Reference 19.

A Brief Tour of ONTOS and ObjectStore

In the following we briefly describe the main features of the OODBS ONTOS and
ObjectStore. For further information we point to References 9, 10, 13 and 14 and to the
product literature. Based on our evaluation schema for OODBS we group the evaluation
features of ONTOS and ObjectStore as depicted in Table 4.

13

ONTOS Release 2.2 is based on C++, which implies that the DDL/DML is basically C++.
According to our classification of constructing OODBS in the introduction, in ONTOS data-
base functionality has been incorporated into the existing object-oriented language C++. It
operates in a client/server environment, where the server architecture relies on the page
server paradigm. It is available on the major workstation platforms. The strength of the
product lies in its extensibility and in the flexible meta data management. The storage
manager and the transaction manager can be modified in order to support user-defined exten-
sions. Databases can be accessed either with C++ as DDL/DML or with an interactive SQL-
Interface. The objects are accessed and referenced through indirect references called logical
object references or through direct references physical object references. The access to meta
data is fully supported. The dynamic creation of new classes and methods provides a high
degree of flexibility. Persistence is reached by inheritance from a system supplied preex-
isting object class. Each persistent class requires the implementation of several methods
(get_direct_type, put_object, APL-Constructor, delete_object) in order to guarantee consis-

tent management of persistent objects. ONTOS implements object level locking and
provides transactions with checkpointing. A transaction may access a single database server.

Version management is not supported.

Similar to ONTOS, ObjectStore Release 2.0 is also based on C++ and operates in a client/
server environment. The ObjectStore server is a page server. It is also available on the major
workstation platforms. It provides access to the database either with C++ or with a C++
extension called ObjectStore DML: Both C++ and ObjectStore DML can be regarded as
DDL/DML of ObjectStore. An SQL-like query language is not supported. The strength of
ObjectStore is its memory architecture and the resulting performance benefits. Objects are
mainly accessed via direct references, although indirect references are also supported. The
use of direct references implies some restrictions on the size of the database, on the amount
of data that is accessible within a single transaction, and on database reorganization,
however, the advantages of direct references dominate their weaknesses for certain applica-
tions. Persistence is orthogonal to the type system, i.e., independent of any preexisting

object class, and thus provides advantages in case of migrating applications to ObjectStore

14

(for an in-depth discussion of this point see section 4). ObjectStore provides navigational
access via object references and associative access via queries over collections. In terms of
extensibility and schema access, ObjectStore does not provide the flexibility of ONTOS.
The meta object protocol (MOP) only provides access to class descriptions. Dynamic modi-
fications of class descriptions are not supported. Static schema evolution is supported via an
object migration tool converting the instances of the old schema to conform to the new
schema. ObjectStore provides a sophisticated versioning mechanism that supports the
versioning of configurations of objects. Concurrent database access is controlled by implicit

page level locking and closed nested transactions.

With the discussion of the database requirements of KBL and the evaluation of the involved
OODBS we have completed the first phase of the migration process and are ready to

describe the migration analysis.

Migration Analysis

In this subsection we discuss the second step of the migration process, namely the migration
analysis for migrating KBL from ONTOS to ObjectStore. Based on the evaluation schema

of Reference 13, which is discussed in Table 1 and applied to ONTOS and ObjectStore in

Table 4, we investigate the second step of the migration process. The input and output of the
second step is presented in Figure 5 and 6, respectively. Figure 5 shows the flow of each
feature through the first two steps of the migration process. Figure 6 depicts the intersections
of the database requirements and the features supported by ONTOS and ObjectStore. It's
beyond the scope of this paper to discuss mapping strategies for all migration features.
Instead, after discussing the grouping of the features depicted in Figure 5 the mapping strat-

egies for example features taken from each of the migration paths are introduced.

Both ONTOS and ObjectStore are based on the @ata model They both use the C++

basic data types in addition to some complex data types, e.g., to support various kinds of
collections. Furthermore, in both OODBS the C++ data model is extended to provide typical
database features such as transaction support. Concerning basic data types, ONTOS and

ObjectStore have overlapping functionality (see also Section ‘Basic Data Types’).

15

Concerning complex data types and database extensions, each data model uses its own
syntax and semantics. Thudata modelis included in the candidate shallow migration
features. Since the functionality of the data model is crucial for the KBL application the data
model is part of the application’s database requirements, and thus, it is included in the

shallow migration features, for which a strategy must be developed.

The featureconstraints and triggersis not supported by ONTOS. Since we classify inverse
relationships as a kind of constraints and since ObjectStore supports inverse relationships,
we add this feature to the candidate deep migration features. Note, ONTOS offers inverse
relationships only for dynamically created types but not for statically created ones. This
feature is also included in KBL's database requirements since some objects in KBL are
related to each other by an inverse relationship. As a consequence, we add constraints and
triggers to the set of deep migration features. The mapping strategy for inverse relationships

are presented in Section ‘Inverse Relationships’.

Persistencds required by any database application. In ONTOS it is implemented by inher-
itance and in ObjectStore by declaration. Thus, we have to include persistence in the shallow
migration features and have to develop a mapping strategy. For a detailed account thereof

see Section ‘Persistence’ and Section ‘Evaluation Report'.

In ONTOS, it is possible to provide each object with a synonym, which is stored in a sepa-
ratedata dictionary. The synonym can serve as unique identifier for the specific object. In
ObjectStore, nothing similar exists. Therefore, the feature is part of the candidate shallow
migration features. In KBL, synonyms are heavily used for the activation of objects and

thus, this feature becomes a shallow migration feature.

The analysis of thdools is only interesting in terms of supporting the implementation
process but it has no effects on the application itself. The feature has been added to the

candidate deep migration features, but it does not reside in any of the resulting sets.

Query managementis implemented differently in both systems. In ONTOS, persistent

objects are retrieved via their synonyms or via an instance iterator over all persistent objects

16

that belong to a specific class and its subclasses. In ObjectStore, the entry points of the data-
base are persistent root objects. Due to these different access methods and since KBL, like
any other database application, requires query management, it is included in the set of

shallow migration features.

Query optimization is also part of the database requirements of KBL. ONTOS provides
only limited query optimization. ObjectStore supports indices and clustering for query opti-

mization. Thus, query optimization is a member of the deep migration features.

Since C++ is théhost programming languagerequired by KBL and since both OODBS

provide an interface to C++, this feature is part of the overlapping features.

ONTOS and ObjectStore provide different conceptsdanema evolutionbut it was not
considered a requirement in the KBL prototype implementation. Thus, schema evolution is a

member of the candidate shallow migration features, only.

Both systems supply neither logical nor physical data independence, however, ObjectStore
provides some object migration features. Thelsange controlresides in the set of candi-
date deep migration features. Since schema evolution has not been regarded a requirement of

the KBL prototype, change control is not regarded either.

ONTOS does not support gersioning mechanism. As a consequence, in KBL the
versioning of the schedules has to be simulated. ObjectStore provides a sophisticated
versioning mechanism including linear and branching versions. Since versioning is required

by KBL but only supported by ObjectStore, it is part of the deep migration features.

Concerningconcurrency control, ONTOS is superior to ObjectStore since in ONTOS it is
possible to explicitly lock objects and to specify an optimistic locking strategy in addition to

a pessimistic one. The optimistic lock strategy is also part of the database requirements of
KBL and thus, included in the shallow migration features. Since the simulation of an opti-
mistic lock strategy in ObjectStore would have gone far beyond our available resources, we

restricted the migrated KBL application to the use of a pessimistic lock strategy.

17

Recoveryis part of the database requirements of any application. It is included in the over-
lapping features since ONTOS and ObjectStore provide automatic database recovery from

volatile storage but do not provide disk crash recovery.

Authorization is also included in the overlapping features since data access control is
supported at the database level, both in ONTOS and in ObjectStore. Database access is
controlled by the UNIX file access protocol. KBL does not require any specific access

control mechanisms.

Both systems support a client/servarchitecture, which is required by KBL. Since
ONTOS and ObjectStore are based on a page server we consider the architecture to be

similar in both systems and to be part of the overlapping features.

One of the most important differences between ONTOS and ObjectStore in the realm of
storage managements the disk to in-memory mapping and the activation of referenced
objects. In addition, the facilities for the use of indices and clustering are different in both
systems. Storage management is a shallow migration feature since the KBL prototype
requires both the activation of referenced objects and the use of indices and clustering mech-

anisms.

The featuredistribution is a candidate shallow migration feature because ONTOS and
ObjectStore provide different concepts for distribution. It is not a shallow migration feature

since the KBL prototype disregards distribution.

ONTOS does not provide any import and expaterfaces ObjectStore offers a third party
tool to support an import interface from STEP/Express. Nevertheless, import and export
interfaces are not required by KBL. Thus, interfaces are part of the candidate deep migration

features but do not have to be considered for the migration of KBL.

KBL was developed for SUN workstations in a TCP/IP network. ONTOS and ObjectStore
support this environment. Therefore, the featoperational conditionsis included in the

overlapping features.

18

Mapping Strategy for Selected Features

In this subsection we develop a mapping strategy for three selected features of the evaluation
schema. These (sub)features are chosen in such a way that each of the three possible paths

through the migration process is covered:

« shallow migration pathpersistence
» deep migration path: inverse relationshipas part ottonstraints & triggers

* overlapping path: basic data typeas part of thelata model

In the following, we present the mapping strategy for each of these features. To increase the
understanding on how to use OODBS we briefly investigate the development of OODBS

applications beforehand, both in general and based on the selected OODBS.

In general, the development of an object-oriented database application can be divided into
the following phases: (a) development of the database schema and the database application,
(b) registration of the schema in the OODBS, and (c) compilation and linking of the data-
base application. Most of the commercial OODBS extend some object-oriented host
programming language and generate the database schema during the compilation of the

application. Thus, the development of the application is controlled by Makefile commands.

