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Abstract. RDF data are usually accessed using one of two methods:
either, graphs are rendered in forms perceivable by human users (e.g.,
in tabular or in graphical form), which are difficult to handle for large
data sets. Alternatively, query languages like SPARQL provide means to
express information needs in structured form; hence they are targeted
towards developers and experts. Inspired by the concept of spreadsheet
tools, where users can perform relatively complex calculations by split-
ting formulas and values across multiple cells, we have investigated mech-
anisms that allow us to access RDF graphs in a more intuitive and man-
ageable, yet formally grounded manner. In this paper, we make three
contributions towards this direction. First, we present RDFunctions, an
algebra that consists of mappings between sets of RDF language ele-
ments (URIs, blank nodes, and literals) under consideration of the triples
contained in a background graph. Second, we define a syntax for express-
ing RDFunctions, which can be edited, parsed and evaluated. Third, we
discuss Tripcel, an implementation of RDFunctions using a spreadsheet
metaphor. Using this tool, users can easily edit and execute function
expressions and perform analysis tasks on the data stored in an RDF
graph.

1 Introduction

RDF is a highly generic model for data representation. Its fundamental infor-
mation unit is the triple, which denotes a specific kind of relationship between
two entities (resources), or between an entity and a literal value. As such, it
can be used to represent arbitrary kinds of data, as shown by the Linked Data
community project1 and various applications, e.g., in the life sciences field [24]
or the Semantic Desktop [25].

RDF data sets are currently accessed and used by applying one of the follow-
ing two metaphors: either, users directly navigate and browse them using tools
that display the graph in a human-perceivable manner (e.g., in tabular form
of varying complexity [4, 14]), or using graphical rendering (e.g., in the form of
graphs2 or using rendering template languages [7]). Such tools provide the user
with direct, intuitive access to any resource or triple found in the graph, but

1 Linked Data: http://linkeddata.org
2 RDF-Gravity: http://semweb.salzburgresearch.at/apps/rdf-gravity

http://linkeddata.org
http://semweb.salzburgresearch.at/apps/rdf-gravity


cannot be reasonably applied to very large graphs. On the other hand, if RDF
data are used within applications (i.e., graphs are not directly exposed to the
end user), APIs provided by Semantic Web frameworks or query languages (of
which SPARQL [23] is the most prominent one) are used. These allow develop-
ers to express information needs in a formalized and structured form. However,
SPARQL queries can become complex to write and to evaluate [21]; addition-
ally, SPARQL currently lacks certain features that are needed in several use
cases (e.g., sub-queries and aggregates).

We are searching for metaphors to interact with Semantic Web data in a
way that is intuitive for users, can be quickly authored and evaluated, but still
is highly expressive and grounded in a formal model. We were inspired by the
concept of spreadsheets [18], where data (usually, numbers and text) and calcu-
lations (formulas) are arranged in a grid structure of cells, and can be directly
inspected and edited by the user. Formulas may refer to the contents of other
cells by their coordinates, and evaluation results are displayed immediately after
cells have been changed. Although the spreadsheet concept is not free of errors
[22] it is a powerful tool and suitable for many application scenarios.

In this paper, we present our approach to merge the spreadsheet concept
with the RDF data model. As its formal foundation we present RDFunctions,
an algebra that consists of mappings between RDF language elements (URIs,
blank nodes, and literals). These functions are evaluated not only using param-
eter values, but also under consideration of the triples stored in an additional
background graph. Thus, RDFunctions can be used to perform data analysis and
computation tasks over RDF data sources. In addition to this formal model,
we define a concrete syntax for RDFunction expressions that can be edited by
users, and parsed and evaluated by a corresponding engine. Finally, we intro-
duce Tripcel, a spreadsheet application that implements the concepts described
before, and present an evaluation of its applicability.

2 RDFunctions

As the conceptual basis of our approach we define RDFunctions, an algebra
consisting of mappings between sets of RDF resources. An RDFunction takes a
set of RDF elements (i.e., URIs, blank nodes, and literals) as input, and returns
another set of RDF elements as result, whereas the evaluation of a function may
consider the triples contained in a background graph.

