
DISSERTATION

A Query Algebra for Ontology-enhanced
Management of Multimedia Meta Objects

ausgeführt zum Zwecke der Erlangung des akademischen Grades
eines Doktors der technischen Wissenschaften

unter der Leitung von

ao.Univ.-Prof. Dr. Werner Winiwarter

Institutsnummer 394
am Institut für Scientific Computing
der Universität Wien

Zweitgutachter

Univ.-Prof. Dr. Christian Breiteneder

Institutsnummer E188
am Institut für Softwaretechnik und Interaktive Systeme
der Technischen Universität Wien

eingereicht an der Technischen Universität Wien
Fakultät für Informatik

von

Dipl.-Math. Sonja Zillner

Matrikelnummer 0127220
Mittersteig 2/26

1040 Wien, Österreich

Wien, am 21.03.2005





Zusammenfassung

Existierende Beschreibungsformate für multimediale Inhalte kodieren in erster Linie die
Präsentation des Inhalts, vernachlässigen dabei aber die Informationen, welche der Inhalt vermit-
telt. Diese präsentationsorientierte Beschreibung multimedialer Inhalte ermöglicht allerdings nur
die inflexible, statische Darstellung multimedialer Inhalte. Für die Realisierung anspruchsvollerer
Operationen, wie Zugriff auf und Wiederverwendung von Inhalten, automatische Generierung oder
Personalisierung, müssen die multimedialen Inhalte mit zusätzlichem semantischem Wissen, z.B.
den semantischen Beziehungen zwischen einzelnen multimedialen Objekten, angereichert werden.

Als Grundlage für die semantische Modellierung multimedialer Inhalte in verteilten, kollabora-
tiven Anwendungen wurden im Rahmen dieser Dissertation Enhanced Multimedia Meta Objects
(EMMOs) entwickelt. Ein EMMO stellt eine abgeschlossene Einheit multimedialen Inhalts dar,
die drei Aspekte des Inhalts untrennbar vereinigt. Der Medienaspekt reflektiert, dass ein EMMO
eine Aggregation der Basismedienobjekte darstellt, aus denen der multimediale Inhalt besteht, der
semantische Aspekt ermöglicht die Beschreibung von semantischen Assoziationen zwischen den
Medienobjekten des EMMOs und der funktionale Aspekt erlaubt es einem EMMO, beliebige, an-
wendungsspezifische Funktionen zu spezifizieren, die von externen Applikationen aufgerufen werden
können. Zusätzlich dazu sind EMMOs versionierbar, d.h. sie können in einer verteilten Umgebung
gemeinsam bearbeitet werden, und transferierbar, d.h. die drei Aspekte des multimedialen Inhalts
und die Versionierungsinformationen können in eine Einheit gebündelt und in ein austauschbares
Format serialisiert werden.

Um einen effizienten Zugriff auf EMMOs zu ermöglichen, wurde in der vorliegenden Arbeit die
Abfragealgebra EMMA entwickelt, welche adäquat und vollständig in Bezug auf das EMMO-Modell
ist. Indem einfache und orthogonale Operatoren zur Verfügung gestellt werden, die für die Formu-
lierung komplexerer Abfragen kombiniert werden können, wird die Voraussetzung für effiziente
Abfrageoptimierung in EMMA geschaffen. EMMA definiert fünf Klassen von Abfrageoperatoren.
Die Extraktionsoperatoren ermöglichen den Zugriff auf alle Attribute der Entitäten im EMMO-
Modell, die Navigationsoperatoren die Navigation entlang der semantischen Graphstruktur eines
EMMOs, die Konstruktoren die Modifikation, Kombination und Erzeugung von neuen EMMOs,
die Selektionsprädikate die Auswahl von Entitäten, die eine bestimmte Eigenschaft erfüllen, und
der Verbundoperator die Zusammenführung mehrerer Entitäten oder EMMOs durch eine Verbund-
bedingung.

Sowohl das EMMO-Modell als auch die EMMA-Algebra stellen eine solide Basis für die Inte-
gration von ontologischem Wissen dar. Im Rahmen dieser Dissertation wird gezeigt, wie man onto-
logisches Wissen während der Entwicklung von EMMOs einsetzen, in EMMO-Wissensstrukturen
integrieren und für die Verfeinerung von EMMA-Abfragen auswerten kann.

Nachdem die theoretische Grundlage erarbeitet wurde, wird in Folge die Realisierung der
EMMO-Container-Infrastruktur erläutert, welche Plattformunabhängigkeit und Skalierbarkeit un-
terstützt, Export- und Importmöglichkeiten bietet und Werkzeuge für die Darstellung und Entwick-
lung von EMMOs zur Verfügung stellt. Es werden weiters das Design und die Implementierung der
EMMA-Abfrageverarbeitungsarchitektur beschrieben und Evaluierungsergebnisse diskutiert.

Abschließend zeigt die Arbeit anhand von drei Anwendungsszenarien, wie das EMMO-Modell

praktisch eingesetzt werden kann und welche Vorteile daraus resultieren. Das erste Szenario ist die

Entwicklung einer Plattform für den Austausch kulturellen Wissens, das zweite Szenario beschäftigt

sich mit dem Bereich eLearning und das dritte Szenario stellt ein multimediales Task-Management-

System vor. Alle drei Anwendungsszenarien haben gemeinsam, dass sie eine Infrastruktur benötigen,

welche die verteilte und kollaborative Entwicklung von multimedialen Inhalten ermöglicht. Das erste

Szenario ist bereits erfolgreich umgesetzt worden, die Realisierung der beiden anderen Szenarien

ist Gegenstand zukünftiger Forschung.





Abstract

Today’s multimedia content formats primarily encode the presentation of content but not the in-
formation the content conveys. However, this presentation-oriented modeling only permits the
inflexible, hard-wired presentation of multimedia content. For the realization of advanced opera-
tions like the retrieval and reuse of content, automatic composition, or adaptation to a user’s needs,
the multimedia content has to be enriched by additional semantic information, e.g. the semantic
interrelationships between single multimedia content items.

To provide a basis for the semantic modeling of multimedia content in content sharing and
collaborative applications, we have developed Enhanced Multimedia Meta Objects (EMMOs). An
EMMO constitutes a self-contained piece of multimedia content that indivisibly unites three of the
content’s aspects. The media aspect reflects that an EMMO aggregates the basic media objects
of which the multimedia content consists, the semantic aspect allows the specification of semantic
associations between an EMMO’s media objects, and, finally, the functional aspect provides means
for the definition of arbitrary, domain-specific operations on the content that can be invoked by
applications. Furthermore, EMMOs are versionable – they can be modified concurrently in a
distributed environment – and tradeable, i.e. all three aspects of the multimedia content and the
versioning information can be bundled into one unit and serialized into an exchangeable format.

To enable the efficient retrieval of EMMOs, we have developed the query algebra EMMA, which
is adequate and complete with regard to the EMMO model. By providing simple and orthogonal
operators, which can be combined to formulate more complex queries, EMMA enables efficient
query optimization. EMMA defines five general classes of query operators. The extraction operators
provide means to access all the attributes of the entities within the EMMO model, the navigational
operators enable the navigation along an EMMO’s semantic graph structure, the constructors allow
for the modification, combination, and creation of new EMMOs, the selection predicates facilitate
the selection of only those entities satisfying a specific characteristic, and the join operator relates
several entities or EMMOs with a join condition.

Both, the EMMO model and the EMMA algebra, provide a sound basis for the integration
of ontological knowledge. We demonstrate how ontological knowledge can be used within the
authoring process of EMMOs, can be integrated within the EMMO knowledge structures, and can
be exploited for refining EMMA queries.

After establishing the theoretical foundation, we explain the realization of the EMMO container
infrastructure supporting platform independency and scalability, providing export and import fa-
cilities, and tools for displaying and authoring EMMOs. Moreover, we describe the design and
implementation of the EMMA query processing architecture and discuss evaluation results.

Finally, we illustrate by means of three application scenarios how our approach may be prac-
tically applied and what benefits it offers. The first scenario is the development of a platform
for the exchange of cultural knowledge, the second scenario addresses the domain of eLearning,
and the third scenario introduces a multimedia task management system. All three application
scenarios have in common that they require an infrastructure providing means for the distributed
and collaborative authoring of multimedia content. The first scenario has already been successfully
deployed, the realization of the other two scenarios is the subject of future research.





Acknowledgements

First of all, I would like to thank my supervisor Prof. Dr. Werner Winiwarter whose help, stimulating
suggestions and encouragement helped me during all the time of writing this thesis. I am also
grateful to Prof. Dr. Christian Breiteneder for being my second advisor.

I warmly thank all my colleagues who supported me in my research work. Dr. Utz Westermann,
thank you for your help, support, interest, and valuable hints with regard to my work, Karin
Schellner, thank you for the inspiring collaboration within the CULTOS project, and Bernhard
Haslhofer, thank you for your work on the implementation of the EMMA algebra.

And to my parents, thank you very much for your continuous and loving support over all these

years.





Contents

1 Introduction 1

2 Towards Multimedia Meta Modeling 5
2.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Related Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Standards for Semantic Modeling . . . . . . . . . . . . . . 7
2.2.2 Object-Oriented Approaches . . . . . . . . . . . . . . . . 11

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 EMMOs 15
3.1 The Aspects of an EMMO . . . . . . . . . . . . . . . . . . . . . . 15
3.2 The EMMO Model . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Logical Media Parts . . . . . . . . . . . . . . . . . . . . . 19
3.2.3 Ontology Objects . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.4 Associations . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.5 EMMOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Towards a Query Algebra for EMMOs 27
4.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Related Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 Object-Oriented Query Approaches . . . . . . . . . . . . . 29
4.2.2 Query Approaches for Semi-Structured Data . . . . . . . 29
4.2.3 Query Approaches for Multimedia Content . . . . . . . . 29
4.2.4 Semantic Query Approaches . . . . . . . . . . . . . . . . . 30

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 EMMA – The EMMO Algebra 35
5.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Extraction Operators . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2.1 General Properties . . . . . . . . . . . . . . . . . . . . . . 37
5.2.2 Media Aspect . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2.3 Semantic Aspect . . . . . . . . . . . . . . . . . . . . . . . 40
5.2.4 Functional Aspect . . . . . . . . . . . . . . . . . . . . . . 44
5.2.5 Versioning . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3 Navigational Operators . . . . . . . . . . . . . . . . . . . . . . . 49
5.4 Constructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

ix



x CONTENTS

5.5 Selection Predicates . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.5.1 Basic Predicates . . . . . . . . . . . . . . . . . . . . . . . 59
5.5.2 Extraction Selection Predicates . . . . . . . . . . . . . . . 61
5.5.3 Navigational Selection Predicates . . . . . . . . . . . . . . 66

5.6 Join Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 Towards Ontology Integration 73
6.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2 Related Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7 Ontology-enhanced EMMOs 79
7.1 Ontology-enhanced Authoring of Multimedia Content . . . . . . 81
7.2 Ontology-enhanced Management of Multimedia Content . . . . . 82
7.3 Ontology-enhanced Retrieval of Multimedia Content . . . . . . . 85
7.4 Representation of Ontology Structures . . . . . . . . . . . . . . . 87
7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8 Implementation and Evaluation 91
8.1 EMMO Container Infrastructure . . . . . . . . . . . . . . . . . . 91

8.1.1 Platform Independency and Scalability . . . . . . . . . . . 92
8.1.2 Exporting EMMOs . . . . . . . . . . . . . . . . . . . . . . 92
8.1.3 Importing EMMOs . . . . . . . . . . . . . . . . . . . . . . 96
8.1.4 Displaying and Authoring of EMMOs . . . . . . . . . . . 97

8.2 EMMA Query Processing . . . . . . . . . . . . . . . . . . . . . . 98
8.2.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

9 Application Scenarios 103
9.1 Management of Cultural Knowledge . . . . . . . . . . . . . . . . 103
9.2 eLearning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
9.3 Multimedia Task Management . . . . . . . . . . . . . . . . . . . 110
9.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

10 Conclusion 115



List of Figures

2.1 Scope of MPEG-7 . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 EMMO “Dracula Movies”(emovies) . . . . . . . . . . . . . . . . . 16
3.2 EMMO “Dracula Movies”’s versions . . . . . . . . . . . . . . . . 18
3.3 EMMO “Dracula Studies”(estudies) . . . . . . . . . . . . . . . . . 21
3.4 EMMO “Dracula Movies V1”(emoviesV 1) . . . . . . . . . . . . . . 24
3.5 EMMO “Dracula Movies V2”(emoviesV 2) . . . . . . . . . . . . . . 25
3.6 EMMO “Dracula Movies V3”(emoviesV 3) . . . . . . . . . . . . . . 25
3.7 EMMO “Dracula Research”(eresearch) . . . . . . . . . . . . . . . 26

5.1 EMMO “Dracula Movies”(emovies) . . . . . . . . . . . . . . . . . 38
5.2 EMMO “Dracula Studies”(estudies) . . . . . . . . . . . . . . . . . 41
5.3 EMMO “Dracula Movies V1”(emoviesV 1) . . . . . . . . . . . . . . 43
5.4 EMMO “Dracula Research”(eresearch) . . . . . . . . . . . . . . . 44
5.5 EMMO “Root”(eroot) . . . . . . . . . . . . . . . . . . . . . . . . 45
5.6 DraculaMovies.html . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.7 The presentation of DraculaMovies.html . . . . . . . . . . . . . . 46
5.8 DraculaMovies.smil . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.9 The presentation of DraculaMovies.smil . . . . . . . . . . . . . . 47
5.10 EMMO “Dracula Movies”’s versions . . . . . . . . . . . . . . . . 48
5.11 EMMO “Dracula Movies V2”(emoviesV 2) . . . . . . . . . . . . . . 50
5.12 EMMO “Newcomers”(enewcomers) . . . . . . . . . . . . . . . . . 55
5.13 EMMO “Common Nodes”(ecommonnodes) . . . . . . . . . . . . . 55
5.14 EMMO “All Nodes”(eallnodes) . . . . . . . . . . . . . . . . . . . . 56
5.15 EMMO ”Miller’s Statements”(emiller) . . . . . . . . . . . . . . . 57
5.16 EMMO “Flatten Studies”(eflattenstudies) . . . . . . . . . . . . . . 58
5.17 EMMO “Dracula Movies V3”(emoviesV 3) . . . . . . . . . . . . . . 69

7.1 EMMO “Dracula Movies V3”(emoviesV 3) . . . . . . . . . . . . . . 80
7.2 Extract from the Ontology of Intertextual Studies . . . . . . . . 80
7.3 Association “retell” with source entity of type “Text” . . . . . . 81
7.4 Association “retell” with source entity of type

SubConcepts({otext}) . . . . . . . . . . . . . . . . . . . . . . . . 82
7.5 Integrating the knowledge about retell ’s superconcepts . . . . . . 83
7.6 Integrating the knowledge that inspire is a transitive concept . . 84
7.7 Integrating the knowledge that similar audience is a symmetric

concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

xi



xii LIST OF FIGURES

7.8 Integrating the knowledge that retell and is-retold are inverse
concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.9 Graphical representation of the Ontology of Intertextual Studies 88
7.10 OWL representation of the Ontology of Intertextual Studies . . . 88
7.11 EMMO representation of the Ontology of Intertextual Studies

(eontology) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.1 EMMO “Dracula Studies”(estudies) . . . . . . . . . . . . . . . . . 93
8.2 Export bundle for EMMO “Dracula Studies” . . . . . . . . . . . 94
8.3 Manifest file of the export bundle for EMMO “Dracula Studies” 94
8.4 Extract of the transfer file e3811.xml of the export bundle for

EMMO “Dracula Studies” . . . . . . . . . . . . . . . . . . . . . . 95
8.5 Screenshot of the EMMO Viewer . . . . . . . . . . . . . . . . . . 97
8.6 Screenshot of the EMMO Authoring Tool . . . . . . . . . . . . . 98
8.7 The EMMA query processing architecture . . . . . . . . . . . . . 99

9.1 Simple InterTextual Thread . . . . . . . . . . . . . . . . . . . . . 104
9.2 Complex InterTextual Thread . . . . . . . . . . . . . . . . . . . . 105
9.3 An ITT represented by an EMMO . . . . . . . . . . . . . . . . . 105
9.4 EMMO “Mechanics Formulas”(emechanics) . . . . . . . . . . . . . 109
9.5 EMMO “Lecture Room Reservation”(ereservation) . . . . . . . . . 111



List of Tables

2.1 Fulfilment of requirements by standards for semantic modeling . 13
2.2 Fulfilment of required features by object-oriented approaches . . 14

4.1 Fulfilment of required features by RDF query languages . . . . . 33
4.2 Fulfilment of required features by Topic Maps query languages . 34

5.1 EMMA operators addressing the EMMA requirements . . . . . . 70
5.2 EMMA predicates addressing the EMMA requirements . . . . . . 71

6.1 Fulfilment of requirements by ontology description languages . . 78

8.1 Response times for selected operations (in ms) . . . . . . . . . . 101

xiii



xiv LIST OF TABLES



Chapter 1

Introduction

Although more and more multimedia content becomes available, an efficient
management enabled by the sharing and collaborative authoring of multimedia
content remains still an open issue.

Multimedia content formats we find today primarily encode the presenta-
tion of content but not the information the content conveys. However, this
presentation-oriented modeling only permits the hard-wired presentation of mul-
timedia content; for advanced operations like retrieval of content, automatic
composition, and adaptation of content to a user’s needs, valuable information
about the semantics of content is lacking. In parallel to research on the Semantic
Web, one can observe a shift in paradigm towards a semantic modeling of mul-
timedia content: not the presentation of media is described but their semantic
interrelationships.

In order to facilitate a semantic modeling of multimedia content in content
sharing and collaborative applications, we have developed Enhanced Multimedia
Meta Objects (EMMOs). EMMOs establish tradeable knowledge-enriched units
of multimedia content that indivisibly combine three of the content’s aspects
into a single object:

• The media aspect: an EMMO encapsulates the basic media objects of
which the multimedia content consists.

• The semantic aspect: an EMMO further encapsulates semantic associa-
tions between its media objects.

• The functional aspect: an EMMO may define arbitrary, domain-specific
operations on the content that can be invoked by applications.

EMMOs are versionable, enabling the collaborative authoring of multimedia
content, and can be bundled and transferred in their entirety including all three
aspects and the versioning information enabling content sharing applications.

For the realization of advanced operations on EMMOs, efficient retrieval
and processing of the information captured by EMMOs is required. Therefore,
we have developed the query algebra EMMA, which provides a formal basis for
querying the complete information captured by EMMOs. By featuring simple
and orthogonal operators, which can be combined to formulate more complex
queries, EMMA enables efficient query optimization. EMMA defines five general

1



2 CHAPTER 1. INTRODUCTION

classes of query operators. The extraction operators provide means to access
all the attributes of the entities within the EMMO model, the navigational
operators enable the navigation along an EMMO’s semantic graph structure,
the constructors allow for the modification, combination, and creation of new
EMMOs, the selection predicates facilitate the selection of only those entities
satisfying a specific characteristic, and the join operator relates several entities
or EMMOs with a join condition.

Both, the EMMO model and the EMMA algebra, provide a sound basis for
the integration of ontological knowledge. Within each application scenario, there
exists a shared and common understanding of the domain that can be used for
the efficient management of EMMOs, such as authoring of, comfortable access
to, or searching for EMMOs. The integration of ontology knowledge into the
EMMO model and the EMMA algebra has three appealing benefits:

• Ontological knowledge can be used for checking integrity constraints dur-
ing the design and authoring process of EMMOs.

• Ontological knowledge can be incorporated within the EMMO model by
extending the knowledge structure of EMMOs.

• Knowledge inherent in a domain ontology can be seamlessly integrated
into EMMA queries allowing to refine imprecise user queries by drawing
inferences over the ontological knowledge.

In this thesis we describe three application scenarios that illustrate how our
approach may be practically applied and what benefits it offers. The first sce-
nario is the development of a platform for the exchange of cultural knowledge,
the second scenario addresses the domain of eLearning, and the third scenario
introduces a multimedia task management system. All three application sce-
narios have in common that they require an infrastructure providing means for
the distributed and collaborative authoring of multimedia content. The first
scenario has already been successfully deployed, the realization of the other two
scenarios is the subject of future research.

To summarize, the main contributions of this thesis are:

• We propose and formally define Enhanced Multimedia Meta Objects (EM-
MOs) as tradeable, knowledge-enriched units of multimedia content. The
formal basis of the EMMO model are entities, which occur in four differ-
ent specializations, i.e. logical media parts modeling media objects, ontol-
ogy objects representing concepts of an ontology, associations describing
binary relationships between entities, and EMMOs aggregating semanti-
cally related entities. The formalization of the EMMO model has also
been published in [SWZK03].

• Based on the formal definition of the EMMO model, we propose and for-
mally define the query algebra EMMA, which is adequate and complete
with regard to the EMMO model. EMMA offers a rich set of orthog-
onal query operators, sufficiently expressive to provide access to all as-
pects of EMMOs and to enable efficient query rewriting and optimization.
The query algebra EMMA has also been published in [ZWW04b] and
[ZWW04a].



3

• Both, the EMMO model and the EMMA algebra, allow for the seam-
less integration of ontological knowledge. We illustrate how ontological
knowledge can be used within the authoring process of EMMOs, can be
integrated within the EMMO knowledge structures, and can be utilized
for refining EMMA queries. The integration of ontological knowledge has
also been published in [ZW04b], [ZW04a], and [ZW05].

• We outline three application scenarios – a platform for the exchange of
cultural knowledge, a distributed and collaborative eLearning platform,
and a multimedia task management system – to demonstrate the bene-
fits of using the EMMO infrastructure as platform for collaborative and
distributed authoring and sharing of multimedia content. The first appli-
cation scenario is also described in [SWZK03] and [WZSK05].

The remainder of this thesis is structured as follows. In Chapter 2, we formu-
late the requirements for sharing and distributed authoring of multimedia con-
tent. Based on these requirements, we discuss related standards and approaches.
In particular we analyze standards for semantic modeling and object-oriented
approaches to what extent they can fulfil the requirements.

In Chapter 3, we first introduce the three aspects of an EMMO, before we
formalize the EMMO model based on entities occurring in four different kinds,
i.e. logical media parts, ontology objects, associations, and EMMOs.

In Chapter 4, we specify the most important requirements for a query alge-
bra for EMMOs, i.e. the access to all information captured by EMMOs, joins,
subgraph matching, and orthogonal operators with precise semantics as a basis
for query optimization. Related approaches and standards are analyzed with
regard to the requirements.

In Chapter 5, we present the formal definitions of the five classes of EMMA
operators, i.e. extraction operators, navigational operators, constructors, selec-
tion predicates, and the join operator, along with illustrative examples, and
show how these operators satisfactorily address all our requirements.

In Chapter 6, we first point out the benefits of integrating ontology knowl-
edge within the EMMO model, identify the requirements for an ontology de-
scription language for EMMOs, i.e. maximum expressiveness while still enabling
reasoning support, and support for the exchange and sharing of ontologies, be-
fore we analyze to what extent related ontology description languages fulfil these
requirements.

In Chapter 7, we demonstrate how ontological knowledge can be used for
checking integrity constraints within the design and authoring process of EM-
MOs, renders it possible to extend the knowledge structures described by EM-
MOs, and allows for the refinement of EMMA query expressions. To conclude
the chapter, we discuss different ways of representing ontology structures and
introduce an EMMO representation to enable the seamless integration into the
EMMO model.

After establishing the theoretical foundation, Chapter 8 deals with the imple-
mentation and evaluation of the EMMO model. We first describe the realization
of the platform independent and scalable EMMO container infrastructure along
with its export and import facilities, and its tools for displaying and authoring
EMMOs, before we introduce the design and implementation of the EMMA
query processing architecture and report on some first evaluation results.



4 CHAPTER 1. INTRODUCTION

Chapter 9 demonstrates the practical benefits of the EMMO model by out-
lining three application scenarios, i.e. a platform for the exchange of cultural
knowledge, a distributed and collaborative eLearning platform, and a multime-
dia task management system.

Chapter 10 concludes this thesis. It provides a summary of the key contri-
butions of our research and gives an outlook on future work.



Chapter 2

Towards Multimedia Meta
Modeling

Although more and more multimedia content becomes available, an efficient
management enabled by the sharing and collaborative authoring of multimedia
content remains still an open issue.

Current multimedia content formats, such as HTML [RHJ99], SMIL [A+01],
or SVG [FJJ03], focus on the encoding of the presentation of content but ne-
glect the information the content conveys. By limiting the modeling to the
presentation-oriented aspects of multimedia content, only hard-wired presen-
tations of multimedia content specified in exactly one way and for one single
purpose can be realized. As valuable information about the semantics of content
is lacking, advanced operations, such as retrieval and reuse, automatic compo-
sition, recommendation, and adaptation of content according to user interests,
information needs, and technical infrastructure cannot be realized. Except static
rendering functionality, multimedia content formats provide no further function-
ality on the encoded multimedia content.

Current semantic approaches to multimedia content modeling, such as RDF
[Bec04] or Topic Maps [ISO00a], establish a starting point for the integration of
meta knowledge within the management of multimedia content. However, those
approaches handle the content’s media objects, the semantic description of the
content, and the functionality, such as rendering, to be applied to the content’s
semantic and media description as separate entities. The media, semantic, and
functional information is usually stored at separate servers in separate files or
databases. Typically, the latter are even under the control of different authori-
ties. Because of the separation of the media content from its semantic descrip-
tion and functionality, the exchange, sharing, and collaborative authoring of
multimedia content is not possible.

In the following sections, we will first discuss the requirements for the shar-
ing and collaborative authoring of multimedia meta content, and then analyze
to what extent related standards and approaches satisfy the introduced require-
ments.

5



6 CHAPTER 2. TOWARDS MULTIMEDIA META MODELING

2.1 Requirements

For enabling the sharing and collaborative authoring of multimedia content, the
content needs to be exchanged and traded between different applications. Thus,
one important prerequisite for the realization of a collaborative multimedia plat-
form is to establish a container unit encompassing all aspects of the multimedia
content.

The container unit should address the multimedia content’s media aspect, i.e.
it should aggregate the described media objects. As multimedia content is very
storage intensive, the trading and exchange of multimedia content can cause
high CPU usage or result in problems regarding storage capacity. Therefore,
the containment of media data should be enabled in two different ways, i.e.
either by directly embedding the media data within the container unit or by
referencing the media object without storing the data. This can be realized by
describing the physical media data on a logical level.

For enabling the sophisticated reuse of data, the container unit should ad-
dress the multimedia content’s semantic aspect, i.e. the content has to be en-
riched with semantic information. Thus, the container unit should establish a
meta object that contains references to knowledge and multimedia content:

• It should be possible to relate the media objects to each other, comparable
to a semantic network. Therefore, the meta model should be graph-based
with links established by binary directed relationships. In the context
of collaborative authoring of multimedia content, the expressiveness of
binary directed relationships seems perfectly sufficient; the modeling of
n-ary relationships would only increase the complexity of the modeling
approach without significantly enhancing its expressiveness for the appli-
cation domain.

• To enable the reuse and adaptation of multimedia content, it should be
possible to combine multimedia content units and relate them to each
other. For instance, by capturing multimedia enhanced learning material
in modular learning units, and by combining and nesting of modular units
into more complex units, sophisticated, context-aware, and personalized
lectures can be created dynamically. Thus, the encapsulation of container
units, i.e. the containment of container units within other container units,
should be supported.

• By providing a platform for the collaborative authoring of multimedia
content, there’s a real possibility of encountering statements, i.e. single
relationships or even graph structures that are in conflict with each other.
Therefore, a mechanism for recording the source of information or for
commenting the information is required. The approach should render it
possible to make statements about other statements, i.e. to reify state-
ments.

The final aim is to work with the content represented by the container unit in an
efficient and flexible way. This can be realized by offering operations, such as a
rendering or payment function, which can be invoked by external applications.
Thus, the container unit should address the functional aspect of multimedia
content allowing the container unit to know how to process its content, e.g. how
to render it or how much to charge for it.



2.2. RELATED APPROACHES 7

Within a collaborative scenario, the multimedia content evolves and changes
over time. Several users are working on the same objects stored in multiple
databases. For the purpose of reference, the chronological steps in the develop-
ment of a container unit and its components are an important information to
know. This information can be captured by the creation and administration of
different versions of the container units and their components.

2.2 Related Approaches

The fundamental requirement for enabling the collaborative and distributed
authoring of multimedia content is the creation of a container unit unifying three
different aspects of multimedia content, namely the media aspect, the semantic
aspect, and the functional aspect, as well as the versioning information. In
the following, we analyze related approaches to what extent they can provide
a basis for the modeling of multimedia content by establishing a container unit
capturing the content’s three aspects and versioning information.