Table 5 and Table 6 show the relevant fragments of Makefiles for the compilation of the
KBL application in ONTOS and in ObjectStore, respectively. Besides the typical contents of

a Makefile such as compiling and linking instructions, they also include directives for the
creation of the database schema. The database schema consisting of the C++ source and
header files is generated during compilation and stored for subsequent access during the
execution of the database application. In ObjectStore, the schema information is generated
by the compiler and is stored in dedicated databases called Compilation Schema Database
and Application Schema Database. ONTOS uses a database administration tool called

DBATool for the creation and registration of database schemes. Furthermore, ONTOS

19

allows the assignment of physical disk space to databases via Makefile directives. In

ObjectStore, this task is controlled by the file system.

The two approaches mainly differ in the flexibility of database creation. In ONTOS, data-
bases must be generated and specified with the DBATool while in ObjectStore, the user is
free to generate databases during run-time of the application. However, from the database

administration point of view this approach lacks single-point control of database generation.

As mentioned above, the database schema is contained in C++ source and header files. In the
following subsection, we describe the structure of the persistent class definitions in ONTOS
and ObjectStore, respectively. Basically, the syntax is similar to C++ class definitions,

however, each of the OODBS extends the C++ syntax in order to specify persistence.
Persistence
In this subsection we demonstrate the development of a mapping strategy for one of the most

interesting features in the set of shallow migration features of Figure 5, naengistence

In ONTOS, persistence is achieved by inheritance from the ONTOS specifictass. In
ObjectStore, it is achieved by the declaration of persistent variables. For the development of
a mapping strategy it is necessary to further investigate how persistence is implemented in
ONTOS and ObjectStore, respectively. To achieve persistence in ONTOS, the following

conditions must hold true:

» Classes must have an inheritance path through the ONTO®ojass

» Classes must have a special constructor called “activation constructor” to activate an

object from disk to cache memory.
» Classes must have a special member function cgdi@drectType().

» If the class has a destructor, it should have a function calkatroy() to deactivate an

object from main memory but not from disk.

» Classes should have the functi@pnsObject() anddeleteObject() to

write / delete an object to / from the disk

20

If the definition of a class fulfills these requirements, and the member funaii@mject is
invoked on an instance of this class, this specific instance is made persistent. In ObjectStore,
the class definition for a persistent object includes neither an inheritance path through a
specific predefined class nor specific functions similar to those in ONTOS. An object is
made persistent by declaration. There is no need to call an operatiquuiiBiject to write

it to secondary storage.

The code fragments presented in Table 7 summarize the persistent class definitions for the
classscheduleAgent in ONTOS and ObjectStore, respectively. The examples were taken
from the KBL application and compare the definition of persistent classes and extension

management.

As the persistent class definition is also influenced by the featiogage management
guery managemenanddata dictionary we putpersistenceéogether with these features into

a cluster of interdependent functionality (CIF) according to step 1 of the migration frame-
work (see Table 2). Althougltonstraints & triggersand query optimizationare also

included in this CIF, these features are omitted when performing a shallow migration.

The clustering withstorage managemerg due to the fact that in ONTOS direct references

are main memory pointers and behave like main memory pointers in every respect. This
implies that the traversal of a direct reference requires the programmer to ensure that the
referenced object is already in main memory. Otherwise the program will terminate with an
exception raised in the best case, or continue with unexpected values, in the worst case. The
other possibility is to use - as in KBL - indirect references via the dkassrence. Refer-

ence allows objects to be referenced by using a format that is valid whether or not the refer-
enced object is currently in main memory. TBanding() function defined for the class
Reference returns a pointer to the referenced object and activates it if necessary. ObjectStore
provides a very comfortable concept called ‘Virtual Memory Mapping Architecture’ for the
activation of referenced objects. In ObjectStore, all pointers take the form of regular
memory pointers, similar to direct references. A pointer to a persistent object that is

currently not in main memory has an unmapped virtual-memory-address. In the case of

21

dereferencing the virtual-memory-pointer, a fault is signaled by the violation handler and the
segment containing the object is transferred into the client’s cache. The page containing the
object is mapped into the virtual memory. ObjectStore provides also some kind of indirect
references. They are mainly used for dereferencing objects in other databases and between
transaction boundaries. Because of the convenience of using direct references in ObjectStore
we decided to replace the indirect references in the ONTOS version of KBL by direct refer-

ences in the ObjectStore version.

The clustering withqguery managemerstems from the fact that ONTOS offers a so called
instance iterator as entry point to the database, which allows access to all objects that belong
to a specific class and its subclasses. In order to simulate this functionality in ObjectStore,
each persistent class includes a static persistent class variable pam&dwith domain

os_Set containing all the instances of this class and of all subclasses, respectively. There-
fore, the constructor has to include a call that inserts each newly created object into this
static set, and the destructor must include a call that removes each deleted object from this

set, equivalently.

The clustering withdata dictionaryis due to the fact that ONTOS provides synonyms for
each persistent object. These synonyms serve as unique identifiers for the specific objects.
The name spaces of the synonyms may be organized in hierarchies. This behavior is simu-
lated in ObjectStore by embedding an identifying propettyal *ivName) into the root

class of the KBL applicatiorkBLObject (cf. Figure 4 and Table 7).

In Table 8, we exemplify the use of the instance iterator in ONTOS and the corresponding
simulation in ObjectStore. The example methyedScheduledSAList operates on the set of
ScheduleAgent objects that have been considered during the scheduling process and have
already been scheduled on a specific resource. In ONTOS, it is possible to create an instance
iterator for the classcheduleAgent to iterate over all objects belonging $eheduleAgent.

Those members afie ScheduleAgent extent that have already been scheduled are inserted
into a list, which is returned by the functigetScheduledSAList. Since ObjectStore does

not provide instance iterators we include the static persistent class vasiabie in the

22

ScheduleAgent class definition containing all instances of the clasgeduleAgent. The
selection of the schedulestheduleAgent objects isperformed by querying the ssethed-

uleAgent::extent.

Inverse Relationships

In the following we present the mapping strategy of the subfeatwerse relationships

which is part of the evaluation featummnstraints and triggetsinverse relationships are
included in the deep migration features, for which a mapping strategy has to be developed in
case of deep migration. In ObjectStore, declarations of inverse relationships have to be made
within the persistent class definition. Due to this fact, the featorestraints and triggers

and the featurpersistencenust reside in the same cluster of interdependent functionalities.

Before presenting a strategy for the featumeerse relationshipswe first define the concept

of inverse relationships. An inverse relationship is a binary relationship between two objects
or sets of objects being maintained in both directions. Accordingly, inverse relationships
between database objects may be of arity 1:1, 1:n, or n:m. Usually, these relationships are
implemented by references between the related objects or by the use of explicit relationship
objects. The inverse relationships are automatically maintained according to the underlying
semantics. Consider object A and object B to be related to each other by an inverse relation-
ship. Whenever a reference is established from object A to object B, a reference from object
B to object A must be also established. Conversely, when a reference from object A to object
B is deleted, the reference from object B to object A has to be deleted in turn. ObjectStore
allows the modelling of inverse relationships with pointer-valued or collection-of-pointer-
valued instance variables, called data members in ObjectStore. The OODBS automatically
maintains the integrity of the inverse relationship. Binary relationships of statically created
types in ONTOS do not provide this semantics. In ONTOS, the programmer is responsible
for maintaining the integrity of binary relationships by explicit calls within the application

code.

As an example, consider the relationship between a manufacturing activity and the sub-

activities into which it can be divided. In KBL, activities such as drilling or melting are

23

structured in an activity hierarchy. This means that a root activity is built up by a set of
subactivities, which can also be made up of subactivities and so on. Furthermore, each
subactivity can be part of more than one superactivity. Therefore, each activity, except the
root activity, has one or more superactivities and it might have several subactivities. There
exists a n:m-relationship between the superactivities and the subactivities. In order to main-
tain the integrity it is necessary for each newly created activity to insert its superactivities
into the set of superactivities, and subsequently to insert the activity itself into all its super-

activities’ sets of subactivities.

In the ONTOS implementation, the management of inverse relationships is explicitly imple-
mented in the constructor using references between the related objects (cf. Table 9). When-
ever an activity is created and the constructor gets executed the programmer must ensure that
references are installed from the newly created object to its superactivities. Furthermore, the
programmer is responsible for the installation of references from these superactivities to this
newly created activity. In ObjectStore it is possible to define the set of superactivities to be
related to the set of subactivities by an inverse relationship, called inverse members in
ObjectStore (cf. Table 9). In this case the programmer has only to ensure that references are
established from the newly created activity to its superactivities. The corresponding refer-
ences from the superactivities to the newly created activity are automatically established and
maintained by the database system. Thus, the strategy for a deep migration of the feature

inverse relationshipshould be the following:

(@) Define an inverse relationship between two data members whenever there exists

a binary relationship that should be automatically maintained.

(b) Remove the user-defined code segments that have been used to ensure integrity

so far.

In the left column of Table 9, we present the example of the constructor of therdlassy
described above. Note, that in the ONTOS application the set of superactivities and the set of
subactivities are implemented as lists. ObjectStore supports inverse relationships with

system-maintained references between the related objects. The declaration of inverse rela-

24

tionships affects each manipulation of these relationships. For example, whenever a superac-
tivity is removed from an activity’s set of superactivities, this activity is also automatically
removed from the superactivity’s set of subactivities. Thus, during migration implementa-
tion code changes have to be made to all procedures that operate on the inverse relationship
between superactivities and subactivities, such as the destructor and the procedures that

remove and add new superactivities.

Basic Data Types

As mentioned above, ONTOS and ObjectStore are based on the C++ data model. They both
use the C++ basic data types and in addition some database system-specific complex data
types. Since these complex data types are different in both OODBS, the main fatare
modelis included in the set of shallow migration features. Yet, the subfedtase data

typesis an overlapping feature because both systems use the C++ basic data types. There-
fore, calls that operate only on the C++ basic data types (etgoundSlotNum = 0;) do not

have to be changed during migration. As a consequence, we do not have to develop a

mapping strategy for the (sub)feature basic data types.