A background graph G is an RDF graph as defined in [19] and hence consists
of a set of triples < s, p, o > which are constructed of elements of the set U∪B∪L;
i.e., URIs, blank nodes, and literals. Following [19] we denote with universe(G)
the set of elements that occur in the triples of G, and denote by UG, BG, and
LG the sets of URIs, blank nodes, and literals that are elements of this universe,
i.e., universe(G) = UG ∪BG ∪ LG.

An RDFunction f(·) is a mapping f : P(U ∪ B ∪ L) 7→ P(U ∪ B ∪ L); i.e.,
it takes a set of RDF elements as input and returns a set of RDF elements
as output. These elements must not necessarily be contained in the associated



background graph. However, an RDFunction can be defined under consideration
of the background graph G; in this case we denote the function using an index
fG(·).

The design of this generic function signature is inspired by the fact that
when querying data one is not necessarily interested in triples, but in resources
or literals (things) that fulfill certain criteria: e.g., one might look for resources
that fulfil certain criteria, or for literal values of certain properties. Hence we
chose to put the RDF language elements (URIs, blank nodes, and literals) instead
of triples into the focus of attention.

While an arbitrary number of concrete functions can be defined that fulfil
this generic signature, we define in the following a core set of functions that are
useful in a broad range of use cases.

Background Graph Access Functions We define functions that return groups
of elements contained in the background graph; resources(), bnodes(), literals(),
and properties(), as follows:

resourcesG(·) := { r | ∀s, p, o, r : (< r, p, o > ∈ G ∨ < s, p, r > ∈ G)
∧ r ∈ UG ∪BG} (1)

bnodesG(·) := BG (2)

literalsG(·) := LG (3)

propertiesG(·) := { p | ∀s, p, o : < s, p, o > ∈ G} (4)

As we can see from these definitions, all background graph access functions
discard the input parameter set, i.e., their results are depending only on the
triples contained in the background graph.

Construction Functions In contrast to background graph access functions,
the following group of functions construct RDF elements independent of whether
they are contained in the background graph or not, hence the index ·G is not
used in their definitions. For the three different forms of literals (plain, typed,
and language-tagged) different construction functions are defined3.

resourceuri(·) := <uri> (5)

bnode(·) := [] (6)

literallexicalform(·) := "lexicalform" (7)

literallexicalform, uri(·) := "lexicalform"̂ ûri (8)

literallexicalform, lang(·) := "lexicalform"@lang (9)

Unlike the background graph access functions described before, construction
functions ignore the contents of the background graph G, as well as the provided
input parameter.
3 We use the triple notation [13] to serialize RDF elements.



Property Functions The function propertyp returns all values (objects) for
property p of the resources given as function parameters (I), based on the triples
in the background graph G.

propertyp
G(I) := { o | ∀s, p, o : < s, p, o > ∈ G, s ∈ I} (10)

One concrete example of such a function is propertyrdfs:label, which would
return all labels of the resources given as parameters. Similarly, we define an
inverse property function invpropertyp that returns all subjects that have any
of the resources given as function parameters as property values (objects) for
property p:

invpropertyp
G(I) := { s | ∀s, p, o : < s, p, o > ∈ G, o ∈ I} (11)

Examples We illustrate applications of the functions we have defined so far by
a number of concrete example. The function

invpropertyrdf:typeG (I)

returns all resources contained in the background graph whose rdf:type is one of
the resources contained in the input set I. Since RDFunctions can be arbitrarily
nested, we can use

propertyrdfs:labelG (resourcesG(·))

to retrieve all rdfs:labels from all resources in the background graph (in this
case, no input parameters are needed). The function

propertyfoaf:nameG (invpropertyfoaf:knowsG (I))

returns the foaf:name values of all resources that foaf:know any of the resources
contained in the input set I. Finally, the function

propertydc:creatorG (invpropertyrdf:typeG (resourceswrc:Publication(·)))

returns the dc:creators of all resources that are typed as swrc:Publication.

