
1

Migrating a Leitstand System between Object-Oriented
Database Systems - An Experience Report

C. Huemer, G. Kappel, S. Vieweg
Institute for Applied Computer Science and Information Systems

Department for Information Engineering; University of Vienna, Austria
{ch, gerti, sv}@ifs.univie.ac.at

Abstract

Advances in technology and organizational structures effect changes in database
requirements. Frameworks for the migration of database applications between dif-
ferent database systems accomplish the task of mapping evolving requirements to
existing applications. In this paper, we describe a framework for migrating database
applications between different object-oriented database systems. We illustrate our
framework by means of migrating KBL† from ONTOS™ to ObjectStore™.

1. Introduction

The requirements for database applications evolve over time. The changes of the requirements may
result from the demand for additional system functionality, changes in the business organization, a
shift in technology or improved insight in the task to be performed. These changes must then be
mapped to the existing applications. In general, withmigration we describe the controlled mapping
of evolving requirements to existing applications. Database migration results from changes in the
application’s database requirements. Withdatabase migration we denote the migration of a given
database application from a source database system (DBS) to a target DBS. The application
migrated to the target DBS is constrained to follow the changed requirements and to deliver ‘equiv-
alent’ results. Equivalence is defined by the application’s semantics. The need for database migra-
tion may have several reasons: system downsizing (e.g. from host-based computing to client/server
computing), substitution and integration of database systems (e.g. migration from hierarchical to
relational database system), change of the programming languages in use (e.g. from COBOL to
C++), or outsourcing of database services. System downsizing and outsourcing of database services
result from changes in the organization of information system services while the substitution and
integration of DBSs and the change of programming languages are mainly caused by technological
change.

In this paper we focus on the substitution of database systems. In particular, we emphasize on the
migration of database applications between different object-oriented DBSs (ooDBS). The need for
work in this area is obvious. There does not yet exist a unique data model for ooDBSs. Each
ooDBS uses its own data model although there are similarities between them. Thus, the exchange
of the underlying ooDBS of an application is not necessarily straightforward but may cause consid-
erable changes in the application. Furthermore, the commercial ooDBS market is currently boom-
ing. Several systems are competing for market leadership, and it is not yet decided which of the
systems will survive. Thus, in order to achieve greater flexibility in the choice of the underlying

† The work reported in the paper is part of the ESPRIT project KBL (ESPRIT No. 5161), whose goal is the design and development of a Knowl-
edge-Based Leitstand. The authors are responsible for incorporating object-oriented database technology as underlying information store, and as
integrative component between the Leitstand and various other CIM components. The support by FFF (Austrian Foundation for Research
Applied to Industry) under grant No. 2/279 is gratefully acknowledged.

™ONTOS is a trademark of ONTOS, Inc.; ObjectStore is a trademark of ObjectDesign, Inc.

2

ooDBS as well as with respect to extensibility, the feasibility of migrating applications between
different ooDBSs must be a prerequisite for deciding on one or the other of the existing ooDBSs.

Current approaches to the migration of database applications emphasize on the migration from
hierarchical to relational DBS or from non-DBS applications to relational DBS applications
[Brodie93, Meier93, Shneiderman82, Su81]. Approaches for the migration between ooDBSs are
still missing in the literature. The purpose of this paper is to fill this gap. We thereby concentrate on
the shallow migration of database applications.Deep migration focuses on a complete re-design of
the application in order to exploit the whole functionality of the target DBS.Shallow migration
requires only a re-design of those database components of the application which have a different
semantics in the source DBS and the target DBS, or which are missing in the target DBS and,
hence, have to be simulated [Dietrich93]. We opted for the latter approach for two reasons. Firstly,
the main goal of our project has been to investigate the applicability of several ooDBSs for the
application at hand rather than to totally re-design the application every time to take full advantage
of all features of the target ooDBS. Secondly, shallow migration is the more feasible approach
when performing a database migration under restricted resources such as time and personnel.

The rest of the paper is organized as follows. In Section 2 we shortly describe the application of our
investigations, namely the KBL application. In Section 3 we present the general framework for
migrating applications between different ooDBS. Section 4 describes the migration of the KBL
application from ONTOS to ObjectStore. We conclude with a report of our experiences gained
during the migration process.

2. The Knowledge-Based Leitstand (KBL)

This section contains an overview of the KBL system. KBL has been developed under the object-
oriented paradigm and is implemented on top of the ooDBS ONTOS. We will now shortly present
the functionality of the system, describe the basic software modules and give an overview about the
main classes. The intention of this section is to give an overview of the system. We refer to
[KBL92, KBL93] for a further description of the Knowledge-Based Leitstand.