25

EVALUATION REPORT

In this section we discuss the experiences gathered during the migration of the KBL applica-
tion from ONTOS to ObjectStore. The purpose of the case study was to investigate the appli-
cability of the migration framework described above. Note, that neither the implementation

of the migration process was carried out in a production environment nor did we emphasize

the optimization of the application.

We first describe our experiences with the involved OODBS - ONTOS and ObjectStore. We
then present a qualitative evaluation of our migration framework including a discussion of

our approach and an outlook on further scenarios that one may face in further migration
projects. Finally, we present a quantitative evaluation of our case study including the source

and target application as well as the involved personnel resources.

ONTOS and ObjectStore

In Section ‘A Brief Tour of ONTOS and ObjectStore’ a concise introduction of the function-
ality of the two OODBS has been given. We can conclude that both systems are based on the
same DDL/DML, namely C++, they operate in a distributed workstation environment, and
they provide basic database functionality such as transaction management, query manage-
ment, and limited recovery. Due to the absence of user management facilities, security facil-
ities, and ad-hoc querying facilities, both ONTOS and ObjectStore may be classified rather

as persistent programming languages than as full-fledged database management systems.

The main difference between ONTOS and ObjectStore is their approach to provide persis-
tence. ONTOS requires, firstly, that each persistent class inherits from a predefined system-
specific class, and secondly, that additional methods for each persistent class are imple-
mented. Thus, in ONTOS persistence is not transparent at all to the application programmer.
In ObjectStore, persistence is reached by declaration of persistent variables. This means that
in the latter case persistence and types are orthogonal in the sense that the feature persistence
is realized without involvement of some predefined type, while in the former case this is not

true. The main advantage of ObjectStore’s approach to provide persistence becomes

26

apparent when an application, having used no database system so far or having used another
OODBS, is ported to ObjectStore. In this case, the application’s class hierarchy doesn’t have
to be changed. In contrast, this would be necessary with ONTOS in the sense that an addi-
tional superclass, the predefined persistent atagsct, has to be included in the list of
superclasses that a specific class inherits from. This may cause different problems, ranging
from name clashes due to multiple inheritance to a complete change of the application’s
class hierarchy if only single inheritance is supported. In our case study we did not face

these problems, since we were migrafiogn ONTOSto ObjectStore.

In addition, ONTOS provides automatic management of class extensions while ObjectStore
requires the implementation of user-defined containers to collect persistent objects.
However, it can be easily implemented (see Table 7 and 8). Furthermore, we noticed a much
tighter integration of ObjectStore with the C++ programming language than it is the case for

ONTOS.

As mentioned above, we did not consider performance as a main issue in our case study. A
comparison of the two systems based on the OO1 bencR#rard the OO7 benchmark
can be drawn from the benchmark results published by the respective database manufac-

turers.

Discussion of the Framework

The migration of database applications is part of the software maintenance process. The
much tighter integration of host programming languages with object-oriented database
systems is one of the main characteristics of OODBS and thus requires novel migration
techniques. This was the starting point for developing the migration framework presented in
the previous sections. The experiences we gained are the following. Firstly, the framework
supports a structured thus observable approach to the migration problem by providing both
shallow and deep migration. Due to this comprehensible approach it is easier to detect any
missing link and thus it is less errorprone. Secondly, the framework reduces the effort for
further migrations between OODBS because of the available analysis information of

OODBS gained during the first step of the migration process. Lastly, the detailed evaluation

27

of OODBS shed some light on the intrinsics of object-oriented database systems and thus
help to combine applications with OODBS in a more comprehensible way. However, these
experiences have to be judged in the right context, i.e., only one case study has been carried
out so far, and we are not aware of any other OODBS migration experience without using
the presented framework. Migration analysis from non-relational to relational databases and
from relational databases to object-oriented databases are available but we feel that they do

not serve as a serious basis for a comparison.

In the following we discuss scenarios that were not directly covered in our case study, yet

may be of concern when applying the presented framework.

What if ...

... the database systems follow different approaches to reach persistence?

The experiences mentioned above concern the migration of KBL from ONTOS to
ObjectStore. As already stated, the architecture of ObjectStore supports the migration to
ObjectStore, not only but also due to the fact that persistence is implemented by declaration.
In addition, in the KBL case study the size of the application decreased considerably since
several methods necessary to implement persistence in ONTOS could be deleted (see also
next subsection on quantitative evaluation). Migrating applications in the reverse direction -
from ObjectStore to ONTOS - is more difficult. Migrating from ObjectStore to ONTOS
requires persistent classes to inherit from the ONTOS aagsct and to implement addi-

tional methods (see Section ‘Persistence’). Consequently, the size of the application
increases. In contrast, migrating applications between OODBS that follow a similar
approach to reach persistence, e.g., ONTOS and Versant, requires less effort than the former

case and has minor effects on the size of the application code.

... the database systems provide different host programming languages and/or different
DDL/DML?

A host programming language is the language in which the application to access and manip-

ulate the database is written. In contrast, the DDL/DML is the database language based on

the concepts of the underlying data model. Our case study has shown that the migration

28

framework is well suited for the migration between OODBS supporting the same host
programming language. If the set of host programming languages differs between the source
DBS and the target DBS, more specifically, if the host programming language used by the
database application is not supported by the target DBS a complete re-development of the
application becomes necessary. In general, this is a very difficult and costly task. One would
try to use tools like cross-compilers to make the translation process less errorprone. If the
host programming language of the application is supported by the target DBS yet the DDL/
DML of the source DBS and the target DBS are considerably different, major changes of the
database interaction part of the application become necessary. Examples include the migra-
tions between SMALLTALK-based database systems and C++-based database systems. Last
but not least, if the host programming language of the application is supported by the target
DBS and both DBS are based on similar yet not identical data models minor changes of the
database interaction part of the application are necessary. The presented case study is an
example thereof. If the DDL/DML differ only in minor respects such as different semantics

of a basic data type, e.g., different ranges of floating point variables, the behavior of the rele-
vant parts of the application can be simulated by wrapper functions or wrapper classes that
mimic the appropriate behavior. In all three cases discussed above, the structured approach

of the proposed framework helps to accomplish the migration.

... the database systems are operated in different system environments?

System downsizing from host-based computing to client/server computing may include
changes of the operational conditions of the target database application. As a result the
underlying operating system or user-interface system may change, e.g., from a X/Unix
based to a Windows/MS-DOS based environment. These changes are reflected in the envi-
ronment analysis of the migration framework; either as changes in the system configuration
or as resulting changes in the database system’s functionality. Since our framework focuses
on the database part of the application migration user interface specific or operating system
specific migration techniques such as interface gateways may be applied but are not explic-

itly mentioned in our framework.

29

Quantitative Evaluation

In our quantitative evaluation we concentrate on two metricssitteeof the application code
as a quantitative product metric and tim¥olved personnehs a metric for man power
involved in the migration process. Both the comparison of the application sizes and the

involved personnel are informative and provide a measure of productivity and efficiency.

As pointed out in Section ‘KBL - A Knowledge-Based Electronic Planning Board System’
the KBL application consists of three main modules: the Scheduling Toolkit Module, the
Simulation Module, and the Planning Board Module. The source application comprises 61
classes (see Figure 4) and about 46000 lines of code (LoC, without comments). The total
number can be divided into 27400 LoC for the Scheduling Toolkit Module, 10400 LoC for
the Simulation Module, 7300 LoC for the Planning Board Module, and 830 LoC for devel-

opment utilities such as Makefiles and database loading tools.

The target application comprises the same number of classes as the source application. This
IS due to the fact that a shallow migration has been carried out rather than a complete re-
design of the application. No additional classes had to be implemented. The total LoC for
the migrated application was reduced to about 40000. This yields a reduction of 14%
compared to the original size of the application. In the target application, the Scheduling
Toolkit Module comprises about 21000 LoC (76%), the Simulation Module 10500 LoC
(101%), and the Planning Board Module 7200 (99%). The development utilities also
decreased in the amount of code (680 LoC) (82%). Table 10 gives a detailed overview of the

application’s size and code modifications based on ONTOS and ObjectStore, respectively.

Our analysis of the application sizes shows a considerable reduction for the Scheduling
Toolkit Module while the other modules, namely Simulation Module, Planning Board
Module, and utilities, show only minor differences in size. This analysis is not surprising. It
mainly stems from a simpler class definition in ObjectStore. The additional methods for the
manipulation of persistent objects that must be implemented in ONTOS can be omitted in
ObjectStore (-29%). A code inspection showed that the Scheduling Toolkit Module contains

most of the class definitions and thus benefits from the simpler class declarations in

30

ObjectStore. The remaining modules contain only few class definitions. In contrast, we had
to implement extension management for persistent classes in ObjectStore (+5%). ONTOS
provides an automatic management of class extensions. The instances of a class are
collected in a container with the same name as the class. Since ObjectStore does not support
this feature it has to be provided by the application programmer. Yet the reduction due to
simpler class definitions exceeded the effort for implementing class extensions. The code
changes in the Simulation Module and the Planning Board Module are due to differences in
the implementation of query management (see Table 7 and 8) and in the management of
inverse relationships (see Table 9). The size of the Utilities Module changed considerably

due to the different makefiles of the two database systems (see Table 5 and 6).

Considering the personnel involved in the migration process we distinguish three implemen-
tation phases: analysis of the application and the involved OODBS, migration analysis, and
implementation of the migration. The whole migration process could be carried out in 14
weeks with 40 hours per week. The analysis of the application and of the OODBS, and the
migration analysis took about 8 weeks. Note, that there was hands-on experience with
ObjectStore beforehand, which helped to reduce the time to evaluate ObjectStore consider-
ably. The implementation of the migration was carried out in 6 weeks. Table 11 gives a
detailed overview of the human resources involved. In the initial planning of the migration
we scheduled a bigger effort for the actual implementation process. Evaluating the whole
migration process we have identified two reasons for the comparably low total migration
effort of 14 weeks. On the one hand, knowledge of the application and/or of the involved
database systems saves time and thus increases migration productivity locally. On the other
hand, adherence to the migration framework supports a structured thus observable migration
process, which saves time throughout all phases and increases migration productivity

globally.