Interrelating basic media objects like single images and videos to form
multimedia content is the task of multimedia document models. Recently, sev-
eral standards for multimedia document models have emerged [BKW00], such as
HTML [RHJ99], XHTML+SMIL [NPS02], HyTime [ISO97], MHEG-5 [ISO96],
MPEG-4 BIFS and XMT [PE02], SMIL [A+01], and SVG [FJJ03]. Multimedia
document models can be regarded as composite media formats that model the
presentation of multimedia content by arranging basic media objects according
to temporal, spatial, and interaction relationships. Therefore, they mainly ad-
dress the media aspect of multimedia content. However, multimedia document
models neither interrelate multimedia content according to semantic aspects nor
do they allow to provide functionality on the content. They rely on external
applications like presentation engines for reasonable content processing.

Middleware approaches like Enterprise Java Beans (EJBs) [MH98], CORBA
[OMG02], DCOM [Mic98], or Web Services [C+02] are also not really compat-
ible with the idea of a container unit unifying all three aspects of multimedia
content and versioning information. Although they all feature notions of ob-
jects offering functionality that can be remotely invoked by applications, they
constitute general purpose infrastructures with no special support for the repre-
sentation of multimedia content. Even specialized multimedia middleware like
PREMO [JH98] uses the notion of objects primarily to represent components
of a distributed multimedia infrastructure, such as streaming servers, instead of
employing the notion of objects to represent multimedia content.

2.2.1 Standards for Semantic Modeling

In parallel to research concerning the Semantic Web, a variety of standards
have emerged that can be used to model multimedia content by describing the
information it conveys on a semantic level. The most prominent examples are
MPEG-7 (especially MPEG-7’s graph tools for the description of content se-
mantics [ISO01a]), RDF [Bec04, BG04], Topic Maps [ISO00a], and Conceptual
Graphs [ISO01b]. As those semantic standards offer means to address media
objects within a description, they undoubtedly refer to the media aspect of mul-
timedia content. In addition, those semantic standards clearly cover some parts



8 CHAPTER 2. TOWARDS MULTIMEDIA META MODELING

of the semantic aspect of multimedia content. The discussion of the require-
ments for multimedia meta modeling in the previous section showed that the
semantic aspect covers many different characteristics. In the following, we will
introduce the above-mentioned semantic standards in more detail and discuss
to what extent they establish a graph-based meta model, enable the reification
of statements, and allow the encapsulation of container units.

MPEG-7

MPEG-7 [ISO01a] is an ISO/IEC standard for describing features of multimedia
content, which was developed by the Moving Picture Expert Group (MPEG). It
provides a flexible and extensible framework for describing audio-visual content
in such a way that users can browse, search, and retrieve content more efficiently
than by only using text-based search engines. It standardizes a set of Descrip-
tors, a set of Description Schemes, and the Description Definition Language.
A Descriptor (D) is a representation of a feature that defines the syntax and
semantics of the feature representation. A Description Scheme (DS) specifies
the structure and semantics of relationships between components. Those com-
ponents may be both Descriptors and Description Schemes. The Description
Definition Language (DDL) is a language that specifies Description Schemes and
possibly Descriptors, and allows for the extension and modification of existing
Description Schemes. MPEG-7 uses an extension of the XML Schema Language
as the MPEG-7 DDL.

The scope of MPEG-7 is clearly stated (see Fig. 2.1). It addresses the feature
description of multimedia content. However, the automatic feature extraction
is outside the scope of the specification, and also programs, which can make use
of the descriptions, such as search engines or filter agents, are not specified in
the MPEG-7 standard.

Description
production

Description
consumption

Standard description

Boundaries of the MPEG-7 standard

Figure 2.1: Scope of MPEG-7

The MPEG-7 standard consists of seven parts: System, Description Def-
inition Language, Audio, Visual, Multimedia Description Schemes, Reference
Software, and Conformance. The Multimedia Description Schemes (MDS) of
the MPEG-7 standard provides a Description Scheme, called the Graph DS, for
representing graphs. A graph consists of nodes and relations. The relations are
defined in the Description Scheme Relation DS as directed relations between
two or more nodes. Thus, MPEG-7 provides a tool for describing n-ary and
directed graph structures. As the nodes of the Graph DS reference description
scheme instantiation, they possibly can reference other graph structures as well,
enabling the encapsulation of graph structures within one document. However,
as a graph is defined as extension of the Description Scheme DSType, it is ref-
erenced by an attribute of type ID, which is only valuable within the same



2.2. RELATED APPROACHES 9

document. Therefore, only graphs contained within the same document can be
referenced. This limits the description of encapsulated graph structures to the
boundaries of one document. Therefore, MPEG-7 does not sufficiently support
the required encapsulation functionality.

A relation described within the Description Scheme Graph DS refers to
a source and target node, which again can reference other relations. Thus,
MPEG-7 enables the reification of relations. However, as the Relation DS is
again an extension of type DSType, also the reification of relations is restricted
to the boundaries of the underlying document.

RDF

Resource Description Framework (RDF) [Bec04] is a language for the modeling
of meta data about Web resources. It provides a way for expressing simple
statements about resources by using named properties and values. RDF Schema
(RDFS) [BG04] adds a type system to RDF, i.e. it does not specify a vocabulary
of application-specific classes, but establishes a mechanism for describing classes
and properties.

The RDF model describes resources, properties, and statements. Resources
are all things being described, e.g. a Web page, or a part of a Web page, an object
stored in a database, or an object which is not directly accessible via the Web,
e.g. a natural person or a printed book. Resources are identified by a resource
identifier, i.e. a Uniform Resource Identifier (URI). Properties are resources that
are used for describing other resources. Property names are associated with an
RDF Schema, which specifies the permitted values of a property and how a
property relates to other properties. A statement is the base element of an
RDF model. Basically, it is a triple with three elements subject, predicate, and
object. The subject constitutes a resource, the predicate a named property,
and the object, i.e. the value of the predicate, a resource or a literal. Thus,
statements establish semantic relationships between two resources, or between
a resource and a literal.

The basic RDF model is described as set of statements, i.e. it consists of
a set of triples. A set of triples establishes a directed graph with the nodes
and links representing resources that are labeled by URIs. Thus, RDF models
describe directed, binary graph structures.

The boundaries of an RDF model are specified in an RDF document. An
RDF document is a file which is labeled by an RDF header and contains a col-
lection of RDF triples. By not defining a mechanism for the classification of
RDF documents as resources, RDF provides no way for defining the boundaries
of RDF models on a virtual level. Therefore, RDF models cannot be specified
as subject resource within other statements, i.e. the encapsulation of an RDF
model within another RDF model cannot be realized by only referencing with-
out copying it. Thus, RDF does not provide sufficient means for realizing the
encapsulation functionality.

RDF provides a built-in vocabulary that can be used for creating a descrip-
tion of a statement, i.e. a resource of type rdf:Statement can be used for
building a model of the original statement. This model represents the reified
statement and has to be distinguished from the original statement, i.e. the model
of a statement is just a representation of the statement, but not the statement
itself.



10 CHAPTER 2. TOWARDS MULTIMEDIA META MODELING

Besides the fact that the built-in approach for making statements about
statements is very tedious and cumbersome – the reification of a statements
requires the creation of four additional triples describing the resources neces-
sary to make the intended statement – problems of data consistency arise. As
there is no direct correlation between the original statement and its model,
changes within the original statement are not automatically reflected within the
reification of the model. By not establishing a first-class object representing
a statement, RDF – although establishing a way of making statements about
statements – does not provide the reification functionality required for the col-
laborative multimedia meta modeling.

Topic Maps

The specification XML Topic Maps (XTM) 1.0 [PM01] was written by the Top-
icMaps.Org, which is an independent consortium of parties interested in making
the Topic Maps Paradigm applicable in the World Wide Web. The Topic Maps
Paradigm is fully described in the ISO/IEC 13250:2000 “Topic Maps” stan-
dard [ISO00a], which is based on SGML [ISO86] and HyTime [ISO97]. The
specification provides an abstract model and XML grammar for interchang-
ing Web-based topic maps. By enabling the representation of the structure
of information resources, it facilitates the organization and navigation of large
collections of information objects.

The key concepts in Topic Maps are topics, occurrences, and associations.
A topic is a resource within the computer that stands for, or reifies, some real-
world subject, i.e. it is a resource that acts as a proxy. The relationship between
a topic and its subject is defined to be one of reification1. The act of creating
a topic is called reification. When something is reified it becomes the subject
of the topic, created in the reification process.

Topics can have occurrences. An occurrence is any information that is spec-
ified to be relevant to a given subject. Occurrences must be resources that are
either addressable via Uniform Resource Identifiers (URI), or can be placed in-
line as character data. Moreover, topics can participate in relationships – called
associations – in which they play roles as members. The number of members of
an association is unlimited, and associations specify no directionality, i.e. their
directionality is determined by their type and by the roles their members play.

Topic Map documents contain one or more topic maps, and topic maps are
collections of topics, occurrences, and associations. By associations describ-
ing relationships between topics without limiting the number of their members
or specifying any directionality, Topic Map documents establish n-ary graph
structures.

A topic map element, i.e. the XML element specifying the root of a Topic
Map document or the root of a sub tree of a Topic Map document, constitutes
a resource, but no topic. Since in XML Topic Maps (XTM) 1.0 anything can
be subject of reification, topic map elements can be reified: A new topic
establishing a surrogate of the topic map element is created and can now be
used as topic within other topic maps. By topic maps encapsulating other

1Please note, that the semantics of the term reification in XTM differs from the semantics
of the term reification used in the context of the requirements described in Sect. 2.1. In order
to distinguish this in the text, we typeset the term reification in “teletype” when used with
the semantics of XTM.



2.2. RELATED APPROACHES 11

topic maps just by references and without copying their data, XML Topic Maps
(XTM) 1.0. provides the required encapsulation functionality.

Although associations express relationships between topics, they are no top-
ics and, thus, cannot participate themselves in associations, i.e. it is not possible
to express relationships between associations. However, again, by reifying the
association, one can create a topic acting as a proxy of the association. This
newly created topic can participate in another association, i.e. it can be used
as member of another association. Thus, by using the reification process,
XML Topic Maps (XTM) 1.0. enables the reification of statements as specified
in Sect. 2.1.

Conceptual Graphs

The Conceptual Graphs specification [ISO01b] is an ISO draft version which
specifies the syntax and semantics of conceptual graphs. It aims to express
meaning in a form that is logically precise, human readable, and machine pro-
cessable. A conceptual graph is an abstract representation for first-order logic
with nodes called concepts and conceptual relations. A concept refers to an
entity, a set of entities, or a range of entities. A conceptual relation has zero or
more arcs, each of which links the conceptual relation to some concept. Con-
ceptual Graphs realize the full expressive power of first-order logic, i.e. concepts
can be quantified and statements can be negated.

As the name suggests, a conceptual graph can be represented as graph struc-
ture, i.e. the annex of the Conceptual Graphs specification describes a graphical
display format (DF). A conceptual graph is a bipartite graph, which consists of
two kinds of nodes. These are the concepts and the conceptual relations. The
arcs of the graph link some conceptual relations to some concepts. By determin-
ing the roles of the adjacent concepts, the direction and semantics of the arcs
are defined. As one conceptual relation can be connected to several concepts,
Conceptual Graphs enable the description of n-ary relationships, i.e. they allow
the definition of n-ary graph structures.

Although conceptual graphs can be nested within other conceptual graphs,
this can be only realized by copying the data, and not by remote references.
Therefore, Conceptual Graphs do not satisfy the required encapsulation func-
tionality.

In Conceptual Graphs, statements are represented by concepts being con-
nected to one or more conceptual relations. However, as statements themselves
constitute no concepts, they cannot be subject of another statement. Therefore,
Conceptual Graphs provide no mechanism for the reification of statements.

As already mentioned, Conceptual Graphs cover the full expressive power
of first-order logic. For the expression of the encapsulation and reification func-
tionality, modeling constructs of second-order logic, i.e. the quantification of
relations, are required.

2.2.2 Object-Oriented Approaches

There exist several approaches that represent multimedia content by means of
object-oriented technology. All those approaches have in common that they are
specialized for a specific application scenario and only address one, sometimes
two, of the multimedia content’s aspects.



12 CHAPTER 2. TOWARDS MULTIMEDIA META MODELING

Enterprise Media Beans

Enterprise Media Beans (EMBs) [Bau02] extend the Enterprise Java Beans
(EJBs) architecture [MH98] with predefined entity beans for the representation
of basic media objects within enterprise applications. These come with rudi-
mental access functionality but can be extended with arbitrary functionality
using the inheritance mechanisms available to all EJBs, and allow the specifi-
cation of predecessor and successor relationships. Though providing versioning
support and addressing the media and functional aspects of content, EMBs are
mainly concerned with single media content and not with multimedia content.
Furthermore, EMBs do not offer any dedicated support for the semantic aspect
of content.

Adlets

Adlets [CZ01] are objects that represent individual (not necessarily multime-
dia) documents. Adlets support a fixed set of predefined functionality, which
enables them to advertise themselves to other Adlets. They are thus content
representations that address the media as well as the functional aspect. How-
ever, the functionality supported by Adlets is limited to advertisement and there
is no explicit modeling of the semantic aspect. Although Adlets are intended
to continuously change over time and the Adlet infrastructure implements a
dynamical update algorithm, a dedicated versioning support is not provided.

Tele-Action Objects

Tele-Action Objects (TAOs) [C+95] are object representations of multimedia
content that encapsulate the basic media objects of which the content consists
and interlink these objects with associations. However, TAOs therefore mainly
address the media aspect of multimedia content, they do not adequately cover
the semantic aspect of multimedia content: only a fixed set of 5 association
types is supported, mainly concerned with temporal and spatial relationships for
presentation purposes. TAOs can further be augmented with functionality. Such
functionality is automatically invoked as the result of system events and cannot
be explicitly invoked by applications. TAOs provide no versioning support.

Distributed Active Relationships

Distributed Active Relationships [DLP98] define an object model based on the
Warwick Framework [LLD96]. In this model, Digital Objects (DOs), which
are interlinked with each other by semantic relationships, act as containers of
metadata describing multimedia content. DOs do not address the media as-
pect of multimedia content but focus on the semantic aspect. The links be-
tween containers can be supplemented with arbitrary functionality. However,
the functionality is not explicitly invoked by applications but implicitly invoked
whenever an application traverses a link between two DOs. Although the se-
mantic relationships provide a basis for describing predecessor and successor
relationships between DOs, a dedicated versioning support is not implemented.



2.3. SUMMARY 13

2.3 Summary

For enabling the sharing and collaborative authoring of multimedia content, a
versionable container unit unifying the media, semantic, and functional aspect
of multimedia content, has to be established. For providing the semantic as-
pect of multimedia content, the container unit needs to describe a graph-based
meta model enabling the encapsulation of container units and the reification of
statements.

The four semantic standards we analyzed clearly cover parts of the seman-
tic aspect of multimedia content. Table 2.1 summarizes to what extent the
standards MPEG-7, RDF, Topic Maps, and Conceptual Graphs support the
semantic aspect of multimedia content.

Table 2.1: Fulfilment of requirements by standards for semantic modeling
Requirements
+ := support, MPEG-7 RDF Topic Maps Conceptual
– := no support Graphs

Directed binary graphs + + + +

Encapsulation – – + –

Reification – – + –

All four standards provide means for describing binary, directed graph struc-
tures, but only Topic Maps satisfy the required encapsulation and reification
functionality. Thus, Topic Maps cover all necessary parts of the semantic as-
pect. However, all four approaches provide no versioning support and offer
no functionality on multimedia content. They rely on external software like
database or knowledge base technology, search engines, user agents, etc. for the
processing of content descriptions. Furthermore, media descriptions and the
media objects described are separate entities – potentially scattered around dif-
ferent places on the Internet, created and maintained by different authorities,
who might not be synchronized or not even aware of each other. The existence
of a container unit unifying all the three aspects and versioning information of
multimedia content is missing.

Table 2.2 summarizes to what extent the discussed object-oriented ap-
proaches satisfy the three aspects of multimedia content and provide version-
ing support. The four object-oriented approaches provide no or only limited
support for the semantic aspect of multimedia content. Although establishing
versionable objects carrying functionality, Enterprise Media Beans – by only
addressing single media objects – provide only limited support for the media
aspect of multimedia content. Adlets and TAOs address the multimedia con-
tent’s media aspect and implement some application-dependent functionality,
but maintain no versioning support. Distributed Active Relationships establish
objects that are interlinked by semantic relationships carrying functionality, but
do neither address the media aspect nor establish a versioning mechanism.



14 CHAPTER 2. TOWARDS MULTIMEDIA META MODELING

Table 2.2: Fulfilment of required features by object-oriented approaches
Requirements
+ := support, Enterprise Adlets Tele-Action Distributed
(+) := limited support, Media Beans Objects Active
– := no support Relationships

Media aspect (+) + + –

Semantic aspect – – (+) (+)

Functional aspect + (+) (+) (+)

Versioning support + – – –



Chapter 3

EMMOs

EMMOs (Enhanced Multimedia Meta Objects) provide the basis for the dis-
tributed, collaborative authoring of multimedia content. In the following sec-
tions, we will first describe the aspects of an EMMO, and subsequently introduce
the EMMO model along with illustrative examples.

3.1 The Aspects of an EMMO

An EMMO is a self-contained unit of multimedia content that encompasses
three aspects, which we illustrate using EMMO “Dracula Movies” in Fig. 3.1.

1. The media aspect: An EMMO aggregates the media objects of which
the multimedia content consists. In the example, we see that the de-
picted EMMO contains two MPEG videos “Caligari.mpeg” and “Nos-
feratu.mpeg”, and two AVI videos “Salem183.avi” and “Salem112.avi”.
Containment of media objects can be realized either by inclusion, i.e. the
raw media data is embedded within an EMMO, or by reference via a URI
in cases where embedding media data is not feasible.

2. The semantic aspect: An EMMO further encapsulates semantic associ-
ations between its contained media objects by means of a graph-based
model similar to conceptual graphs. Hence, an EMMO constitutes a unit
of expert knowledge concerning the multimedia content. In the example,
it is stated that the media objects contained within the EMMO are
digital manifestations of Wiene’s movie “The Cabinet of Dr. Caligari”,
Murnau’s movie “Nosferatu”, and Hooper’s movie “Salem’s Lot”. The
model used for semantic associations is expressive, e.g. it is possible to
establish references to other EMMOs and to reify associations.

3. The functional aspect: An EMMO offers operations for dealing with its
content, which can be invoked by applications. In the example, the de-
picted EMMO is associated with two operations: one for rendering the
EMMO, which returns a presentation of the encapsulated multimedia
content in different formats, such as SMIL or SVG. Another operation
is provided to handle the payment of the media objects contained in the
EMMO before rendering, e.g. by performing a credit card transaction.

15



16 CHAPTER 3. EMMOS

Hooper

Director

Dracula Movies

inspire inspire

Salem�s Lot 

http://.../Salem183.avi

Movie

http://.../Salem112.avi

The Cabinet of 
Dr. Caligari

MovieWiene

Director

Nosferatu

http://../Nosferatu.mpeg

Movie

Murnau

Director

duration: 183min
format: AVI
.....

duration: 112min
format: AVI
.....

RenderingImplementation

Rendering

http://../Caligari.mpeg

logical media part

ontology object

association

EMMO

connector

attribute

operation

entity-type

Symbols:

PaymentImplementation

Payment

feature

Timestamp: 200412230056

temporal:
begin:0
duration: 26

fullformat : MPEG
......

format : MPEG
......

full

full

Figure 3.1: EMMO “Dracula Movies” (emovies)

In addition, EMMOs have further desirable characteristics: They provide
versioning support, i.e. all the constituents of an EMMO can be versioned, and
EMMOs can be serialized into a bundle that completely encompasses all three
aspects and the versioning information. Therefore, an EMMO is transferable in
its entirety between different EMMO providers, including its contained media
objects, semantic associations between these objects, functionality, and versions.
Thus, EMMOs pave the way for the distributed, collaborative construction of
knowledge enriched multimedia content.

3.2 The EMMO Model

As mentioned before, EMMOs establish tradable, knowledge-enriched units of
multimedia content that indivisibly combine the content’s media, semantic, and
functional aspect, as well as the versioning information into one single object.

The formal components of the EMMO model are entities, which occur in
four different kinds – logical media parts representing media objects or parts of
media objects, ontology objects representing concepts of an ontology, associa-
tions modeling binary relationships between entities, and EMMOs establishing
an aggregation of semantically related entities.

In the following subsections, we formally define entities and their four spe-
cializations, and use EMMO “Dracula Movies” in Fig. 3.1 as a running example.

3.2.1 Entities

Each entity w is characterized by thirteen different properties:



3.2. THE EMMO MODEL 17

• Each entity w has a global and unique object identifier (OID) ow repre-
sented as universal unique identifier (UUID) [Lea98], which enables the
unique identification of entities in distributed scenarios.

• As UUIDs are not really useful for humans, each entity w has also a human
readable name nw expressed as string value.

• For classifying whether an entity w is a logical media part, an ontology
object, an association, or an EMMO, its kind kw is specified accordingly.

• Each entity w is described by a set of types Tw, i.e. a set of ontology objects,
enabling the classification by concepts taken from a domain ontology, e.g.
the entity “Salem’s Lot” is classified as “Movie” (see Fig. 3.1).

• Each entity possesses an arbitrary number of application-dependent at-
tributes Aw. Attributes are represented as attribute-value pairs with the
attribute name being a concept of a domain ontology. For example, by
attaching the value “Murnau” for the attribute “Director” to the entity
representing the movie “Nosferatu” (see Fig. 3.1), one can express that
the movie was directed by Murnau. The attribute value is per default
untyped, however, typing constraints can be introduced via the domain
ontology (see Sect. 7.1).

• For providing versioning support, a set of preceding versions Pw and suc-
ceeding versions Sw can be assigned to each entity w. Each version of w is
again an entity of the same kind kw. By also treating an entity’s versions
as entities, different versions of an entity can be interrelated just like any
other entities, thus allowing to establish relationships between entity ver-
sions. Figure 3.2 shows several versions of the EMMO “Dracula Movies”
and their interrelationships.

• As it might be necessary in an implementation of the model to augment
an entity w with further low-level data, such as time stamps or status
information, in a flexible, ad-hoc manner, a set of features Fw, repre-
sented as feature-value pairs, can be attached to the entity. In contrast to
attributes, feature names are not ontology objects but simple strings.

Since the remaining properties of an entity w are only relevant for certain
kinds of entities, we will only provide a brief explanation at this point as far as
it is necessary for the understanding of the following definitions; we will provide
more detailed definitions and examples in the following subsections.

• By specifying exactly one source and target entity sw and tw, an associa-
tion establishes a directed binary relationship between those entities.

• The connectors Cw establish a connection to the physical media data of
a logical media part. Each connector consists of a media profile, which
describes the storage location by either embedding the raw media data
or by referencing the media data via a URI, and a media selector, which
provides means to address selected parts of the media object.

• An EMMO constitutes a container of all entities specified in the set nodes
Nw.



18 CHAPTER 3. EMMOS

succpred

Dracula Movies  V1

pred succ

Dracula Movies  V2

Dracula Movies  V3

Dracula Movies

pred succ

Figure 3.2: EMMO “Dracula Movies”’s versions

• An EMMO offers operations Ow, which can be invoked by external appli-
cations. The implementation of an operation is described by a mathemat-
ical function.

After this informal intuitive description, we are now ready to provide the
formal definition of an entity. First we define some basic symbols, which we will
use throughout the rest of this thesis.

Definition 1 [Symbols] Let Γ denote the set of all logical media parts, Θ
the set of all ontology objects, Λ the set of all associations, Σ the set of all
EMMOs, and Ω = Γ ∪ Θ ∪ Λ ∪ Σ the set of all entities. Further, let MS
be the set of all media selectors, MP the set of all media profiles, and OP the
set of all operations. Finally, let VAL be the set of all untyped data values,
UUID ⊂ VAL the set of all universal unique identifiers, STR ⊂ VAL the set
of all strings, URI ⊂ STR the set of all uniform resource identifiers, RMD the
set of all raw media data, and FUN the set of all functions.

On the basis of these common symbols, we define entities as follows.

Definition 2 [Entity] An entity w ∈ Ω is a thirteen-tuple
w = (ow, nw, kw, sw, tw, Tw, Aw, Cw, Nw, Pw, Sw, Fw, Ow), where ow ∈ UUID
denotes the unique object identifier (OID) of w, nw ∈ STR the name of w,
kw ∈ {“lmp”, “ont”, “asso”, “emm”} the kind of w, sw ∈ Ω ∪ {ε} the source
and tw ∈ Ω ∪{ε} the target entity of w with ε 6∈ Ω stating that such an entity is
undefined, Aw ⊆ Θ ×VAL the attributes, Tw ⊆ Θ the types, Cw ⊆MS×MP
the connectors, Nw ⊆ Ω the nodes, Pw ⊆ Ω the predecessors, Sw ⊆ Ω the
successors, Fw ⊆ STR ×VAL the features, and Ow ⊆ OP the operations of w.
The following constraints hold for all entities:

∀w1, w2 ∈ Ω : ow1 = ow2 −→ w1 = w2 (3.1)

∀w, v ∈ Ω : v ∈ Pw ∨ v ∈ Sw −→ kw = kv (3.2)

Constraint (3.1) enforces that each entity has a unique identifer and Constraint
(3.2) ensures that each version of w is again an entity of the same kind kw.



3.2. THE EMMO MODEL 19

3.2.2 Logical Media Parts

Logical media parts are entities which enable the representation of media ob-
jects or parts of media objects at a logical level, and thus address an EMMO’s
media aspect. By decoupling the logical media part from any existing physical
representation, a person who is not owing a media object can still use it within
an EMMO. To express the difference between, for example, the movie “Salem’s
Lot” directed by Tobe Hooper and its underlying source material, the novel
“Salem’s Lot” written by Stephen King, the movie and the novel are modeled
as two different logical media parts.

Definition 3 [Logical media part] A logical media part l ∈ Γ is an entity with
kl = ”lmp” ∧ sl = tl = ε ∧ Nl = Ol = ∅.

By means of connectors Cw, logical media parts not only model media ob-
jects at a logical level but additionally maintain connections to physical media
data representing these objects, and thus provide the media aspect of multi-
media content represented within the EMMO model. Connectors (see Def. 2)
consist of a media profile representing the physical media data and of a media
selector addressing parts of the media data represented by the media profile
according to textual, spatial, and temporal criteria.

As formally defined in Def. 4, a media profile combines the storage location,
which is called – following the MPEG-7 terminology – media instance, with low-
level metadata, such as storage format or file size. The media instance either
directly embeds media data or – if embedding is not feasible, e.g. because the
media data is a live stream – references media data via a URI.

Definition 4 [Media profile] A media profile mp = (imp, Mmp) ∈ MP is de-
scribed by its media instance imp ∈ URI ∪ RMD and its metadata
Mmp ⊆ STR × VAL .

Media selectors (see Def. 5) render it possible to address only selected parts
of the physical media data, such as the introductory section of a movie from the
first until the 26th minute, without having to extract that part, for instance, by
putting the scene into a separate file using an video editing tool.

Definition 5 [Media selector] A media selector ms = (kms, Pms) ∈ MS is
described by its kind kms ∈ {“spatial”, “textual”, “temporal”, “full”} and by
its parameters Pms ⊆ STR × VAL .

In Example 1 we illustrate how the three logical media parts depicted in Fig. 3.1
representing the media objects “The Cabinet of Dr. Caligari”, “Nosferatu”, and
“Salem’s Lot” can be formally described within the EMMO model. The sym-
bols lcaligari, lnosferatu, and lsalem represent the three logical media parts. For
example, the thirteen-tuple lcaligari indicates that there exists an entity which is
uniquely identified by the OID “l2471”, is named “The Cabinet of Dr. Caligari”,
is of kind logical media part (“lmp”), specifies no source and target entity, is
classified as “Movie”, has the value “Wiene” for the attribute “Director”, de-
scribes its physical media data by the connector (ms1,mp1), is augmented by
its timestamp information, and specifies its sets of nodes, predecessors, succes-
sors, and operations as empty. The connector (ms1,mp1) references the tempo-
ral selection of the first 26 minutes from the MPEG movie “Caligari.mpeg”.