A Leitstand is a distributed computer aided graphical decision support system for interactive
production scheduling. It interacts with the production planning and control system (PPC) and
other systems at the shop-floor level. KBL is a Leitstand system which emphasizes on short term
production scheduling. The main components of KBL are

• Interactive Adviser: KBL is equipped with an Interactive Advisor which will constantly ana-
lyze the status of the whole system. It provides the production scheduler personnel with sched-
uling support and advice for alternate actions.

• Knowledge representation and acquisition: The information relevant to scheduling and control
needs to be represented in a flexible manner. It must support besides others the representation
of scheduling heuristics, scheduling evaluation functions, and shop floor monitoring tools.

• Leitstand Logic: The Leitstand Logic or Scheduling and Control Subsystem represents the
interface between the Leitstand application and the DBS. It provides DBS functionality, ver-
sion handling, interfaces to other application processes, and basic scheduling routines.

• Simulation of schedules: Alternate schedules can be simulated in order to evaluate the perfor-
mance of schedules under different constraints.

• Evaluation of schedules: The Evaluation component of the Leitstand allows the assessment of
different scheduling strategies. A detailed analysis based on built-in evaluation functions or

3

user-defined evaluation criteria should help to improve the quality of the scheduling process.

• Communication interfaces to other systems: Leitstand systems operate in a distributed envi-
ronment. Communication interfaces to the production planning and control system (PPC) as
well as to the shop-floor control system (SFCS) are supported.

The current implementation of the Leitstand contains the Interactive Adviser, the Knowledge
Representation component, the Leitstand Logic, and the Simulation component. KBL has been
implemented on top of the object-oriented DBS ONTOS in the first place. The system is structured
into the following modules: Scheduling Toolkit Module, Planning Board Module, and Simulation
Module.

Fig.1: The KBL Class Hierarchy

The Scheduling Toolkit represents the core of the KBL system. It includes all classes and methods
necessary for the scheduling of orders. It contains all production data and manages the constraints
and capacity models. Furthermore, it controls access to the database. The Planning Board Module
contains the routines for the management of the graphical user interface. The Simulation Module
allows to automatically schedule orders. All the modules use the Scheduling Toolkit module for the
management of persistent objects in the database. The KBL database schema follows the class hier-
archy depicted in Fig. 1. The basic functionality of the Scheduling Toolkit is implemented in the
classesAgent , Activity , andSTResource (highlighted in Fig. 1). The classActivity is
used to describe operations in the Leitstand environment. These include the factory specific opera-
tions such as ‘drilling’, ‘milling’ etc. The classSTResource describes any kind of resources
(such as material, machines, workers etc.). Instances of the classAgent are used to relate activities

KBL_Object

StateNode

SimulatedObject

Simulator

SimulationEvent

MessageQueue

MessageDefinition

MQS

FunctionDef

EvVariable

EvInstruction

Agent

Rule

MessageField

EVSpecification

ConstraintPurpose

AgentConstraint

DispatchRule

AgentRelationship

EventList

Activity

MessageTypeDictionary

ShopFloorReport

STResource

Message

TimeStateDescriptor

RuleSet

IntervalObject

SimulatedResource

SimulatedAgent

StartEvent

PickEvent

EndAgentEvent

InitAgentsEvent

ReleaseAgentEvent

StopEvent

BeginAgentEvent

ShopFloorAgent

MasterDataAgent

EVSpecUserdefined

EVSpecPredefined

SingleActivity

ActivityGroup

AgentTimeConstraint

SingleResource

ResourceGroup

ShiftIntervalObject

CostIntervalObject

ScheduledAgent

NonPeriodicStateDescriptor

OverlapAbleMasterDataAgent

AgentTimeRelationship AgentSlotSequence

AgentFixTimeConstraint

AgentBetweenTimeConstraint

OverlapAbleScheduleAgent

ConventionalScheduleAgent

CostTimeStateDescriptor

CostNonPeriodicStateDescriptor

Dates
SlotDescription

4

and resources and contain additional information about the status of the resource/activity relation-
ship. This includes whether the activities are scheduled or unscheduled, whether and to which rate
the activities consume or produce other resources etc.

In conjunction with other classes such asTimeStateDescriptor , IntervalObject , and
AgentConstraint the above described classes represent a flexible environment for the model-
ing of manufacturing processes. A detailed description of the KBL class hierarchy can be found in
[KBL93].