CONCLUSION & FURTHER WORK

In this paper we have presented a framework for the deep and shallow migration of applica-

tions between different OODBS. Our framework is based on several analysis steps to

31

perform a controlled migration process, namely the analysis and evaluation phase, the
migration analysis, the development of a mapping strategy, and the implementation process.
In the analysis and evaluation phasiee application’s database requirements, the hardware
and software environment, and the involved database systems are considerednilgnang

tion analysisthe information gathered during the previous phase, namely overlapping
features, candidate shallow migration features, candidate deep migration features and data-
base requirements, is used to figure out shallow migration features and deep migration
features. Based on the financial and time restrictions imposed by the organization and the
requirements with respect to functionality, mmplementation strategfpr shallow and deep
migration features is developed and carried out inithglementation proces3he migra-

tion framework has been successfully tested by migrating the KBL application from the
OODBS ONTOS to ObjectStore.

The driving force behind the KBL migration has been to investigate the flexibility to
exchange the underlying object store of the KBL application. It has been intended to sell
KBL to different customers, which presumably would possess different OODBS. With the
development of the migration framework and its test within a first case study we have hoped
to gain insight into both a structured migration process and the intrinsics of different

OODBS. Both expectations have been fulfilled.

Further investigations of this topic should include approaches for the (semi-)automatic
migration of OODBS applications and the development of strategies for deep migration.
Several tasks such as the re-implementation of the class definitions can be easily supported
by the use of application conversion programs while others such as the selection of a
mapping strategy require more effort. The latter case requires knowledge based support for
the migration process. The resulting expert system based migration advisor could increase

both the productivity and the quality of the migration process.

ACKNOWLEDGMENT

J. Thaler and A. Berger migrated the KBL prototype to ObjectStore.

32

10.

11.

12.

13.

REFERENCES

K. Dittrich, ‘OODBS: The Next Miles in the Marathomhformation Systemd5, (1), (1990)
M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, S. Zdonik, ‘The object-oriented

database manifesto’ in: W. Kim, J.-M. Nicolas, S. Nishio (edBrc. of the £' Conf. on
Deductive and Object-Oriented Databaskgoto, North-Holland, December 1989

J. Netze, H. Seelos, ‘Scenes and strategies of data migration’ (in geiwvialsghaftsinforma-
tik, 35, (4), (1993)
B. Shneiderman, G. Thomas, ‘An Architecture for Automatic Relational Database System Con-

version’,ACM Transactions on Database Systemg$2), (1982)

S. Su, H. Lam, D. Lo, ‘Transformation of Data Traversals and Operations in Application Pro-
grams to Account for Semantic Changes of Databage€3M Transactions on Database Sys-
tems 6, (2), (1981)

R. Cattell (ed.),The Object Database Standard ODMG;9@organ Kaufmann Publishers,
1993

K. Dittrich, ‘Migrating from conventional to object-oriented databases: a “can”, a “must” - or
none of both?’ (in germanyyirtschaftsinformatik35, (4), (1993)

D. Maier, ‘Why isn’t there an object-oriented data model?’ in: G. X. Ritter (énfprmation

Processing 89 - IFIP World Computer Congrdssrth-Holland, 1989

V. Soloviev, ‘An Overview of Three Commercial Object-Oriented DBMSs ONTOS,
ObjectStore, and O ACM SIGMOD Record?1, (1), (1992)

C. Lamb, G. Landis, J. Orenstein, D. Weinreb, ‘The ObjectStore Database SyStemmuni-
cations of the ACM34, (10), (1991)

P. Butterworth, A. Otis, J. Stein, ‘The GemStone Object Database Management S¢stem’,
munications of the ACM84, (10), (1991)

P. Kanellakis, C. Lecluse, P. Richard, ‘Introduction to the Data Model’ in: F. Bancilhon, C.
Delobel, P. Kanellakis (eds.Building an Object-Oriented Database System: The Story,pf O
Morgan Kaufmann, 1992

G. Kappel, S. Rausch-Schott, W. Retschitzegger, M. Schrefl, U. Schreier, M. Stumptner, S.
Vieweg, ‘Object-Oriented Database Management Systems - An Evaluation’ ODB/TR 92-21,

Institute of Applied Computer Science and Information Systems, Univ. of Vienna, 1993

33

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

S. Ahmed, A. Wong, D. Sriram, R. Logcher, ‘Object-oriented database management systems
for engineering: A Comparisondpurnal of Object-Oriented Programming (JOOB) (1992)

W. Kim, F. Lochovsky (eds.), ‘Object-Oriented Concepts, Databases, and Applicaf@id’,
Press Reading MA, Addison-Wesley, 1989

M. Stonebraker, L. Rowe, B. Lindsay, J. Gray, M. Carey, M. Brodie, P. Bernstein, D. Beech,
‘Third-Generation Database System Manifesto’, ASNEMOD Record19, (3), (1990)

S. Zdonik, D. Maier (eds.Readings in Object-Oriented Database Systef@s Mateo, CA.
Morgan Kaufmann, 1989

KBL Esprit 5161 Design, Development and Implementation of a Knowledge-based Leitstand
(KBL), Deliverable Milestone 3, Commission of the European Community (CEC), 1992

KBL Esprit 5161 Design, Development and Implementation of a Knowledge-based Leitstand
(KBL), Final Deliverable, Commission of the European Community (CEC), 1993

A. Scheer, A. Hars, ‘The Leitstand - A new tool for decentral production control’ in: G. Fandel,
G. Zapfel (eds.)Modern Production ConceptSpringer Berlin, 1991

G. Kappel, S. Vieweg, ‘Database Requirements for CIM Applicatialmirnal of Integrated
Manufacturing Systems, (4/5), (1994)

U. Schreier, ‘Database Requirements of Knowledge-based Production Scheduling and Control:
A CIM Perspective’ in: R. Agrawal (ed.Rroc. of the 19th International Conference on Very
Large Data Basedublin, August 1993

R. Cattell and J. Skeen, ‘Object Operations Benchm&®M Transactions on Database Sys-
tems 17, (1), (1992)

M. Carey, D. DeWitt, J. Naughton, ‘The OO7 BenchmaR¢oc of the ACM SIGMOD Conf.

ACM SIGMOD Record22, (2), (1993)

34

Figures:

S1

System
Configuration

Source OODBS

Target OODBS

Environment
Analysis

OO0DBS
Evaluation

Clustering

Overlapping
Features

Candidate
Shallow
Migration
Features

Candidate
Deep Migration
Features

Requirements

Database

N

Database
Application

Analysis

Requirements

—» data flow

S2

Migration Analysi

S3 S4

Strategy
for

Shallow

Migration

Shallow
Migration
Features

Mapping Strategy
Implementation

Development of a

Strategy
for
Deep
Migration

Deep
Migration
Features

Figure 1: Model of the Migration Process

35

Direction of the Migration Process

-

Source OODBS

Target OODBY candidate deep
migration features

/4 J—

4 deep migration features

candidate shallow
migration features

Database Requirements

shallow migration features overlapping features

Figure 2: OODBS Features and Database Requirements

36

Production Planning & Control

work orders T data collection

Electronic Planning Board

work orders data collection
y
workecells
©) 1O} O\
Ao | | A - A
BN N BN
Legend:

—p data flow

Production Planning & Control Level:

performs mean-term production
planning and control of work orders

Planning Board Level:
performs short-term production
scheduling

Shop Floor Control Level:
controls the manufacturing process

Figure 3: Integration of an Electronic Planning Board System

37

StateNode 4 SimulatedResource
SimulatedObject SimulatedAgent

Sfmulat-or StartEvent
SimulationEvent PickEvent
MessageQueue
9eQ EndAgentEvent

MessageDefinition .

InitAgentsEvent
MQS

ReleaseAgentEvent
FunctionDef

StopEvent
EvVariable

] BeginAgentEvent
Evinstruction

— ShopFloorAgent

—_—
/ MasterDataAgent — OverlapAbleMasterDataAgent

Rule
KBL Object MessageField
A EVSpecification EVSpecUserdefined
ConstraintPurpose EVSpecPredefined

. . . AgentFixTimeConstraint
AgentConstraint —— > AgentTimeConstraint <:

) AgentBetweenTimeConstraint
DispatchRule
AgentRelationship —— > AgentTimeRelationship ——— AgentSlotSequence
EventList) L
- < SingleActivity
[Activity |
- . ActivityGroup
MessageTypeDictionary
ShopFloorReport

SingleResource
—

ResourceGroup
Message

. . o . CostTimeStateDescriptor
TimeStateDescriptor ———> NonPeriodicStateDescriptor < o .
. . CostNonPeriodicStateDescriptor
RuleSet ShiftintervalObject
IntervalObject i

I é CostintervalObject OverlapAbleScheduleAgent
Dates ScheduleAgent <:

SlotDescription ConventionalScheduleAgent

Legend:

—— subtype_of relationship

. implements basic functionality of
the scheduling toolkit module

Figure 4: KBL Class Hierarchy

38

S1

*

OODBS Evaluation

*

Overlapping Features

Host Prog. Lang.
Recovery
Authorization

Architecture
Operational Conditions

<

Candidate Shallow
Migration Features

S2

Data Model Concurrency Control

Distribution

Persistence Storage Management
Data Dictionary ~ Schema Evolution
Query Management

Constraints & Triggers
Query Optimization

Interfaces

Version Management

Tools

Change Control

Candidate Deep
Migration Features

Database Requirements

Data Model
Constraints & Triggers
Persistence

Data Dictionary
Query Management
Query Optimization
Host Prog. Lang.