Triple Functions Property functions match a specific property to the predi-
cate position of all triples in the background graph. These functions cover the
cases where the property URI is known. To retrieve RDF elements that occur
in conjunction with given input resources within a common triple in the back-
ground graph whereas the triple’s predicate is not known, we define the following
functions:

objects4subjectsG(I) := { o | ∀s, p, o : < s, p, o > ∈ G, s ∈ I, s ∈ UG ∪BG}
(12)

subjects4objectsG(I) := { s | ∀s, p, o : < s, p, o > ∈ G, o ∈ I} (13)

predicates4subjectsG(I) := { p | ∀s, p, o : < s, p, o > ∈ G, s ∈ I, s ∈ UG ∪BG}
(14)



predicates4objectsG(I) := { p | ∀s, p, o : < s, p, o > ∈ G, o ∈ I} (15)

Since literals are not allowed in the subject position of RDF triples, the
functions objects4subjectsG(·) and predicates4subjectsG(·) consider only those
elements of the input set I that are URIs or bnodes, while literals are discarded.

Aggregate Functions An aggregate function returns a single value, which is
computed from a set of input values. In the context of RDF, certain aggregate
functions can be applied to all types of graph elements (e.g., count()), while
others can be applied only to typed literal values, e.g., avg(), min(), or sum().
RDFunctions can be easily extended by aggregate functions; for the sake of
brevity we give here as an example only the definition of the count() function
that returns the input set’s cardinality as typed RDF literal, where | I | is the
cardinality of I:

count(I) := literal|I|,xsd:integer(·) (16)

Filter Functions SPARQL provides a mechanism to test the values of RDF
elements through the FILTER element (cf. [23], Section 11). The RDFunction
framework provides the function filter() to incorporate SPARQL filter ex-
pressions; however the semantics of filter expression evaluation is different in
RDFunctions. In contrast to SPARQL, RDFunctions are evaluated not over a
graph pattern, but over the set of input elements I (i.e., URIs, blank nodes,
and literals). Hence a filter evaluation cannot distinguish between bindings of
different variables, as it is the case in graph patterns. Thus, when evaluating
the filter expression, all variables are bound to the same element (taken from
the input set I), which effectively implies that an RDFunctions filter function
may contain only one variable. This restriction is indicated by the index of the
SPARQL FILTER function in the definition of the filter function (17), which binds
all expression variables to a single element e; this binding is indicated by the
notion ?∗ = e in (17). All input elements for which the filter evaluates to false
are discarded, and all other elements are added to the function’s result set:

filterexpression(I) := {e | e ∈ I ∧ FILTER?∗=e(expression) 6= false} (17)

Example As an example that combines aggregate functions and filter functions,
the following function returns the number of resources that have a foaf:birthday
before September 18, 1979 as follows:

count(invpropertyfoaf:birthdayG (

filter?x < "1979-09-18T00:00:00"ˆ̂ xsd:dateTime(literalsG(·)))) (18)

Discussion RDFunctions are mappings between sets of RDF elements (URIs,
bnodes, and literals) that consider the triples contained in a background graph
for evaluation. RDFunctions are designed to be nested in order to formulate more



complex mappings. Since they are evaluated against a background graph they
can also be considered as query algebra over triples contained therein, and we
have shown by a number of examples that they can be used to express complex
information needs. Considered as a query language, RDFunctions differs from
SPARQL because of the different underlying data model: SPARQL queries are
evaluated against an RDF graph and return either a set of variable bindings
(for SELECT queries) or an RDF graph (for CONSTRUCT and DESCRIBE queries).
RDFunctions, on the other hand, are evaluated against a set of RDF language
elements, and also return a set of RDF language elements. Consequently, several
SPARQL features (e.g., joins or multi-variable FILTER expressions) cannot be
represented in RDFunctions. On the other hand, RDFunctions provide several
features that can currently only be found in proprietary SPARQL extensions;
e.g., aggregate functions, arbitrary expression nesting, or sub-queries. Addition-
ally, RDFunctions are easily extensible, since each function that can be reduced
to a mapping between RDF elements can be integrated into the algebra.

The efficiency of expression processing (i.e., query execution) heavily depends
on the order in which the elements of a formula are nested. For instance, in ex-
pression (18) literal elements are filtered according to their value before the RDF
property is evaluated. This expression could be rewritten so that the selection
based on the foaf:birthday property is conducted before the literal values are
tested against the filter, which might lead to a more efficient evaluation depend-
ing on the structure of the background graph. However such an optimization
depends on the actual implementation as well as knowledge about the underly-
ing background graph and is out of the scope of this formal definition.