3. Framework for Migrating Applications between ooDBSs

In this section we develop a general outline for migrating applications (such as KBL) between
ooDBSs independent of the ooDBSs involved. Therefore, we have to look first at all the compo-
nents involved in the migration process: the source ooDBS, the target ooDBS, the system configu-
ration and the database application. A careful analysis of these components is absolutely necessary
to gain insight into the database requirements of the application and to explore how these require-
ments are met by each of the involved ooDBSs. The features required by the application and the
features supported by the ooDBSs should be defined within the same set of criteria to be compara-
ble. These criteria could be taken, for example, from the ooDBS Manifesto [Atkinson89] or from
the 3rd Generation Database Manifesto [Stonebraker90]. We have decided that all further investiga-
tions will be based on the main topics of the evaluation catalogue of [Kappel93] (see list below),
which has been developed to evaluate commercially available ooDBSs. The topics of the evalua-
tion catalogue comprise a superset of all features discussed in [Atkinson89, Stonebraker90]:

The subtasks towards a successful migration and their input and output are presented in Fig. 2.
These subtasks can be grouped into four stages:

S1: analysis of the involved ooDBSs and of the application’s DBS requirements

S2: migration analysis

S3: development of a strategy for the implementation of the migration

S4: implementation

Thefirst stage includes the DBS evaluation and the requirements analysis of the application. As the
analysis of the system configuration is part of the evaluation topics (feature operational conditions)
it will be included within the DBS evaluation. Thesecond stage comprises the migration analysis to
decide which of the features have to be considered during the migration of the specific application.
Thethird stage is the development of a strategy for the migration of these features. In thelast stage
the implementation of the migration will be done according to this strategy. The activities within

• Data Model
• Constraints and Triggers
• Persistence
• Data Dictionary
• Tools
• Query Management
• Host Programming Languages
• Schema Evolution
• Change Control
• Versioning

• Concurrency Control
• Recovery
• Authorization
• Architecture
• Storage Management
• Query Optimization
• Operational Conditions
• Distribution
• Interfaces

5

the four stages are discussed in the following in detail.

Fig.2: Model of the Migration Process

The evaluation of the ooDBSs leads to a set of features supported by each system. Furthermore, a
comparison of these features will result in three subsets according to their effect on the migration:

• Overlapping features are supported by both ooDBSs in the same manner and have no effects
on the migration.

• Candidate shallow migration features are supported only by the source ooDBS or they are
implemented differently in the two ooDBS and thus, have to be simulated in the target ooDBS.
These features have to be considered in further detail to provide the same database functional-
ity as offered by the source ooDBS (shallow migration).

• Candidate deep migration features are only supported by the target ooDBS and might be
included in the migration if required by the application (deep migration).

The features required by the application are the result of the requirements analysis and are called
database requirements. During migration analysis we compare these database requirements with
the result of the DBS evaluation, which is represented by the three different sets of features as
outlined above. We will remove those features from candidate migration features which are not
required by the application. We also do not have to consider the overlapping features anymore,
because they do not effect the migration. The migration analysis will result in two sets of features
which have to be considered during the migration. The shallow migration features include those
features which have to be migrated to obtain the same database functionality for the application as
it was available from the source ooDBS. The deep migration features include those features which
extend the database functionality, because they are not provided by the source ooDBS but are
required by the application. Next, a strategy for the implementation of the migration features in the
target ooDBS must be developed. The concluding task is the implementation of the migration
which is done according to the developed strategy.

Splitting the first stage (S1) presented in Fig. 2 into four steps leads to the following seven steps:

1. Analysis of the hardware and software environment (= system configuration).
2. Analysis of the ooDBS
3. Development of clusters of interdependent functionality
4. Analysis of the application’s DBS requirements

Database
Application

Source ooDBS

System
Configuration

Target ooDBS

Requirements

Analysis

DBS Evaluation

Database
Requirements

Candidate

Candidate
Deep Migration

Overlapping

Shallow

Features

Features

M
ig

ra
tio

n

Shallow

Deep
Migration
Features

Migration
Features

D
ev

el
op

m
en

t o
f a

fo
r

th
e

Strategy
for

Shallow
MigrationMigration

Features

Im
pl

em
en

ta
tio

n

S1 S2 S3 S4

A
na

ly
si

s

Strategy
for

Deep
Migration

 Im
pl

em
en

ta
tio

n
S

tr
at

eg
y

6

5. Migration analysis
6. Development of a strategy for the implementation
7. Implementation

The analysis of the hardware and software environment is of general interest. But as each
feature included in the evaluation catalogue will be analyzed for each ooDBS under consideration
of the underlying system configuration it is implicitly included in step 2.

The task of theanalysis of the ooDBSs is to evaluate, to classify and to compare the features of the
two ooDBSs involved in the migration. It is essential to figure out the features which are supported
by the source DBS and those which are supported by the target DBS. Next, we have to find the
overlapping features of the source DBS and the target DBS. Note, two features might be syntacti-
cally similar or identical but semantically different. Only those features which are syntactically and
semantically identical cause no problems for the migration and will be included in the set of over-
lapping features. The result of the analysis of the ooDBSs is on one hand the set of overlapping
features and on the other hand the set of candidate shallow/deep migration features which will
cause changes in the application. The set of candidate shallow migration features comprises those
features which have to be changed/simulated to provide the database functionality of the source
DBS when migrating to the target DBS. The set of candidate deep migration features consists of
features which are provided by the target DBS but not by the source DBS, and, hence, would
extend the database functionality if considered in the migration process.