20 CHAPTER 3. EMMOS

(ms2,mp2) is the connector of the logical media part lnosferatu associating
the complete MPEG movie “Nosferatu.mpeg”, and, finally, (ms3,mp3) and
(ms4,mp4) represent two versions of different length of the movie “Salem’s
Lot”.

Example 1

lcaligari =(“l2471”, “The Cabinet of Dr. Caligari”, “lmp”, ε, ε, {omovie}, {(odirector, “Wiene”)},
{(ms1, mp1)}, ∅, ∅, ∅, {(“timestamp”, “200412230056”)}, ∅),

lnosferatu =(“l9462”, “Nosferatu”, “lmp”, ε, ε, {omovie}, {(odirector, “Murnau”)},
{(ms2, mp2)}, ∅, ∅, ∅, ∅, ∅),

lsalem =(“l6231”, “Salem’s Lot”, “lmp”, ε, ε, {omovie}, {(odirector, “Hooper”)},
{(ms3, mp3), (ms4, mp4)}, ∅, ∅, ∅, ∅, ∅),

ms1 =(“temporal”, {(“begin”,0), (“duration”,26)}),
mp1 =(“www.../Caligari.mpeg”, {(“format”, “MPEG”)}),
ms2 =(“full”, ∅),
mp2 =(“www.../Nosferatu.mpeg”, {(“format”, “MPEG”)}),
ms3 =(“full”, ∅),
mp3 =(“www.../Salem183.avi”, {(“format”, “AVI”), (“duration”, 183)}),
ms4 =(“full”, ∅),
mp4 =(“www.../Salem112.avi”, {(“format”, “AVI”), (“duration”, 112)}).

3.2.3 Ontology Objects

Ontology objects are entities that represent concepts of an ontology. By pro-
viding the basis for the description of entities and other properties by concepts
taken from an ontology, ontology objects contribute to the semantic aspect of
multimedia content modeling. Within the EMMO model, ontology objects are
applied in four different ways, i.e. they are used:

• for designating the types of entities,

• for designating the attributes of attribute values,

• for designating the operations attached to EMMOs (see Def. 9),

• as nodes within the EMMO knowledge structure (see Sect. 3.2.5).

Definition 6 [Ontology object] An ontology object o ∈ Θ is an entity with
ko = ”ont” ∧ so = to = ε ∧Co = No = Oo = ∅.

As can be seen from Def. 6, the types To of an ontology object o can be a non-
empty set, i.e. ontology objects can again be classified by other ontology objects.
This provides the basis for expressing ontological structures within the EMMO
model. The development of a dedicated ontology engineering environment is
the focus of future work. The final aim is the seamless integration of ontological
knowledge into the EMMO model (see Chapter 7).

In Example 2 all four different ways of using ontology objects are illus-
trated: Within EMMO “Dracula Studies” (see Fig. 3.3), ontology object oinspire

represents the type of the association connecting the two logical media parts



3.2. THE EMMO MODEL 21

“Vampyre” and “Dracula”, ontology object omovie the type of the logical me-
dia part “Nosferatu”; ontology object odirector is used as name of the attribute
attached to the logical media part “Nosferatu”, and ontology object orender rep-
resents the designator of the operation provided by the EMMO. Furthermore,
the ontology object omiller, which represents the concept “Elizabeth Miller”,
is specified as node contained within EMMO “Dracula Studies” and classified
as “Researcher” by additionally typing this ontology object with the ontology
object oresearcher.

Example 2

oinspire =(“o8421”, “inspire”, “ont”, ε, ε, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅),
omovie =(“o4302”, “Movie”, “ont”, ε, ε, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅),

odirector =(“o3418”, “Director”, “ont”, ε, ε, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅),
orender =(“o6445”, “Rendering”, “ont”, ε, ε, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅),
omiller =(“o3021”, “Elizabeth Miller”, “ont”, ε, ε, {oresearcher}, ∅, ∅, ∅, ∅, ∅, ∅, ∅),

oresearcher =(“o2166”, “Researcher”, “ont”, ε, ε, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅).

Murnau

Director

Nosferatu

Dracula Studies

inspire remake

RenderImplementation

Rendering

source-for

Researcher

Movie

Vampyre

Short Story

1819

Creationdate

Dracula

Novel

Stoker

Author

Ancient Text

Elizabeth

Miller

state

http://.../Vampyre.txt http://.../Dracula.pdf

format : PDF
......

http://.../Nosferatu.mpeg

format : MPEG
......

Dracula Movies V1

full fullfullformat : txt
......

Figure 3.3: EMMO “Dracula Studies”(estudies)

3.2.4 Associations

Associations describe binary directed semantic relationships between entities.
Thus, they contribute to the semantic aspect of multimedia content. By being
modeled as entities, associations can take part in other associations, and thus
enable the reification of associations in the EMMO model.

Definition 7 [Association] An association a ∈ Λ is an entity with ka =
”asso” ∧ sa 6= ε ∧ ta 6= ε ∧ Ca = Na = Oa = ∅ ∧ |Ta| = 1.



22 CHAPTER 3. EMMOS

Similar to other entities, an association’s type is represented by an ontology
object and determines the kind of semantic relationship. Different from other
entities, however, an association can only associate one type because it is sup-
posed to represent a unique relationship. By specifying exactly one source and
one target entity sa and ta, each association establishes a directed binary rela-
tionship between those two entities.

Example 3 shows the formal definition of the two associations aca→no and
ano→sa contained within EMMO “Dracula Movies”(Fig. 3.1) and of the four as-
sociations ava→dr, adr→no, ami→(va→dr), and adr→mo contained within EMMO
“Dracula Studies”(Fig. 3.3). Association ava→dr models the fact that the text
“Vampyre” inspired the novel “Dracula”, and by expressing that this state-
ment was made by “Elizabeth Miller”, association ami→(va→dr) exemplifies the
reification of associations.

Example 3

aca→no =(“a0225”, “ca → no”, “asso”, lcaligari, lnosferatu, {oinspire}, ∅, ∅, ∅, ∅, ∅, ∅, ∅),
ano→sa =(“a5461”, “no → sa”, “asso”, lnosferatu, lsalem, {oinspire}, ∅, ∅, ∅, ∅, ∅, ∅, ∅),
ava→dr =(“a6390”, “va → dr”, “asso”, lvampyre, ldracula, {oinspire}, ∅, ∅, ∅, ∅, ∅, ∅, ∅),
adr→no =(“a5461”, “dr → no”, “asso”, ldracula, lnosferatu, {oremake}, ∅, ∅, ∅, ∅, ∅, ∅, ∅),

ami→(va→dr) =(“a4771”, “mi → (va → dr)”, “asso”, omiller, ava→dr, {ostate}, ∅, ∅, ∅, ∅, ∅, ∅, ∅),
adr→moV 1 =(“a1289”, “dr → moV 1”, “asso”, ldracula, emoviesV1, {osource-for}, ∅, ∅, ∅, ∅, ∅, ∅, ∅).

3.2.5 EMMOs

An EMMO constitutes the core component of our model. It is a container that
combines several entities into a single unit. By aggregating media data (i.e.
logical media parts) and enriching this media data by semantic data (i.e. asso-
ciations and ontology objects), an EMMO addresses the media and semantic
aspect of multimedia content modeling. For instance, EMMO “Dracula Movies”
groups the semantic descriptions of the logical media parts “The Cabinet of Dr.
Caligari”, “Nosferatu”, and “Salem’s Lot” into one single unit. Since EMMOs
are modeled as entities, EMMOs can be contained within other EMMOs, just
as any other entity. Therefore, a structure of hierarchically nested EMMOs can
be established: EMMO “Dracula Studies” in Fig. 3.3, for example, contains
EMMO “Dracula Movies V1”, a direct successor version of EMMO “Dracula
Movies”. Furthermore, an EMMO can also take part in associations, facili-
tating the representation of knowledge about the EMMO. For instance, within
EMMO “Dracula Studies” it is stated that the novel “Dracula” was the source
for EMMO “Dracula Movies V1”. Finally, by specifying operations that process
its content, EMMOs address the functional aspect of multimedia content.

Definition 8 [EMMO] An EMMO e ∈ Σ is an entity with ke = ”emm”, and
se = te = ε ∧ Ce = ∅, such that

∀x ∈ Ne : kx = ”asso” −→ {sx, tx} ⊆ Ne (3.3)

According to this definition, an EMMO e constitutes a container of other
entities because its set of nodes Ne is not restricted to an empty set, as it is the
case with other kinds of entities. The contained entities form a connected graph



3.2. THE EMMO MODEL 23

structure when they are interlinked by associations. Constraint 3.3 ensures
that associations can specify only those entities as source or target entity which
already belong to the EMMO’s nodes, and thus, guarantees that any established
relationship is fully contained within the EMMO.

A further difference between an EMMO and the other kinds of entities is that
its set of operations is not necessarily empty, allowing an EMMO to associate
arbitrary operations. Within the EMMO model, an operation is a tuple combin-
ing an ontology object acting as the operation’s designator with the operation’s
implementation, which can be described by any mathematical function.

Definition 9 [Operation] An operation op = (dop, iop) ∈ OP is described by its
designator dop ∈ Θ and its implementation iop ∈ FUN .

In Example 4, the six EMMOs “Dracula Movies”, “Dracula Studies”, “Drac-
ula Movies V1”, “Dracula Movies V2”, “Dracula Movies V3”, and “Dracula
Research” are formally described. EMMO “Dracula Movies”(see Fig. 3.1) con-
sists of five nodes, i.e. the three logical media parts “The Cabinet of Dr. Cali-
gari”, “Nosferatu”, and “Salem’s Lot”, and two associations; it defines EMMO
“Dracula Movies V1” and EMMO “Dracula Movies V2” as its direct succes-
sor versions (see Fig. 3.2), and specifies the functions frender implementing a
“rendering” operation and fpayment implementing a “payment transaction” op-
eration. EMMO “Dracula Studies”(see Fig. 3.3) aggregates nine entities, i.e. the
three logical media parts “Vampyre”, “Dracula”, and “Nosferatu”, the ontology
object “Elizabeth Miller”, the EMMO “Dracula Movies V1”, as well as four
associations, and offers a rendering functionality. EMMO “Dracula Movies V1”
(see Fig. 3.4), a direct successor version of EMMO “Dracula Movies”, contains
two additional nodes, i.e. the logical media part representing the novel “Drac-
ula” and a retelling association connecting the logical media parts “Dracula”
and “Nosferatu” (named a(dr→no)2 to distinguish it from the association named
a(dr→no) in EMMO “Dracula Studies”); it defines again a direct successor ver-
sion, i.e. EMMO “Dracula Movies V3”. EMMO “Dracula Movies V2” (see
Fig. 3.5) consists of five entities: the two logical media parts “Nosferatu” and
“Salem’s Lot” with their connecting association originate from EMMO “Drac-
ula Movies”, whereas the logical media part “Van Helsing” and the connecting
association are newly added. EMMO “Dracula Movies V3” (see Fig. 3.6) con-
tains all nodes of EMMO “Dracula Movies V1” and two additional nodes, i.e.
the logical media part “A Return to Salem’s Lot” and an association of type
“similar audience” connecting this logical media part with the logical media
part “Salem’s Lot”. Finally, EMMO “Dracula Research” (see Fig. 3.7) consists
of eight nodes, i.e. the EMMOs “Dracula Movies”,“Dracula Movies V3”, and
“Dracula Studies”, the ontology object “Elizabeth Miller”, and four associa-
tions.



24 CHAPTER 3. EMMOS

Example 4

emovies =(“e7921”, “Dracula Movies”, “emm”, ε, ε, ∅, ∅, ∅, {lcaligari, lnosferatu, lsalem, aca→no, ano→sa},
∅, {emoviesV1, emoviesV2}, ∅, {(orender, frender), (opayment, fpayment)}),

estudies =(“e3811”, “Dracula Studies”, “emm”, ε, ε, ∅, ∅, ∅,
{lvampyre, ldracula, lnosferatu, omiller, emoviesV1, ava→dr, adr→no, ami→(va→dr), adr→moV 1},
∅, ∅, ∅, {(orender, frender)}),

emoviesV1 =(“e7390”, “Dracula Movies V1”, “emm”, ε, ε, ∅, ∅, ∅,
{lcaligari, lnosferatu, lsalem, ldracula, aca→no, ano→sa, a(dr→no)2}, {emovies}, {emoviesV3}, ∅, ∅),

emoviesV2 =(“e3491”, “Dracula Movies V2”, “emm”, ε, ε, ∅, ∅, ∅,
{lnosferatu, lsalem, lhelsing, ano→sa, ano→he}, {emovies}, ∅, ∅, ∅),

emoviesV3 =(“e3225”, “Dracula Movies V3”, “emm”, ε, ε, ∅, ∅, ∅,
{lcaligari, lnosferatu, lsalem, ldracula, lreturn, aca→no, ano→sa, a(dr→no)2, asa→re}, {emoviesV1}, ∅, ∅, ∅),

eresearch =(“e1411”, “Dracula Research”, “emm”, ε, ε, ∅, ∅, ∅, {emovies, emoviesV3, estudies,

omiller, amo→moV 3, amoV 3→st, ami→(mo→moV 3), ami→(moV 3→st)}, ∅, ∅, ∅, ∅).

Dracula Movies V1

retell

Dracula 
Novel

Stoker

Author

http://.../Dracula.pdf

format : PDF
......

Hooper

Director

inspire inspire

Salem�s Lot 

Movie
The Cabinet of 

Dr. Caligari

Movie

Wiene

Director

Nosferatu

http://../Nosferatu.mpeg

Movie

Murnau

Director

format: MPEG
......

http://../Caligari.mpeg

format : MPEG
......

full

full

http://.../Salem183.avi

duration: 183min
format: AVI
.....

full

http://.../Salem112.avi

duration: 112min
format: AVI
.....

full

temporal:
begin:0
duration: 26

Figure 3.4: EMMO “Dracula Movies V1” (emoviesV 1)



3.3. SUMMARY 25

Hooper

Director

Dracula Movies V2 inspire

rework

Salem�s Lot 

http://.../Salem183.avi

duration�

Movie

Nosferatu

http://../Nosferatu.mpeg

Movie

Murnau

Director

duration�

http://.../Salem112.avi

Van Helsing

http://../helsing.avi

filesize ...

Movie

Sommers

Director

....

....

....

....
format�..

Figure 3.5: EMMO “Dracula Movies V2” (emoviesV 2)

Hooper

Director

Dracula Movies V3

inspire inspire

similar audience

retell

Salem�s Lot 

Movie
The Cabinet of 

Dr. Caligari

http://../Caligari.mpeg

format�

Movie

Wiene

Director

Nosferatu

http://../Nosferatu.mpeg

format....

Movie

Murnau

Director

A Return to 
Salem�s Lot 

http://../ReturnSalem.avi

format...

Movie

Cohen

Director

Dracula 

http://../dracula.pdf

filesize��

Novel

Stoker

Author

http://.../Salem183.avi

duration: 183min
format: AVI
.....

full

....

....

........

http://.../Salem112.avi

....duration �

Figure 3.6: EMMO “Dracula Movies V3” (emoviesV 3)

3.3 Summary

In this chapter, we have introduced the EMMO model, a novel approach for
semantic multimedia content modeling for collaborative and content sharing
applications.



26 CHAPTER 3. EMMOS

Dracula Movies V3

essential extension

state

Researcher

Person
Elizabeth

Miller

Dracula Research

Dracula Movies 

Dracula Studies 

contradict

Figure 3.7: EMMO “Dracula Research”(eresearch)

An EMMO constitutes a self-contained piece of multimedia content that
indivisibly unites three of the content’s aspects. The media aspect reflects that
an EMMO aggregates the basic media objects of which the multimedia content
consists, the semantic aspect allows the specification of semantic associations
between an EMMO’s media objects, and, finally, the functional aspect provides
means for the definition of arbitrary, domain-specific operations on the content
that can be invoked by applications. Furthermore, EMMOs are versionable –
they can be modified concurrently in a distributed environment – and tradeable,
i.e. all three aspects of the multimedia content and the versioning information
can be bundled into one unit and serialized into an exchangeable format.

The formal basis of EMMOs are entities, which are characterized by thirteen
properties. Furthermore, entities occur in four different kinds, i.e. logical media
parts representing the media data, ontology objects representing concepts of an
ontology, associations describing binary relationships, and EMMOs aggregating
semantically related entities.

For the retrieval of EMMOs and the knowledge they incorporate, suitable
querying facilities are required. The formal definitions of the EMMO model
provide the basis for the development of the EMMO query algebra EMMA,
which we will introduce in Chapter 5.



Chapter 4

Towards a Query Algebra
for EMMOs

EMMOs provide a framework for the distributed and collaborative authoring of
semantically enhanced multimedia objects. For the realization of advanced op-
erations on EMMO structures, query facilities enabling the efficient access and
processing of the information captured by EMMOs are required. Therefore,
we have developed the query algebra EMMA, which provides a formal basis for
querying EMMOs, i.e. an algebra providing a set of formal query operators suit-
able for the EMMO model. In the following, we will first introduce the essential
requirements for such a query algebra, before we analyze related approaches.

4.1 Requirements

The EMMO model has no inherent semantics, i.e. the particular semantics of an
application scenario implementing the EMMO model is derived from the inte-
grated domain ontology (see Chapters 6 and 7). Therefore, the requirements for
accessing the information captured by EMMOs are resulting from structural and
syntactical issues, and have to be seen as being independent from the semantics
of any particular application scenario. Thus, the design of the EMMO query
algebra EMMA was in the first place driven by the requirements for accessing
the complete information stored within one or more EMMOs, providing a basis
for efficient query rewriting and optimization, and enabling the integration of
the knowledge specific to an application domain, i.e. the knowledge from the
underlying domain ontology.

As already mentioned, the most important and fundamental prerequisite of
such an algebra is to provide operators for accessing an EMMO’s three aspects
and its versioning information. Thus, the algebra has to offer operators enabling
the access to:

• an EMMO’s media aspect, i.e. operators that give access to logical media
parts and their connectors;

• an EMMO’s semantic aspect, i.e. operators that facilitate the retrieval of
all kinds of entities contained in an EMMO, the querying of the types of
entities and their attribute values, as well as the traversal of associations

27



28 CHAPTER 4. TOWARDS A QUERY ALGEBRA FOR EMMOS

between entities; the operators must be expressive enough to cope with
the more advanced constructs of the EMMO model, such as the reification
of associations and the nesting of EMMOs;

• an EMMO’s functional aspect, i.e. operators that allow the access to and
permit the execution of the operations of an EMMO;

• an EMMO’s versioning information, i.e. operators for the querying of an
entity’s direct and indirect versions.

To combine information contained within different EMMOs, the algebra has
to support joins between entities. Moreover, a suitable algebra should support
some basic construction and manipulation operators, such as union, intersection,
and difference. However, since we have a graphical authoring tool available (see
Sect. 8.1.4), such construction and manipulation operators can be kept simple.

EMMOs encapsulate graph structures of interrelated entities. Therefore, the
query algebra should support some basic subgraph matching enabling to identify
EMMOs encapsulating similar graph structures.

In addition, an EMMO query algebra has to meet basic query algebra re-
quirements. Its operators should be formally defined with precise semantics
to provide the basis for query rewriting and optimization. Furthermore, the
operators should be orthogonal and arbitrarily nestable for enabling the formu-
lation of expressive queries, i.e. complex queries can be formulated through the
combination and nesting of modular operators.

Finally, because the EMMO model uses concepts of an ontology (i.e. ontology
objects) to describe the meaning of the entities contained in an EMMO and the
associations between them, a suitable EMMO query algebra should be expressive
enough to integrate ontological knowledge into a query. Thus, for example, it
should be possible to consider supertype/subtype relationships, transitive or
inverse associations, etc.

A query algebra which is sufficiently expressive to fulfill all these require-
ments is said to be adequate and complete with regard to the EMMO model.

4.2 Related Approaches

In this section, we will discuss related approaches to the EMMO query algebra
EMMA. Compared to other standards for multimedia content representation
(see Sect. 2.2), the EMMO approach is unique in such a way that none of the
query languages for those standards can fulfill all the requirements regarding the
expressiveness of a language for querying EMMOs. However, valuable aspects of
their design have been integrated into the design of the query algebra EMMA.

As the EMMO model describes graph structures, we did not analyze query
languages for the relational data model, like SQL. Moreover, as we need to
query the instance level, we also did not consider query languages for ontology
languages, like DQL [FHH03a] or OWL-QL [FHH03b], which merely address
the schema level.

In the following, we will first take a brief look at object-oriented query ap-
proaches and query approaches for semi-structured data and multimedia con-
tent, before we analyze query approaches for semantic standards in more detail.



4.2. RELATED APPROACHES 29

4.2.1 Object-Oriented Query Approaches

The object-oriented data model is schema-oriented and represents the data as
objects organized in classes. Classes are hierarchically structured and spec-
ify relationships between objects. Although object-oriented database systems
establish a graph-based data model, the object-oriented data model and the
EMMO model are very different from each other, i.e. the former operates on the
schema level and gathers objects of a particular type within one class, whereas
the EMMO model operates on the instance level, defines no object classes, and
leaves the specification of the type semantics to the integrated domain ontology.
Moreover, EMMOs provide means for reification, enable the explicit modeling
of media data, and provide versioning support. However, as EMMOs establish
complex graph structures, the implementation of EMMOs should be based on
the object-oriented data model (see Sect. 8.1). Thus, object-oriented query al-
gebras, such as OQL [Cat94], AQUA Algebra [L+93], or XSQL [KKS92], can be
used for retrieving the data objects on the implementation level. However, for
accessing the information captured by EMMOs, i.e. an EMMO’s three aspects
and versioning information, one needs an adequate EMMO query approach.
Therefore, we did not analyze query languages for object-oriented databases in
further detail. However, as any operator accessing information captured by EM-
MOs, i.e. an EMMO’s three aspects and versioning information, is transformed
at implementation level to operators of an object-oriented query language, we
plan to integrate query optimization strategies for object algebras within our
query approach (see Sect. 8.2).

4.2.2 Query Approaches for Semi-Structured Data

Semi-structure data in general, and XML in particular, provide a basis for repre-
senting graph-based data structures at the instance level. The Object Exchange
Model OEM [PGW95] is a data format that can be used for exchanging arbi-
trary database structures between applications and is the widely accepted data
model for semi-structured data, i.e. data with no assigned schema. Similar to
the EMMO model, OEM is schema-less and describes graph structures. Nev-
ertheless, there are many differences between the two data models. OEM does
neither address the three aspects of multimedia content, nor provides version-
ing support. Therefore, query languages for semi-structured data, such as Lorel
[A+97], UnQL [BFS00], SAL [BT99], XQuery [B+05b], or XPath [B+05a], are
inadequate for querying EMMOs. However, query languages for semi-structured
data provide a profound basis for graph navigation by establishing regular path
expressions. Thus, we could use those query languages as inspiration for the
design of the regular path expressions and navigational operators in EMMA (see
Sect. 5.3).

4.2.3 Query Approaches for Multimedia Content

On the search for a suitable query algebra for EMMOs, we take a look at related
query algebras and languages in the context of multimedia content, whether they
enable to access the complete information captured by EMMOs.

In the literature, several query algebras for multimedia content have been
proposed, such as GCalculus/S [L+99], Algebraic Video [DWG94], or the Mul-



30 CHAPTER 4. TOWARDS A QUERY ALGEBRA FOR EMMOS

timedia Presentation Algebra (MPA) [ASS99]. These algebras have in common
that they mainly address the media aspect of multimedia content. They focus
on the querying of the temporal and spatial presentation relationships between
the basic media of multimedia content and the construction of new presenta-
tions out of these media. However, they ignore semantic relationships between
media as well as the functional aspect of multimedia content. Therefore, these
query approaches are only of limited interest to us, which is the reason why we
omit a more detailed discussion in this thesis.

4.2.4 Semantic Query Approaches

In the context of the Semantic Web, several standards have emerged that can be
used to model the semantic relationships between the basic media of multimedia
content addressing the content’s semantic aspect, such as RDF [Bec04, BG04],
Topic Maps [ISO00a], Conceptual Graphs [ISO01b], and MPEG-7 (especially
MPEG-7’s Graph tools for the description of content semantics [ISO01a]) (see
Sect. 2.2). For these standards, a variety of proposals for query languages and
algebras have been made.

Querying RDF

Since the RDF data model, compared to the EMMO model, rather neglects the
media aspect of multimedia content, does not address the functional aspect of
content, and does not provide explicit support for versioning or a hierarchical
structuring of resource descriptions, the same is generally true for RDF-based
query approaches. This leaves these approaches incomplete and inadequate with
regard to the EMMO model.

Although there exist many query languages for RDF, there is no official
standard yet [Mil03]. In the following, we discuss several RDF query approaches
that we have analyzed.

As far as we know, there is only one approach, RAL [F+02], which provides
precise operator semantics for querying RDF and thus a basis for query opti-
mization. By specifying the input and output value as collection of nodes, the
operators of the algebra, which are based on a binary labeled graph model, can
be arbitrarily combined, and thus optimized. RAL defines a “join operator”,
but no operator suitable for subgraph matching. As RDF Schema constitutes
an RDF description instance, the RAL operators can be used for the navigation
along types and subclass edges, therefore enabling the integration of ontological
knowledge.

RQL [K+02] is a declarative query language for RDF based on a directed
labeled graph model. The input and output values of the queries are specified as
RDF graphs, such that new queries can be built through functional composition
and iteration. Nevertheless, as the explicit evaluation mechanism of the query
language is not specified, the query optimization remains an open issue. RQL
provides no subgraph matching and the extension of a query across multiple
RDF graphs can only be realized by nesting queries. By defining schema queries,
e.g. functions to traverse the class/property hierarchies defined in RDF Schema,
RQL provides a basis for combining schema with data queries, thus enabling
the integration of ontological knowledge.



4.2. RELATED APPROACHES 31

The RDF query language SPARQL [PS04], which is specified as W3C work-
ing draft, provides means for accessing RDF graphs, i.e. sets of triples. Although
defining query formulas with precise semantics, SPARQL provides no basis for
query rewriting. By matching graph patterns against the target graph of the
query, SPARQL allows subgraph matching. Moreover, as query forms can be
used for querying aggregated graphs, the functionality of a join operator is
available. Although – as RDF Schema instances are again RDF documents –
SPARQL can be used for querying RDF Schema data, it provides no means
for reflecting inferences derived from integrating the ontology knowledge repre-
sented in the RDF Schema.

The graph navigation language SquishQL [MSR02] establishes a declarative
query language for RDF operating on a triple based data model. By only spec-
ifying the syntax of its SQL-like operators, query optimization has to be solved
at implementation level. SquishQL was the basis for a number of implementa-
tions, e.g. RDQL [Sea04], Inkling [Mil02], or RDFStore [RG03]. It is based on
subgraph matching, but provides no means for extending queries across multi-
ple RDF graphs, and does not address the integration of ontology knowledge.
However, one of its implementations – RDQL – realizes some basic support for
the integration of ontological knowledge.

Finally, there are query approaches viewing RDF data as knowledge base of
triples, e.g. the RDF query and inference languages Triple [SD01] or Metalog
[MS98]. Both languages are based on Horn Logic and allow to query RDF data
on a high level of abstraction that supports inference. Therefore, they merely
operate on the schema level, and are not appropriate for querying the instance
level.

Querying Topic Maps

The situation for Topic Maps is quite similar as for RDF. The Topic Map
data model focuses on the semantic aspect and rather neglects the media and
functional aspects of multimedia content. Moreover, although topic maps can be
hierarchically nested, they have no explicit versioning support. Consequently,
query languages for Topic Maps are generally incomplete and inadequate with
regard to the EMMO model.

Within the context of the ongoing standardization of the Topic Maps Query
Language (TMQL) [ISO00b], several query approaches have been introduced.

Tolog [Gar03] is a logic based query language combining Prolog and SQL to
query topic maps. By only defining the query syntax, issues regarding query
optimization are not addressed. The basic building blocks of a tolog query
expression are predicates, which are matched to the edges of a topic map’s
graph structure. More advanced queries can be expressed by combining basic
building blocks, thus subgraph matching can be simulated to some extent. Tolog
provides no means for extending the query expression across multiple topic
maps. As tolog enables the querying of the class-instance relationship, some
basic ontology support can be provided.

The approaches TMPath [Bog04] and XTMPath [BG02] focus on the navi-
gation of Topic Maps. TMPath can be regarded as derivate of XPath [B+05a]
– a query approach for XML which has to be embedded into a host language.
XTMPath provides a programming technique to navigate through Topic Maps.
By specifying the syntax of path expressions, i.e. patterns that can be used to



32 CHAPTER 4. TOWARDS A QUERY ALGEBRA FOR EMMOS

select a subset of a topic map, both approaches provide some limited subgraph
matching. As both languages are not constructed as fully fledged query lan-
guages, query optimization, a join functionality, and ontology integration are
not addressed.