3 Tripcel: Applying RDFunctions in Spreadsheets

The spreadsheet concept is a powerful, widely-used metaphor for the analysis
and processing of data. In essence, a spreadsheet is a collection of cells that are
arranged in a 2-dimensional grid, the sheet. Each cell within a sheet may contain
a value or a formula. Formulas are evaluated to return a single result value, which
can be reused by other cells as input for evaluation. Cells are usually referred to
using a coordinate system where columns are identified by letters, and rows are
identified by numbers. The coordinate of a cell is obtained by concatenating its
column and row identifiers (e.g., C17 refers to the cell in column 3, row 17).

Spreadsheets are popular because of a number of reasons. First, they allow
users to break down complex calculations into smaller units that are easier to
understand. This decomposition is driven by the user, not the machine: it is
up to the user to decide whether they prefer to write a single complex formula
into one cell, or to split the formula into smaller parts and distribute them
across multiple cells. Second, spreadsheets combine formal calculations with user-
friendly presentation, since cells can be arranged and formatted according to the
user’s needs and taste. Finally, spreadsheets provide the possibility to explore
and compare different scenarios in a simple manner: a user may change one single
value in the sheet, and all other cells are immediately updated.



Based on the idea of spreadsheets, we propose Tripcel, a spreadsheet variant
that considers not only cells and the values and formulas stored therein, but
enriches them with the RDFunctions framework and with background informa-
tion in the form of an RDF graph. In Tripcel each cell contains an RDFunctions
expression, and as described in Section 2 the result of the evaluation of this
formula depends not only on the results of other cells, but also on the informa-
tion stored in the background graph. As a significant difference to traditional
spreadsheets, Tripcel cells may evaluate to more than one result value; in fact
cells may evaluate to sets of RDF language elements.

Tripcel strictly separates the contents of the spreadsheet (i.e., formulas and
expressions) from the contents of the background graph. This means that the
same Tripcel spreadsheet can be evaluated over different background graphs
without any modification. The connection between the formulas in the spread-
sheet and the triples in the background graph is established through the functions
that consider the background graph G in their evaluation. All functions defined
in Section 2 with an index ·G in their name are such functions.

3.1 The Tripcel Formula Syntax

In Section 2 an abstract algebra for functions over RDF language elements has
been presented. For concrete applications it is however required to express ad
serialize function expressions using a concrete syntax. To represent abstract func-
tion formulas we have developed an expression syntax under consideration of the
following requirements:

– Readability. In spreadsheet-based applications, expressions and formulas are
usually directly edited by the user. Hence it is necessary that the syntax
of expressions is easily readable, understandable, and editable. This implies
that all identifiers (like function names) carry meaningful names, and that
the number of special language elements (symbols) is reduced to a minimum.

– Accordance. It is difficult for users to remember elements of different lan-
guages, which convey similar or equal semantics in different syntaxes. In our
context, relevant languages include other spreadsheet expression languages,
RDF query languages, as well as common mathematic symbols. Hence, iden-
tifiers and special symbols in the Tripcel expression language should be re-
used from these languages wherever possible.

– Expressivity. The language should cover all elements of the RDFunctions
algebra, as specified in Section 2; this includes RDF elements (URIs, bnodes,
literals) as well as functions. Additionally, the syntax must provide means
to specify cell references as function parameters.

– Unambiguousness. The language should be easy to parse, and it should be
possible to decide which model element a token belongs to.

The syntax for cell formulas is defined using EBNF and is reproduced in
Figure 1. It defines five types of expressions; literals, literal references, resources,



1 expression = literal | literalref | resource | function |

2 cellreference ;

3 literal = lexicalform ;

4 literalref = ’"’ lexicalform ;

5 resource = ’<’ { ’<’ uri ’>’ | curie } ’>’ ;

6 function = ’=’ functionname [ ’[’ functionmodifier ’]’ ]

7 ’(’ functionparameter ’)’ ;

8 functionname = propertyfunctionname | externalfunctionname ;

9 functionmodifier = expression ;

10 functionparameter = expression ;

11 propertyfunctionname = propertyfunction { ’/’ propertyfunction } ;

12 propertyfunction = propertyname | invpropertyname ;

13 propertyname = curie ;

14 invpropertyname = ’~’ curie ;

15 cellreference = ’=’ singlecellreference | enumcellreference |

16 areacellreference ;