Due to the fact that there exist some interdependencies between different features, changes of the
application required by one feature might cause changes of another feature, too. Since related
changes should be considered together we propose to cluster features which require associated
changes. We call themclusters of interdependent functionality. Each of these resulting clusters
forms a separate migration unit, which can be migrated independently from the features outside this
specific cluster.

A careful analysis of the application considering the data model requirements, querying and
manipulation requirements, and integration requirements is of great importance. It is a prerequisite
to be able to select those features which have to be considered within the migration. The necessary
features of the application are collected in the set of database requirements.

The main task of themigration analysis is to find the intersection of the database requirements
with the candidate shallow migration features and with the candidate deep migration features,
respectively. Those features of the candidate shallow migration features and of the candidate deep
migration features which are not required by the application do not have to be considered further.
One might argue that removing those features before the analysis of the ooDBSs (by comparing the
database requirements with the features of the evaluation catalogue) would reduce the effort in that
part. But it is our point of view to remove those features not earlier than at this step for reasons of
completeness and possible future changes in the application’s requirements. The result of this step
is the set of shallow migration features and the set of deep migration features. These two sets
include those features which have to be considered when migrating one specific application from
the source DBS to the target DBS.

For the features residing in the set of shallow migration features and in the set of deep migration
features astrategy for their implementation in the target ooDBS must be developed. Note, that
developing a strategy for the deep migration features can be omitted if only a shallow migration is
required. By developing an implementation strategy one might realize that the effort to implement a
specific feature exceeds the semantic gain provided by that feature. Thus, whether a certain feature

7

is migrated has to be decided on a case by case basis and heavily depends on the available
resources. The result of this step is a mapping strategy for all those features which are included in
the implementation of the migration.

The implementation of the migration is the programmer’s task. He or she is responsible for chang-
ing the code according to the developed strategy leading to the final running application on top of
the target DBS.

4. Migrating KBL from ONTOS to ObjectStore

4.1. A brief tour of ONTOS and ObjectStore

In the following we will shortly describe the main features of ONTOS and ObjectStore. For further
information we refer to [Ahmed92, Kappel93, Soloview92] and to the product literature.

ONTOS (Release 2.2.) is based on C++ and operates in a client/server environment. The client/
server architecture is based on the page server paradigm. It is available on the major workstation
platforms. The strength of the product lies in its extensibility and in the flexible way of meta-data
management. Any of the system services (storage manager, transaction manager) can be modified
in order to support user-defined extensions. Databases can be accessed either with C++ or with an
interactive SQL-Interface. The objects are accessed and referenced through logical object refer-
ences. The access to meta-data is fully supported. The dynamic creation of new classes and meth-
ods provides a high degree of flexibility. Persistence is reached by inheritance from a system
supplied class. Each persistent class requires the implementation of several methods (get_di-
rect_type , put_object , APL-Constructor , delete_object) in order to guarantee
consistent management of persistent objects. ONTOS implements object level locking and provides
transactions with checkpointing. Version management is not supported.

ObjectStore (Release 2.0.) is based on C++ and operates in a client/server environment. The
ObjectStore server is a page server. It is available on the major workstation platforms. It provides
access to the database either with C++ or with a C++ extension (ObjectStore DML); an SQL-like
query language is not supported. The strength of ObjectStore is its memory architecture and the
resulting performance benefits. Objects are accessed via their physical addresses. Although this
implies some restrictions on the size of the database, the amount of data that is accessible within a
single transaction, and database reorganization, the advantages of this approach dominate its weak-
nesses for a certain domain of applications. Persistence is orthogonal to the type system and thus
provides advantages in case of migrating applications to ObjectStore. ObjectStore provides naviga-
tional access via object references and associative access via queries over collections. The embed-
ded query language is strongly connected to C++. In terms of extensibility and schema access,
ObjectStore does not provide the flexibility of ONTOS. The meta-object protocol (MOP) provides
only access to class descriptions; dynamic modifications of class descriptions are not supported.
Static schema evolution is supported via an object migration tool to convert the instances of the old
schema to conform to the new schema. ObjectStore provides a sophisticated versioning mechanism
that supports the versioning of object configurations. The concurrent access to the database is
controlled with implicit page level locking and closed nested transactions.

4.2. The Migration Process

In this section we discuss step 2, step 4, and step 5 of the migration process outlined in section 3 for
migrating KBL from ONTOS to ObjectStore. Note, step 3 is discussed by example in the next

8

subsection. The results of step 2 to step 5 are presented in Fig. 3, followed by comments which
explain the grouping of each feature in turn. Fig. 3 depicts the development of a mapping strategy
only for those features residing in the set of shallow migration features. This is due to the fact that
our goal included only a shallow migration and not a deep migration. Due to space limitations we
do not discuss the mapping strategy for each of the shallow migration features but highlight the
migration strategy of a single feature, namely persistence, in the subsequent subsection.