hd

g R S

Requirements

Analysis

Version Management
Concurrency Control
Recovery

Architecture

Storage Management
Operational Conditions

J

Legend:

Clusters of Interdependent Functionalities

process

U0

data flow

process input/output

Migration Analysis

~ Shallow
Migration Features

Data Model
Concurrency Control

Persistence

Data Dictionary
Query Management
Storage Management

Constraints & Triggers
Query Optimization

Version Management
Dee

Migration Features,

S3

x Strategy

of a Mapping

Development t

Figure 5: Migration Process of KBL from ONTOS to ObjectStore

39

Direction of the Migration Process

-

/4

ONTOS

Schema Evolution
Distribution

Authorization

Interfaces i
Intert ObjectStore

Change Control

Data Model
Persistence

Data Dictionary
Query Management
Concurrency Control
Storage Management

Host Prog. Lang.
Recovery

Architecture
Operational Conditions

Al

candidate shallow
migration features

Constraints & Triggers
Query Optimization
Version Management

]

candidate deep
migration features

|

deep migration features

KBL Database Requirements

shallow migration features

overlapping features

Figure 6: KBL Database Requirements and OODBS Features

40

Tables:

DBS Feature

Description

OODBS Consideration

Data Model

theoretical foundation for the specifi-
cation of database schemes

complex object modelling, object
identity, encapsulation, types, inher-
itance, overriding, late binding

Constraints & Triggers

specification and enforcement of
integrity constraints

inverse relationships, object-ori-
ented event/condition/action models

Persistence

data survives process boundaries

can be provided by inheritance, by
declaration, by reachability from
other persistent objects, and by col-
lection membership

Data Dictionary

access to database schema infor-
mation

access to database schema infor-
mation using a meta object protocol

Tools

tools for application development
(CASE), database inspection, user
management, database archiving,
and data dictionary management

(no specific OODBS consideration
necessary)

Query Management

data manipulation language for
insertion, deletion, update, and
retrieval of database objects

navigational access via inter-object
references, associative access via
the specification of predicates rang-
ing over collections

Query Optimization

efficient execution of database que-
ries

object related indices such as class
hierarchy index, nested index, path
index, and multi-index

Host Programming
Language

programming language for writing
programs to manipulate the data-
base

interfaces to object-oriented and
non-object-oriented programming
languages

Schema Evolution

management of database schema
changes

global changes to the class hierar-
chy and local changes to single
class descriptions

Change Control

techniques that are used to convert
the database contents in order to
conform to the evolved database
schema; logical and physical data
independence

object migration,
schema versioning

Version Management

management of semantically mean-
ingful snapshots in the evolution of
the database contents

linear or branching version trees,
static/dynamic references to ver-
sioned objects

Concurrency Control

Recovery

Authorization

transactions, management to relia-
bly handle concurrent access to
restricted resources, consistent
management of system/media fail-
ures, user access control

advanced transaction management
(e.g. nested transactions, long
transactions, cooperative transac-
tions)

Architecture

Storage Management

Distribution

host-based/client-server/distributed architecture, disk placement and clus-
tering techniques, disk to in-memory mapping

Interfaces

interfaces to other database systems and description standards

Operational Conditions

hardware and software requirements

Table 1: Features of OODBS

41

Steps

Substeps

(1) analysis and evaluation

analysis of the system configuration

analysis of the OODBS

« development of clusters of interdependent functionalities
analysis of the application’s database requirements

(2) migration analysis

shallow migration analysis
* deep migration analysis

(3) development of a mapping strategy | « shallow migration strategy

deep migration strategy

(4) implementation

« coding
evaluation

Table 2: Steps and Substeps of the Migration Process

OODBS Features

relevant for KBL not relevant
Data Model Version Management Tools
Constraints & Triggers Concurrency Control Schema Evolution
Persistence Recovery Change Control
Data Dictionary Architecture Authorization
Query Management Storage Management Distribution
Query Optimization Operational Conditions Interfaces
Host Programming Languages

Table 3: KBL Database Requirements

42

DBS Feature

ONTOS Rel. 2.2

ObjectStore Rel. 2.0

Data Model

C++ data model
meta-data access

C++ data model
meta-data access

Constraints & Triggers

inverse members for dynamically
created types only; no triggers

inverse members; no triggers

Persistence

persistence by inheritance

persistence by declaration

Data Dictionary

synonyms for objects

Tools

schema designer and browser

schema designer and browser

Query Management

navigational/associative access
via C++; Object SQL

navigational/associative access
via C++ and ObjectStore DML

Query Optimization

indexing of collections, clustering

Host Prog. Language

C++

C++

Schema Evolution

(partially) dynamic schema evolu-
tion

static schema evolution

Change Control

not supported

object migration supported but vio-
lating logical and physical data
independence

Version Management

not supported

linear and branching versions of
configurations of objects

Concurrency Control

transactions with checkpoints;
object level locking

closed nested transactions;
page level locking

Recovery

from volatile storage only

from volatile storage only

Authorization

UNIX-like database protection

UNIX-like database protection

Architecture

client/server environment

client/server environment

Storage Management

direct and indirect references

direct and indirect references

Distribution transaction may access a single transaction may access multiple
database server database servers
Interfaces - STEP-Express

Operational Conditions

SUN workstations, TCP/IP net-
work

SUN workstations, TCP/IP net-
work

Table 4: Evaluation of ONTOS and ObjectStore

43

Fragment of a Makefile for ONTOS
Linker flags and required libraries

CFLAGS = -Div2_6_compatible

LFLAGS = -0

ONTOSLIBRARY = -Bstatic -L$(LIB_DIR) -IONTOS

IV3OLIBRARY = - Bdynamic -L/interviews/lib/SUN4 -lUnidraw -1V
X11R5LIBRARY = -L/home/X11R5/lib -IXext -IX11 -Im

LIBRARY = $(ONTOSLIBRARY) $(IV30LIBRARY) $(X11R5LIBRARY)

Source files of the application

SOURCES = Activity.cc\
Agent.cc\
STResource.cc \

Object files
OBJECTS = ${SOURCES:.cc=.0}
main: $(OBJECTS) cplus $(LFLAGS) -0 main -QUIET $(OBJECTS) $(LIBRARY)

Creation of a database with the DBATool and registration of the database schema NAME in
the directory DB_DIR managed by the database server SERVER. Every database consists of
a kernel area and several data areas.

$(REGISTER_FLAG):

cp $(KERNEL_DB) $(DB_DIR)/$(NAME)_Kernel

chmod a+w $(THE_DB_DIR)/$(NAME)_Kernel

DBATOool -e register kernel $(NAME)_kern on $(SERVER) at $(DB_DIR)/$(NAME)_Kernel
DBATool -e register database $(NAME) with kernel $(NAME) kern

DBATool -e create area $(NAME)_A1 at $(DB_DIR)/$(NAME)_areal on $(SERVER)
DBATool -e create area $(NAME)_A2 at $(DB_DIR)/$(NAME)_area2 on $(SERVER)
DBATool -e add area $(NAME)_A1 to $(NAME)

DBATool -e add area $(NAME)_A2 to $(NAME)

DBATool -e set db $(NAME) primary $(NAME)_kern

Table 5: Fragment of the Makefile for ONTOS

44

Fragment of a Makefile for ObjectStore

including ObjectStore specific compiler directives

include $(OS_ROOTDIR)/etc/ostore.mk

Registration of the database schema in the data dictionary

OS_COMPILATION_SCHEMA_DB_PATH=/home/KBL/compilation_schema_db
OS_APPLICATION_SCHEMA_DB_PATH= /home/KBL/application_schema_db

Compiler and linker flags and required libraries

CCFLAGS = -gx
LDFLAGS = -g
LDLIBS = -losmop -loscol -los

Source files of the application

SOURCES = Activity.cc\
Agent.cc \
STResource.cc \

Object files

OBJECTS = ${SOURCES:.cc=.0}
Executables

EXENAME = main

Table 6: Fragment of the Makefile for ObjectStore

45

ONTOS

ObjectStore

// KBLObject directly inherits from Object
class KBLODbject : public Object
{

L

/I IntervalObject indirectly inherits from Object
class IntervalObject : public KBLObject

L

/I ScheduleAgent indirectly inherits from Object
class ScheduleAgent : public IntervalObject

{

private :

/I indirect Reference to a MasterDataAgent object
Reference ivMasterDataAgent;

/l'indirect reference to a Resource object
Reference ivResource;

/I Constructor which is called by the constructor
Il of the related MasterDataAgent
ScheduleAgent (MasterDataAgent *);

/I ONTOS required function for deleting the
I/ object from the database
virtual void deleteObject (Boolean deallocate = FALSE);

public :
Il returns a pointer to the related MasterDataAgent object
virtual MasterDataAgent *getMasterDataAgent ();

Il schedules the Agent object on the Resource object
virtual void putSingleResource (SingleResource *);

/I returns a pointer to the Resource object on which
/l the Agent object is scheduled
virtual SingleResource *getSingleResource ();

/I returns a list including the ScheduleAgent
I/ objects already scheduled
List* ScheduleAgent::getScheduledSAList();

/I constructor
ScheduleAgent ();

/Il ONTOS required functions

/I activation constructor to activate the object from disk
ScheduleAgent (APL *);

/I destructor

~ScheduleAgent ();

/I returns a pointer to the object representing the
Il class information
virtual Type *getDirectType ();

/I deactivate the object from main memory
virtual void Destroy (Boolean aborted = FALSE);

I/ write the object to the database
virtual void putObject(Boolean deallocate = FALSE);

extern os_database *KBLdb;

class KBLObject

{

public :
// static persistent set which includes all instances
persistent <KBLdb> os_Set<KBLObject*> * extent;

/I implementation of the object naming
char *ivName;