Another approach for querying Topic Maps, TOMA [Pin04], defines the syn-
tax for operators to access the knowledge associated with constituents of topic
maps, i.e. topics, associations, and scopes. It provides no dedicated support
for subgraph matching. As the semantics of the query operators is not defined,
query optimization is rendered impossible. TOMA establishes a SQL-style syn-
tax enabling the extension of queries across multiple topic maps. Finally, by
defining operators for the access of type edges, a certain degree of integration
of ontology knowledge can be provided.

All the proposals have in common that they remain on the syntactic level
and do not provide formal definitions of their operators. No formal algebra with
precise semantics as a sound foundation for the querying of Topic Maps exists
so far.

Querying Conceptual Graphs

Conceptual Graphs is a knowledge representation language with the expres-
siveness of first-order logic, which allows to specify query graphs to formulate
any database query that can be expressed by SQL [Sow00]. However, again,
the Conceptual Graphs specification is merely concerned with the schema level
rather than the instance level. As conceptual graphs can be quite complex re-
garding their expressiveness, there exists quite a lot of research focusing on the
development of faster algorithms suitable for subgraph matching [OP98]. How-
ever, to the best of our knowledge, no explicit query algebra for Conceptual
Graphs has been developed so far.

Querying MPEG-7

Regarding the querying of semantic descriptions of multimedia content on the
basis of MPEG-7’s Graph tools, we find quite a few approaches adapting XQuery
[B+05b] for the querying of MPEG-7 media descriptions [MSS02]. However,
these approaches do not provide specific operators that would allow a reasonable
processing of the Graph tools.

4.3 Summary

For the processing of EMMOs and the knowledge they incorporate, suitable
querying facilities are required. Therefore, we have developed an EMMO query
algebra providing a formal basis for the querying of EMMOs. The most impor-
tant requirement for such a query algebra is to provide operators for accessing
an EMMO’s three aspects and versioning information. Moreover, it should en-
able joins between entities and allow for subgraph matching. To provide a basis
for query optimization, its operators need to be orthogonal with precise seman-
tics, and, finally, the query algebra should be expressive enough to integrate
ontological knowledge.



4.3. SUMMARY 33

To summarize the discussion of related approaches, we have not been able
to find a formally sound foundation that would allow an adequate and complete
querying of EMMOs.

Both, the object-oriented and semi-structured data model, are very differ-
ent from the EMMO model. Therefore, object-oriented and semi-structured
query approaches are not appropriate for querying EMMOs. However, as the
implementation of the EMMO model is based on the object-oriented DBMS Ob-
jectStore, we plan to integrate query optimization strategies for object algebras
within our EMMO query approach. Query approaches for semi-structured data
provide profound means for navigating graph structures. Therefore, we could
use them as inspiration for the design of the navigational operators in EMMA.

Although there are some formal algebras available for querying the media
aspect of multimedia content like GCalculus/S, Algebraic Video, or MPA, those
approaches do neither address the semantic and functional aspect of multimedia
content, nor reflect versioning features.

Regarding the semantic query approaches, especially query languages for
RDF and Topic Maps were of particular interest, because they fulfil at least
some of our requirements, whereas query approaches for Conceptual Graphs
and MPEG-7 Graph tools could not be found.

Table 4.1 summarizes to what extent the RDF query approaches provide a
basis for query optimization, enable joins and subgraph matching, and facilitate
the integration of ontological knowledge. RAL is the only RDF query approach
that defines an algebra suitable for query optimization. As can be seen, all four
RDF query approaches address the integration of ontological knowledge to some
extent. Except SquishQL, the extension of queries across multiple RDF graphs
is addressed by all approaches, whereas only SquishQL and SPARQL provide
means for subgraph matching.

Table 4.1: Fulfilment of required features by RDF query languages
Requirements
+ := support, Query Joins Subgraph Integration of
(+) := limited support, optimization matching ontological
– := no support knowledge

RAL + + – +

RQL – (+) – +

SPARQL – + + (+)

SquishQL – – + (+)

Table 4.2 shows the corresponding results for Topic Maps query approaches.
None of the four analyzed approaches provides a basis for query optimization,
and only TOMA allows the extension of queries across multiple topic maps.
Except TOMA all approaches support some basic subgraph matching, and Tolog
and TOMA address some basic features enabling the integration of ontological
knowledge.



34 CHAPTER 4. TOWARDS A QUERY ALGEBRA FOR EMMOS

Table 4.2: Fulfilment of required features by Topic Maps query languages
Requirements
+ := support, Query Joins Subgraph Integration of
(+) := limited support, optimization matching ontological
– := no support knowledge

Tolog – – (+) (+)

TMPath – – (+) –

XTMPath – – (+) –

TOMA – + – (+)

As none of the discussed approaches is suitable for querying the complete
information captured by EMMOs, we were forced to develop a dedicated algebra
to obtain a sound foundation for querying EMMOs. At least for the design of
this algebra, however, we were able to gain valuable insights from the examined
approaches and to incorporate aspects of their design.



Chapter 5

EMMA – The EMMO
Algebra

The design of the EMMO query algebra EMMA was in the first place driven by
the requirement of accessing the complete information stored within an EMMO,
i.e. the access to the three aspects of an EMMO and its versioning informa-
tion. To enable query optimization, the query algebra’s operators are of limited
complexity and orthogonal. Through the combination and nesting of modular
operators, complex queries can be formulated.

There are five general classes of EMMA’s query operators: the extraction
operators provide the basis for querying an EMMO’s three aspects and its ver-
sioning information. The navigational operators enable the navigation along
an EMMO’s semantic graph structure and provide means for the integration of
basic ontological knowledge. The constructors enable the modification, combi-
nation, and creation of new EMMOs, and the selection predicates facilitate the
selection of only those entities satisfying a specific condition. Finally, the join
operator relates several entities or EMMOs with a join condition.

Before we will present the formal basis of the five operator classes in the
following sections, we first provide some basic definitions required for the un-
derstanding of the definitions to follow.

5.1 Basic Definitions

The input and output values of EMMA operators, i.e. their signatures, are
described by sets and sequences.

Definition 10 [Set and Sequence] Let IN denote the set of all natural
numbers, I an arbitrary index set, BOO = {true, false} the Boolean
set, and SET the set of all sets. Let A,B, and Ai, i ∈ I, be ar-
bitrary sets, then P(A) = {x |x ⊆ A} denotes the powerset of A,
A×B := {(x, y) |x ∈ A ∧ y ∈ B} the Cartesian product over A and B, and∏

i∈I Ai := {x : I −→ ⋃
i∈I Ai | ∀i ∈ I : x(i) ∈ Ai} ⊂ (

⋃
i∈I Ai)I the Cartesian

product over the sets Ai, i ∈ I. The elements of a Cartesian product are called
sequences or tuples. The length of a sequence (tuple) is determined by the num-
ber of its contained elements, and a sequence (tuple) of length n is called n-

35



36 CHAPTER 5. EMMA – THE EMMO ALGEBRA

sequence (n-tuple). SEQ n denotes the set of all n-sequences, and SEQ the
set of all sequences. A sequence of length 1 is equal to its single element, i.e.
∀x (x) = x. Let j ∈ I then πj :

∏
i∈I Ai −→ Aj with πj(a1, a2, . . . , an) = aj

denotes the jth projection of
∏

i∈I Ai.

EMMA operators are either functions or predicates.

Definition 11 [Function and Predicate] Let A,B ∈ SET , and f ∈ FUN with
f : A −→B be a function, then D(f) = A denotes the domain and R(f) = B
the range of function f , FUNA the set of all functions with D(f) = A, and
FUN [A,B] the set of all functions with D(f) = A and R(f) = B. Further-
more, p ∈ FUN [A,BOO ] denotes a predicate, PREA = FUN [A,BOO ] the set
of all predicates with domain A, and PRE = {PREA |A ∈ SET } the set
of all predicates. Let f ∈ FUNQ

i∈I Ai
, j ∈ I, g ∈ FUN with R(g) = Aj,

x ∈ D(g) and (a1, . . . , aj−1, aj+1, . . . , an) ∈ ∏
i∈I\{j}Ai, then the function

f[a1,...,aj−1,g($),aj+1,...,an] : Aj −→ SET with
f[a1, ... ,aj−1,g($),aj+1,...,an](x) = f(a1, . . . , aj−1, g(x), aj+1, . . . , an) is called f -
projection onto Aj.

EMMA operators are designed to be modular and simple. By using modular
EMMA operators in combination with the operators Apply and Elements, more
complex EMMA operators can be defined, and complex queries can be formu-
lated. The operator Apply takes a function and a set as input values and returns
the set consisting of all return values of the specified function being applied to
each element in the specified set.

Definition 12 [Apply] Let A ∈ SET and f ∈ FUN , then the operator
Apply : FUN × SET −→ SET is defined as Apply(f, A) = {f(x) |x ∈ A ∩ D(f)}.
The operator Elements is used to flatten data returned by other operations, i.e.
for the specified input set it returns all elements being contained in at least one
element of the specified set.

Definition 13 [Elements] Let A ∈ SET , then the operator
Elements : SET −→ SET is defined as Elements(A) = {x | ∃X ∈ A ∧ x ∈ X}.
For enabling the combination and nesting of EMMA operators, their signatures
are always specified in the most general way, i.e. their input and output values
are specified as single entity or set of entities. Thus, operators which only return
valid results if applied to specific kinds of entities can still be applied to other
kinds of entities yielding an empty result.

5.2 Extraction Operators

The extraction operators render it possible to access the information stored
within an EMMO. In the following, we introduce the extraction operators for
the general properties, the three different aspects, and for the versioning in-
formation. We use the EMMOs introduced in Sect. 3.2 as running example to
illustrate the usage of EMMA operators. To ease the task of keeping track of
the example, we repeat the display of the example EMMOs from Sect. 3.2 where
appropriate.



5.2. EXTRACTION OPERATORS 37

5.2.1 General Properties

Each entity is characterized by several general properties important for its han-
dling and management, i.e. the identifier, the name, the kind, and additional
features (see Sect. 3.2). For accessing an entity’s global and unique identifier
(OID), the operator oid can be used, e.g. the query expression

oid(lnosferatu) = “l9462”

returns the universal unique identifier (UUID) of the logical media part “Nos-
feratu”.

Definition 14 [oid] Let w ∈ Ω , then the operator oid : Ω −→ UUID is defined
as oid(w) = ow.

The human readable name of an entity can be retrieved by applying the operator
name, e.g. the query operation

name(lcaligari) = “The Cabinet of Dr. Caligari”

returns the string value “The Cabinet of Dr. Caligari”.

Definition 15 [name] Let w ∈ Ω , then the operator name : Ω −→ STR is
defined as name(w) = nw.

An entity can be of kind logical media part, ontology object, association, or
EMMO. By applying the operator kind, one can find out the kind of an entity,
e.g.

kind(lcaligari) = “lmp”

yields the string “lmp” indicating that the entity “The Cabinet of Dr. Caligari”
is a logical media part.

Definition 16 [kind] Let w ∈ Ω , then the operator
kind : Ω −→ {“lmp”, “emm”, “asso”, “ont”} is defined as kind(w) = kw.

For the access to the low-level feature-value pairs attached to an entity, the
operator features can be applied. For example, asking for the set of features of
the logical media part “The Cabinet of Dr. Caligari”, i.e.

features(lcaligari) = {(“timestamp”, “200412230056”)},

returns its time stamp information.

Definition 17 [features] Let w ∈ Ω , then the operator
features : Ω −→ P(STR × VAL ) is defined as features(w) = Fw.

5.2.2 Media Aspect

Logical media parts model media objects at a logical level and maintain con-
nections to their physical representations, i.e. to their media profiles and media
selectors. For retrieving all logical media parts contained within an EMMO,
the operator lmp can be used. For instance, the execution of operator lmp with
input value emovies yields the three logical media parts “The Cabinet of Dr.



38 CHAPTER 5. EMMA – THE EMMO ALGEBRA

Hooper

Director

Dracula Movies

inspire inspire

Salem�s Lot 

http://.../Salem183.avi

Movie

http://.../Salem112.avi

The Cabinet of 
Dr. Caligari

MovieWiene

Director

Nosferatu

http://../Nosferatu.mpeg

Movie

Murnau

Director

duration: 183min
format: AVI
.....

duration: 112min
format: AVI
.....

RenderingImplementation

Rendering

http://../Caligari.mpeg

PaymentImplementation

Payment

Timestamp: 200412230056

temporal:
begin:0
duration: 26

fullformat : MPEG
......

format : MPEG
......

full

full

Figure 5.1: EMMO “Dracula Movies”(emovies)

Caligari”, “Nosferatu”, and “Salem’s Lot” contained within EMMO “Dracula
Movies”in Fig. 5.1:

lmp(emovies) = {lcaligari, lnosferatu, lsalem}.

Definition 18 [lmp] Let w ∈ Ω , then the operator lmp : Ω −→ P(Γ) is
defined as lmp(w) = {x |x ∈ Nw ∩ Γ }.
For accessing the information described by a logical media part’s connec-
tors, EMMA defines several modular operators, as well as some more com-
plex operators constructed by nesting those modular operators. The operator
MediaProfiles can be used for locating media profiles. Applying the operator
MediaProfiles to a logical media part returns the union of all its associated
media profiles, e.g. the query expression

MediaProfiles(lsalem) = {(www.../Salem183.avi, {(“duration”, 183), (“format”, “AVI”)}),
(www.../Salem112.avi, {(“duration”, 112), (“format”, “AVI”)})}

returns a set of two media profiles, each of them consisting of a URI locating
the media data and a metadata set describing the low-level characteristics of
the media data. The operator MediaProfiles is defined as a combination of
the operators connectors and MediaProfile. For a specified entity, the operator
connectors returns its set of connectors, and the operator MediaProfile returns
the media profile for a given connector. By using the operators Apply and
Elements in its definition, the operator MediaProfiles can be used to access the
union of associated media profiles of a logical media part.

Definition 19 [connectors, MediaProfile, and MediaProfiles] Let w ∈ Ω , ms ∈
MS, and mp ∈ MP , then the operator connectors : Ω −→ P(MS ×MP ) is
defined as connectors(w) = Cw, the operator MediaProfile : MS ×MP −→
MP as MediaProfile((ms,mp)) = mp, and MediaProfiles : Ω −→ P(MP )
as MediaProfiles(w) = Elements(Apply(MediaProfile, connectors(w))).



5.2. EXTRACTION OPERATORS 39

The algebra further provides operators to extract the storage location of the
media data as well as the metadata from a given media profile, e.g.

MediaInstance((www.../Salem183.avi, {(“duration”, 183), . . .})) = www.../Salem183.avi

extracts the storage location, in this example the URI pointing to the media
data. Similarly, the operator Metadata extracts the physical metadata from the
media profile, e.g.

Metadata((www.../Salem183.avi, {(“duration”, 183), . . .})) = {(“duration”, 183), . . .}.

Definition 20 [MediaInstance and Metadata] Let mp ∈MP , then the operator
MediaInstance : MP −→ URI ∪ RMD is defined as MediaInstance(mp) =
imp, and the operator Metadata : MP −→ P(STR×VAL ) as Metadata(mp) =
Mmp.

The operator MediaSelector can be used for accessing the information stored
within a connector that describes the selected part of the media data. For
example, applying the operator MediaSelector to the connector attached to the
logical media part “The Cabinet of Dr. Caligari”, i.e.

connectors(lcaligari) = {(ms1,mp1)}
= {((“temporal”, {(“begin”, 0), (“duration”, 26)}),

(“www.../Caligari.mpeg”, {(“format”, “MPEG”)}))},
MediaSelector((ms1, mp1)) = (“temporal”, {(“begin”, 0), (“duration”, 26)}),

yields the media selector specifying a temporal selection from the first until the
26th minute.

Definition 21 [MediaSelector] Let w ∈ Ω , mp ∈MP , and ms ∈MS,
then the operator MediaSelector : MS ×MP −→MS is defined as
MediaSelector((ms,mp)) = ms.

For a given media selector, the operator Kind enables the access to its kind in-
formation, and the operator Parameter the access to the set of parameters. For
example, asking for the kind and parameter information of the media selector
of the connector of the logical media part “The Cabinet of Dr. Caligari”, i.e.

Kind(ms1) = “temporal”,

Parameter(ms1) = {(“begin”, 0), (“duration”, 26)},

shows that the media selector is a temporal selector starting at the very begin-
ning with a duration of 26 minutes.

Definition 22 [Kind and Parameter] Let w ∈ Ω , and ms ∈ MS, then the
operator Kind : MS −→ {“spatial”, “textual”, “temporal”, “full”} is defined
as Kind(ms) = kms, and the operator Parameter : MS −→ P(STR × VAL )
is defined as Parameter(ms) = Pms.



40 CHAPTER 5. EMMA – THE EMMO ALGEBRA

5.2.3 Semantic Aspect

By attaching concepts of an ontology to entities, entities get meaning. The op-
erator types accesses an entity’s set of classifying ontology objects. For example,
applying the operator types to the logical media part “Nosferatu” yields the set
containing the ontology object “Movie”:

types(lnosferatu) = {omovie}.

Definition 23 [types] Let w ∈ Ω , then the operator types : Ω −→ P(Θ) is
defined as types(w) = Tw.

For retrieving the attributes of an entity, the operator attributes can be used.
Requesting, for example, all attribute-value pairs of the logical media part “Nos-
feratu”, i.e.

attributes(lnosferatu) = {(odirector, “Murnau”)},

yields the set including only one attribute-value pair, i.e. the ontology object
“Director” with the string value “Murnau”.

Definition 24 [attributes] Let w ∈ Ω , then the operator
attributes : Ω −→ P(Θ × VAL ) is defined as attributes(w) = Aw.

EMMOs encapsulate a graph-like knowledge structure of entities. The algebra
provides the operator asso for accessing all associations contained in an EMMO,
e.g. the query expression

asso(estudies) = {ava→dr, adr→no, adr→moV 1, ami→(va→dr)}

returns the associations within EMMO “Dracula Studies”(see Fig. 5.2).
.

Definition 25 [asso] Let w ∈ Ω , then the operator asso : Ω −→ P(Λ) is
defined as asso(w) = {x |x ∈ Nw ∩ Λ}.

Associations establish a binary directed semantic relationship by describing a
source and a target entity. For retrieving the source or target entity of an
association, the operator source, or respectively, the operator target can be
used, e.g.

source(ava→dr) = lvampyre,

target(ava→dr) = ldracula.

Definition 26 [source and target] Let w ∈ Ω , then the operator
source : Ω −→ Ω ∪ {ε} is defined as source(w) = sw, and the operator
target : Ω −→ Ω ∪ {ε} is defined as target(w) = tw.

EMMOs establish a container unit that combines several entities into a single
package. The encapsulated entities are arranged as semantic graph structure.
The remaining operators to be introduced in this subsection focus on accessing
the information described by an EMMO’s encapsulated graph structure. There-
fore, these operators only return a valid output if applied to EMMOs, otherwise



5.2. EXTRACTION OPERATORS 41

Murnau

Director

Nosferatu

Dracula Studies

inspire remake

RenderImplementation

Rendering

source-for

Researcher

Movie

Vampyre

Short Story

1819

Creationdate

Dracula

Novel

Stoker

Author

Ancient Text

Elizabeth

Miller

state

http://.../Vampyre.txt http://.../Dracula.pdf

format : PDF
......

http://.../Nosferatu.mpeg

format : MPEG
......

Dracula Movies V1

full fullfullformat : txt
......

Figure 5.2: EMMO “Dracula Studies”(estudies)

an empty result is returned. The operator nodes provides the basis for accessing
all entities contained within an EMMO, e.g. the query expression

nodes(estudies) = {lvampyre, ldracula, lnosferatu, emoviesV1, omiller,

ava→dr, adr→no, adr→moV 1, ami→(va→dr)}

yields a set consisting of all entities in EMMO “Dracula Studies”.

Definition 27 [nodes] Let w ∈ Ω , then the operator nodes : Ω −→ P(Ω) is
defined as nodes(w) = Nw.

Within an EMMO’s set of nodes, any kind of entities can be contained. For
accessing all logical media parts comprised within the nodes of an EMMO, the
operator lmp (see Def. 18), and for accessing all associations within an EMMO
the operator asso (see Def. 25) can be used. Finally, for retrieving all EMMOs or
all ontology objects included within an EMMO’s nodes, the operators emm and
ont can be employed. For instance, asking for all EMMOs and for all ontology
objects described within the nodes of EMMO “Dracula Studies”, i.e.

emm(estudies) = {emoviesV1},
ont(estudies) = {omiller},

returns EMMO “Dracula Movies V1”, and the ontology object “Elizabeth
Miller”.

Definition 28 [emm and ont] Let w ∈ Ω , then the operator
emm : Ω −→ P(Σ) is defined as emm(w) = {x |x ∈ Nw ∩ Σ }, and the
operator ont : Ω −→ P(Θ) as ont(w) = {x |x ∈ Nw ∩ Θ }.



42 CHAPTER 5. EMMA – THE EMMO ALGEBRA

In Sect. 5.3, we will introduce the navigational operators enabling the navigation
along the edges of an EMMO’s graph structure. An EMMO’s graph structure
is established by the associations between source and target entities. Thus, the
entities describing a source or target entity of an association constitute possible
starting points of navigation. For accessing all entities used as source entity of an
association, the operator Sources can be applied. Similarly, the operator Targets
retrieves all target entities of the associations comprised within an EMMO’s
nodes. For example, requesting all entities within the nodes of EMMO “Dracula
Movies” (Fig. 5.1) being specified as source or target entity of an association,
i.e.

Sources(emovies) = {lcaligari, lnosferatu},
Targets(emovies) = {lnosferatu, lsalem},

yields the source entities “The Cabinet of Dr. Caligari” and “Nosferatu”, as well
as the target entities “Nosferatu” and “Salem’s Lot”.

Definition 29 [Sources and Targets] Let w ∈ Ω , then the operator Sources :
Ω −→ P(Ω) is defined as Sources(w) = {s | ∃x ∈ asso(w) s = sx}, and the
operator Targets : Ω −→ P(Ω) as Targets(w) = {t | ∃x ∈ asso(w) t = tx}.

As EMMOs are also entities, EMMOs can be nested hierarchically. The
operator AllEncEnt can be used for accessing all encapsulated ent ities of an
EMMO, i.e. it computes all entities recursively contained within an EMMO. For
example, the query expression

AllEncEnt(estudies) = nodes(estudies) ∪ nodes(emoviesV1) =
= {lvampire, ldracula, lnosferatu, emoviesV1, omiller,

ava→dr, adr→no, adr→moV 1, ami→(va→dr),

lcaligari, lsalem, aca→no, ano→sa, a(dr→no)2}
unifies the nodes of EMMO “Dracula Studies” (Fig. 5.2) with the nodes of
EMMO “Dracula Movies V1” (Fig. 5.3), because this EMMO is the only one
contained within EMMO “Dracula Studies” and contains no further EMMOs
itself.

The operator AllEncEnt is defined by means of induction over the natural
numbers IN and is based on the operator EncEnt. We say

• “entity w1 is contained in EMMO w0 at first level”, if w1 belongs to
EMMO w0’s nodes,

• “entity wn+1 is contained in EMMO w0 at n+1th-level”, if there exists a
sequence of n EMMOs, i.e. w1, . . . , wn, such that for all k ∈ {1, . . . , n+1}
entity wk belongs to EMMO wk−1’s nodes,

• “w is recursively contained or encapsulated in EMMO w0”, if there exists
a natural number n, such that w is contained in EMMO w0 at nth-level.

The operator EncEnt takes an EMMO e and a natural number n as input, and
returns the nodes of EMMO e at nth level. By defining a unification over the
operator EncEnt, the operator AllEncEnt returns, for a specified EMMO, the
set of all its recursively contained entities.



5.2. EXTRACTION OPERATORS 43

Dracula Movies V1

retell

Dracula 
Novel

Stoker

Author

http://.../Dracula.pdf

format : PDF
......

Hooper

Director

inspire inspire

Salem�s Lot 

Movie
The Cabinet of 

Dr. Caligari

Movie

Wiene

Director

Nosferatu

http://../Nosferatu.mpeg

Movie

Murnau

Director

format: MPEG
......

http://../Caligari.mpeg

format : MPEG
......

full

full

http://.../Salem183.avi

duration: 183min
format: AVI
.....

full

http://.../Salem112.avi

duration: 112min
format: AVI
.....

full

temporal:
begin:0
duration: 26

Figure 5.3: EMMO “Dracula Movies V1” (emoviesV 1)

Definition 30 [AllEncEnt] Let e ∈ Ω , then the operator
EncEnt : Ω × IN −→ P(Ω) is defined inductively over IN as follows:
EncEnt(e, 1) = Ne, and by assuming EncEnt(e, n) is defined, one defines
EncEnt(e, n+1) = {x∈ Ω | ∃y ∈ (EncEnt(e, n) ∩ Σ) ∧ x∈Ny}. The operator
AllEncEnt : Ω −→ P(Ω) is defined as AllEncEnt(e) =

⋃
i≥1 EncEnt(e, i).

By defining a specialized version of the operators EncEnt and AllEncEnt, the
operators EncEmm and AllEncEmm enable the direct access to the set of en-
capsulated EMMOs. For example, asking for all EMMOs recursively contained
within EMMO “Dracula Research”(Fig. 5.4), i.e.

AllEncEmm(eresearch) = emm(eresearch) ∪ emm(estudies) =
= {emovies, emoviesV3, estudies, emoviesV1},

yields the three EMMOs contained within the nodes of EMMO “Dracula Re-
search”, i.e. the EMMOs “Dracula Movies”, “Dracula Movies V3”, and “Dracula
Studies”, and additionally EMMO “Dracula Movies V1”, which belongs to the
nodes of EMMO “Dracula Studies”, and thus is recursively contained within
EMMO “Dracula Research”.

Definition 31 [AllEncEmm] Let e ∈ Ω , then the operator
EncEmm : Ω × IN −→ P(Σ) is defined inductively over IN as follows:
EncEmm(e, 1) = emm(e), and by assuming EncEnt(e, n) is defined, one de-
fines EncEmm(e, n+1) = {x ∈ Σ | ∃y ∈ EncEmm(e, n) ∧ x ∈ emm(y)}.
The operator AllEncEmm : Ω −→ P(Σ) is defined as AllEncEmm(e) =⋃

i≥1 EncEmm(e, i).

Moreover, the operator AllEncEmm can be used for accessing all EMMOs
stored within the database. We assume the existence of a database keeping all



44 CHAPTER 5. EMMA – THE EMMO ALGEBRA

Dracula Movies V3

essential extension

state

Researcher

Person
Elizabeth

Miller

Dracula Research

Dracula Movies 

Dracula Studies 

contradict

Figure 5.4: EMMO “Dracula Research”(eresearch)

EMMOs. As the query formulation is realized on an abstract level, it is not
important whether there exists one central or several distributed but connected
databases. Independent of its realization, we simply refer in the following to one
database. This database contains one EMMO called “Root” shown in Fig. 5.5,
which basically serves as container EMMO for all other EMMOs stored in the
database. In other words, every EMMO stored in the database, except EMMO
“Root”, is either contained or recursively contained in EMMO “Root”. Any
EMMO which is recursively contained within another EMMO, is not directly
contained within the nodes of EMMO “Root”, for instance, the EMMOs “Drac-
ula Movies”, “Dracula Movie V3”, and “Dracula Studies” contained within the
nodes of EMMO “Dracula Research” are contained in EMMO “Root” at second
level, but not at first level. As EMMO “Root” serves as container structure,
which can be compared to a database proxy, it is treated differently from the
other EMMOs. For instance, queries asking for all EMMOs with specific charac-
teristics using selection predicates (see Sect. 5.5), do not consider the selection of
EMMO “Root”. This is due to the fact, that applying the operator AllEncEmm
to EMMO “Root”, i.e.

AllEncEmm(eroot) = {emovies, emoviesV1, emoviesV2, emoviesV3, estudies, eresearch},
yields any EMMO being stored in the database, except EMMO “Root”.