Fig.3: Migration Process from ONTOS to ObjectStore

Both ONTOS and ObjectStore are based on the C++data model. They both use the C++ basic data
types and some additional data types, e.g. to support collections. Furthermore, the C++ data model
is extended to provide typical database features, such as transactions. For the additional data types
and the database extensions each model uses its own syntax and semantics. Thus, the feature data
model is included in the candidate shallow migration features. Since the functionality of the data
model is crucial for the KBL application it is included in the database requirements, and, as a
consequence it is included in the shallow migration features for which a strategy must be devel-
oped.

The featureconstraints and triggers is not supported by ONTOS. Since we classify inverse rela-
tionships as kind of constraints and since ObjectStore supports inverse relationships we add this
feature to the candidate deep migration features (note, ONTOS offers inverse relationships only for
dynamically created types but not for statically created ones). This feature is also included in the
database requirements because some data members are inverse to each other in KBL. As a conse-
quence, we add constraints and triggers to the set of deep migration features.

Persistence is required by any database application. It is reached in ONTOS by inheritance and in
ObjectStore by declaration. Thus we have to include persistence in the shallow migration features

Host Prog. Lang.

Recovery

Architecture

Distribution
Authorization

Operational ConditionsChange Control

Data Model

Data Dictionary
Persistence

Query Management

Schema Evolution
Concurrency Control
Storage Management

Constraints & Triggers
Versioning
Query Optimization
Interfaces

Data Model

Data Dictionary
Persistence

Query Management
Concurrency Control
Storage Management

Constraints & Triggers
Versioning
Query Optimization

Data Model
Constraints & Triggers
Persistence
Data Dictionary
Query Management
Host Prog. Lang.

Concurrency Control
Recovery
Architecture
Storage Management
Query Optimization
Operational Conditions
DistributionVersioning

Overlapping Features

Candidate Shallow
Migration Features

Candidate Deep
Migration Features

Database Requirements

Shallow
Migration Features

Deep

R
eq

ui
re

m
en

ts
A

na
ly

si
s

M
ig

ra
tio

n
A

na
ly

si
s

D
B

S
 E

va
lu

at
io

n

D
ev

el
op

m
en

t o
f a

P
ro

ce
ss

S
tr

at
eg

y
fo

r
D

ee
p

M
ig

ra
tio

n

Migration Features S
tr

at
eg

y
fo

r
th

e
M

ap
pi

ng

9

and have to develop a strategy for its mapping (see 4.3. Mapping Strategy for the Feature ‘Persis-
tence’).

In ONTOS it is possible to provide each object with a synonym which is stored in a separatedata
dictionary. The synonym can serve as unique identifier for the specific object. In ObjectStore noth-
ing similar exists. Therefore, the feature is part of the candidate shallow migration features. In KBL
synonyms are heavily used for the activation of objects (see query management). Thus, this feature
becomes also a member of the shallow migration features.

The analysis of the tools is only interesting in terms of supporting the implementation process but it
has no effects on the application itself. Thus, this feature does not reside in any of the resulting sets.

Query management is implemented differently in both systems. In ONTOS, persistent objects are
retrieved via their synonyms or via an instance iterator over all persistent objects which belong to a
specific class and its subclasses. In ObjectStore, the entry points of the database are persistent root
objects. Due to this different access methods and since KBL, like any other database application,
requires persistent object retrieval query management is included in the set of shallow migration
features.

Since C++ is thehost programming language for KBL and both ooDBSs provide an interface to
C++, this feature is part of the overlapping features.

ONTOS and ObjectStore provide different concepts forschema evolution. In general, schema
evolution represents a database requirement of KBL, but it was not considered in the prototype
implementation. Thus, schema evolution is a member of the candidate shallow migration features.

Both systems provide neither logical nor physical data independence. Thus, the featurechange
control resides in the overlapping features. For KBL data independence is not absolutely necessary
and, thus, it is not included in the database requirements.

ONTOS does not support aversioning mechanism. As a consequence, the versioning of the sched-
ules in KBL has to be simulated. ObjectStore provides a sophisticated versioning mechanism
including linear and branching versions. Since versioning is required by KBL but only supported
by ObjectStore it is part of the deep migration features.

Concerningconcurrency control ONTOS is superior to ObjectStore since in ONTOS it is possible
to explicitly lock objects and to specify an optimistic lock strategy alternatively to a pessimistic
one. The optimistic lock strategy is also part of the database requirements of KBL and will there-
fore be included in the shallow migration features. Since the simulation of an optimistic lock strat-
egy in ObjectStore would have gone far beyond our available resources we restricted the KBL
application to use a pessimistic lock strategy.

Recovery is part of the database requirements of any application. It is included in the overlapping
features since ONTOS and ObjectStore provide automatic database recovery from volatile storage
but do not provide disk crash recovery.