2
class IntervalObject : public KBLObject

{
public :
// static persistent set which includes all instances
/I of IntervalObject
persistent <KBLdb> os_Set<IntervalObject*>* extent;

h

/I neither IntervalObject nor ScheduleAgent inherit from
/I any predefined class
class ScheduleAgent : public IntervalObject

private :
/I direct reference to a MasterDataAgent object
MasterDataAgent *ivMasterDataAgent;

/I direct reference to a Resource object
STResource *ivResource;

/I constructor like in ONTOS but implemented differently
ScheduleAgent (MasterDataAgent *);

public :

// static persistent set which includes all instances of
/I ScheduleAgent
persistent <KBLdb> os_Set<ScheduleAgent*>* extent;

/I like in ONTOS

virtual MasterDataAgent *getMasterDataAgent ();

virtual void putSingleResource (SingleResource *);

virtual SingleResource *getSingleResource ();

os_List<ScheduleAgent*>
*ScheduleAgent::getScheduledSAList();

ScheduleAgent (); // constructor
~ScheduleAgent (); // destructor

/I ObjectStore does not require any system specific methods

I
/I ObjectStore implementation of the constructor
ScheduleAgent::

{

ScheduleAgent (MasterDataAgent * theMasterDataAgent)

/l Insertion of the created ScheduleAgent object into the
/I class extent
extent->insert(this);

Table 7: ONTOS and ObjectStore Class Definitions

46

ONTOS

ObjectStore

List* ScheduleAgent::getScheduledSAList()

{
List *scheduledSAList;

/I Creation of the instance iterator for the

Il class ScheduleAgent

Instancelterator scheduleAgentlterator ((Type*)
OC_lookup ("ScheduleAgent"));

/I The iterator function moreData returns the next value

/I If there is no further value the iteration will terminate.

while (scheduleAgentlterator.moreData())

/I The function getSingleResource returns a pointer to
Il the Resource object on which the Agent object is
/l scheduled. If a Resource object exists the object
Il'is inserted into the appropriate list.
if (scheduleAgentlterator->getSingleResource) =0
scheduledSAList->Insert ((Argument) (Entity*)
scheduleAgentlterator);

/I returns the resulting list
return scheduledSAList;

}

0s_List<ScheduleAgent*> * ScheduleAgent::
getScheduledSAList()

os_List<ScheduleAgent*> * scheduledSAList;
ScheduleAgent* currentScheduleAgent;

I/l The foreach-statement allows to iterate over the

Il elements of the set specified as second argument.
/I The element of each iteration will be referenced by
Il the first specified argument

foreach (currentScheduleAgent, ScheduleAgent::
extent)

I selection criteria like in ONTOS
if (currentScheduleAgent->getSingleResource) =0
scheduledSAList->insert(currentScheduleAgent);

/I returns the resulting list
return scheduledSAList;

}

Table 8: ONTOS and ObjectStore Extension Management

47

ONTOS

ObjectStore

ONTOS class definition:
class Activity: public KBLObject
{

private :
/I reference to the list of superactivities
List *ivSuperActivityList;
/I reference to the list of subactivities
List *ivSubActivityList;

protected:
Activity (char *name = (char *)0, ActivityGroup
*superActivity = (ActivityGroup *) 0);

public :

Boolean addSubActivity (Activity &activity);
k
ONTOS implementation of the constructor:

Activity::Activity (char *name, ActivityGroup *superActivity):
KBLDirectParentClass (hame)
{

i-\-/.SuperActivityList->
Insert ((Argument)(Entity*) superActivity);

// call to maintain referential integrity
superActivity->addSubActivity (*this);

}

ObjectStore class definition:
class Activity: public KBLODbject
{

private :
/l related data members are marked ‘inverse_member
// followed by the corresponding data member
os_List<ActivityGroup*> *ivSuperActivityList
inverse_member ivSubActivityList;
os_List<Activity*> *ivSubActivityList
inverse_member ivSuperActivityList;

protected:
Activity (char *name = (char *)0, ActivityGroup
*superActivity = (ActivityGroup *) 0);

public :
Boolean addSubActivity (Activity &activity);
|

ObjectStore implementation of the constructor:

Activity::Activity (char *name, ActivityGroup *superActivity):
KBLDirectParentClass (name)
{

/I no need for further code to ensure referential integrity
ivSuperActivityList->insert (superActivity);

}

Table 9: Inverse relationships in ONTOS and ObjectStore

48

ObjectStore Implementation
Modules) /ON T(?St th/ta/
mplementation | aqded | deleted |modified [fotal 0
Scheduling Toolkit 27400 1500| 5% 8000 20/9()) 200| 1%|20900(~ 76%
Simulation 10400 300| 3% 200| 2%/| 370| 4%/|10500||~ 101%
Planning Board 7300 Ol 0%| 100(1%| 250| 3% | 7200| ~ 99%
Utilities 830 400| 48| 550| 66 0| 0% 680|| ~82%
% %
Total 45930 2200| 5%|8850| 19| 820| 2%|39280(~ 86%
%
Table 10: Migration Statistics (Lines of Code)
Manpower (in
Task weeks)
Application Analysis 3
ONTOS Analysis 2
ObjectStore Analysis 1
Migration Analysis 2
Implementation 6
Total Migration Effort 14

Table 11: Migration Effort (Manpower)

49

	Migration in Object-Oriented Database Systems - A Practical Approach
	C. Huemer†, G. Kappel‡, S. Vieweg†
	† Institute of Applied Computer Science and Information Systems, Department of Information Engine...
	‡ Institute of Computer Science, Department of Information Systems, University of Linz, Altenberg...
	SUMMARY
	Object-oriented database systems are designed to meet the requirements of advanced database appli...
	Key Words: object-oriented database systems, migration, electronic planning board application
	Introduction

	Advanced engineering applications such as computer-aided design and computer integrated manufactu...
	Database migration is the process of mapping a database application from a source DBS to a target...
	Current approaches to the migration of database applications focus on the migration from hierarch...
	The relevance of the work is due to the state of art of OODBS technology. Firstly, there does not...
	Two approaches to migration are possible: shallow migration and deep migration 7. With shallow mi...
	The criteria for selecting one of the approaches can be grouped into two categories: functional r...
	Object-oriented database systems have a short research and development history compared to relati...
	The work reported in this paper was part of the ESPRIT project KBL (ESPRIT No. 516118, 19), whose...
	A Framework for Migrating Applications between OODBS

	In this section we present a general outline for migrating applications between OODBS. The propos...
	The careful selection of the set of criteria as an underlying basis for the migration is a prereq...
	The analysis of the system configuration is of general interest. Since the source OODBS and the t...
	The task of the analysis of the OODBS is to evaluate, classify and compare the features of the tw...
	• Overlapping features are supported by both OODBS in the same manner and have no effects on the ...
	• Candidate shallow migration features are supported only by the source OODBS or they are impleme...
	• Candidate deep migration features are only supported by the target OODBS but not by the source ...
	Due to the fact that there exist some interdependencies between different features, changes of th...
	A careful analysis of the application’s database requirements considering the data model requirem...
	During migration analysis we compare these database requirements with the result of the DBS evalu...
	One might argue that starting the migration process with the analysis of the applications’ databa...
	For the features residing in the set of shallow migration features and in the set of deep migrati...
	The implementation step includes the coding of the necessary changes and furthermore the evaluati...
	Case Study: Migrating KBL from ONTOS to ObjectStore

	In this section we describe the migration of the KBL application from ONTOS to ObjectStore. The m...
	KBL - A Knowledge-Based Electronic Planning Board System

	KBL was developed under the object-oriented paradigm and was implemented on top of the OODBS ONTO...
	An electronic planning board is a computer aided graphical decision support system for interactiv...
	At the production planning and control level a mean-term planning of products and involved resour...
	KBL follows the functionality described above and is made up of the following components:
	• Knowledge Representation and Acquisition: The information relevant for scheduling and control n...
	• Scheduling Control: The Scheduling Control subsystem represents the interface between the appli...
	• Simulation: Various schedules can be simulated in order to evaluate the performance of schedule...
	• Interactive Advisor: KBL is equipped with an Interactive Advisor, which constantly analyzes the...
	• Evaluation: The Evaluation Component allows the assessment of different scheduling strategies. ...
	• Communication Interfaces: Communication interfaces to the production planning and control syste...
	Based on the functionality described above KBL’s database requirements can be identified as the f...
	The current implementation of KBL contains the Knowledge Representation and Acquisition component...
	The Scheduling Toolkit Module represents the core of the KBL system. It includes all classes and ...
	In conjunction with other classes such as TimeStateDescriptor, IntervalObject, and AgentConstrain...
	A Brief Tour of ONTOS and ObjectStore

	In the following we briefly describe the main features of the OODBS ONTOS and ObjectStore. For fu...
	ONTOS Release 2.2 is based on C++, which implies that the DDL/DML is basically C++. According to ...
	Similar to ONTOS, ObjectStore Release 2.0 is also based on C++ and operates in a client/ server e...
	With the discussion of the database requirements of KBL and the evaluation of the involved OODBS ...
	Migration Analysis

	In this subsection we discuss the second step of the migration process, namely the migration anal...
	Both ONTOS and ObjectStore are based on the C++ data model. They both use the C++ basic data type...
	The feature constraints and triggers is not supported by ONTOS. Since we classify inverse relatio...
	Persistence is required by any database application. In ONTOS it is implemented by inheritance an...
	In ONTOS, it is possible to provide each object with a synonym, which is stored in a separate dat...
	The analysis of the tools is only interesting in terms of supporting the implementation process b...
	Query management is implemented differently in both systems. In ONTOS, persistent objects are ret...
	Query optimization is also part of the database requirements of KBL. ONTOS provides only limited ...
	Since C++ is the host programming language required by KBL and since both OODBS provide an interf...
	ONTOS and ObjectStore provide different concepts for schema evolution but it was not considered a...
	Both systems supply neither logical nor physical data independence, however, ObjectStore provides...
	ONTOS does not support a versioning mechanism. As a consequence, in KBL the versioning of the sch...
	Concerning concurrency control, ONTOS is superior to ObjectStore since in ONTOS it is possible to...
	Recovery is part of the database requirements of any application. It is included in the overlappi...
	Authorization is also included in the overlapping features since data access control is supported...
	Both systems support a client/server architecture, which is required by KBL. Since ONTOS and Obje...
	One of the most important differences between ONTOS and ObjectStore in the realm of storage manag...
	The feature distribution is a candidate shallow migration feature because ONTOS and ObjectStore p...
	ONTOS does not provide any import and export interfaces. ObjectStore offers a third party tool to...
	KBL was developed for SUN workstations in a TCP/IP network. ONTOS and ObjectStore support this en...
	Mapping Strategy for Selected Features