5.2.4 Functional Aspect

EMMOs offer functions for handling their content. The operator operations can
be used for finding all operations attached to an EMMO, e.g. asking for all



5.2. EXTRACTION OPERATORS 45

Root

Dracula  Research

Dracula

Movies  V2

Dracula Movies

Dracula Studies  

Dracula Movies V3

Figure 5.5: EMMO “Root”(eroot)

operations of EMMO “Dracula Movies”(Fig. 5.1), i.e.

operations(emovies) = {(orender, frender), (opayment, fpayment)},

returns the two operations describing the EMMO’s rendering and payment func-
tionality. For accessing only the ontology objects labeling an EMMO’s functions,
the operator Designators can be used, e.g. the result set of the query

Designators(emovies) = {orender, opayment}

describes the two ontology objects “rendering” and “payment” indicating that
EMMO “Dracula Movies” offers a rendering and a payment functionality.

Definition 32 [operations and Designators] Let w ∈ Ω , then the operator
operations : Ω −→ P(OP ) is defined as operations(w) = Ow, and the operator
Designators : Ω −→ P(Θ) is defined as Designators(w) = {o ∈ Θ | ∃x ∈ Ow

o = π1(x)}.

The operator Implementations enables the access to all mathematical functions
specifying the implementations of an EMMO’s operations. For example, the
request for all mathematical functions attached to EMMO “Dracula Movies”,
i.e.

Implementations(emovies) = {frender, fpayment},

returns the functions frender and fpayment describing the implementation of the
rendering, and respectively, payment functionality of EMMO “Dracula Movies”.

By enabling the access to the mathematical function describing an EMMO’s
operation labeled by a specific designator, the operator ImpToName is more



46 CHAPTER 5. EMMA – THE EMMO ALGEBRA

specific than the operator Implementations. For example, one might ask for all
mathematical functions attached to EMMO “Dracula Movies” which specify a
rendering operation, i.e.

ImpToName(emovies, orender) = frender,

and receive frender implementing a rendering function.

Definition 33 [Implementations and ImpToName] Let w ∈ Ω , then the oper-
ator Implementations : Ω −→ P(FUN ) is defined as Implementations(w) =
{f ∈ FUN | ∃x ∈ Ow f = π2(x)} and the operator ImpToName : Ω × Θ −→
FUN as ImpToName(w, o) = {f ∈ FUN | ∃x ∈ Ow o = π1(x) ∧ f = π2(x)}.

For the execution of an EMMO’s functionality, the query algebra EMMA spec-
ifies the operator Execute. Applying the operator Execute to EMMO “Dracula
Movies”, the ontology object “rendering”, and the parameter HTML, i.e.

Execute(emovies, orender, HTML) = frender(emovies, HTML) = DraculaMovies.html,

returns an HTML-document representing the content of EMMO “Dracula
Movies”, e.g. an HTML-document containing a table with the rows being the
EMMO’s associations as illustrated in Fig. 5.6 and Fig. 5.7.

<html>

<body>

<h1>EMMO Dracula Movies</h1>

<table border="1">

<tr><th>Source</th>

<th>Association</th>

<th>Target</th></tr>

<tr><td>

<a href=".../Caligari.mpeg">The Cabinet of Dr.Caligari</a></td>

<td>Inspire</td>

<td><a href=".../Noseferatu.mpeg">Nosferatu</a></td></tr>

<tr><td><a href=".../Noseferatu.mpeg">Nosferatu</a></td>

<td>Inspire</td>

<td><a href=".../Salem183.avi">Salem's Lot</a></td>

</tr>

</table>

</body>

</html>

Figure 5.6: DraculaMovies.html

Figure 5.7: The presentation of DraculaMovies.html



5.2. EXTRACTION OPERATORS 47

Applying the operator Execute to the same EMMO and the same ontology
object, but with the parameter SMIL, i.e.

Execute(emovies, orender, SMIL) = frender(emovies, SMIL) = DraculaMovies.smil,

yields a SMIL-document about the EMMO’s content, e.g. a SMIL-document
sequentially representing the EMMO’s associations as illustrated in Fig. 5.8
and Fig. 5.9.

<smil>

<head><layout>

<root-layout height="200" width="620"/>

<region id="l" left="0" ..../> .......

</layout></head> 

<body> <seq>

<par end="60s" >

<video src="./Caligari.mpeg" type="video/mpeg" region="l"/>

<text src="./inspire.txt" type="text/plain" region="m"/>

<video src="./Nosferatu.mpeg" type="video/mpeg" region="r"/>

</par>

<par end="60s" >

<video src="./Nosferatu.mpeg" type="video/mpeg" region="l"/>

<text src="./inspire.txt" type="text/plain" region="m"/>

<video src="./Salem183.avi" type="video/mpeg" region="r"/>

</par>

</seq></body>

</smil>

Figure 5.8: DraculaMovies.smil

Figure 5.9: The presentation of DraculaMovies.smil

Definition 34 [Execute] Let e ∈ Ω , op ∈ OP , and s ∈ SEQ , then the operator
Execute : Ω ×OP × SEQ −→ VAL is defined as

Execute(e, op, s) =
{

π2(op)(e, s) if op ∈ Oe ∧ (e, s) ∈ D(π2(op))
∅ else

5.2.5 Versioning

Each entity describes a set of succeeding and a set of preceding versions. The
operator successors can be used for accessing all direct successors of an entity,



48 CHAPTER 5. EMMA – THE EMMO ALGEBRA

e.g. the query expression

successors(emovies) = {emoviesV1, emoviesV2}

returns EMMO “Dracula Movies V1” and EMMO “Dracula Movies V2”, the
two direct successor versions of EMMO “Dracula Movies” (see Fig. 5.10).

succpred

Dracula Movies  V1

pred succ

Dracula Movies  V2

Dracula Movies  V3

Dracula Movies

pred succ

Figure 5.10: EMMO “Dracula Movies”’s versions

Definition 35 [successors] Let w ∈ Ω , then the operator
successors : Ω −→ P(Ω) is defined as successors(w) = Sw.

For accessing all succeeding versions, the operator AllSuccessors is applied, e.g.
the query expression

AllSuccessors(emovies) = {emoviesV1, emoviesV2, emoviesV3}

returns again the two direct successors of EMMO “Dracula Movies”, and in
addition EMMO “Dracula Movies V3”, because it is specified as direct successor
of EMMO “Dracula Movies V1”.

The operator AllSuccessors is defined by means of induction over the natural
numbers IN and returns the set of all successors for a specific entity. The
operator’s definition is based on the operator successors serving as initial step
of the induction and on the operator Successors, which returns the set of all
nth-successors for a specific entity w and a natural number n . An entity w′ is
called nth successor of entity w, if there exists a sequence of n− 1 entities, with
each entity in the sequence representing the direct successor of its preceding
entity in the sequence.

Definition 36 [AllSuccessors] Let w ∈ Ω , then the operator
Successors : Ω × IN −→ P(Ω) is defined by induction over IN as follows:
Successors(w, 1) = successors(w), and by assuming Successors(w, n) is de-
fined, one defines Successors(w, n + 1) = {x ∈ Ω | ∃y ∈ Successors(w, n) ∧
x ∈ successors(y)}, and the operator AllSuccessors : Ω −→ P(Ω) as
AllSuccessors(w) =

⋃
i≥1 Successors(w, i).



5.3. NAVIGATIONAL OPERATORS 49

For the access to an entity’s preceding versions, EMMA also provides the oper-
ators predecessors, Predecessors, and AllPredecessors, which are defined analo-
gously.

Definition 37 [predecessors and AllPredecessors] Let w ∈ Ω , then the operator
predecessors : Ω −→ P(Ω) is defined as predecessors(w) = Pw; the operator
Predecessors : Ω × IN −→ P(Ω) is defined by induction over IN as follows:
Predecessors(w, 1) = predecessors(w), and by assuming Predecessors(w, n)
is defined, one defines Predecessors(w, n + 1) =
{x ∈ Ω | ∃y ∈ Predecessors(w, n) ∧ x ∈ predecessors(y)}, and
the operator AllPredecessors : Ω −→ P(Ω) as AllPredecessors(w) =⋃

i≥1 Predecessors(w, i).

5.3 Navigational Operators

An EMMO establishes a graph-like knowledge structure of entities with as-
sociations being labeled by ontology objects describing the edges in the graph
structure. The navigational operators provide means for traversing the semantic
graph structure of an EMMO. Navigation through an EMMO’s graph structure
is controlled by a navigation path defined as a set of sequences of ontology
objects. A mapping for each ontology object in the sequence to the correspond-
ing association of an EMMO defines the traversal path of the graph structure.
We have defined regular path expressions over ontology objects for describing
the syntax of a navigation path. The basic building blocks of regular path
expressions are ontology objects which can be modified and combined using
conventional regular expression operators.

Definition 38 [Regular path expression] Given a symbol set
S = {ε, , +, ∗, ?, |, –, (, )}, an alphabet Ψ = Θ ∪ S, and Ψ∗, the set of words
over Ψ (finite strings over elements of Ψ). Then, we define REG ⊆ Ψ∗ as the
smallest set with the following properties:

(1) ∀o ∈ Θ : o ∈ REG , (6) ∀r ∈ REG : r? ∈ REG ,
(2) ε ∈ REG , (7) ∀r ∈ REG : r+ ∈ REG ,
(3) ∈ REG , (8) ∀r ∈ REG : r∗ ∈ REG ,
(4) ∀r1, r2 ∈ REG : r1 |r2 ∈ REG , (9) ∀o ∈ Θ : o– ∈ REG ,
(5) ∀r1, r2 ∈ REG : r1r2 ∈ REG , (10) ∀r ∈ REG : (r) = r,

and denote REG as the set of regular path expressions over ontology objects.

Navigational operators take a regular path expression as input and specify
how this syntactic expression is applied to navigate the graph structure. For
example, for a given EMMO, start entity, and regular path expression, the nav-
igational operator JumpRight returns the set of all entities that can be reached
by traversing the navigation path in the right direction, i.e. by following asso-
ciations from source to target entities. Applying the operator JumpRight to
EMMO “Dracula Movies V1”(Fig. 5.3), the starting entity “The Cabinet of Dr.
Caligari”, and the regular path expression consisting of only one single ontology
object oinspire yields the logical media part representing the movie “Nosferatu”:

JumpRight(emoviesV1, lcaligari, oinspire) = {lnosferatu}.
In addition to one single ontology object, there exist two other primitive

regular path expressions:



50 CHAPTER 5. EMMA – THE EMMO ALGEBRA

• “ε” refers to the empty entity and is interpreted by the operation
JumpRight as absence of movement, e.g.:

JumpRight(emoviesV 1, lcaligari, ε) = {lcaligari}.

• “ ” refers to any arbitrary ontology object, e.g. (see Fig. 5.11):

JumpRight(emoviesV 2, lnosferatu, ) = {lsalem, lhelsing}.

Hooper

Director

Dracula Movies V2 inspire

rework

Salem�s Lot 

http://.../Salem183.avi

duration�

Movie

Nosferatu

http://../Nosferatu.mpeg

Movie

Murnau

Director

duration�

http://.../Salem112.avi

Van Helsing

http://../helsing.avi

filesize ...

Movie

Sommers

Director

....

....

....

....
format�..

Figure 5.11: EMMO “Dracula Movies V2” (emoviesV 2)

Regular path expressions may include two operators for the combination of
other regular path expressions:

• Regular path expressions can be concatenated to specify a longer naviga-
tion path, e.g.:

JumpRight(emoviesV 1, ldracula, oretelloinspire) = {lsalem}.

• “|” allows to combine two regular path expressions as alternative branches,
e.g.:

JumpRight(emoviesV 2, lnosferatu, oinspire |orework) = {lsalem, lhelsing}.

Finally, there exist four unary operators to modify regular path expressions:

• “?” added to a regular path expression describes its optionality, e.g.:

JumpRight(emoviesV 1, ldracula, oretelloinspire?) =
= JumpRight(emoviesV 1, ldracula, oretell |(oretelloinspire)) =
= {lnosferatu, lsalem}.



5.3. NAVIGATIONAL OPERATORS 51

• “+” defines an iteration of path expressions, which is interpreted as nav-
igation along the same regular path expression any number of times, but
at least once, e.g.:

JumpRight(emoviesV 1, lcaligari, oinspire+) = {lnosferatu, lsalem}.

• “∗” defines an iteration of path expressions, which is interpreted as navi-
gation along the same regular path expression any number of times, e.g.:

JumpRight(emoviesV 1, lcaligari, oinspire∗) =
= JumpRight(emoviesV 1, lcaligari, ε |oinspire+) =
= {lcaligari, lnosferatu, lsalem}.

• “−” allows to express the inversion of ontology objects, i.e. to follow as-
sociations from target to source entities, e.g.:

JumpRight(emoviesV 2, lhelsing, orework−) = {lnosferatu}.

Navigational operators provide the basis for the integration of ontological knowl-
edge into queries. For example, the transitivity of association types, such as
the transitivity of associations of type “inspire”, can be reflected by replacing
the navigation path oinspire with the navigation path oinspire+ (see example
above). Knowledge about inverse association types, e.g. association types “re-
work” and “is-reworked”, can be integrated within the queries as well, for in-
stance, by replacing the navigation path ois−reworked with the navigation path
ois−reworked |orework−, i.e.

JumpRight(emoviesV2, lhelsing, ois−reworked |orework−) = {lnosferatu}.

The integration of ontology knowledge within the authoring, management, and
retrieval of EMMOs will be discussed in full detail in Chapter 7.

The operator JumpRight, as formally defined below, takes two entities and
one regular path expression as input values. The first input entity specifies the
navigation space, the second entity the starting point of navigation, and the
regular path expression the set of navigation paths.

Definition 39 [JumpRight] For e, w ∈ Ω , and a regular path expression r ∈
REG , the operator JumpRight : Ω × Ω ×REG −→ P(Ω) is defined as follows:



52 CHAPTER 5. EMMA – THE EMMO ALGEBRA

(1) ∀r ∈ Θ : JumpRight(e, w, r) = {x ∈ Ne | ∃y y∈asso(e)∧
∧ r∈ types(y) ∧ w = sy ∧ x = ty}

(2) r = ε : JumpRight(e, w, ε) = {w |w ∈ Ne}
(3) r = : JumpRight(e, w, ) = {x ∈ Ne | ∃y ∈ asso(e)∧

∧w = sy ∧ x = ty}
(4) ∀r1, r2 ∈ REG : JumpRight(e, w, r1 |r2) =

⋃
x∈{r1,r2} JumpRight(e, w, x)

(5) ∀r1, r2 ∈ REG : JumpRight(e, w, r1r2) =
=

⋃
x∈JumpRight(e,w,r1)

JumpRight(e, x, r2)
(6) ∀r ∈ REG : JumpRight(e, w, r?) =

⋃
x∈{r,ε} JumpRight(e, w, x)

(7) ∀r ∈ REG : JumpRight(e, w, r+) =
⋃

n≥1 JRn(e, w, r) with
JRn(e, w, r)defined by induction over IN :

JR1(e, w, r) = JumpRight(e, w, r)
JRn(e, w, r) =

⋃
x∈JRn−1(e,w,r) JumpRight(e, x, r)

(8) ∀r ∈ REG : JumpRight(e, w, r∗) =
⋃

x∈{r+,ε} JumpRight(e, w, x)
(9) ∀o ∈ Θ : JumpRight(e, w, o–) = {x ∈ Ne | ∃y y∈asso(e)∧

∧ o∈ types(y) ∧ x = sy ∧ w = ty}.

The navigational operator JumpLeft is the symmetric counterpart to the
operator JumpRight, i.e. for a given EMMO, starting entity, and regular path
expression, the navigational operator JumpLeft returns the set of all entities
that can be reached by traversing the navigation path in the left direction, i.e.
by following associations from target to source entities. Applying the operator
JumpLeft to EMMO “Dracula Movies V2”, the starting entity “Salem’s Lot”,
and the regular path expression consisting of only one single ontology object
“oinspire” yields the logical media part representing the movie “Nosferatu”:

JumpLeft(emoviesV2, lsalem, oinspire) = {lnosferatu}.

Thus, the traversal along the opposite direction of a single association can also
be expressed with the navigational operator JumpLeft, e.g.

JumpLeft(emoviesV2, lhelsing, orework) = JumpRight(emoviesV2, lhelsing, orework−).

To be more precise, if the JumpLeft operator is applied to a regular path ex-
pression described by only one single ontology object, the query expression can
equivalently be expressed by a query expression using the JumpRight operator
and the inversion of the regular path expression, i.e. for all EMMOs e ∈ Σ ,
all ontology objects o ∈ Θ , and all entities w contained within the nodes of e
(w ∈ Ne), the following equation holds

JumpLeft(e, w, o) = JumpRight(e, w, o–).

As the semantic interpretation of the inversion of a regular path expression
specified by the operator JumpRight is limited to single ontology objects, the
operator JumpLeft is not only syntactic sugar for the algebra, but adds to its
expressivity.

Definition 40 [JumpLeft] For e, w ∈ Ω , and a regular path expression r ∈
REG , the operator JumpLeft : Ω × Ω ×REG −→ P(Ω) is defined as follows:



5.3. NAVIGATIONAL OPERATORS 53

(1) ∀r ∈ Θ : JumpLeft(e, w, r) = {x ∈ Ne | ∃y y∈asso(e)∧
∧ r∈ types(y) ∧ x = sy ∧ w = ty}

(2) r = ε : JumpLeft(e, w, ε) = {w |w ∈ Ne}
(3) r = : JumpLeft(e, w, ) = {x ∈ Ne | ∃y ∈ asso(e)∧

∧x = sy ∧ w = ty}
(4) ∀r1, r2 ∈ REG :JumpLeft(e, w, r1 |r2) =

⋃
x∈{r1,r2} JumpLeft(e, w, x)

(5) ∀r1, r2 ∈ REG :JumpLeft(e, w, r1r2) =
=

⋃
x∈JumpLeft(e,w,r1)

JumpLeft(e, x, r2)
(6) ∀r ∈ REG : JumpLeft(e, w, r?) =

⋃
x∈{r,ε} JumpLeft(e, w, x)

(7) ∀r ∈ REG : JumpLeft(e, w, r+) =
⋃

n≥1 JLn(e, w, r) with
JLn(e, w, r)defined by induction over IN :

JL1(e, w, r) = JumpLeft(e, w, r)
JLn(e, w, r) =

⋃
x∈JLn−1(e,w,r) JumpLeft(e, x, r)

(8) ∀r ∈ REG : JumpLeft(e, w, r∗) =
⋃

x∈{r+,ε} JumpLeft(e, w, x)
(9) ∀o ∈ Θ : JumpLeft(e, w, o–) = {x ∈ Ne | ∃y y∈asso(e)∧

∧ o∈ types(y) ∧ x = ty ∧ w = sy}.

The idea and design of the operator AnchorNodes is very similar to that
of the operators JumpRight and JumpLeft : Being applied to an EMMO and a
regular path expression, the operator AnchorNodes retrieves all pairs of entities
contained in the EMMO that can be connected by the regular path expression,
i.e. starting from the first entity and traversing the navigation path specified by
the regular path expression in the right direction by following associations from
source to target entities, yields the second entity. For example, asking for all
pairs of entities contained within EMMO “Dracula Movies V1” which can be
connected by the regular path expression oinspire+, i.e.

AnchorNodes(emoviesV1, oinspire+) = {(lcaligari, lnosferatu), (lnosferatu, lsalem),
(lcaligari, lsalem)},

yields the three entity pairs “The Cabinet of Dr. Caligari” and “Nosferatu”,
“Nosferatu” and “Salem’s Lot”, and “The Cabinet of Dr. Caligari” and “Salem’s
Lot”.

Definition 41 [AnchorNodes] For e ∈ Ω , and a regular path expression r ∈
REG , the operator AnchorNodes : Ω × REG −→ P(Ω × Ω) is defined as
follows:



54 CHAPTER 5. EMMA – THE EMMO ALGEBRA

(1) ∀r ∈ Θ : AnchorNodes(e, r) = {(x, y) ∈ Ne ×Ne | ∃a ∈asso(e)∧
∧ r ∈ types(a) ∧ x = sa ∧ y = ta}

(2) r = ε : AnchorNodes(e, ε) = {(x, x) |x ∈ Ne}
(3) r = : AnchorNodes(e, ) = {(x, y) ∈ Ne ×Ne |

∃a ∈ asso(e) ∧ x = sa ∧ y = ta}
(4) ∀r1, r2 ∈ REG : AnchorNodes(e, r1 |r2) =

⋃
x∈{r1,r2}AnchorNodes(e, x)

(5) ∀r1, r2 ∈ REG : AnchorNodes(e, r1r2) = {(x, y) ∈ Ne ×Ne | ∃z ∈ Ne

((x, z) ∈ AnchorNodes(e, r1)∧
∧(z, y) ∈ AnchorNodes(e, r2))}

(6) ∀r ∈ REG : AnchorNodes(e, r?) =
⋃

x∈{r,ε}AnchorNodes(e, x)
(7) ∀r ∈ REG : AnchorNodes(e, r+) =

⋃
n≥1 ANn(e, w, r) with

ANn(e, r)defined by induction over IN :
AN1(e, r) = AnchorNodes(e, r)
ANn(e, r) = {(x, y) | ∃z ∈ Ne ((x, z) ∈ ANn−1(e, r)

∧(z, y) ∈ AnchorNodes(e, r))}
(8) ∀r ∈ REG : AnchorNodes(e, r∗) =

⋃
x∈{r+,ε}AnchorNodes(e, x)

(9) ∀o ∈ Θ : AnchorNodes(e, o–) = {(π2(x), π1(x)) |
x ∈ AnchorNodes(e, o))}

5.4 Constructors

EMMA specifies five constructors for EMMOs, i.e. the operators Difference,
Intersection, Union, Nest, and Flatten. All the constructors take at least one
EMMO and possibly other parameters as input value, and return exactly one
EMMO as output value.

The Difference operator takes two EMMOs and a string value. It cre-
ates a new EMMO which is denoted by the specified string value. The new
EMMO’s nodes encompass all entities belonging to the first, but not the sec-
ond EMMO, and additionally, the source and target entities of each association
contained within the first EMMO. Applying the Difference operator to the suc-
cessor EMMO “Dracula Movies V1”(Fig. 5.3) and the original EMMO “Dracula
Movies”(Fig. 5.1), generates a new EMMO “Newcomers” (see Fig. 5.12) con-
sisting of the logical media parts describing the novel “Dracula” and the movie
“Nosferatu”, as well as their connecting “retell” association, i.e.

Difference(emoviesV1, emovies, “Newcomers”) = enewcomers

with nodes(enewcomers) = {ldracula, a(dr→no)2, lnosferatu}.

Definition 42 [Difference] Let e1, e2 ∈ Σ and s ∈ STR , then the operator
Difference : Σ × Σ × STR −→ Σ is defined as Difference(e1, e2, s) =
(oes , s, “emm”, ε, ε, ∅, ∅, ∅, Nes , ∅, ∅, ∅, ∅) with oes ∈ UUID and
Nes = nodes(e1)\nodes(e2) ∪ {x | ∃y∈asso(e1)\asso(e2) x = ty ∨ x = sy}.

Given two EMMOs, the operator Intersection enables the generation of a
new EMMO containing all nodes which belong to both EMMOs. Thus, it be-
comes possible to generate an EMMO representing all common nodes of, for
instance, two different successor versions of an arbitrary EMMO. For exam-
ple, applying the operator Intersection to the two direct successor versions of



5.4. CONSTRUCTORS 55

Newcomers

retell

Nosferatu

Movie

Murnau

Director

Dracula 
Novel

Stoker

Author

http://../Dracula.pdf

format: PDF
....

http://../Nosferatu.mpeg

format: MPEG
....

fullfull

Figure 5.12: EMMO “Newcomers”(enewcomers)

EMMO “Dracula Movies” – EMMO “Dracula Movies V1”(Fig. 5.3) and EMMO
“Dracula Movies V2”(Fig. 5.11), i.e.

Intersection(emoviesV1, emoviesV2, “Common Nodes”) = ecommonnodes

with nodes(ecommonnodes) = {lnosferatu, ano→sa, lsalem},

constructs a new EMMO containing the two logical media parts “Nosferatu”
and “Salem‘s Lot”, as well as their connecting association of type “inspire”(see
Fig. 5.13).

Hooper

Director

Common Nodes

inspire

Salem�s Lot 

http://.../Salem183.avi

Movie

http://.../Salem112.avi

Nosferatu

http://../Nosferatu.mpeg

Movie

Murnau

Director

format: MPEG
......

duration: 183min
format: AVI
.....

duration: 112min
format: AVI
.....

full

full
full

Figure 5.13: EMMO “Common Nodes”(ecommonnodes)

Definition 43 [Intersection] Let e1, e2 ∈ Σ and s ∈ STR , then the operator
Intersection : Σ × Σ × STR −→ Σ is defined as Intersection(e1, e2, s) =
(oes , s, “emm”, ε, ε, ∅, ∅, ∅, Nes , ∅, ∅, ∅, ∅) with oes ∈ UUID and
Nes = nodes(e1) ∩ nodes(e2).

The operator Union can be used for the generation of a new EMMO con-
taining all nodes of two specified EMMOs within its set of nodes. For instance,
applying the operator Union to the two direct successor versions of EMMO



56 CHAPTER 5. EMMA – THE EMMO ALGEBRA

“Dracula Movies”, i.e.

Union(emoviesV1, emoviesV2, “All Nodes”) = eallnodes

with nodes(eallnodes) = nodes(emoviesV1) ∪ nodes(emoviesV2) =
= {lcaligari, lnosferatu, lsalem, ldracula, lhelsing,

aca→no, ano→sa, a(dr→no)2, ano→he},

generates a new EMMO consisting of the five logical media parts describing the
novel “Dracula” and the movies “The Cabinet of Dr. Caligari”, “Nosferatu”,
“Salem’s Lot”, and “Van Helsing”, as well as of four connecting associations
(see Fig. 5.14).

Hooper

Director

All Nodes

inspire inspire

Salem�s Lot 

http://.../Salem183.avi

Movie

http://.../Salem112.avi

The Cabinet of 
Dr. Caligari

Movie

Wiene

Director

Nosferatu

http://../Nosferatu.mpeg

Movie
Murnau

Director

format: MPEG
......

duration: 183min
format: AVI
.....

duration: 112min
format: AVI
.....

rework

Van Helsing
Movie

Sommers

Director

http://../Caligari.mpeg

format : MPEG
......

http://../Helsing.avi

format : AVI
......

retell

Dracula 
Novel

Stoker

Author

http://../Dracula.pdf

format: PDF
....

full

full
full

full

full

full

Figure 5.14: EMMO “All Nodes”(eallnodes)

Definition 44 [Union] Let e1, e2 ∈ Σ and s ∈ STR , then the operator
Union : Σ × Σ × STR −→ Σ is defined as
Union(e1, e2, s) = (oes , s, “emm”, ε, ε, ∅, ∅, ∅, Nes , ∅, ∅, ∅, ∅) with oes ∈ UUID and
Nes = nodes(e1) ∪ nodes(e2).

The Nest operator maps the information stored within an association, i.e.
the triple consisting of source entity, association, and target entity, into an
EMMO knowledge structure. It takes an EMMO, a string value, and a set
of associations as input values and creates a new EMMO which is denoted
by the specified string value and includes a subgraph consisting of only the
specified associations together with their source and target entities. Applying
the Nest operator to EMMO “Dracula Studies” (Fig. 5.2) and to the associations
which were stated by “Elizabeth Miller”(i.e. the return value of the operation



5.4. CONSTRUCTORS 57

JumpRight(estudies, omiller, ostate)):

Nest(estudies, “Miller’s Statements”, JumpRight(estudies, omiller, ostate)) = emiller

with nodes(emiller) = {lvampyre, ava→dr, ldracula}
constructs a new EMMO consisting of three entities, i.e. the ancient text “Vam-
pyre”, the novel “Dracula”, and the connecting association of type “inspire” as
illustrated in Fig. 5.15.

Miller´s Statements

inspire

Vampyre

Short Story

1819

Creationdate

Dracula

Novel

Stoker

Author

Ancient Text

http://.../Vampyre.txt http://.../Dracula.pdf

format : PDF
......

fullfullformat : txt
......

Figure 5.15: EMMO ”Miller’s Statements” (emiller)

Definition 45 [Nest] Let e ∈ Σ , A ⊆ Λ, and s ∈ STR , then the operator
Nest : Σ × P(Λ)× STR −→ Σ is defined as
Nest(e,A, s) = (oes , “s”, “emm”, ε, ε, ∅, ∅, ∅, Nes , ∅, ∅, ∅, ∅) with oes ∈ UUID
and Nes = (A ∩ asso(e)) ∪ {x | ∃y∈A ∩ asso(e) x = ty ∨ x = sy}.
Finally, the operator Flatten generates a flattened EMMO, i.e. all recursively
contained higher level entities are added as first level entities to the nodes of the
input EMMO. For example, applying the operator Flatten to EMMO “Dracula
Studies” (Fig. 5.2) yields a new EMMO encapsulating all entities contained
within EMMO “Dracula Studies” unified with all entities contained within
EMMO “Dracula Movies V1”, the only EMMO being recursively contained
in EMMO “Dracula Studies”, i.e.