Authorization is also included in the overlapping features since access control to data is supported
only at the database level, both in ONTOS and in ObjectStore. Database access can be controlled
by the UNIX file access protocol. KBL does not require any specific access control mechanisms.

Both systems support a client/serverarchitecture, which is required by KBL. Since ONTOS and
ObjectStore are based on a page server we consider the architecture to be similar in both systems
and to be part of the overlapping features.

One of the most important differences between ONTOS and ObjectStore in the realm ofstorage

10

management is the disk to in-memory mapping and especially the activation of referenced objects.
Also, the facilities for the use of indexes and clustering are different in both systems. Thus, storage
management is a candidate shallow migration feature. It is a shallow migration feature since the
KBL prototype requires the activation of referenced objects and the use of indexes and clustering
mechanisms.

Query optimization has not been considered in the KBL prototype but it will be included in the
database requirements of the final product. ONTOS provides limited query optimization; Object-
Store supports index and clustering for query optimization. Thus, query optimization is a member
of the deep migration features.

KBL is developed for SUN workstations in a TCP/IP network. ONTOS and ObjectStore support
this environment. Therefore, the featureoperational conditions is included in the overlapping
features.

The featuredistribution is also an overlapping feature since KBL does not require the distribution
of the database over multiple servers.

ONTOS does not provide any import and exportinterfaces. ObjectStore offers a third party tool to
import from STEP-EXPRESS. Nevertheless, import and export interfaces are not required by KBL.
Thus, interfaces are part of the candidate deep migration features but do not have to be considered
for the migration of KBL.

4.3. Mapping Strategy for the Feature ‘Persistence’

In this section we show by example the development of a mapping strategy for one of the most
interesting features in the set of shallow migration features of Fig. 3, namely persistence.

Persistence is reached in ONTOS by inheritance from the ONTOS specific classObject ; in
ObjectStore by declaration. As this basic feature is implemented differently in the two ooDBSs, it is
a member of the candidate shallow migration features. The clustering with other features according
to additional affected changes will be presented below. As persistence is required by KBL it is also
included in the set of the database requirements. During the migration analysis we compare the two
sets mentioned above. Since persistence resides in both sets it will also become a member of the
shallow migration features. Thus, we have to develop a strategy for the mapping of the ONTOS
specific code to ObjectStore. For the development of such a strategy it is necessary to investigate in
further detail how persistence is implemented in ONTOS and in ObjectStore, respectively. To reach
persistence in ONTOS the following conditions must hold true:

• Classes must have a derivation path through the ONTOS classObject .

• Classes must have a special constructor called “activation constructor” to activate an object
from disk to cache memory.

• Classes must have a special member function calledgetDirectType()

• If the class has a destructor it should have a function calledDestroy() to deactivate an
object from main memory but not from disk.

• Classes should have the functionsputObject() anddeleteObject() to
write / delete an object to / from the disk

If the definition of a class fulfills these requirements, and the member functionputObject is
invoked on an instance of this class then this specific instance is made persistent. In ObjectStore the
class definition for a persistent object does neither have to include a derivation path through a

11

specific predefined class nor does it have to include the ONTOS specific functions. An object is
made persistent by declaration. There is no need to call an operation likeputObject to write it to
secondary storage.

As the persistent class definition is also influenced by the features storage management (persistent
references) and query management, we had to cluster persistence together with these features
according to step 3 of the migration framework.

The clustering with storage management is due to the fact that in ONTOS direct references are
main memory pointers and behave in all respects like main memory pointers. This implies that the
traversal of a direct reference requires the programmer to ensure that the referenced object is
already in memory. Otherwise the program will, if lucky, terminate with an exception raised, or if
unlucky, continue with unexpected values. The other possibility is to use - as in KBL - abstract
references via the classReference . Reference allows objects to be referenced by using a
format that is valid whether or not the referenced object is currently in memory. TheBinding()
function defined for the classReference returns a pointer to the referenced object, and activates
it if necessary. ObjectStore, on the other hand, provides a very comfortable concept called ‘Virtual
Memory Mapping Architecture’ for the activation of referenced objects. In ObjectStore, all pointers

ONTOS class definition ObjectStore class definition

class KBLObject : public Object
{

...
};

class IntervalObject : public KBLObject
{

...
};

class ScheduleAgent : public IntervalObject
{
private:

Reference ivMasterDataAgent;
Reference ivResource;

// Constructor which is called by a call in the
// constructor of the related MasterDataAgent.
ScheduleAgent (MasterDataAgent *);

// ONTOS required function
virtual void deleteObject

(Boolean deallocate = FALSE);

public:

virtual MasterDataAgent *getMasterDataAgent ();
virtual void putSingleResource (SingleResource *);
virtual SingleResource *getSingleResource ();
ScheduleAgent ();
...