	In this subsection we develop a mapping strategy for three selected features of the evaluation sc...
	• shallow migration path: persistence
	• deep migration path: inverse relationships as part of constraints & triggers
	• overlapping path: basic data types as part of the data model
	In the following, we present the mapping strategy for each of these features. To increase the und...
	In general, the development of an object-oriented database application can be divided into the fo...
	Table 5 and Table 6 show the relevant fragments of Makefiles for the compilation of the KBL appli...
	The two approaches mainly differ in the flexibility of database creation. In ONTOS, databases mus...
	As mentioned above, the database schema is contained in C++ source and header files. In the follo...
	Persistence

	In this subsection we demonstrate the development of a mapping strategy for one of the most inter...
	In ONTOS, persistence is achieved by inheritance from the ONTOS specific class Object. In ObjectS...
	• Classes must have an inheritance path through the ONTOS class Object.
	• Classes must have a special constructor called “activation constructor” to activate an object f...
	• Classes must have a special member function called getDirectType().
	• If the class has a destructor, it should have a function called Destroy() to deactivate an obje...
	• Classes should have the functions putObject() and deleteObject() to write / delete an object to...
	If the definition of a class fulfills these requirements, and the member function putObject is in...
	The code fragments presented in Table 7 summarize the persistent class definitions for the class ...
	As the persistent class definition is also influenced by the features storage management, query m...
	The clustering with storage management is due to the fact that in ONTOS direct references are mai...
	The clustering with query management stems from the fact that ONTOS offers a so called instance i...
	The clustering with data dictionary is due to the fact that ONTOS provides synonyms for each pers...
	In Table 8, we exemplify the use of the instance iterator in ONTOS and the corresponding simulati...
	Inverse Relationships

	In the following we present the mapping strategy of the subfeature inverse relationships, which i...
	Before presenting a strategy for the feature inverse relationships, we first define the concept o...
	As an example, consider the relationship between a manufacturing activity and the sub- activities...
	In the ONTOS implementation, the management of inverse relationships is explicitly implemented in...
	(a) Define an inverse relationship between two data members whenever there exists a binary relati...
	(b) Remove the user-defined code segments that have been used to ensure integrity so far.

	In the left column of Table 9, we present the example of the constructor of the class Activity de...
	Basic Data Types

	As mentioned above, ONTOS and ObjectStore are based on the C++ data model. They both use the C++ ...
	Evaluation Report

	In this section we discuss the experiences gathered during the migration of the KBL application f...
	We first describe our experiences with the involved OODBS - ONTOS and ObjectStore. We then presen...
	ONTOS and ObjectStore

	In Section ‘A Brief Tour of ONTOS and ObjectStore’ a concise introduction of the functionality of...
	The main difference between ONTOS and ObjectStore is their approach to provide persistence. ONTOS...
	In addition, ONTOS provides automatic management of class extensions while ObjectStore requires t...
	As mentioned above, we did not consider performance as a main issue in our case study. A comparis...
	Discussion of the Framework

	The migration of database applications is part of the software maintenance process. The much tigh...
	In the following we discuss scenarios that were not directly covered in our case study, yet may b...
	What if ...

	... the database systems follow different approaches to reach persistence?
	The experiences mentioned above concern the migration of KBL from ONTOS to ObjectStore. As alread...
	... the database systems provide different host programming languages and/or different DDL/DML?
	A host programming language is the language in which the application to access and manipulate the...
	... the database systems are operated in different system environments?
	System downsizing from host-based computing to client/server computing may include changes of the...
	Quantitative Evaluation

	In our quantitative evaluation we concentrate on two metrics: the size of the application code as...
	As pointed out in Section ‘KBL - A Knowledge-Based Electronic Planning Board System’ the KBL appl...
	The target application comprises the same number of classes as the source application. This is du...
	Our analysis of the application sizes shows a considerable reduction for the Scheduling Toolkit M...
	Considering the personnel involved in the migration process we distinguish three implementation p...
	Conclusion & Further Work

	In this paper we have presented a framework for the deep and shallow migration of applications be...
	The driving force behind the KBL migration has been to investigate the flexibility to exchange th...
	Further investigations of this topic should include approaches for the (semi-)automatic migration...
	Acknowledgment

	J. Thaler and A. Berger migrated the KBL prototype to ObjectStore.
	References

	1. K. Dittrich, ‘OODBS: The Next Miles in the Marathon’, Information Systems, 15, (1), (1990)
	2. M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, S. Zdonik, ‘The object-oriented d...
	3. J. Netze, H. Seelos, ‘Scenes and strategies of data migration’ (in german), Wirtschaftsinforma...
	4. B. Shneiderman, G. Thomas, ‘An Architecture for Automatic Relational Database System Conversio...
	5. S. Su, H. Lam, D. Lo, ‘Transformation of Data Traversals and Operations in Application Program...
	6. R. Cattell (ed.), The Object Database Standard ODMG-93, Morgan Kaufmann Publishers, 1993
	7. K. Dittrich, ‘Migrating from conventional to object-oriented databases: a “can”, a “must” - or...
	8. D. Maier, ‘Why isn’t there an object-oriented data model?’ in: G. X. Ritter (ed.), Information...
	9. V. Soloviev, ‘An Overview of Three Commercial Object-Oriented DBMSs ONTOS, ObjectStore, and O2...
	10. C. Lamb, G. Landis, J. Orenstein, D. Weinreb, ‘The ObjectStore Database System’, Communicatio...
	11. P. Butterworth, A. Otis, J. Stein, ‘The GemStone Object Database Management System’, Communic...
	12. P. Kanellakis, C. Lecluse, P. Richard, ‘Introduction to the Data Model’ in: F. Bancilhon, C. ...
	13. G. Kappel, S. Rausch-Schott, W. Retschitzegger, M. Schrefl, U. Schreier, M. Stumptner, S. Vie...
	14. S. Ahmed, A. Wong, D. Sriram, R. Logcher, ‘Object-oriented database management systems for en...
	15. W. Kim, F. Lochovsky (eds.), ‘Object-Oriented Concepts, Databases, and Applications’, ACM Pre...
	16. M. Stonebraker, L. Rowe, B. Lindsay, J. Gray, M. Carey, M. Brodie, P. Bernstein, D. Beech, ‘T...
	17. S. Zdonik, D. Maier (eds.), Readings in Object-Oriented Database Systems, San Mateo, CA. Morg...
	18. KBL Esprit 5161, Design, Development and Implementation of a Knowledge-based Leitstand (KBL),...
	19. KBL Esprit 5161, Design, Development and Implementation of a Knowledge-based Leitstand (KBL),...
	20. A. Scheer, A. Hars, ‘The Leitstand - A new tool for decentral production control’ in: G. Fand...
	21. G. Kappel, S. Vieweg, ‘Database Requirements for CIM Applications’, Journal of Integrated Man...
	22. U. Schreier, ‘Database Requirements of Knowledge-based Production Scheduling and Control: A C...
	23. R. Cattell and J. Skeen, ‘Object Operations Benchmark’, ACM Transactions on Database Systems;...
	24. M. Carey, D. DeWitt, J. Naughton, ‘The OO7 Benchmark’, Proc of the ACM SIGMOD Conf. ACM SIGMO...
	Figures:
	Figure 1: Model of the Migration Process
	Figure 2: OODBS Features and Database Requirements

	Production Planning & Control Level:
	performs mean-term production planning and control of work orders
	Figure 3: Integration of an Electronic Planning Board System
	Figure 4: KBL Class Hierarchy
	Figure 5: Migration Process of KBL from ONTOS to ObjectStore
	Figure 6: KBL Database Requirements and OODBS Features

	Tables:
	DBS Feature
	Description
	OODBS Consideration
	Data Model
	theoretical foundation for the specification of database schemes
	complex object modelling, object identity, encapsulation, types, inheritance, overriding, late bi...
	Constraints & Triggers
	specification and enforcement of integrity constraints
	inverse relationships, object-oriented event/condition/action models
	Persistence
	data survives process boundaries
	can be provided by inheritance, by declaration, by reachability from other persistent objects, an...
	Data Dictionary
	access to database schema information
	access to database schema information using a meta object protocol
	Tools
	tools for application development (CASE), database inspection, user management, database archivin...
	(no specific OODBS consideration necessary)
	Query Management
	data manipulation language for insertion, deletion, update, and retrieval of database objects
	navigational access via inter-object references, associative access via the specification of pred...
	Query Optimization
	efficient execution of database queries
	object related indices such as class hierarchy index, nested index, path index, and multi-index
	Host Programming Language
	programming language for writing programs to manipulate the database
	interfaces to object-oriented and non-object-oriented programming languages
	Schema Evolution
	management of database schema changes
	global changes to the class hierarchy and local changes to single class descriptions
	Change Control
	techniques that are used to convert the database contents in order to conform to the evolved data...
	object migration,
	schema versioning
	Version Management
	management of semantically meaningful snapshots in the evolution of the database contents
	linear or branching version trees, static/dynamic references to versioned objects
	Concurrency Control
	transactions, management to reliably handle concurrent access to restricted resources, consistent...
	advanced transaction management (e.g. nested transactions, long transactions, cooperative transac...
	Recovery
	Authorization
	Architecture
	host-based/client-server/distributed architecture, disk placement and clustering techniques, disk...
	Storage Management
	Distribution
	Interfaces
	interfaces to other database systems and description standards
	Operational Conditions
	hardware and software requirements
	Table 1: Features of OODBS