Flatten(estudies, “Flatten Studies”) = eflattenstudies

with nodes(eflattenstudies) = AllEncEnt(estudies) =
= nodes(estudies) ∪ nodes(emoviesV1) =
= {lvampyre, ldracula, lnosferatu, emoviesV1, omiller,

ava→dr, adr→no, adr→moV 1, ami→(va→dr),

lcaligari, lsalem, aca→no, ano→sa, a(dr→no)2}
generates the EMMO “Flatten Studies”, which describes within its set of nodes
(see Fig. 5.16) all the entities contained within EMMO “Dracula Studies”, and,
in addition, the two logical media parts “The Cabinet of Dr. Caligari” and



58 CHAPTER 5. EMMA – THE EMMO ALGEBRA

Nosferatu

Flatten Studies

inspire remake

source-for

Dracula

state

Elizabeth

Miller

Vampyre

Dracula Movies V1 Salem�s Lot 

The Cabinet of 
Dr. Caligari

......

inspire

inspire

retell

Figure 5.16: EMMO “Flatten Studies”(eflattenstudies)

“Salem’s Lot”, as well as three connecting associations taken from EMMO
“Dracula Movies V1”.

Definition 46 [Flatten] Let e ∈ Σ and s ∈ STR , then the operator
Flatten : Σ × STR −→ Σ is defined as
Flatten(e, s) = (oes , s, “emm”, ε, ε, ∅, ∅, ∅, Nes , ∅, ∅, ∅, ∅) with oes ∈ UUID
and Nes = AllEncEnt(e).

5.5 Selection Predicates

The selection predicates allow the selection of only those entities that satisfy
a specific condition. They basically use other operators in their definition to
create Boolean predicates. For instance, applying the predicate IsType (see
Def. 62) to the logical media part “Salem’s Lot” and the set containing one
ontology object “Movie” returns true:

IsType(lsalem, {omovie}) = true.

In the following subsections, we will introduce some basic predicates that
enable the combination of selection predicates and other predicates, then we
present the Extraction Selection Predicates operating on the result values of ex-
traction operators, and, finally, we define the Navigational Selection Predicates
that use navigational operators in their definitions.



5.5. SELECTION PREDICATES 59

5.5.1 Basic Predicates

The predicates introduced in this subsection, i.e. the Select operator, a set of
logical predicates, a set of comparison predicates, and a set of set predicates, pro-
vide means for combining the selection predicates with other EMMA operators
and for enhancing their expressivity.

The selection predicates can be combined with other operators by using
the generic Select operator, which takes a predicate and an arbitrary set as
input values, and returns all elements of the set that satisfy the condition of
the specified predicate. For instance, if we apply the Select operator to the
selection predicate IsType (see Def. 62) with the set consisting of the ontology
objects “Text”and “Novel” as fixed parameter value and to the set of all logical
media parts contained within EMMO “Dracula Studies” (Fig. 5.2), the result
set consists of the logical media part representing Stoker’s novel “Dracula”:

Select(IsType[$,{otext,onovel}], lmp(estudies)) = {ldracula}.

Definition 47 [Select] Let A ∈ SET and p ∈ PRE , then let the operator
Select : PRE × SET −→ SET be Select(p,A) = {x |x ∈ A ∩ D(p) ∧ p(x)}.

For enhancing their expressivity, selection predicates can be combined with
the logical predicates Not, And, Or, Exists, and Forall. The Boolean predicates
Not, And, and Or have the usual semantics. For example, one can ask for
all logical media parts within EMMO “Dracula Studies” which are not of type
“Novel”:

Select(Not(IsType[$,{onovel}], lmp(estudies))) = {lvampyre, lnosferatu}.

Definition 48 [Not, And, and Or] Let x, y ∈ BOO , then the predicate

Not : BOO −→ BOO is defined as Not(x) =
{

true if x = false
false else,

And : BOO × BOO −→ BOO as And(x, y) =
{

true if x ∧ y
false else,

and Or : BOO × BOO −→ BOO as Or(x, y) =
{

true if x ∨ y
false else.

Using the logical predicates Exists and Forall, one can evaluate whether at least
one or all elements of a specified set satisfy a specific condition. For example,
the selection of all EMMOs within the database (Fig. 5.5) which contain at least
one logical media part of type “Movie”, i.e.

Select(Exists[lmp($),IsType[$,{omovie}]]
,AllEncEmm(eroot))) =

= {emovies, emoviesV1, emoviesV2, emoviesV3, estudies},

yields the EMMOs “Dracula Movies”, “Dracula Movies V1”,“Dracula Movies
V2”,“Dracula Movies V3”, and “Dracula Studies”; whereas asking for all EM-
MOs containing only logical media parts which are of type “Movie”, i.e.

Select(Forall[lmp($),IsType[$,{omovie}]]
,AllEncEmm(eroot))) = {emovies}

returns EMMO “Dracula Movies”.



60 CHAPTER 5. EMMA – THE EMMO ALGEBRA

Definition 49 [Exists and Forall] Let A ∈ SET , and p ∈ PRE , then
the predicate Exists : SET × PRE −→ BOO is defined as

Exists(A, p) =
{

true if A 6= ∅ ∧ ∃x ∈ A p(x)
false else,

and the predicate Forall : SET × PRE −→ BOO as

Forall(A, p) =
{

true if A 6= ∅ ∧ ∀x ∈ A p(x)
false else.

The comparison predicates Less, LessEq, Greater, GreaterEq, and Equal pro-
vide means for comparing data values. Through the combination with selection
predicates and the Select operator, they facilitate the precise specification of
the condition that forms the basis for the selection. Thus, for example, selec-
tion predicates can be used for the selection of all logical media parts within
EMMO “Dracula Movies”(see Fig. 5.1) that are associated with a media profile
describing media data with a maximum duration of 60 minutes, i.e. the query
operation

Select(HasMediaProfileValue[$,“duration”,LessEq[$,60]]
, lmp(emovies)) = {lcaligari},

yields the logical media part “The Cabinet of Dr. Caligari” because it has one
media profile which contains the attribute “duration” with value 26, i.e. a value
which is smaller than 60, in its metadata.

Definition 50 [Less, LessEq, Greater, GreaterEq, and Equal] Let x, y ∈ IR,
then the predicate Less : IR× IR −→ BOO is defined as

Less(x, y) =
{

true if x < y
false else,

the predicate LessEq : IR× IR −→ BOO as

LessEq(x, y) =
{

true if x ≤ y
false else,

the predicate Greater : IR× IR −→ BOO as

Greater(x, y) =
{

true if x > y
false else,

the predicate GreaterEq : IR× IR −→ BOO as

GreaterEq(x, y) =
{

true if x ≥ y
false else,

and the predicate Equal : VAL × VAL −→ BOO as

Equal(a, b) =
{

true if a = b
false else,

.

The set operators Subset, SubsetEq, Superset, SupersetEq, Contains, and
Empty provide means for the handling of sets and their data values. The first
four predicates compare two sets. Thus, for example, the operator SubsetEq
can be used for retrieving all successor versions of EMMO “Dracula Movies”
that encompass all logical media parts contained within the nodes of EMMO
“Dracula Movies”, i.e.

Select(SubsetEq[lmp(emovies),lmp($)],AllSuccessors(emovie)) = {emoviesV1, emoviesV3}.



5.5. SELECTION PREDICATES 61

Definition 51 [Subset, SubsetEq, Superset, and SupersetEq] Let A,B ∈ SET ,
then the predicate Subset : SET × SET −→ BOO is defined as

Subset(A,B) =
{

true if A ⊂ B
false else,

the predicate SubsetEq : SET × SET −→ BOO as

SubsetEq(A,B) =
{

true if A ⊆ B
false else,

the predicate Superset : SET × SET −→ BOO as

Superset(A,B) =
{

true if A ⊃ B
false else,

and the predicate SupersetEq : SET × SET −→ BOO as

SupersetEq(A,B) =
{

true if A ⊇ B
false else.

The predicate Contains checks whether a specified object is contained in a
specified set, and the predicate Empty whether the specified set is an empty
set.

Definition 52 [Contains and Empty] Let x ∈ VAL , and A ∈ SET then the
predicate Contains : VAL × SET −→ BOO is defined as

Contains(x,A) =
{

true if x ∈ A
false else,

and the predicate Empty : SET −→ BOO as

Empty(A) =
{

true if A = ∅
false else

5.5.2 Extraction Selection Predicates

Being based on the return values of extraction operators, the list of extraction
selection predicates has almost the same length as the list of extraction opera-
tors. The information which can be accessed by the extraction operators is used
for the selection of entities.

General Properties

The predicate HasOid enables the access to an entity with a specific oid within
an EMMO. For example, asking for the entity with OID “l9462” within the
nodes of EMMO “Dracula Movies” (see Fig. 5.1), i.e.

Select(HasOid[$,“l9462”],nodes(emovies)) = {lnosferatu},
yields the logical media part “Nosferatu”.

Definition 53 [HasOid] Let w ∈ Ω , and s ∈ UUID , then the predicate
HasOid : Ω ×UUID −→ BOO is defined as HasOid(w, s) = Equal(oid(w), s).

The predicate HasName identifies entities with a specific name, for example,
asking for the entity named “The Cabinet of Dr. Caligari” within EMMO “Drac-
ula Movies” (see Fig. 5.1), i.e.

Select(HasName
[$,“The Cabinet of Dr. Caligari”]

,nodes(emovies)) = {lcaligari}
returns the corresponding logical media part.



62 CHAPTER 5. EMMA – THE EMMO ALGEBRA

Definition 54 [HasName] Let w ∈ Ω , and s ∈ STR , then the predi-
cate HasName : Ω × STR −→ BOO is defined as HasName(w, s) =
Equal(name(w), s).

The predicate IsOfKind can be used for selecting all entities of a specific kind.
For instance, requesting all logical media parts within EMMO “Dracula Movie”,
i.e.

Select(IsOfKind
[$,“lmp”]

,nodes(emovies)) = {lcaligari, lnosferatu, lsalem},

yields the three logical media parts contained within EMMO “Dracula Movies”.

Definition 55 [IsOfKind] Let w ∈ Ω ,
and s ∈ {“emm”, “asso”, “ont”, “lmp”}, then the predicate
IsOfKind : Ω × {“emm”, “asso”, “ont”, “lmp”} −→ BOO is defined as
IsOfKind(w, s) = Equal(kind(w), s).

The predicate IsOfKind enables to define the operator AllEncEmm (see Def. 31)
by using only EMMA operators, i.e. for all EMMOs e holds the following equa-
tion:

AllEncEmm(e) = Select(IsOfKind
[$,“emm”]

,AllEncEnt(e)).

The predicate HasFeature takes three input parameter – an entity w, a string
value s, and a predicate p – and returns true, if the entity w contains within its
features set a name-value pair such that the name is equal to s and the value
fulfils the condition described by the specified predicate p. For example, using
the predicate HasFeature one can access entities that are described by a specific
timestamp information, e.g. the query expression

Select(HasFeature[$,“Timestamp”,Equal
[$,“200412230056”]

],nodes(emovies)) =

= {lcaligari}

returns the logical media part “The Cabinet of Dr. Caligari”.

Definition 56 [HasFeature] Let w ∈ Ω , s ∈ STR , and p ∈ PRE , then the
predicate HasFeature : Ω × STR × PRE −→ BOO is defined as

HasFeature(w, s, p) =





true if ∃k ∈ features(w)
(π1(k) = s ∧ p(π2(k)))

false else

Media Aspect

The predicate HasMediaProfileValue enables the selection of logical media parts
associated with media data being described by some specific metadata. The
predicate takes three input parameters, i.e. an entity w, a string value s, and
a predicate p, and returns true, if the entity w contains a media profile with
a set of metadata including a name-value pair, with the name being equal to
s and the value satisfying the condition described by the specified predicate p.
For example, the predicate HasMediaProfileValue can be used for identifying
all logical media parts within EMMO “Dracula Movies”(see Fig. 5.1) that are



5.5. SELECTION PREDICATES 63

associated with a media profile describing media data in AVI format, i.e. the
query expression

Select(HasMediaProfileValue[$,“format”,Equal[$,“AVI”]]
, lmp(emovies)) = {lsalem},

yields the logical media part “Salem’s Lot”.

Definition 57 [HasMediaProfileValue] Let w ∈ Ω , s ∈ STR , and p ∈ PRE ,
then HasMediaProfileV alue : Ω × STR × PRE −→ BOO is defined as

HasMediaProfileV alue(w, s, p) =





true if ∃c ∈ Cw

∃k ∈ Metadata(MediaProfile(c))
(π1(k) = s ∧ p(π2(k)))

false else

The predicate HasMediaInstance enables the search for logical media parts
that describe a specific media object. The predicate takes two input parameters,
i.e. the entity w and the media instance d – which is either specified as raw media
data or as uniform resource identifier. It returns true, if w is associated with
at least one media instance equal to d, i.e. w has a connector specifying the
media instance d in its media profile. For instance, a user has already identified
the location of the media data he is interested in, i.e. the media instance being
located at “www.../Salem183.avi”, and now intends to search for all logical media
parts describing this media instance. By executing the query expression

Select(HasMediaInstance[$,“www.../Salem183.avi”], AllEncEnt(eroot)) = {lsalem}
he receives the logical media part “Salem’s Lot” as answer.

Definition 58 [HasMediaInstance] Let w ∈ Ω , and d ∈ URI ∪ RMD , then
the predicate HasMediaInstance : Ω × URI ∪ RMD −→ BOO is defined as

HasMediaInstance(w, d) =





true if ∃c ∈ Cw

d = MediaInstance(MediaProfile(c))
false else

The predicate HasMediaSelectorKind enables the search for logical media parts
which describe specific parts of media data. The predicate takes two input
parameters, i.e. the entity w and a string value k, and returns true, if w is a
logical media part with a media selector of kind k. For example, asking for all
logical media parts focusing on the description of segments of movies, i.e.

Select(HasMediaSelectorKind[$,“temporal”],Select(IsType[$,{omovie}],nodes(emovies))) =
= {lcaligari},
yields the logical media part “The Cabinet of Dr. Caligari” specifying a temporal
selection of the first 26 minutes from the movie.

Definition 59 [HasMediaSelectorKind] Let w ∈ Ω ,
and k ∈ {“spatial”, “textual”, “temporal”, “full”}, then the predicate
HasMediaSelectorKind : Ω × {“spatial”, “textual”, “temporal”, “full”} −→
BOO is defined as

HasMediaSelectorKind(w, k) =





true if ∃c ∈ Cw

k = Kind(MediaSelector(c))
false else



64 CHAPTER 5. EMMA – THE EMMO ALGEBRA

Semantic Aspect

The predicate ContainsNode can be used for identifying EMMOs that contain
at least one entity from a specified set of entities in its nodes. The predicate
specifies an entity w and a set of entities W as input values, and returns true, if
at least one entity of W belongs to the nodes of w. For example, one can search
for all EMMOs in the database (Fig. 5.5) which contain at least one entity from
the nodes of EMMO “Miller’s Statements” (Fig. 5.15), i.e.

Select(ContainsNode[$,nodes(emiller)],AllEncEmm(eroot)) =
= {estudies, emoviesV1, emoviesV3}

returns the EMMOs “Dracula Studies”,“Dracula Movies V1”, and “Dracula
Movies V3”.

Definition 60 [ContainsNode] Let w ∈ Ω , W ∈ P(Ω), then the predicate
ContainsNode : Ω × P(Ω) −→ BOO is defined as

ContainsNode(w, W ) =
{

true if ∃x ∈ (W ∩Nw)
false else

The predicate ContainsAllNodes enables to select EMMOs by subgraph
matching, i.e. the predicate renders it possible to search for EMMOs containing
all entities from a specified set of entities. The predicate specifies an entity w
and a set of entities W as input values, and returns true, if all entities of W are
contained within the nodes of w. For example, all EMMOs within the database
(Fig. 5.5) that contain all nodes from EMMO “Dracula Movies”(Fig. 5.1) can
be retrieved by the query expression

Select(ContainsAllNodes[$,nodes(emovies)],AllEncEmm(eroot)) =
= {emovies, emoviesV1, emoviesV3}.

Definition 61 [ContainsAllNodes] Let w ∈ Ω , W ∈ P(Ω), then the predicate
ContainsAllNodes : Ω ×P(Ω) −→ BOO is defined as

ContainsAllNodes(w, W ) =
{

true if W ⊆ Nw

false else

The predicate IsType, already used as example in the beginning of this sec-
tion, can be applied to select entities of a specific type, i.e. entities classified
by specific ontology objects. The predicate specifies an entity w and a set of
entities O as input values, and returns true, if at least one entity in O is of kind
ontology object and contained within the types set of w.

Definition 62 [IsType] Let w ∈ Ω , and O ⊆ Ω , then the predicate
IsType : Ω × P(Ω) −→ BOO is defined as

IsType(w, O) =
{

true if ∃o∈O o∈ types(w)
false else

Similar to the predicate IsType, the predicate EntityContains focuses on the
identification of entities of a specific type. The difference between the two
predicates is that predicate EntityContains identifies the container units, i.e.
EMMOs, which contain at least one entity of a specific type. The predicate
specifies an entity e and a set of entities O as input values. It returns true, if e



5.5. SELECTION PREDICATES 65

is an EMMO which contains at least one ontology object in O within the types
set of at least one entity from its nodes.

For example, the search for all EMMOs within the database containing en-
tities of type “Novel” can be answered by executing the query expression

Select(EntityContains[$,{onovel}], AllEncEmm(eroot)) =
= {estudies, emoviesV1, emoviesV3}.

Definition 63 [EntityContains] Let e ∈ Ω , and O ⊆ Ω , then the predicate
EntityContains : Ω × P(Ω) −→ BOO is defined as

EntityContains(e,O) =
{

true if ∃x∈Ne ∃o∈O o∈ types(x)
false else

Furthermore, EMMA defines two selection predicates dealing with an en-
tity’s attribute values. The predicate HasAttribute enables the selection of en-
tities that possess a specific attribute, e.g. the search for all entities recursively
contained within EMMO “Dracula Studies” (Fig. 5.2) which have a “Director”
attribute can be expressed by the query expression

Select(HasAttribute[$,{odirector}],AllEncEnt(estudies)) = {lcaligari, lnosferatu, lsalem}.
The predicate HasAttV alue is more specific than the predicate

HasAttribute, because it enables the selection of entities that possess a specific
attribute-value pair, e.g. the request for all entities recursively contained within
the nodes of EMMO “Dracula Studies”(Fig. 5.2) specifying a “Creationdate”
attribute with a value that is smaller than 1950 can be described by

Select(HasAttValue[$,{ocreationdate},Less[$,1950]]
,nodes(estudies)) = {lvampyre}.

Definition 64 [HasAttribute and HasAttributeValue] Let w ∈ Ω , O ⊆ Ω , and
p ∈ PRE , then the predicate HasAttribute : Ω ×P(Ω) −→ BOO is defined as

HasAttribute(w, O) =
{

true if ∃x ∈ attributes(w)∃o ∈ O o = π1(x)
false else,

and the predicate HasAttV alue : Ω ×P(Ω)× PRE −→ BOO as

HasAttV alue(w, O, p) =





true if ∃x ∈ attributes(w)∃o ∈ O
(o = π1(x) ∧ p(π2(x)))

false else

Functional Aspect

The query algebra also provides selection predicates for identifying entities that
satisfy specific conditions with regard to their functional aspect. The predicate
HasDesignator enables to select all EMMOs with a specific functionality, e.g.
asking for all EMMOs in the database (Fig. 5.5) with a rendering function, i.e.

Select(HasDesignator[$,{orender}],AllEncEmm(eroot)) = {emovies, estudies},
returns the two EMMOs “Dracula Movies” and “Dracula Studies”.

Definition 65 [HasDesignator] Let w ∈ Ω and O ⊆ Ω , then the predicate
HasDesignator : Ω × P(Ω) −→ BOO is defined as

HasDesignator(w, O) =
{

true if ∃o ∈ O o ∈ Designators(w)
false else



66 CHAPTER 5. EMMA – THE EMMO ALGEBRA

Versioning

The predicate ContainsDirectSuccessor enables the selection of EMMOs that
contain the direct successor of a specific entity. It specifies an entity w and a set
of entities W as input parameters and returns true if at least one entity of W
is a direct successor of w. For example, asking for all EMMOs in the database
(Fig. 5.5) that contain a direct successor of EMMO “Dracula Movies” (Fig. 5.1)
within its nodes, i.e.

Select(ContainsDirectSuccessor[emovies,nodes($)],AllEncEmm(eroot)) = {estudies},

yields EMMO “Dracula Studies”, as it contains EMMO “Dracula Movies V1”
within its nodes.

For accessing all EMMOs that contain any successor of a specified EMMO,
the predicate ContainsSuccessor can be used. It specifies an entity w and a set
of entities W as input parameters and returns true if at least one entity in W
is an arbitrary successor of w. For example,

Select(ContainsSuccessor[emovies,nodes($)],AllEncEmm(eroot)) = {estudies, eresearch}

returns again EMMO “Dracula Studies” and, additionally, EMMO “Dracula
Research” containing EMMO “Dracula Movies V3” within its nodes.

Definition 66 [ContainsDirectSuccessor and ContainsSuccessor] Let w ∈ Ω
and W ∈ P(Ω), then the predicate
ContainsDirectSuccessor : Ω × P(Ω) −→ BOO is defined as

ContainsDirectSuccessor(w, W ) =
{

true if ∃x ∈ (W ∩ Sw)
false else,

and the predicate ContainsSuccessor : Ω ×P(Ω) −→ BOO as

ContainsSuccessor(w, W ) =
{

true if ∃x ∈ (W ∩AllSuccessors(w))
false else

The symmetric counterparts of the predicates ContainsDirectSuccessor and
ContainsSuccessor, the predicates ContainsDirectPredecessor and ContainsPre-
decessor, are defined analogously:

Definition 67 [ContainsDirectPredecessor and ContainsPredecessor] Let
w ∈ Ω and W ∈ P(Ω), then the predicate
ContainsDirectPredecessor : Ω × P(Ω) −→ BOO is defined as

ContainsDirectPredecessor(w,W ) =
{

true if ∃x ∈ (W ∩ Pw)
false else

and the predicate ContainsPredecessor : Ω × P(Ω) −→ BOO as

ContainsPredecessor(w,W ) =
{

true if ∃x ∈ (W ∩AllPredecessors(w))
false else

5.5.3 Navigational Selection Predicates

The selection predicate IsRightOf is based on the navigational predicate
JumpRight and can be used for selecting end points of a specific navigation
path within an EMMO. The predicate IsRightOf takes four input values, i.e.
three entities e, w1, and w2, and a regular path expression r ∈ REG . It returns



5.5. SELECTION PREDICATES 67

true, if e is an EMMO containing w1 and w2 within its nodes, such that the nav-
igation along r in the right direction and with starting point w1 yields w2. For
example, asking for all entities within EMMO “Dracula Movies V1”(Fig. 5.3)
which can be reached by navigating in the right direction starting from logical
media part “The Cabinet of Dr. Caligari” along one or several associations of
type “inspire”, i.e.

Select(IsRightOf[emoviesV1,lcaligari,$,oinspire+],nodes(emoviesV1)) = {lnosferatu, lsalem},
yields the two logical media parts “Nosferatu” and “Salem’s Lot”.

The operator Targets (see Def. 29) enables the identification of all entities
contained within an EMMO which are specified as target entity of an association.
As the set of target entities within an EMMO is equal to the set of all possible
end points which can be reached by navigating in the right direction, using the
predicate IsRightOf in combination with the operator Targets helps to reduce
the query response time. Within the above query expression, the second input
parameter of the Select operator is described by the query expression

nodes(emoviesV1) = {lcaligari, lnosferatu, lsalem, ldracula, aca→no, ano→sa, a(dr→no)2}.
By replacing this input parameter by the query expression

Targets(emoviesV1) = {lnosferatu, lsalem, ldracula},
query execution time can be reduced, because only entities which are specified
as target entities of associations have to be tested as possible end points of
navigation. The potential of improving the query performance depends on the
size and the structure of the EMMOs.

Additionally, the predicate IsRightOf provides means for the selection of
EMMOs containing two specific entities being connected by a specific navigation
path. For example, the request for all EMMOs within the database (Fig. 5.5)
that contain the two logical media parts “The Cabinet of Dr. Caligari” and
“Salem’s Lot” being connected by one or several associations of type “inspire”
can be answered by the query expression

Select(IsRightOf[$,lcaligari,lsalem,oinspire+],AllEncEmm(eroot)) =
= {emovies, emoviesV1, emoviesV3}.

Thus, the predicate IsRightOf provides the basis for the selection of EMMOs
that contain a specific set of sequences of associations connecting a specific
pair of entities, i.e. a pair of entities representing the starting and end point
of navigation. EMMOs are modeled as graph structure of connected entities.
The use of the And predicate enables the selection of EMMOs that contain not
only one, but several sets of sequences of associations. Therefore, the predicate
IsRightOf can be used for subgraph matching. For instance, asking for all
EMMOs in the database (Fig. 5.5) that contain the two logical media parts
“The Cabinet of Dr. Caligari” and “Salem’s Lot” being connected by one or
several associations of type “inspire”, and the two logical media parts “Dracula”
and “Nosferatu” being connected by an association of type “retell”, i.e.

Select(And(IsRightOf[$,lcaligari,lsalem,oinspire+], IsRightOf[$,ldracula,lnosferatu,oretell]
),

AllEncEmm(eroot)) =
= {emoviesV1, emoviesV3},



68 CHAPTER 5. EMMA – THE EMMO ALGEBRA

yields the two EMMOs “Dracula Movies V1” and “Dracula Movies V3”.

Definition 68 [IsRightOf] Let e, w1, w2 ∈ Ω and r ∈ REG , then the predicate
IsRightOf : Ω × Ω × Ω × REG −→ BOO is defined as

IsRightOf(e, w1, w2, r) =
{

true if w2 ∈ JumpRight(e, w1, r)
false else

The symmetric counterpart of the predicate IsRightOf, the predicate
IsLeftOf, provides means to identify EMMOs by specifying a navigation path
for the traversal of associations in the left direction, i.e. from target to source
entity. Thus, any query operation using the predicate IsRightOf can be equiv-
alently expressed by a query operation described by the predicate IsLeftOf, i.e.
for all logical media parts l1 and l2 and for all ontology objects o1, o2, . . . on, the
following equation holds:

Select(IsRightOf[$,l1,l2,o1o2...on],AllEncEmm(eroot)) =
Select(IsLeftOf[$,l2,l1,on...o2o1],AllEncEmm(eroot)).

Thus, the predicate IsLeftOf can be used for selecting the starting points of
a specific navigation path within an EMMO. Similar to the operator Targets,
the operator Sources helps to identify all entities within an EMMO which are
source entity of an association. Therefore, again, using the predicate IsLeftOf
in combination with the operator Sources reduces query execution time.

Definition 69 [IsLeftOf] Let e, w1, w2 ∈ Ω and r ∈ REG ; then the predicate
IsLeftOf : Ω × Ω × Ω × REG −→ BOO is defined as

IsLeftOf(e, w1, w2, r) =
{

true if w2 ∈ JumpLeft(e, w1, r)
false else

The predicate ContainsExpr is based on the operator AnchorNodes and
can be used for selecting EMMOs that contain entities which are connected by a
specific sequence of associations described by a regular path expression. It takes
an entity e and a regular path expression r as input value, and returns true, if e
is an EMMO which contains a pair of entities within its set of nodes, such that
the pair’s second entity can be reached by starting from the pair’s first entity
and traversing the navigation path r in the right direction. For instance, the
request for all EMMOs in the database (Fig. 5.5) that contain two entities which
are connected by a sequence of one or several associations of type “inspire” can
be answered by the query expression

Select(ContainsExpr[$,oinspire+],AllEncEmm(eroot)) =
= {emovies, emoviesV1, emoviesV2, emoviesV3, estudies}.