// ONTOS required functions
ScheduleAgent (APL *);
~ScheduleAgent ();
virtual Type *getDirectType ();
virtual void Destroy (Boolean aborted = FALSE);
virtual void putObject(Boolean deallocate = FALSE);

};

extern os_database *db;

class ScheduleAgent : public IntervalObject
{
private:

persistent<db> os_Set<ScheduleAgent*>* extent;
MasterDataAgent *ivMasterDataAgent;
STResource *ivResource;
ScheduleAgent (MasterDataAgent *);

public:

virtual MasterDataAgent *getMasterDataAgent ();
virtual void putSingleResource (SingleResource *);
virtual SingleResource *getSingleResource ();
...
ScheduleAgent ();
~ScheduleAgent ();

};

ObjectStore implementation of the constructor:

ScheduleAgent::ScheduleAgent
(MasterDataAgent * theMasterDataAgent)

{
...
// Insertion of the created ScheduleAgent into
// the extent of the class

extent->insert(this);
}

Table 1: Persistent Class Definitions

12

take the form of regular memory pointers, where a pointer to a persistent object currently not in
memory has an unmapped virtual-memory-address. In case of dereferencing the virtual-memory-
pointer a fault is signaled by the violation handler and the segment containing the object is trans-
ferred into the client’s cache. The page containing the object is mapped into the virtual memory.
ObjectStore also provides some kind of abstract references but they are mainly used for dereferenc-
ing objects in another database or between transaction boundaries. Because of the great conve-
nience of using direct pointers we decided to replace the abstract references in the ONTOS version
of KBL by direct references in the ObjectStore version of KBL.

The clustering with query management is due to the fact that ONTOS offers a so-called instance
iterator as entry point to the database which allows access to all objects which belong to a specific
class and its subclasses. In order to simulate this ONTOS functionality in ObjectStore each persis-
tent class includes a static persistent class variable namedextent of typeos_Set containing all
the instances of this class and of its subclasses, respectively. Table 1 summarizes the persistent class
definitions forScheduleAgent in ONTOS and ObjectStore, respectively.

5. Experience Report

In this section we report our experiences gathered during the migration of the KBL application
from ONTOS to ObjectStore. The purpose of the case study was to investigate the applicability of
our migration framework described above. Note, neither the implementation of the migration
process was carried out in a production environment nor did we emphasize on the optimization of
the application. In our evaluation we concentrate on two metrics: size of the application code and
involved personnel for the migration process. Both, the comparison of the application sizes and the
involved personnel are informative and provide a measure of productivity and efficiency.

As pointed out in Section ‘2. The Knowledge-Based Leitstand (KBL)’ the Leitstand application
consists of three main modules: the Scheduling Toolkit Module, the Simulation Module, and the
Planning Board Module. The source application comprises 61 classes (see Fig. 1) and about 45000
lines of code (LoC, without comments). The total number can be divided into 27400 LoC for the
Scheduling Toolkit Module, 10300 LoC for the Simulation Module, 7300 LoC for the Planning
Board Module, and 800 LoC for development utilities such as Makefiles and database loading
tools.

The target application comprises the same number of classes as the source application. This is due
to the fact that we emphasized on a shallow migration rather than on a complete re-design of the
application. No additional classes had to be implemented. The total LoC for the migrated applica-
tion reduced to about 40000. This yields a reduction of 15% from the original size of the applica-
tion. The Scheduling Toolkit Module comprises about 21000 LoC (75 %), the Simulation Module
10400 LoC (100%), and the Planning Board Module 7300 (99%). The development utilities
changed little (700 LoC) (82 %). Table 2 gives a detailed overview of the size of the application
based on ONTOS and ObjectStore, respectively, and their modules.

Our analysis of the application sizes shows a considerable reduction for the Scheduling Toolkit
Module, while the other modules (Simulation Module, Planning Board Module, and utilities) show
only minor differences in size. The reduction in size is not surprising. It mainly results from a
simpler class definition in ObjectStore. The additional methods for the manipulation of persistent
objects that must be implemented in ONTOS can be omitted in ObjectStore. A code inspection
showed that the Scheduling Toolkit Module contains most of the class definitions and thus benefits
most from the simpler class declarations in ObjectStore. The remaining modules contain only few

13

class definitions. Furthermore, we noticed a much tighter integration of ObjectStore into the C++
programming language than it is the case for ONTOS. On the opposite, we had to implement exten-
sion management for persistent classes in ObjectStore. ONTOS provides the automatic manage-
ment of class extensions. Each instance of a class is collected in a container with the same name as
the class. ObjectStore does not support this feature; it has to be provided by the application
programmer. Nevertheless, the reduction due to simpler class definitions exceeded the effort for
implementing class extensions.