	Steps
	Substeps
	(1) analysis and evaluation
	• analysis of the system configuration
	• analysis of the OODBS
	• development of clusters of interdependent functionalities
	• analysis of the application’s database requirements
	(2) migration analysis
	• shallow migration analysis
	• deep migration analysis
	(3) development of a mapping strategy
	• shallow migration strategy
	• deep migration strategy
	(4) implementation
	• coding
	• evaluation
	Table 2: Steps and Substeps of the Migration Process

	OODBS Features
	relevant for KBL
	not relevant
	Data Model
	Constraints & Triggers
	Persistence
	Data Dictionary
	Query Management
	Query Optimization
	Host Programming Languages
	Version Management
	Concurrency Control
	Recovery
	Architecture
	Storage Management
	Operational Conditions
	Tools
	Schema Evolution
	Change Control
	Authorization
	Distribution
	Interfaces
	Table 3: KBL Database Requirements

	DBS Feature
	ONTOS Rel. 2.2
	ObjectStore Rel. 2.0
	Data Model
	C++ data model
	meta-data access
	C++ data model
	meta-data access
	Constraints & Triggers
	inverse members for dynamically created types only; no triggers
	inverse members; no triggers
	Persistence
	persistence by inheritance
	persistence by declaration
	Data Dictionary
	synonyms for objects
	-
	Tools
	schema designer and browser
	schema designer and browser
	Query Management
	navigational/associative access via C++; Object SQL
	navigational/associative access via C++ and ObjectStore DML
	Query Optimization
	-
	indexing of collections, clustering
	Host Prog. Language
	C++
	C++
	Schema Evolution
	(partially) dynamic schema evolution
	static schema evolution
	Change Control
	not supported
	object migration supported but violating logical and physical data independence
	Version Management
	not supported
	linear and branching versions of configurations of objects
	Concurrency Control
	transactions with checkpoints;
	object level locking
	closed nested transactions;
	page level locking
	Recovery
	from volatile storage only
	from volatile storage only
	Authorization
	UNIX-like database protection
	UNIX-like database protection
	Architecture
	client/server environment
	client/server environment
	Storage Management
	direct and indirect references
	direct and indirect references
	Distribution
	transaction may access a single database server
	transaction may access multiple database servers
	Interfaces
	-
	STEP-Express
	Operational Conditions
	SUN workstations, TCP/IP network
	SUN workstations, TCP/IP network
	Table 4: Evaluation of ONTOS and ObjectStore

	# Fragment of a Makefile for ONTOS
	# Linker flags and required libraries
	CFLAGS = -Div2_6_compatible LFLAGS = -g ONTOSLIBRARY = -Bstatic -L$(LIB_DIR) -lONTOS IV30LIBRARY ...
	# Source files of the application
	SOURCES = Activity.cc \ Agent.cc \ STResource.cc \ ...
	# Object files
	OBJECTS = ${SOURCES:.cc=.o}
	main: $(OBJECTS) cplus $(LFLAGS) -o main -QUIET $(OBJECTS) $(LIBRARY)
	...
	# Creation of a database with the DBATool and registration of the database schema NAME in # the d...
	$(REGISTER_FLAG):
	cp $(KERNEL_DB) $(DB_DIR)/$(NAME)_Kernel chmod a+w $(THE_DB_DIR)/$(NAME)_Kernel DBATool -e regist...
	...
	Table 5: Fragment of the Makefile for ONTOS

	# Fragment of a Makefile for ObjectStore
	# including ObjectStore specific compiler directives
	include $(OS_ROOTDIR)/etc/ostore.mk
	# Registration of the database schema in the data dictionary
	OS_COMPILATION_SCHEMA_DB_PATH= /home/KBL/compilation_schema_db OS_APPLICATION_SCHEMA_DB_PATH= /ho...
	# Compiler and linker flags and required libraries
	CCFLAGS = -gx LDFLAGS = -g LDLIBS = -losmop -loscol -los
	# Source files of the application
	SOURCES = Activity.cc \ Agent.cc \ STResource.cc \ ...
	# Object files
	OBJECTS = ${SOURCES:.cc=.o}
	# Executables
	EXENAME = main
	...
	Table 6: Fragment of the Makefile for ObjectStore

	ONTOS
	ObjectStore
	// KBLObject directly inherits from Object class KBLObject : public Object { ... };
	// IntervalObject indirectly inherits from Object class IntervalObject : public KBLObject { ... };
	// ScheduleAgent indirectly inherits from Object class ScheduleAgent : public IntervalObject
	{ private:
	// indirect Reference to a MasterDataAgent object Reference ivMasterDataAgent;
	// indirect reference to a Resource object Reference ivResource;
	// Constructor which is called by the constructor // of the related MasterDataAgent ScheduleAgent...
	// ONTOS required function for deleting the // object from the database virtual void deleteObject...
	public:
	// returns a pointer to the related MasterDataAgent object virtual MasterDataAgent *getMasterData...
	// schedules the Agent object on the Resource object virtual void putSingleResource (SingleResour...
	// returns a pointer to the Resource object on which // the Agent object is scheduled virtual Sin...
	// returns a list including the ScheduleAgent // objects already scheduled List* ScheduleAgent::g...
	// constructor ScheduleAgent (); ...
	// ONTOS required functions
	// activation constructor to activate the object from disk ScheduleAgent (APL *);
	// destructor ~ScheduleAgent ();
	// returns a pointer to the object representing the // class information virtual Type *getDirectT...
	// deactivate the object from main memory virtual void Destroy (Boolean aborted = FALSE);
	// write the object to the database virtual void putObject(Boolean deallocate = FALSE); };
	extern os_database *KBLdb;
	class KBLObject { public: // static persistent set which includes all instances persistent<KBLdb>...
	// implementation of the object naming char *ivName; ... };
	class IntervalObject : public KBLObject { public: // static persistent set which includes all ins...
	// neither IntervalObject nor ScheduleAgent inherit from // any predefined class class ScheduleAg...
	private: // direct reference to a MasterDataAgent object MasterDataAgent *ivMasterDataAgent;
	// direct reference to a Resource object STResource *ivResource;
	// constructor like in ONTOS but implemented differently ScheduleAgent (MasterDataAgent *);
	public:
	// static persistent set which includes all instances of // ScheduleAgent persistent<KBLdb> os_Se...
	// like in ONTOS virtual MasterDataAgent *getMasterDataAgent (); virtual void putSingleResource (...
	// ObjectStore does not require any system specific methods };
	// ObjectStore implementation of the constructor
	ScheduleAgent:: ScheduleAgent (MasterDataAgent * theMasterDataAgent) { ... // Insertion of the cr...
	Table 7: ONTOS and ObjectStore Class Definitions

	ONTOS
	ObjectStore
	List* ScheduleAgent::getScheduledSAList() { List *scheduledSAList; // Creation of the instance it...
	// The iterator function moreData returns the next value // If there is no further value the iter...
	while (scheduleAgentIterator.moreData()) { // The function getSingleResource returns a pointer to...
	if (scheduleAgentIterator->getSingleResource) != 0 scheduledSAList->Insert ((Argument) (Entity*) ...
	return scheduledSAList;
	}
	os_List<ScheduleAgent*> * ScheduleAgent:: getScheduledSAList() { os_List<ScheduleAgent*> * schedu...
	// The foreach-statement allows to iterate over the // elements of the set specified as second ar...
	foreach(currentScheduleAgent, ScheduleAgent:: extent) { // selection criteria like in ONTOS if (c...
	Table 8: ONTOS and ObjectStore Extension Management

	ONTOS
	ObjectStore
	ONTOS class definition:
	class Activity: public KBLObject { private: // reference to the list of superactivities List *ivS...
	// reference to the list of subactivities List *ivSubActivityList; ...
	protected: Activity (char *name = (char *)0, ActivityGroup *superActivity = (ActivityGroup *) 0);...
	public: Boolean addSubActivity (Activity &activity); ... };
	ONTOS implementation of the constructor:
	Activity::Activity (char *name, ActivityGroup *superActivity): KBLDirectParentClass (name) {
	ObjectStore class definition:
	class Activity: public KBLObject { private: // related data members are marked ‘inverse_member’ /...
	os_List<ActivityGroup*> *ivSuperActivityList inverse_member ivSubActivityList; os_List<Activity*>...
	protected: Activity (char *name = (char *)0, ActivityGroup *superActivity = (ActivityGroup *) 0);...
	public: Boolean addSubActivity (Activity &activity); ... }
	ObjectStore implementation of the constructor:
	Activity::Activity (char *name, ActivityGroup *superActivity): KBLDirectParentClass (name) {
	Table 9: Inverse relationships in ONTOS and ObjectStore

	Modules
	ONTOS Implementation
	ObjectStore Implementation
	Total
	%
	added
	deleted
	modified
	Total
	Scheduling Toolkit
	27400
	1500
	5%
	8000
	29 %
	200
	1%
	20900
	~ 76%
	Simulation
	10400
	300
	3%
	200
	2%
	370
	4%
	10500
	~ 101%
	Planning Board
	7300
	0
	0%
	100
	1%
	250
	3%
	7200
	~ 99%
	Utilities
	830
	400
	48 %
	550
	66 %
	0
	0%
	680
	~ 82%
	Total
	45930
	2200
	5%
	8850
	19 %
	820
	2%
	39280
	~ 86%
	Table 10: Migration Statistics (Lines of Code)

	Task
	Manpower (in weeks)
	Application Analysis
	3
	ONTOS Analysis
	2
	ObjectStore Analysis
	1
	Migration Analysis
	2
	Implementation
	6
	Total Migration Effort
	14
	Table 11: Migration Effort (Manpower)