Definition 70 [ContainsExpr] Let e ∈ Ω and r ∈ REG , then the predicate
ContainsExpr : Ω × REG −→ BOO is defined as

ContainsExpr(e, r) =
{

true if ∃w1, w2 ∈ Ne (w1, w2) ∈ AnchorNodes(e, r)
false else



5.6. JOIN OPERATOR 69

5.6 Join Operator

The Join operator renders it possible to extend queries to multiple EMMOs.
It specifies how to relate n sets of entities, possibly originating from different
EMMOS, within a query. The Join operator takes n entity sets, n operators,
and one predicate as input values. We compute the Cartesian product of the
n entity sets and select only those tuples that satisfy the predicate after ap-
plying the n operators to the n entities. The result set of tuples is projected
onto the first entry. For example, asking for all successors of EMMO “Dracula
Movies”(Fig. 5.1) which constitute an extended version of the original version,
i.e. asking for all succeeding EMMOs which at least contain the entities from
the original EMMO “Dracula Movie”, corresponds to the query expression

Join(AllSuccessors(emovies), {emovies},nodes,nodes,SupersetEq) =
= {emoviesV1, emoviesV3}

and yields the two succeeding EMMOs “Dracula Movies V1”(Fig. 5.3) and
“Dracula Movies V3” (Fig. 5.17). EMMO “Dracula Movies V1” includes –
in addition to the entities already contained within EMMO “Dracula Movies”
– two additional entities, i.e. the “retell” association with the logical media
part “Dracula” as source entity. EMMO “Dracula Movies V3” contains all the
entities from EMMO “Dracula Movies V1”, as well as the “similar audience”
association with the logical media part “A Return to Salem’s Lot” as target
entity.

Hooper

Director

Dracula Movies V3

inspire inspire

similar audience

retell

Salem�s Lot 

Movie
The Cabinet of 

Dr. Caligari

http://../Caligari.mpeg

format�

Movie

Wiene

Director

Nosferatu

http://../Nosferatu.mpeg

format....

Movie

Murnau

Director

A Return to 
Salem�s Lot 

http://../ReturnSalem.avi

format...

Movie

Cohen

Director

Dracula 

http://../dracula.pdf

filesize��

Novel

Stoker

Author

http://.../Salem183.avi

duration: 183min
format: AVI
.....

full

....

....

........

http://.../Salem112.avi

....duration �

Figure 5.17: EMMO “Dracula Movies V3” (emoviesV 3)

Definition 71 [Join] Let i ∈ I = {1, . . . n}, n ∈ IN,Wi ⊆ Ω , fi ∈ FUN and
p ∈ PRE , then the operator Join :

∏
i∈I P(Ω) ×∏

i∈I FUN × PRE −→ SET



70 CHAPTER 5. EMMA – THE EMMO ALGEBRA

is defined as Join(W1, . . . ,Wn, f1, . . . , fn, p) = {π1(w1, . . . , wn) | ∀i∈I
(wi ∈ Wi ∧ fi ∈ FUNWi ∧ p ∈ PREQ

i∈I R(fi) ∧ p(f1(w1), . . . , fn(wn)))}.

The Join operator is a generalization of the Select operator accounting for
constraints defined on not only one but several entity sets. By defining the
identity function id, i.e. id(x) = x, any Select operation can be expressed by the
Join operator taking only one set, one operator, and one predicate p as input
value, e.g.

Join(nodes(estudies), id, p) = Select(p,nodes(estudies)).

5.7 Summary

In this chapter, we have introduced the formal basis of the query algebra EMMA,
which enables the efficient retrieval of the knowledge represented by EMMOs.
EMMA’s query operators can be divided into five general classes: the extrac-
tion operators provide means to query an EMMO’s three aspects as well as its
versioning information. The navigational operators allow the navigation along
an EMMO’s semantic graph structure and also facilitate the integration of on-
tological knowledge. The constructors make it possible to modify, combine, and
create new EMMOs. The selection predicates enable the selection of only those
entities fulfilling a specific characteristic, and finally, the join operator relates
several entities or EMMOs with a join condition. Tables 5.1 and 5.2 summarize
the contribution of the EMMA operators and predicates introduced in the pre-
ceding sections towards satisfying the requirements of an EMMO query algebra
as described in Sect. 4.1.

Table 5.1: EMMA operators addressing the EMMA requirements

g

p
ro
p
e
rt
ie
s

e
n
e
ra
l

n
d

a
n
ip
u
l

f
o
n
to
lo
g
ic

m
e
d
ia

a
s
p
e
c
t

s
e
m
a
n
ti
c

a
s
p
e
c
t

fu
n
c
ti
o
n
a
l

a
s
p
e
c
t

v
e
rs
io
n
in
g

o
rt
h
o
g
o
n
a
li
ty

jo
in
s

c
o
n
s
tr
u
c
ti
o
n

a

m
a
ti
o
n

p
re
s
e
n
ta
ti
o
n

o
a
l

k
n
o
w
le
d
g
e

oid

name

kind

features

lmp

connectors

MediaProfile

MediaProfiles

Media Instance

Metadata

MediaSelector

Kind

Parameter

types

attributes

asso

source

target

nodes

emm

ont

Sources

Targets

AllEncEnt

AllEncEmm

operations

Designators

Implementations

ImpToName

Execute

successors

predecessors

AllSuccessors

AllPredecessors

Select

Apply

Elements

Nest

Join Difference

Union

Intersection

Nest

Flatten

types

JumpRight

JumpLeft

AnchorNodes

EMMA’s operators provide the access to all information and aspects stored
within EMMOs and are based on a precise semantics. EMMA features orthogo-
nal and arbitrarily combinable operators. Thus, EMMA offers a formal basis for
query rewriting and optimization. Moreover, EMMA operators render it possi-
ble to integrate ontological knowledge within queries, such as supertype/subtype



5.7. SUMMARY 71

Table 5.2: EMMA predicates addressing the EMMA requirements

g
e

n
e

ra
l

p
ro

p
e

rt
ie

s
 

m
e

d
ia

  

a
s

p
e

c
t

s
e

m
a

n
ti

c

a
s

p
e

c
t 

fu
n

c
ti

o
n

a
l 
 

a
s

p
e

c
t

v
e

rs
io

n
in

g

o
rt

h
o

g
o

n
a

li
ty

s
u

b
g

ra
p

h
 

m
a
tc

h
in

g
 

p
re

s
e

n
ta

ti
o

n
 

o
f 

 o
n

to
lo

g
ic

a
l 

k
n

o
w

le
d

g
e

HasOid 

HasName 

IsOfKind

HasFeature 

HasMediaProfileValue 

HasMediaInstance 

HasMediaSelectorKind 

ContainsNode 

ContainsAllNodes

IsType

EntityContains 

HasAttribute 

HasAttValue 

HasDesignator ContainsDirectSuccessor 

ContainsSuccessor 

ContainsDirectPredecessor

ContainsPredecessor 

Not

And

Or

Exists 

Forall

Less/LessEq 

Greater/GreaterEq 

Equal

Subset/SubsetEq 

Superset/SupersetEq

Contains 

Empty

ContainsAllNodes IsType

IsRightOf 

IsLeftOf 

ContainsExpr 

relationships, transitive or inverse association types. In the following two chap-
ters, we will discuss the issue of integrating ontological knowledge within the
authoring, management, and retrieval of EMMOs in more detail.



72 CHAPTER 5. EMMA – THE EMMO ALGEBRA



Chapter 6

Towards the Integration of
Ontological Knowledge

Within each application scenario, there exists a shared and common understand-
ing of the domain that can be used for the efficient management of EMMOs,
such as authoring of, comfortable access to, or searching for EMMOs. To pre-
vent the generation and storage of useless material, it should be assured during
the authoring of EMMOs that the interrelations between multimedia resources
are compatible with commonly accepted knowledge. In order to facilitate the
efficient access to EMMOs within a distributed environment, the representation
of multimedia content should be flexible in a way that – provided that the se-
mantics of a document is preserved – the user can choose between a compact
minimum version being efficient for sending and a maximum version provid-
ing optimal browsing and query performance. As user pose imprecise queries,
semantic meta information has to be integrated within the retrieval process.
One way to improve the authoring of, the efficient access to, and the search for
EMMOs is to enhance multimedia resources by semantic meta models and to
integrate them with domain ontologies.

Both, the EMMO model and the EMMA algebra, provide a basis for the
integration of a domain ontology, because an EMMO establishes a graph-like
knowledge structure with associations and nodes being labeled by concepts of the
domain ontology, and EMMA defines navigational operators to provide means to
traverse the ontology-labeled associations within an EMMO’s graph structure.

The integration of ontology knowledge into the EMMO model and the
EMMA algebra has three appealing benefits:

1. Ontological knowledge can be used for checking integrity constraints dur-
ing the design and authoring process of EMMOs, e.g. to store only asso-
ciations in the database which conform to the specified types for source
and target entities.

2. Ontological knowledge can be incorporated within the EMMO model by
extending the graph structure of an EMMO with additional associations.
For example, if two concepts are stated to be inverse to each other, such
as retell and is-retold, then for each association of one of the two types,
an association classified by its inverse counterpart can be added.

73



74 CHAPTER 6. TOWARDS ONTOLOGY INTEGRATION

3. Knowledge inherent in a domain ontology can be seamlessly integrated into
EMMA queries. Therefore, the user can pose imprecise queries, which are
refined by drawing inferences over the ontological knowledge. For example
(see Fig. 5.1), if the user asks for all media objects which have been inspired
by the movie “The Cabinet of Dr. Caligari”, he should also receive media
objects which have been indirectly inspired by the movie, e.g. the movie
“Salem’s Lot”. This can be accomplished if the transitivity of the ontology
object inspire is known, i.e. defined in the ontology.

By providing a shared and common understanding of a domain that can
be communicated between people and application systems, ontologies facili-
tate the sharing and reuse of knowledge [Fen01]. Ontologies describe concepts,
relationships, and constraints in the domain of discourse. Ontologies can be
compared to conceptual schemas in database systems. By defining relations on
data, conceptual schemas provide a logical description of shared data enabling
application programs and databases to collaborate without specifying the same
data structures, whereas ontologies define the vocabulary for composing complex
expressions, i.e. a large number of coherent sentences representing the shared
knowledge of a particular domain, to be used as additional “background knowl-
edge” input by knowledge-based applications [Gru93].

For the representation and description of ontologies, there exist a large num-
ber of representation languages and systems using different syntax and seman-
tics, and diverging in their degree of expressivity. Within a content sharing
environment, it is necessary to agree to some common formalism for represent-
ing the background knowledge. However, different application domains need
an ontology formalism to fulfil different aspects, such as the level of expressiv-
ity or the kinds of supported reasoning services. In the following section, we
will analyze the requirements for an ontology description language appropriate
for the collaborative and distributed authoring and management of multimedia
content, i.e. an ontology description language suitable for the EMMO model,
before we discuss related approaches and standards for the representation of
ontologies.

6.1 Requirements

The EMMO infrastructure establishes a framework for the collaborative and
distributed authoring and sharing of multimedia content that can be used by dif-
ferent kinds of application domains, such as the management of cultural knowl-
edge, eLearning platforms, or multimedia enhanced task management systems
(see Chapter 9). Although the application domains can be quite different, we
identified three common requirements that should be addressed by an ontology
description language used within the EMMO infrastructure, i.e. it should maxi-
mize its expressiveness while still supporting efficient reasoning and enable the
exchange and sharing of ontologies:

1. An ontology description language has to be expressive enough for serious
use. Thus, it should provide modeling primitives that enable the descrip-
tion of classes and of hierarchical structures of classes, the assignment of
things to classes by using a type relationship ensuring that a thing can be
member of more than one class and that classes can be again instances



6.2. RELATED APPROACHES 75

of classes. In addition, it has to provide means for describing relation-
ships between things and hierarchical structures of relationships. As one
needs to say anything about anything, relationships have to be treated as
first-class objects. For avoiding the inappropriate use of relationships, one
requires to formulate constraints on the usage of classes and relationships,
such as domain and range. Besides the formulation of constraints, an on-
tology description language should allow for the assignment of properties
to relationships, such as inverse, symmetric, or transitive relationships,
and support the formulation of axioms.

2. By establishing objects that can be used for logical reasoning, ontologies
provide the basis for specifying rules that support certain logical infer-
ences. For enabling an efficient reasoning support, an ontology descrip-
tion language has to be formally defined with precise semantics and, if
necessary, limit the expressiveness of the language.

3. For enabling the exchange and sharing of ontologies, the syntax of an ontol-
ogy description language has to maximize its compatibility with existing
and commonly accepted standards. Moreover, the ontology description
language should provide a system of unique identifiers referring to the
established classes, relationships, and instances. In addition, the ontology
itself needs to be represented as resource that has its own identifier. Fi-
nally, an ontology description language requires some versioning support
enabling to compare and relate different versions of the same ontology.

6.2 Related Approaches

There exists a long history of research related to knowledge representation. Re-
lated approaches and standards for knowledge representation adhere to different
language paradigms, such as first-order logic languages, frame-based approaches,
and Description Logics [B+03a]. Recently, several Web standards for the de-
scription of ontologies, such as RDFS, DAML+OIL, or OWL, have emerged.

In the following, we will first introduce one representative example of a first-
order logic language, i.e. the Knowledge Interchange Format (KIF), and one
representative example of a frame-based approach, i.e. Frame Logic. As the
emerging Web Standards are more suitable for fulfilling the requirements of an
ontology description language for EMMOs, we will discuss them in more detail.

The Knowledge Interchange Format (KIF) [Gen95] is a first-order logic lan-
guage that was originally developed for the exchange of knowledge between
computer programs. It has declarative semantics and is a logically compre-
hensive language, i.e. it enables to express any arbitrary logical sentence. By
supporting meta level statements, KIF establishes an extension of first-order
logic. Due to its strong expressiveness, efficient reasoning support cannot be
realized. As its derived ontology instances are not serialized in a commonly
accepted exchange syntax, such as XML, its concepts have no unique identi-
fers, and it provides no versioning support, KIF is no appropriate candidate for
an ontology representation language within a content sharing and distributed
environment.

The frame-based language Frame Logic [K+95] can be used for specifying
object-oriented databases, Frame Systems, and logical programs. It enables



76 CHAPTER 6. TOWARDS ONTOLOGY INTEGRATION

the integration of conceptual modeling constructs, such as classes, subclasses,
attributes, domain and range restrictions, or axioms, into a coherent logical
framework. Its central modeling primitives are classes, i.e. frames, with certain
properties called attributes. As those attributes are only applicable to one class,
they do not have a global scope. Frame Logic provides more complex semantics
than first-order logic. However, as in Frame Logic entire formulas cannot be
bound to variables, Frame Logic is less expressive than KIF. Frame Logic spec-
ifies no global attributes, i.e. relationships are no first-class objects, therefore,
it provides the required expressiveness only to some extent. By establishing
an extension of first-order logic, efficient reasoning support cannot be realized.
Moreover, without commonly accepted serialization syntax, unique identifiers,
and versioning support, Frame Logic is not adequate as ontology description
language in distributed, content sharing scenarios.

Resource Description Framework Schema (RDFS) [BG04] defines an RDF-
based language for describing very simple ontologies, i.e. it establishes basic
ontological modeling constructs to be used within RDF. Using the RDFS type
system, one can talk about classes and subclasses, about properties and sub-
properties, and domain and range restrictions of properties. Using the type
property, RDF objects can be defined as instances of one or more classes. The
definition of axioms remains unaddressed. Due to its limited set of modeling
primitives, RDFS provides rather restricted expressive power. RDF provides
means for reifying statements, i.e. a feature that is difficult to handle within
inference services, however, due to its limited expressive power, reasoning sup-
port still remains possible. RDFS is based on XML syntax and its objects are
uniquely identifiable, but versioning support and unique identifiers for ontol-
ogy instances are missing. Thus, RDFS is only to some extent appropriate for
distributed and content sharing applications. Nevertheless, RDFS provides a
standardized syntax and a standard set of basic modeling primitives, such as
subclass of, domain or range, for writing ontologies.

DAML+OIL [C+01] evolved by merging two ontology description languages,
i.e. DAML-ONT [M+03], an early DARPA Agent Markup Language (DAML)
ontology description language and Ontology Inference Layer (OIL) [F+00], a
description logic. Description Logics (DL) [B+03a] establish logical languages
encompassing first-order logic fragments with high expressive power, such that
decidability and efficient inference procedures can still be provided, i.e. through
the restriction of permitted interactions and combinations of constructors a
tractable reasoning can be achieved. DAML+OIL is a Web-based ontology de-
scription language that integrates all RDFS modeling constructs and provides
additionally all modeling primitives that are commonly used within frame-based
languages, i.e. classes, subclasses, axioms, etc. Moreover, it defines relationships
not as attributes of classes but as independent classes that can have domain
and range restrictions, and can be arranged in a hierarchy. DAML+OIL pro-
vides some primitives for describing properties of relationships, such as tran-
sitive or inverse relationships, but not for describing symmetric relationships.
DAML+OIL axioms are written in KIF format. Although DAML+OIL is equiv-
alent to a very expressive description logic, only partial reasoning support can
be provided. This is due to the fact that DAML+OIL has no unique name
assumption, i.e. individuals with different names not necessarily need to refer
to different individuals. DAML+OIL provides XML serialization and identi-
fiers for objects and ontology instances, but an adequate versioning support for



6.3. SUMMARY 77

ontology instances is missing.
DAML+OIL was a proposed starting point of the W3C project to stan-

dardize a Web ontology framework language, i.e. the Ontology Web Language
(OWL) [SHH04]. OWL specifies three sublanguages:

• OWL Lite is suitable for users primarily requiring a classification hierarchy
with simple constraints, i.e. thesauri and taxonomies can be expressed in
OWL Lite.

• OWL DL supports maximum expressiveness by still providing computa-
tional completeness and decidability. OWL DL integrates all OWL lan-
guage constructs, but defines restrictions on their usage, e.g. classes cannot
be defined as instances of other classes.

• OWL Full achieves maximum expressiveness without computational guar-
antees, consequently, reasoning support for OWL Full cannot be provided.

Each sublanguage represents an extension of its predecessor language, e.g. any
OWL Lite ontology is also an OWL DL ontology. DAML+OIL is very similar to
OWL DL, however, we identified three additional features of OWL DL with re-
gard to our requirements. OWL DL adds the modeling primitive for describing
symmetric relationships, enables versioning support for ontology instances, and
supports the unique name assumption, i.e. by using the modeling constructs
AllDifferent and distinctMembers, one can state that all members of a list
are distinct and pairwise disjoint. Thus, OWL DL provides the required expres-
siveness, is suitable for distributed and content sharing scenarios, and facilitates
reasoning support.

6.3 Summary

The integration of ontology knowledge within the management of EMMOs has
three appealing benefits, i.e. it can be used for checking integrity constraints
during the design and authoring process of EMMOs, enables efficient access to
EMMOs, and it provides a basis for query refinement. To represent a suitable
basis for the integration of ontological knowledge, an ontology description lan-
guage for EMMOs has to provide maximum expressiveness while still enabling
reasoning support, and support the exchange and sharing of ontologies.

Table 6.1 summarizes the discussion of related approaches with regard to
our requirements.

As both, KIF and Frame Logic, establish an extension of first-order logic,
they have strong expressiveness. However, by defining its attributes without
global scope, Frame Logic possesses the required expressiveness only to some
extent. Both, KIF and Frame Logic, provide neither efficient reasoning support,
nor the syntax, identifers, and versioning support required within distributed
content sharing scenarios. RDFS enables partial reasoning support and is to
some extent suitable for content sharing scenarios. However, by only defining 13
ontological modeling primitives, its expressiveness is not sufficient. DAML+OIL
provides no means for describing symmetric relationships, therefore its expres-
siveness is only partly sufficient. It has no unique name assumption and provides
no unique identifiers and versioning support for ontology instances, thus reason-
ing support and the support for distributed content sharing scenarios are only



78 CHAPTER 6. TOWARDS ONTOLOGY INTEGRATION

Table 6.1: Fulfilment of requirements by ontology description languages
Requirements
+ := support, KIF Frame RDFS DAML+OIL OWL DL
(+) := limited support, Logic
– := no support

Expressiveness + (+) – (+) +

Reasoning support – – (+) (+) +

Knowledge sharing – – (+) (+) +

partially addressed. OWL is a successor of DAML+OIL and has three sub-
languages OWL Lite, OWL DL, and OWL Full. OWL Lite is not sufficiently
expressive whereas OWL Full has maximum expressiveness, therefore reasoning
support is very unlikely. OWL DL is very similar to its predecessor DAML+OIL
and a compromise of the two other sublanguages. Through the added modeling
primitives, it provides the required expressiveness and reasoning support, and,
in addition, is suitable for content sharing and distributed applications. Thus,
OWL DL seems to be the most appropriate candidate of an ontology description
language within the EMMO infrastructure.

In the following chapter, we will show how ontological knowledge can be used
for integrity constraint checking within the design and authoring process of EM-
MOs, the enhancing of the semantic expressiveness of the knowledge structures
defined by EMMOs, and the refining of EMMA query expressions.



Chapter 7

Integrating Ontological
Knowledge into the EMMO
Model

In the following, we define an ontology structure suitable for the EMMO model,
describe how the most common modeling constructs used in standard ontology
languages like DAML+OIL [C+01] or OWL [SHH04] can be represented within
this structure, and exemplify how the ontology knowledge can be integrated
into the authoring process of EMMOs (Sect. 7.1), into the knowledge struc-
tures described by the EMMO model (Sect. 7.2), and into the EMMA queries
(Sect. 7.3). We will use EMMO “Dracula Movies V3” (see Fig. 7.1) as running
example throughout this chapter.

The definition of an ontology structure for EMMOs was inspired by the
ontology structure definition in [Mae02]. Any concept of the ontology which is
used for labeling entities in the EMMO model is represented as ontology object
within the EMMO model. As the EMMO model treats associations as first class
objects, ontology objects can be used for labeling both, the nodes and the edges,
in an EMMO’s graph structure. We specify an ontology structure suitable for
the EMMO model as 3-tuple O = {Θ ,HΘ ,AO} consisting of

• a set of ontology objects Θ , representing the concepts of the ontology,

• a concept hierarchy HΘ describing the subclass relationship between
ontology objects, i.e. HΘ is a directed relation HΘ ⊆ Θ × Θ with
HΘ (o1, o2) expressing that o1 is a subconcept of o2,

• a set of ontology axioms AO, expressed in first order logic.

Figure 7.2 illustrates a small portion of the Ontology of Intertextual Studies
used in the CULTOS project (see Sect. 9.1) as defined in [B+03b].

An ontology suitable for the integration into the EMMO model and the
EMMA algebra has to distinguish between object concepts and relational con-
cepts. Object concepts are used for labeling the nodes, relational concepts for
labeling the associations within an EMMO’s graph structure. For example, the
Ontology of Intertextual Studies defines object concepts for describing media

79



80 CHAPTER 7. ONTOLOGY-ENHANCED EMMOS

Hooper

Director

Dracula Movies V3

inspire inspire

similar audience

retell

Salem�s Lot 

Movie
The Cabinet of 

Dr. Caligari

http://../Caligari.mpeg

format�

Movie

Wiene

Director

Nosferatu

http://../Nosferatu.mpeg

format....

Movie

Murnau

Director

A Return to 
Salem�s Lot 

http://../ReturnSalem.avi

format...

Movie

Cohen

Director

Dracula 

http://../dracula.pdf

filesize��

Novel

Stoker

Author

http://.../Salem183.avi

duration: 183min
format: AVI
.....

full

....

....

........

http://.../Salem112.avi

....duration �

Figure 7.1: EMMO “Dracula Movies V3” (emoviesV 3)

Long Text

retell remake

inspire rework

globally-allude

SubConcept SubConcept

similar audience

locally-allude

SubConcept

SubConcept SubConcept

Ancient Text

Text

SubConcept SubConceptSubConcept

Novel

SubConcept

Figure 7.2: Extract from the Ontology of Intertextual Studies

objects, e.g. the concepts Novel or Text, and relational concepts for describing
relationships holding between media objects, e.g. the relational concept inspire
can be used for describing the fact that an ancient source text inspires a par-
ticular movie.

The set of ontology axioms AO allows to specify properties and restrictions
of concepts, and to define properties of relationships between concepts. Thus,
we can specify that some specific ontology objects are dedicated to describe
associations within the EMMO model, i.e. representing relational concepts, e.g.
(see Fig. 7.2)

({oglobally−allude, oinspire, orework,
oretell, oremake, olocally−allude, osimilar}) ⊆ RC) ∈ AO,

(7.1)

with RC = {o ∈ Θ | ∀w ∈ Ω ∧ o ∈ types(w) → w ∈ Λ} describing the set of
relational concepts, Ω the set of all entities, Λ the set of all associations, and
types(w) the set of ontology objects labeling the entity w. In a similar way, we
can specify that some ontology objects are used exclusively for describing nodes



7.1. ONTOLOGY-ENHANCED AUTHORING OF MULTIMEDIA CONTENT81

of the EMMO graph structure, e.g. (see Fig. 7.2)

({otext, oancienttext, olongtext, onovel} ⊆ OC) ∈ AO, (7.2)

with OC = {o ∈ Θ | ∀w ∈ Ω ∧ o ∈ types(w) → w /∈ Λ} describing the set of
object concepts.

Furthermore, within the set of ontology axioms, we can define the transitivity
of the concept hierarchy, i.e.

(∀o1, o2, o3 ∈ Θ HΘ (o1, o2) ∧HΘ (o2, o3) → HΘ (o1, o3)
) ∈ AO. (7.3)

Based on this axiom, we can now infer from the ontology that the concept
Novel, which is a direct subconcept of Long Text, is also a subconcept of Text,
the superconcept of Long Text.

7.1 Ontology-enhanced Authoring of Multime-
dia Content

During the design and authoring process of EMMOs, we can use ontological
knowledge for checking integrity constraints, i.e. only associations that coincide
with the specified types regarding source and target entity can be stored in
the database. For instance, within an ontology structure one can specify that
associations of type retell describe binary relationships pointing from entities of
type Text to entities of arbitrary type, i.e.

(Domain(oretell) = {otext}) ∈ AO, (7.4)

with Domain(o) = {x ∈ Θ | ∀a ∈ Λ ∧ o ∈ types(a) → x ∈ types(source(a))}
describing the set of domain concepts, i.e. concepts which can be used for clas-
sifying the source entity of associations of type o, and source(a) denoting the
source entity of association a (see Fig. 7.3).

Text
retell

Figure 7.3: Association “retell” with source entity of type “Text”

Let us assume that a user intends to store the EMMO “Dracula Movies
V3” (see Fig. 7.1) in the database. Due to integrity constraints checking based
on Axiom 7.4, the EMMO’s retell association, which in this example specifies
a source entity of type Novel but not of type Text, will be removed from the
EMMO’s nodes before storing the EMMO.

In order to reflect the ontological knowledge about the concept hierarchy,
such as the knowledge that Novel is a subconcept of Long Text which again is a



82 CHAPTER 7. ONTOLOGY-ENHANCED EMMOS

subconcept of Text, during the checking of integrity constraints, we can specify
the following axiom

(∀o∈RC ∀O⊆ Θ Domain(o) = O
=⇒ Domain(o) = SubConcepts(O)) ∈ AO,

(7.5)

with SubConcepts(O) = {x ∈ Θ | ∃o ∈ O (x, o) ∈ HΘ } describing the set of
all subconcepts of a set of ontology objects O.

By integrating Axioms 7.3–7.5 within the authoring process of EMMOs,
EMMO “Dracula Movies V3” can now be stored in the database without re-
moving the retell association (see Fig. 7.4).

Novel

Ancient Text

Text
retell

Long Text

Figure 7.4: Association “retell” with source entity of type SubConcepts({otext})

In a similar way, we define axioms for constraints on range concepts, i.e.
concepts used for classifying the target entity of associations, e.g.

(Range(oretell) = {omovie}) ∈ AO and (7.6)

(∀o∈RC ∀O⊆ Θ Range(o) = O
=⇒ Range(o) = SubConcepts(O)) ∈ AO,

(7.7)

with Range(o) = {x ∈ Θ | ∀a ∈ Λ ∧ o ∈ types(a) → x ∈ types(target(a))}
describing the set of concepts which can be used for classifying the target entity
of associations of type o and target(a) denoting the target entity of association a.

7.2 Ontology-enhanced Management of Multi-
media Content

Ontological knowledge can be used within the management of multimedia con-
tent by integrating it into the EMMO model by extending the graph structure
with additional associations. In the following, we will exemplify how the onto-
logical knowledge about the subconcept hierarchy, as well as about inverse, tran-
sitive, and symmetric relational concepts can be integrated within the EMMO
model. Furthermore, we will introduce the axioms describing this ontological
knowledge. All the examples are based on the ontology structure illustrated in
Fig. 7.2 and the EMMO “Dracula Movies V3” depicted in Fig. 7.1.