The above mentioned experiences focus on migrating KBL between ONTOS and ObjectStore. As
mentioned above the migration between the two ooDBSs in the reverse direction - from Object-
Store to ONTOS - is more difficult. This is due to the fact that the both systems differ in their para-
digm to reach persistence. Migrating from ObjectStore to ONTOS requires persistent classes to
inherit from the ONTOS classObject and to implement additional methods (see 4.3. Mapping
Strategy for the Feature ‘Persistence’). Consequently, the size of the application would increase. On
the opposite, migrating between ooDBSs that follow a similar approach to reach persistence (e.g.
ONTOS and Versant™) requires less effort than the former case and has minor effects on the size of
the application code.

Considering the personnel involved in the migration process we can distinguish three implementa-
tion phases: analysis of the application and the ooDBSs, migration analysis, and implementation of
the migration. The whole migration took 14 person weeks. The analysis of the application and of
the ooDBSs, and the migration analysis took about 8 weeks. Note, there has been hands-on experi-
ence with ObjectStore beforehand. The implementation of the migration was carried out in 6
weeks. Table 3 gives a detailed overview of the human resources involved. In the initial planning of
the migration we scheduled a bigger effort for the actual implementation process. The experience
we gained is that the above presented framework helps to reduce the implementation effort and
therefore helps to increase productivity in the migration process.

6. Conclusion

In this paper we have presented a framework for the shallow migration of applications between
different ooDBSs. The framework is based on several steps of analysis to develop a controlled
migration strategy. Our approach was successfully tested by migrating the KBL application from
ONTOS to ObjectStore. Further work in this area will investigate approaches on one hand for the

™Versant is a trademark of Versant Object Technology Corporation

Modules

Lines of Code

ONTOS Imple-
mentation

ObjectStore
Implementation

%

Scheduling Toolkit 27380 20726 ~ 75%

Simulation Module 10359 10424 ~ 100%

Planning Board
Module

7325 7288 ~ 99%

Utilities 837 690 ~ 82%

Total 45901 39128 ~ 85%

Table 2: Application Statistics

Task
Person Power

(in weeks)

Application Analysis 3

ONTOS Analysis 2

ObjectStore Analysis 2

Migration Analysis 1

Implementation 6

Total 14

Table 3: Migration Effort

14

(semi-)automatic migration of applications between ooDBSs, and on the other hand for the devel-
opment of strategies for the deep migration of ooDBS applications.

Acknowledgment

The authors are grateful to J. Thaler and A. Berger for their valuable help in implementing the
prototype.

References

[Ahmed92] S. Ahmed, A. Wong, D. Sriram, R. Logcher; Object-oriented database management systems for
engineering: A Comparison; Journal of Object-Oriented Programming, June; 1992

[Atkinson89] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, S. Zdonik; The object-oriented data-
base manifesto; Proc. Conf. on Deductive and Object-Oriented Databases; 1989

[Brodie93] M. Brodie, M. Stonebraker; DARWIN: On the Incremental Migration of Legacy Information
Systems; GTE Laboratories; TR-0222-10-92-165; 1993

[Dittrich93] K. Dittrich; Migration von konventionellen zu objektorientierten Datenbanken: soll man, muß
man - oder nicht?; Wirtschaftsinformatik 35/4; 1993

[Kappel93] G. Kappel, S. Rausch-Schott, W. Retschitzegger, M. Schrefl, U. Schreier, M. Stumptner, S.
Vieweg; Object-Oriented Database Management Systems - An Evaluation; ODB/TR 92-21; Insti-
tute for Applied Computer Science and Information Systems; Univ. of Vienna; 1993

[KBL92] Esprit 5161 KBL; Design, Development and Implementation of a Knowledge-based Leitstand
(KBL); Deliverable Milestone 3; 1992

[KBL93] Esprit 5161 KBL; Design, Development and Implementation of a Knowledge-based Leitstand
(KBL); Final Deliverable; 1993

[Meier93] A. Meier, R. Haltinner, B. Widmer-Itin; Schutz der Investitionen beim Wechsel eines Datenbank-
systems; Wirtschaftsinformatik 35/4; 1993

[Shneiderman82] B. Shneiderman, G. Thomas; An Architecture for Automatic Relational Database System Con-
version; ACM TODS, Vol. 7, No. 2, 1982

[Soloviev92] V. Soloviev; An Overview of Three Commercial Object-Oriented DBMSs ONTOS, ObjectStore,
and O2; SIGMOD Record, Vol. 21, No. 1; 1992

[Stonebraker90] M. Stonebraker, L. Rowe, B. Lindsay, J. Gray, M. Carey, M. Brodie, Ph. Bernstein, D. Beech;
Third-Generation Database System Manifesto; SIGMOD Record, Vol. 19, No. 3, Sept. 1990

[Su81] S. Su, H. Lam, D. Lo; Transformation of Data Traversals and Operations in Application Programs
to Account for Semantic Changes of Databases; ACM TODS, Vol. 6, No. 2; 1981