17 singlecellreference = { ’A’..’Z’ } { ’0’..’9’ } ;

18 enumcellreference = singlecellreference { ’,’ singlecellreference } ;

19 rangecellreference = singlecellreference ’..’ singlecellreference ;

20 externalfunctionname = alpha ;

Fig. 1: Tripcel formula syntax in EBNF. For the sake of brevity we omit the
production rules for the symbols lexicalform (lexical form of literals), uri
(URIs [3]), curie (compact URIs [5]), and alpha (alphabetic characters).

functions, and cell references. For each type, an example is given in Figure 2. A
literal expression textually represents an RDF literal. Every cell resource that
does not adhere to one of the special syntactic constructs described in the fol-
lowing is interpreted as literal. The entire content of the cell is used as the literal
value, and the literal datatype is guessed by analyzing the textual representa-
tion (e.g., a representation consisting only of numeric characters is interpreted
as xsd:integer literal). If the literal datatype cannot be guessed, xsd:string
is used as default.

A literal reference is a cell expression that starts with a quotation mark (").
In contrast to a literal expression, which is directly translated into a literal value,
literal references are interpreted with respect to the background graph: the inter-
pretation of a literal reference is the set of RDF resources that have any property
whose (literal) value is equal to the string representation of the literal reference.
Hence, Tripcel literal references correspond to the subjects4objectsG(·) function
defined in Section 2, where the input set I contains exactly one literal.

A resource can be explicitly instantiated by a cell expression that starts with
an opening angle bracket (<), followed by a CURIE [5] that identifies the re-



Type EBNF Rule Example

Literal literal ISWC 2009

Literal Reference literalref "ISWC 2009

Resource resource <dogfood:conference/iswc/2009>
<<http://www.semanticweb.org>>

Function function =filter[isLITERAL(?)](...)
=filter[?>"M"](...)

Cell Reference cellreference =B4
=A3,B6,F8
=A5..C8

Fig. 2: Examples of Tripcel expressions

source4 and a closing angle bracket (>); alternatively, full URIs can be used by
enclosing them into double angle brackets (<< and >>)5. The interpretation of
a resource expression is a set that contains exactly one resource, which is iden-
tified by the specified URI (this corresponds to the resourceuri(·) construction
function).

Function expressions refer to other Tripcel functions (cf. Section 2). They
consist of the function name, the function modifier expression, and the function
parameter expression. The function name is a string that refers to the RDFunc-
tion to be used, while the function modifier and the function parameters can
be any kind of cell expression, including functions; hence, nested and recursive
expressions can be constructed. Function modifiers influence the behaviour of
the respective function; for instance, the filter function interprets a provided
modifier string as SPARQL FILTER expression and evaluates its input according
to (17).

Because of their importance, a special syntax has been defined for property
functions, which are identified by the property’s abbreviated URI; an inverse
property function is identified by a preceding tilde character. For example, the ex-
pression =rdfs:label(...) corresponds to the RDFunction propertyrdfs:labelG (·),
while =~foaf:knows(...) corresponds to invpropertyfoaf:knowsG (·). Property func-
tions can be concatenated using a slash character, whereas they are traversed
from right to left: the expression =foaf:name/~foaf:knows(...) corresponds to
propertyfoaf:nameG (invpropertyfoaf:knowsG (·)). This abbreviated syntax allows users
to intuitively define property chains, which are often needed in analysis tasks.

4 We assume that in the context of the Tripcel sheet suitable URI prefixes are defined
for all URIs under consideration. For a discussion on potential problems that may
arise when URI prefixes are used in user interfaces we refer to [26].

5 We are aware of the fact that the usage of CURIEs in combination with angle brack-
ets does not correspond to typical RDF serialization formats. However we have cho-
sen this syntax because we want to provide a possibility to enter CURIEs since they
are easier to remember, but at the same time need a mechanism to unambiguously
identify them as URIs.



Finally, cell references are used to link formulas across different cells. By us-
ing a cell reference, the results of the referenced cell(s) are inserted at the point
of reference. Currently Tripcel supports three kinds of cell references; single, enu-
merated, and range. Single cell references are substituted by the referenced cell’s
result set; for enumerated and range cell references the union of all referenced
cells’ results is returned. For instance, the enumerated cell reference formula
=B3,B6,C6 will evaluate the formulas in the three specified cells and construct
the union of all resulting RDF elements.

3.2 Implementation

We have implemented a prototypical spreadsheet application that uses the RD-
Functions model and the Tripcel syntax, which have been presented in the pre-
vious sections6. This tool allows users to load background graphs; to edit, load,
and safe Tripcel sheets; and to inspect the evaluation results of each cell in more
detail.

The Tripcel application is divided into four layers, reflecting the conceptual
components described so far. The basis of the Tripcel application is the back-
ground graph layer, which is implemented using the Jena Semantic Web frame-
work7. All details of RDF storage are hidden by this framework, hence it is in
principle possible to connect Tripcel to any RDF data source (e.g., in-memory,
database-backed, or remote). However, Tripcel operates on both the Jena Model
API and its SPARQL implementation ARQ8 since several Tripcel functions can-
not be efficiently implemented using pure SPARQL; consequently only such data
sources can be connected that support both access methods.

On top of the background graph layer the RDFunctions layer is situated.
This layer implements the semantics of RDFunctions as described in Section 2
in a flexible manner: functions are realized as Java classes that implement a
specific interface, thus it is possible to extend this layer by new RDFunctions
without modifications to existing code. The RDFunctions layer is responsible
for the evaluation of Tripcel formulas; the RDF-specific parts of this layer are
likewise implemented using Jena.

One level above, the spreadsheet layer implements the logic of Tripcel spread-
sheets. Its responsibility is to manage the contents of cells and their interdepen-
dencies. It receives formulas (entered by the user) from the GUI layer (see below),
passes them to the RDFunctions layer for evaluation, and buffers the returned
evaluation results. It also maintains a cell dependency graph and, upon a cell
change, propagates notifications to all depending cells.

Finally, the GUI layer provides a graphical representation of a Tripcel sheet
(see Figure 3). It renders cells in a grid, provides an editing interface for formulas,

6 The prototype can be downloaded from http://www.ifs.univie.ac.at/schandl/

2009/06/tripcel.
7 Jena Semantic Web Framework: http://jena.sourceforge.net
8 ARQ: http://jena.sourceforge.net/ARQ

http://www.ifs.univie.ac.at/schandl/2009/06/tripcel
http://www.ifs.univie.ac.at/schandl/2009/06/tripcel
http://jena.sourceforge.net
http://jena.sourceforge.net/ARQ


Fig. 3: Tripcel Screenshot: Spreadsheet Window (left) and Detail Window (right)

and displays evaluation results. As Tripcel cells, in contrast to classical spread-
sheets, may contain multiple values, the GUI additionally provides a separate
detail window where all elements contained in the selected cell are displayed.

The Tripcel application provides interaction mechanisms similar to well-
known spreadsheet applications. Normally cells are filled with their evaluation
results. If the evaluation of a cell’s formula results in more than one element,
the number of results (e.g., “(7 elements)”) is displayed. When the user clicks
on a cell, an editor line is provided where the user can inspect and modify the
cell formula. When the user presses enter or selects a different cell, the edited
formula is re-evaluated, and changes are propagated to all depending cells.

4 Evaluation

Qualitative Analysis To estimate the usability and potential impact of our
approach, we have performed a qualitative analysis on an initial group of 5 test
persons, most of which are experts in the fields of Semantic Web, RDF, and
query languages9. This analysis consisted of a think-aloud evaluation, followed
by a structured questionnaire. In the course of the think-aloud evaluation, all
candidates were asked to perform a tutorial of approx. 20 minutes length, during
which they would learn the most important features of Tripcel and to get familiar
with Tripcel formulas, their syntax, and the results.

During the think-aloud evaluation, the users individually performed the tasks
described in a written tutorial, while they were observed by an interviewer. They
were asked to immediately tell any thoughts they had during the task completion,
regardless of whether they had to do with usability aspects, the entire Tripcel
concept as such, or pure implementation issues and bugs. The goal of the think-
aloud sessions was to estimate which associations and thoughts were triggered
9 The material that was used during the evaluation can be downloaded from http:

//www.ifs.univie.ac.at/schandl/2009/06/tripcel.

http://www.ifs.univie.ac.at/schandl/2009/06/tripcel
http://www.ifs.univie.ac.at/schandl/2009/06/tripcel


by Tripcel, and in which aspects the system could be improved. Most issues
that were revealed during these sessions regarded the user interface (e.g., visual
feedback or the application’s general look and feel), missing features (which
were structurally collected during the questionnaire, see below), or the syntax
and semantics of formula expressions.

After the think-aloud session, each participant was asked to fill a question-
naire that was meant to reflect their impression on the concept and the tool, and
to identify potential for improvements in a structured manner. The first part of
the questionnaire consisted of questions that were to be answered on a 5-level
Likert scale (1 = strongly disagree, 5 = strongly agree) and contained ques-
tions addressing Tripcel’s general applicability and usability. The second part
consisted of open questions addressing the user’s impression on specific features
as well as potential application fields. Finally, participants were asked to assess
their familiarity with Semantic Web technologies and spreadsheets.

Participants rated the usefulness of the tool to get an overview on data with
an average of 3.0 (σ = 1.0) for unknown data, and 3.6 (σ = 1.5) for known data.
The syntax of Tripcel formula expressions was considered to be understandable
(3.2, σ = 1.3) and even better memorizable (4.0, σ = 1.0). Participants agreed
that RDF skills are required to use the tool; its usability for users without RDF
skills was denied (1.8, σ = 1.3). However, for users with RDF skills the usability
of the tool was rated very high (4.8, σ = 0.4). The participants considered
themselves to be experts in Semantic Web technologies (RDF: 4.0, σ = 1.4;
SPARQL: 3.8, σ = 1.3).

In a series of qualitative questions the participants were asked to judge the
features of the application. Amongst the positively rated features were GUI
aspects like the familiar interaction metaphors and their resemblance to spread-
sheet applications, and the fast execution times of formula evaluation. The par-
ticipants also liked the possibilities and expressivity of the formula language,
especially the ability to formulate property paths and aggregate functions. Fi-
nally, the ability to apply the same formula sheet to different background graphs
was appreciated.

The participants outlined several missing features, including the ability to
load multiple RDF documents into one background graph, or to quickly switch
between multiple background graphs. The ability to visualize the background
graph or cell contents in the form of graphs or charts (as known from spread-
sheet tools) was required by several participants. On the GUI level, features like
auto-completion and syntax highlighting were mentioned, which would increase
the application’s usability and reduce the error rate. We are currently in the
process of reviewing the detailed requirements for new features, which will be
implemented subsequently.

Quantitative Analysis As described in Section 3.2, Tripcel has been imple-
mented on top of the Jena Semantic Web framework, and Tripcel functions are
implemented using the Jena Model API or the ARQ SPARQL engine, depend-
ing on the function type. Consequently, the execution times of such calls and



queries are not under the control of our implementation, and additionally de-
pends on the size of the background graph. Here we refer to previous works on
performance evaluation of different triple stores (e.g., [10, 6]).

An essential feature of spreadsheets is the possibility to break down complex
calculations into smaller units. By resolving a sheet’s dependency graph, for-
mulas that are distributed across multiple cells could be merged and optimized
before they are translated into queries and executed against the background
graph. However the user of a spreadsheet tool expects to be able to inspect in-
termediate results, which ultimately implies that each formula contained in a cell
must be evaluated independently from other formulas. In our Tripcel implemen-
tation we follow the approach to buffer evaluation results in-memory for each
cell as long as the cell formula (and the formula of any antecedent cell) is not
modified. While this approach potentially requires more memory, it significantly
reduces the time needed for formula evaluation.

5 Related Work

As mentioned before, SPARQL lacks a number of features that are needed in
different application scenarios. These deficiencies have been acknowledged by
previous works, which led to a number of proposed extensions. A number of
these extensions are addressing similar issues as the RDFunctions framework
does: Virtuoso SPARQL Extensions10 or Jena ARQ11 both provide aggregates
and so-called pointer operators that reduce the number of variables needed in
triple patterns. However we choose not rely on proprietary language extensions
for our implementation. Currently, a number of proposed feature extensions for
the next version of the SPARQL language are under review by the W3C SPARQL
Working Group.

A number of languages have been proposed that allow to query for more com-
plex triple patterns than it is currently possible using SPARQL. Many of these
approaches provide mechanisms to navigate between nodes in an RDF graph,
as can be done with the RDFunctions framework. This includes nSPARQL and
rSPARQL [2], which provide means to express navigational expressions over RDF
graphs, which can be evaluated under consideration of RDFS semantics. RD-
Functions currently implements a subset of the features provided by nSPARQL
for the sake of simplification. SPARQ2L [1], SPARQLeR [15], and ARQ extend
SPARQL with functions for the analysis of path structures in an RDF graph,
while the RDF path language of the SILK framework [27] and XsRQL [12] are
independent languages. The ability to hierarchical nest property functions re-
lates our work also to the family of RDF path query languages like Versa [20] or
RPath [17], which could as well serve as the foundation for Tripcel.

10 Virtuoso SPARQL Extensions: http://docs.openlinksw.com/virtuoso/

rdfsparql.html#sparqlextensions
11 ARQ Extensions: http://jena.sourceforge.net/ARQ/documentation.html

http://docs.openlinksw.com/virtuoso/rdfsparql.html#sparqlextensions
http://docs.openlinksw.com/virtuoso/rdfsparql.html#sparqlextensions
http://jena.sourceforge.net/ARQ/documentation.html


Topic Map Query Language 12, although not designed for the RDF model,
follows a similar conceptual model. All these approaches provide valuable input
for further enhancement and extension of RDFunctions; however we want to
ensure that the syntax for RDFunction expressions remains easily to remember.

Another approach comparable to Tripcel are Semantic Web Pipes [16] (which
are inspired by Yahoo Pipes13, an utility for meshing RSS feeds), where RDF
data sources can be aggregated and manipulated through linked processing units.
Our framework differs from Semantic Web Pipes in that we consider sets of RDF
language elements as input and output of functions, rather than RDF graphs.

The interrelationships between spreadsheets and semantic technologies have
been studied in a number of works. Tools that are able to extract RDF data from
spreadsheets include ConvertToRDF [9], which maps table column headings to
ontological concepts, and RDF123 [11], which provides a special language to
express the conversion parameters. Other approaches involve the use of GRDDL
[8]; examples for this as described e.g., in the GRDDL Primer14. Vice versa, since
SPARQL SELECT query results are tables they can be directly integrated into
spreadsheets, as shown e.g., in [26]. However to the best of our knowledge there
exists no approach so far that directly integrates processing of RDF language
elements into the spreadsheet concept.

6 Conclusions and Further Research Directions

In this paper we have presented the concept of RDFunctions, which are map-
pings between sets of RDF elements under the consideration of background in-
formation expressed in an RDF graph. We have defined an extensible conceptual
model for RDFunctions, as well as a number of basic functions for processing
RDF language elements. These functions have been implemented in the form of
Tripcel, a spreadsheet-based tool that allows users to use RDFunctions in order
to analyse the contents of RDF graphs. To represent RDFunction expressions we
have designed and implemented a formula language which is oriented towards
the syntax of popular spreadsheet software. Our approach was evaluated in the
course of a study among expert users, who judged Tripcel as being a useful tool
for analyzing RDF data, and gave directions for further work.

In the future, we plan to improve the user interface of our implementation
and extend it with features that improve usability (e.g., syntax and reference
highlighting, auto completion, formula authoring assistants, and more efficient
projection of three-dimensional results into the two-dimensional user interface)
or that extend functionality (e.g., cell formatting, more advanced aggregate func-
tions, etc.). We aim to extend the range of possible applications of Tripcel by
integrating mechanisms that allow the software to connect to multiple remote
data sources, which opens the door to evaluate spreadsheets against the Web
of Data. Finally, we plan to integrate Tripcel with classical spreadsheet tools
12 Topic Map Query Language (TMQL): http://www.isotopicmaps.org/tmql
13 Yahoo Pipes: http://pipes.yahoo.com/pipes/
14 GRDDL Primer: http://www.w3.org/TR/grddl-primer

http://www.isotopicmaps.org/tmql
http://pipes.yahoo.com/pipes/
http://www.w3.org/TR/grddl-primer


in order to facilitate data interoperability. In the first step, we will implement
copy+paste functionality; in a second step we plan to implement direct data
integration and live synchronization between Tripcel and other spreadsheet soft-
ware.
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