7.2. ONTOLOGY-ENHANCED MANAGEMENT OF MULTIMEDIA CONTENT83

Integrating the Knowledge about the Subconcept Hierarchy

In Axiom 7.3 we have defined the transitivity of the concept hierarchy, and by
adding the axiom

({(orework, oglobally−allude),
(oretell, orework), (oremake, orework), . . .} ⊆ HΘ ) ∈ AO,

(7.8)

we specify that the concepts remake and retell are subconcepts of rework,
which is again a subconcept of globally-allude. The explicit integration of this
knowledge into the EMMO model can be realized by adding the associations
(ldracula

orework−→ lnosferatu) and (ldracula
oglobally−allude−→ lnosferatu) to the EMMO

“Dracula Movies V3” (see Fig. 7.5).

NosferatuDracula

retell

rework

globally-allude

Figure 7.5: Integrating the knowledge about retell ’s superconcepts

Integrating the Knowledge about Transitive Concepts

Within the ontology axioms, we can also define transitive concepts, i.e. rela-
tional concepts for which an iteration of the navigation along the corresponding
associations can be defined without changing the semantics of the concept, e.g.

(oinspire ∈ Θ TRANS) ∈ AO, (7.9)

with Θ TRANS = {o ∈ RC | ∀a1, a2 ∈ I(o) target(a1) = source(a2) → ∃a3 ∈
I(o) (source(a3) = source(a1) ∧ target(a3) = target(a2))} describing the set
of all transitive ontology objects, I(o) = {w ∈ Ω | o ∈ types(w)} the set of
all entities labeled by the ontology object o, and source(a) and target(a) the
source and target entities of association a.

To integrate the knowledge that the concept inspire is a transitive concept
into the EMMO model, we add the association (lcaligari

oinspire−→ lsalem) to the
EMMO “Dracula Movies V3” (see Fig. 7.6).

Integrating the Knowledge about Symmetric Concepts

In a similar way, we express symmetric concepts, i.e. relational concepts for
which all associations can be traversed in both directions, i.e. source and target
entities can be exchanged without changing the semantics of the concept, e.g.

(osimilar ∈ Θ SYM) ∈ AO, (7.10)

with Θ SYM = {o ∈ RC | ∀a1 ∈ I(o)∃a2 ∈ I(o) (source(a1) = target(a2) ∧
source(a2) = target(a1))} describing the set of all symmetric ontology objects.



84 CHAPTER 7. ONTOLOGY-ENHANCED EMMOS

Nosferatu Salem�s Lot 
The Cabinet of 
Dr. Caligari

inspire inspire

inspire

Figure 7.6: Integrating the knowledge that inspire is a transitive concept

To explicitly incorporate the knowledge about similar audience being a sym-
metric concept, we add the association (lreturn

osimilar−→ lsalem) to the EMMO
“Dracula Movies V3” (see Fig. 7.7).

A Return to 

Salem�s Lot

similar audience

similar audience

Salem�s Lot

Figure 7.7: Integrating the knowledge that similar audience is a symmetric
concept

Integrating the Knowledge about Inverse Concepts

Finally, we can also express that two relational concepts are inverse to each
other, i.e. if an association is labeled with the inverse concept, then source and
target entities have to be exchanged to keep the semantics intact, e.g.

((oretell, ois−retold) ∈ Θ INV) ∈ AO, (7.11)

with Θ INV = {(o1, o2) ∈ RC × RC | ∀a1 ∈ I(o1)∃a2 ∈ I(o2)(source(a1) =
target(a2) ∧ source(a2) = target(a1))} describing the set of all pairs of inverse
ontology objects.

The fact that the concepts retell and is-retold are two inverse concepts can be
expressed by adding the association (lnosferatu

ois−retold−→ ldracula) to the EMMO
“Dracula Movies V3” (see Fig. 7.8).

is-retold

NosferatuDracula

retell

Figure 7.8: Integrating the knowledge that retell and is-retold are inverse con-
cepts



7.3. ONTOLOGY-ENHANCED RETRIEVAL OF MULTIMEDIA CONTENT85

Inflated versus Deflated EMMOs

To improve the access to EMMOs by integrating ontological knowledge into the
EMMO model, an EMMO’s graph structure has to be extended by additional
associations according to the ontological axioms, i.e. the EMMO is inflated.

On the other hand, for enabling efficient authoring and exchanging of EM-
MOs within a distributed environment, EMMOs are required to be of compact
size. To realize this, similar to the inflation of EMMOs, ontological knowledge
can be used for deflating EMMOs, i.e. any redundant association within an
EMMO which can be inferred from the ontology, is removed from an EMMO’s
nodes.

Thus, there are two different ways of representing EMMOs, i.e. a compact
minimum version being optimal for exchanging EMMOs and a maximum ver-
sion to provide efficient access to EMMOs. The decision which of the two
versions is preferable for a given situation depends on several factors, such as
the requirements of the application scenario, the depth and size of the ontology,
or the size of an EMMO. Typical decision criteria are response time constraints
for retrieval, storage limitations in mobile devices, or restricted bandwidth for
network transmissions.

This leads to the problem how to exploit ontological knowledge for the re-
trieval of multimedia content in situations that would demand the use of an
EMMO’s minimum version. To solve this dilemma we have extended the query
algebra EMMA. We provide means for integrating ontological knowledge within
the processing of EMMA’s navigational queries by adding alternative navigation
paths (see Sect. 7.3). In this way, instead of explicitly extending an EMMO’s
graph structure, now, the graph structure is implicitly extended during query
execution.

7.3 Ontology-enhanced Retrieval of Multimedia
Content

EMMA’s navigational operators enable the navigation along an EMMO’s se-
mantic graph structure, and thus provide the basis for ontology-based query
refinement. The integration of ontology knowledge into EMMA query process-
ing allows to refine user queries. Therefore, a user can pose imprecise queries,
which are refined by drawing inferences over ontological knowledge. Instead of
extending the EMMO graph structure (see Sect. 7.2), we now extend the nav-
igational operators in EMMA by adding alternative navigation paths. In the
following, we will illustrate how the knowledge captured by the ontology struc-
ture illustrated in Fig. 7.2 and described in more detail within Axioms 7.8–7.11
can be used for ontology-based query refinement.

Integrating the Knowledge about the Subconcept Hierarchy

To include ontological knowledge about the concept hierarchy we add all sub-
concepts as alternative branches to any ontology object in the regular path
expression of a navigational EMMA query. For example, the hierarchical struc-
ture defined in Axiom 7.8 specifies that the concept orework has two subconcepts



86 CHAPTER 7. ONTOLOGY-ENHANCED EMMOS

oremake and oretell. Therefore, the query

JumpRight(emoviesV 3, ldracula, orework) = ∅

can be expanded to search also for all subconcepts of rework, i.e. retell and
remake:

JumpRight(emoviesV 3, ldracula, orework |oretell |oremake) = {lnosferatu}.

A user requesting all entities which were reworked by the novel “Dracula”, now
receives a useful answer, i.e. the logical media part “Nosferatu”, because the
novel retells the movie.

Integrating the Knowledge about Transitive Concepts

To integrate the knowledge about transitive concepts we add the operator “+” to
any transitive ontology object in the regular path expression of a navigational
EMMA query. For example, as the ontology object oinspire is defined as a
transitive concept (see Axiom 7.9), we can expand the EMMA query

JumpRight(emoviesV 3, lcaligari, oinspire) = {lnosferatu}

to the query

JumpRight(emoviesV 3, lcaligari, oinspire+) = {lnosferatu, lsalem}.

Therefore, if a user asks for all entities which were inspired by the movie “The
Cabinet of Dr. Caligari”, the user now receives not only the incomplete result
consisting of one logical media part “Nosferatu”, which is directly inspired by the
movie “The Cabinet of Dr. Caligari”, but also the logical media part “Salem’s
Lot” because it is indirectly inspired.

Integrating the Knowledge about Symmetric Concepts

By incorporating the knowledge about symmetric concepts, we extend any sym-
metric ontology object in the regular path expression of a navigational EMMA
query by adding its inversion as alternative branch. For instance, as the ontol-
ogy object osimilar references a symmetric concept (see Axiom 7.10), the EMMA
query

JumpRight(emoviesV 3, lreturn, osimilar) = ∅

is expanded to

JumpRight(emoviesV 3, lreturn, osimilar)∪JumpLeft(emoviesV 3, lreturn, osimilar) =
JumpRight(emoviesV 3, lreturn, osimilar |osimilar−) = {lsalem}.

Thus, a user asking for all entities which address a similar audience as the
movie “A Return to Salem’s Lot” can now retrieve the information that the
movie “Salem’s Lot” was made for a similar audience although the correspond-
ing association in the EMMO “Dracula Movies V3” points in the opposite di-
rection.



7.4. REPRESENTATION OF ONTOLOGY STRUCTURES 87

Integrating the Knowledge about Inverse Concepts

The integration of the knowledge that an ontology object has an inverse con-
cept is achieved through the extension of the ontology object in any regular
path expression of a navigational EMMA query by adding the inversion of the
inverse concept as alternative branch. For example, the knowledge about the
two concepts oretell and ois−retold being inverse to each other (see Axiom 7.11),
is reflected by expanding the EMMA query

JumpRight(emoviesV 3, lnosferatu, ois−retold) = ∅
to the query:

JumpRight(emoviesV 3, lnosferatu, ois−retold)∪JumpLeft(emoviesV 3, lnosferatu, oretell) =
JumpRight(emoviesV 3, lnosferatu, ois−retold |oretell−) = {ldracula}.
As a result, if a user wants to know about any entity that is-retold by the movie
“Nosferatu” we can now provide the satisfactory answer “Dracula”, because the
EMMO “Dracula Movies” specifies that this novel retells the movie.

7.4 Representation of Ontology Structures

There exist different ways of representing ontology structures, which, although
having the same expressiveness, are designed for different purposes. In the fol-
lowing, we will show three different ways of representing the ontology structure
illustrated in Fig. 7.2 and specified in more detail by Axioms 7.1–7.11:

1. the graphical representation enhances human readability,

2. the OWL representation addresses the standardization efforts in the con-
text of the Semantic Web initiative [BHL01],

3. the EMMO representation of the ontology structure enables the seamless
integration of ontological knowledge into the EMMO model.

Figure 7.9 shows the graphical representation of the ontology structure from
Fig. 7.2. The relational concept inspire is marked as transitive, the relational
concept similar audience as symmetric, and the relational concepts retell and
is-retold as being inverse to each other. Additionally, the object concept Text
is specified as domain concept for the relational concept retell.

Since DAML+OIL does not provide modeling constructs for symmetric prop-
erties, it is not adequate as representation language for ontology structures.
Therefore, we used OWL DL, which specifies all the modeling constructs used
within an ontology structure, i.e. constructs for expressing transitive, symmet-
ric, and inverse concepts. We used Protege-2000 [Sta04] as authoring tool for
creating the domain ontology, and imported the resulting OWL description into
the EMMO environment. Figure 7.10 shows the OWL representation for the
ontology in Fig. 7.9.

However, by representing the ontology in a standard format, such as OWL
DL, more complex inferences drawn from the ontology knowledge cannot be
integrated into EMMA queries. Therefore, we plan to develop our own ontology
description language compatible with the EMMO model allowing for sophis-
ticated reasoning on EMMOs. Figure 7.11 shows the EMMO representation



88 CHAPTER 7. ONTOLOGY-ENHANCED EMMOS

retell remake

inspire rework

globally-allude

similar audience

locally-allude

Domain

inverse
is-retold

Long TextAncient Text

Text

Novel

object concept

relational concept

Symbols:

inverse inverse concepts

SubConcept

symmetric concept

Domain

domain of 
a concept

transitive concept

Figure 7.9: Graphical representation of the Ontology of Intertextual Studies

<rdf:RDF

xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:owl="http://www.w3.org/2002/07/owl#" >

<rdf:Class rdf:ID="Text"/>

<rdf:Class rdf:ID="AncientText">

<rdfs:subClassOf rdf:resource="#Text"/></rdf:Class>

<rdf:Class rdf:ID="LongText">

<rdfs:subClassOf rdf:resource="#Text"/></rdf:Class>

<rdf:Class rdf:ID="Novel">

<rdfs:subClassOf rdf:resource="#LongText"/></rdf:Class>

<rdf:Property rdf:ID="globally-allude"/>

<rdf:Property rdf:ID="rework">

<rdfs:subPropertyOf rdf:resource="#globally-allude"/></rdf:Property>

<owl:TransitiveProperty rdf:ID="inspire">

<rdfs:subPropertyOf rdf:resource="#globally-allude"/></owl:TransitiveProperty>

<rdf:Property rdf:ID="remake">

<rdfs:subPropertyOf rdf:resource="#rework"/> </rdf:Property>

<rdf:Property rdf:ID="retell">

<rdfs:subPropertyOf rdf:resource="#rework"/>

<rdfs:domain rdf:resource="#Text"/></rdf:Property>

<rdf:Property rdf:ID="is-retold">

<owl:inverseOf rdf:resource="#retell"/></rdf:Property>

<rdf:Property rdf:ID="locally-allude"/>

<owl:SymmetricProperty rdf:ID="similar">

<rdfs:subPropertyOf rdf:resource="#locally-allude"/></owl:SymmetricProperty>

</rdf:RDF>

Figure 7.10: OWL representation of the Ontology of Intertextual Studies

of the ontology structure, i.e. how the ontology structure can be represented
within the EMMO model. It is important to mention that the EMMO “On-
tology” uses some “predefined” meta ontology objects corresponding to classical
ontology constructs, such as subconcept, relational concept, inverse concept, or
domain, which are again used to classify other ontology objects. For instance,
to indicate that the ontology object inspire is a transitive, relational concept, it
is typed by the meta ontology objects transitive concept and relational concept.
To express that there is a subconcept relationship between the ontology objects
Text and Ancient Text, an association of type subconcept between those two



7.4. REPRESENTATION OF ONTOLOGY STRUCTURES 89

INVERSE
CONCEPT

SUBCONCEPT

Ontology

is-retold

globally-allude

reworkinspire

remakeretell

locally-allude

similar audience Ancient Text

Text

Long Text

Novel

OBJECT 
CONCEPT

RELATIONAL
CONCEPT

TRANSITIVE 
CONCEPT

SYMMETRIC
CONCEPT

DOMAIN

Figure 7.11: EMMO representation of the Ontology of Intertextual Studies
(eontology)

ontology objects is established. Finally, to describe that any retell association
only allows entities of type Text as its source entity, an association of type do-
main pointing from the ontology object retell to the ontology object Text is
contained within EMMO “Ontology”.

The contribution of an ontology description language is to define the seman-
tics of those and many more meta ontology objects. The representation of the
ontology structure within the EMMO model bears two major advantages. First,
instead of having to rely on Protege-2000 as external ontology authoring tool,
we can now use the EMMO authoring environment also for the development
of the domain ontology. Second, EMMA operators can now be used to draw
inferences from the ontological knowledge, and thus, the seamless integration of
ontological knowledge within the authoring, processing, and querying of EM-
MOs can be realized. For example, the operator IsType, which specifies a set of
ontology objects as second input parameter, enables the integration of super-
type/subtype relationships within queries. The ontological knowledge about a
subtype relationship, e.g. the subtype relationship between the ontology objects
“Novel” and “Text”, can be reflected within the query expression

IsType(ldracula, {otext, onovel}) = true.

Assuming that ontological knowledge about supertype/subtype relationships is
also represented within EMMOs, e.g. in EMMO eontology by means of associ-
ations of type “Subconcept”, the supertypes of “Novel” in the previous query
could also be calculated dynamically during query execution by using an appro-
priate JumpLeft expression:

IsType(ldracula, JumpLeft(eontology, onovel, osubconcept∗)) = true.



90 CHAPTER 7. ONTOLOGY-ENHANCED EMMOS

Although we have not yet developed a language which governs the formulation
of such ontological knowledge within the EMMO model, the query algebra is
sufficiently expressive to be ready for exploiting this knowledge once it becomes
available.

7.5 Summary

Both, EMMOs and the query algebra EMMA, provide a sound basis for the inte-
gration of ontology knowledge into multimedia knowledge management. In this
chapter we have illustrated how ontological knowledge can be used for checking
integrity constraints within the design and authoring process of EMMOs, how
ontological knowledge can be used to inflate and deflate the knowledge struc-
tures described by EMMOs, and, finally, how ontological knowledge can be used
for refining EMMA query expressions. Thus, EMMOs and EMMA provide a
basis for the distributed and collaborative ontology-enhanced authoring, man-
agement, and retrieval of EMMOs. In the following chapter we show how we
have realized the implementation of the EMMO container infrastructure and
the EMMA query processing architecture.



Chapter 8

Implementation and
Evaluation

EMMOs and EMMA provide a basis for the distributed and collaborative au-
thoring, management, and retrieval of semantically enhanced multimedia con-
tent. To support this functionality, the implementation of the EMMO model
and the EMMA algebra had to fulfil several requirements. In the following two
sections, we will first introduce the implementation of the EMMO model, i.e. the
EMMO container infrastructure supporting platform independency and scala-
bility, and providing export and import facilities, and tools for displaying and
authoring EMMOs. Then, we describe how we have designed and implemented
the EMMA query processing architecture, and, finally, we discuss some query
evaluation results.

8.1 EMMO Container Infrastructure

For enabling content sharing and collaborative authoring of EMMOs, the im-
plementation has to be realized on a distributed infrastructure. Thus, we have
established EMMO containers constituting a management component for EM-
MOs, i.e. the space where EMMOs “live”. The EMMO containers are not
intended as a centralized infrastructure realized by one single Root EMMO con-
tainer running at one server. Instead we establish a decentralized infrastructure
with EMMO containers of different scale and sizes running at different, dis-
tributed servers. To realize a decentralized EMMO management infrastructure
two requirements need to be fulfilled:

• The users of EMMO containers are manifold, i.e. ranging from individ-
ual users running a home PC to multimedia content publishers. In other
words, the systems running the EMMO containers are very heterogeneous
servers with different sizes, operating systems, capabilities, and require-
ments. Therefore, the implementation of the EMMO container infrastruc-
ture needs to be platform independent and scalable.

• As EMMOs are intended to enable the sharing and collaborative authoring
of multimedia content, EMMOs must be transferable between the differ-
ent EMMO containers. Therefore, export and import facilities for EMMO

91



92 CHAPTER 8. IMPLEMENTATION AND EVALUATION

containers, reflecting an EMMO’s content, i.e. its three aspects and ver-
sioning information, are required.

As already mentioned, we have established EMMO containers that provide
the basis for the management and persistent storage of EMMOs. An EMMO
container bundles an arbitrary number of EMMOs and is supplied with an ap-
plication programming interface that permits external applications the access,
manipulation, traversal, and retrieval of its contained EMMOs. Compared to
the query facilities provided by the EMMA query algebra, the application pro-
gramming interface is very limited in its expressivity, i.e. its main purpose is
the management and handling of the contained EMMOs.

8.1.1 Platform Independency and Scalability

For supporting platform independency and scalability, we have implemented
the EMMO containers in Java and used the object-oriented DBMS ObjectStore
for their persistent storage. By using Java we achieve platform independency.
The decision for using ObjectStore for the persistent storage of EMMOs was
motivated by two factors. First, ObjectStore enables the scalability of EMMO
containers, i.e. besides a full-fledged database server implementation suitable for
larger content providers, ObjectStore also provides a code-compatible file-based
in-process variant PSEPro that better suits the limited capabilities and needs
of home users. Second, ObjectStore is an object-oriented DBMS, which are in
general well suited for handling complex graph structures as specified by the
EMMO model. If only the scalability of EMMOs had been of importance, the
use of a similarly scaleable relational DBMS would have been an alternative.
However, due to the graph structures inherent to the EMMO model, we favored
the object-oriented DBMS ObjectStore.

8.1.2 Exporting EMMOs

For enabling adequate export and import facilities, an EMMO container must
be able to completely export EMMOs into bundles encompassing the media,
semantic, and functional aspect, as well as the versioning information. As EM-
MOs are capable of describing quite complex knowledge structures, different
export modes reflecting only selected parts of an EMMO’s content, should be
provided. For avoiding the storage of duplicates when importing EMMOs, we
have developed some basic decisions rules.

EMMO containers export their EMMOs to a bundle structure. An export
bundle is basically a ZIP archive that captures an EMMO’s three aspects, ver-
sioning information, and export options. Figure 8.2 illustrates the export bundle
of EMMO “Dracula Studies” (see Example 5 and Fig. 8.1).

Example 5

estudies =(“e3811”, “Dracula Studies”, “emm”, ε, ε, ∅, ∅, ∅,
{lvampyre, ldracula, lnosferatu, omiller, emoviesV1, ava→dr, adr→no, ami→(va→dr), adr→moV 1},
∅, ∅, ∅, {(orender, frender)}).

The name of the export bundle reflects the OID of the bundled EMMO “Drac-



8.1. EMMO CONTAINER INFRASTRUCTURE 93

Murnau

Director

Nosferatu

Dracula Studies

inspire remake

RenderImplementation

Rendering

source-for

Researcher

Movie

Vampyre

Short Story

1819

Creationdate

Dracula

Novel

Stoker

Author

Ancient Text

Elizabeth

Miller

state

http://.../Vampyre.txt http://.../Dracula.pdf

format : PDF
......

http://.../Nosferatu.mpeg

format : MPEG
......

Dracula Movies V1

full fullfullformat : txt
......

Figure 8.1: EMMO “Dracula Studies”(estudies)

ula Studies”. As EMMOs can describe quite complex structures, it is important
for the users to specify the parts of the EMMO they want to export. To realize
this, the export bundle encompasses a manifest file (see Fig. 8.3) indicating the
options for the export. There are four different export options to specify:

• “includeMedia” indicates whether the associated media files referenced by
the logical media parts within the EMMO should be packaged into the
bundle,

• “versioning” indicates whether the versions of the entities belonging to the
EMMO should be included,

• “recursive” indicates whether all recursively contained entities should be
part of the bundle,

• “operations” indicates whether the EMMO’s operations should be in-
cluded within the bundle archive.

The media aspect of the EMMO is reflected by the folder “media”. When
specifying the “includeMedia” attribute as true, the folder “media” encom-
passes all associated media files contained within EMMO “Dracula Studies”,
i.e. the text documents “Vampyre.txt” and “Dracula.pdf”, and the video “Nos-
feratu.mpeg”.

The functional aspect is reflected by the folder “operation”. As the attribute
“operations” is specified as true, the folder encompasses the jar file of the at-
tached rendering operation.

The semantic aspect and the versioning information is described within the
transfer file whose name is again derived from the OID of the bundled EMMO.
In accordance with the export options specified in the manifest file, the transfer



94 CHAPTER 8. IMPLEMENTATION AND EVALUATION

Figure 8.2: Export bundle for EMMO “Dracula Studies”

<?xml version ="1.0" encoding ="iso-8859-1"?>

<Manifest>

<Emmo ID="e3811">

<ModifiedDate>........

.............

</Emmo>

<ExportOptions includeMedia="true" operations="true" 

versioning= "false" recursive="false"/>

</Manifest>

Figure 8.3: Manifest file of the export bundle for EMMO “Dracula Studies”

file describes all of the EMMO’s contained entities along with their oids, names
and types, all associations with their source and target entities, and all preceding
and succeeding versions.

To fulfil the requirements of different application scenarios the export func-
tionality distinguishes different export variants. The chosen export variants are
recorded in the manifest file and specify whether the EMMO is exported with
or without media files, with or without recursively contained entities, with or
without operations, and with or without versions. For the implementation of
the different export variants, EMMO containers distinguish three different ex-
port modes that are additionally reflected within the transfer file. Figure 8.4
shows the transfer file with the export modes derived from the values for the
export options in the manifest file in Fig. 8.3.

The export modes specify how entities are placed in the bundle:

• The strong mode represents the default export mode for entities and spec-
ifies that the bundle covers the complete information about an entity, i.e.
an entity’s OID, name, types, attributes, direct succeeding and preced-
ing versions, media profiles, operations, and encapsulated entities. For
example, the logical media part “Dracula” is transferred in strong mode.

• The hollow mode is only used for EMMOs and indicates that the bundle
includes all information about the EMMO except the entities it contains,
i.e. the entities contained within the EMMO are excluded from the export.
For instance, as within the manifest file it is expressed that the value
for the export option “recursive” is false, EMMO “Dracula Movies V1”
contained within EMMO “Dracula Studies” is exported in hollow mode
and all the entities in EMMO “Dracula Movies V1” are not included in
the bundle.



8.1. EMMO CONTAINER INFRASTRUCTURE 95

<?xml version="1.0" encoding="UTF-8"?>

<emmo xmlns="http://www.cultos.org/emmos"  

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  ......>

<componenents>

<entities>

<entity xsi:type="LogicalMediaPart" mode="strong">

<oid>l3892</oid>

<name>Dracula</name>

<creationDate>Montag,  14. Februar 2005 09:45 Uhr GMT+02:00</creationDate>

<modifiedDate>Montag,  14. Februar 2005 09:45 Uhr GMT+02:00</modifiedDate>

</entity> 

<entity xsi:type="EMMO" mode="hollow">

<oid>e7390</oid>

<name>Dracula Movies V1</name>

<creationDate>Freitag,  04. Februar 2005 12:53 Uhr GMT+02:00</creationDate>

<modifiedDate>Freitag,  04. Februar 2005 12:53 Uhr GMT+02:00</modifiedDate>

</entity>

........

<entity xsi:type=�OntologyObject" mode="strong">

<oid>o4302</oid>

<name>Movie</name>

<creationDate>Freitag,  20. Februar 2004 12:31 Uhr GMT+02:00</creationDate>

<modifiedDate>Freitag,  20. Februar 2004 12:31 Uhr GMT+02:00</modifiedDate>

</entity>

........

<entity xsi:type="EMMO" mode="weak">

<oid>e7921</oid>

<name>Dracula Movies </name>

<creationDate>Montag,  24. Januar 2005 10:25 Uhr GMT+02:00</creationDate>

<modifiedDate>Montag,  24. Januar 2005 10:25 Uhr GMT+02:00</modifiedDate>

</entity>

<entity xsi:type="EMMO" mode="weak">

<oid>e3225</oid>

<name>Dracula Movies V3</name>

<creationDate>Freitag,  11. Februar 2005 08:15 Uhr GMT+02:00</creationDate>

<modifiedDate>Freitag,  11. Februar 2005 08:15 Uhr GMT+02:00</modifiedDate>

</entity>

........

</entities>

<mediaProfiles>

........

</mediaProfiles> 

</components>

......

<links>

<types>

<typeLink entity="l3892" type="o4302"/>

........

</types>

<attributeValues>

........

</attributeValues>

<associations>

<assoLink association="a1289" sourceEntity="l3892" targetEntity="e7390"/>

........

</associations>

<connectors>

.........

</connectors>

<predVersions/>

<succVersions/>

<encapsulation/>

<operations>

.........

</operations>

</links>

</emmo>

Figure 8.4: Extract of the transfer file e3811.xml of the export bundle for
EMMO “Dracula Studies”

• The weak mode indicates that the bundle only contains the basic infor-
mation about an entity, such as its OID and name; all the remaining
characteristics of an entity, such as its types, attributes, versions, media
profiles, operations, and encapsulated entities, are excluded from the ex-
port. When EMMOs are chosen to be exported without the versioning



96 CHAPTER 8. IMPLEMENTATION AND EVALUATION

information, i.e. the manifest file specifies the export option “versioning”
as false, any immediate preceding and succeeding versions of the exported
entities are placed within the bundle in weak mode; all indirect predeces-
sors and successors are left out. For example, as the manifest file speci-
fies “versioning” as false, EMMO “Dracula Movies V1”’s direct successor
EMMO “Dracula Movies V3” and direct predecessor EMMO “Dracula
Movies” are exported in weak mode.

Receiving a request for exporting an EMMO with specified export options, the
export tool first collects all required files into the corresponding folder structure,
packs the folder into a zip file, and subsequently deletes the directory structure
from the local filesystem; it just keeps the compressed file that can now be used
for export and exchange.

8.1.3 Importing EMMOs

When importing EMMOs, one has to consider that EMMOs can be authored in
a distributed and collaborative way, i.e. EMMOs and entities might have been
concurrently modified without creating new entities. Thus, when importing
an EMMO bundle into an existing database, the bundle might contain entities
carrying the same OIDs as the corresponding entities in the local database. To
avoid duplicates, one needs to define some precise decision rules determining
whether the local or the imported entity prevails.

The decision rules are based on two parameter values, i.e. an entity w’s ex-
port mode mode(w) and modified date date(w). For the entities in the local
database, these two values are stored within the set of features. The basic strat-
egy of importing EMMO containers is that the greater export mode (stronger
≥ hollow ≥ weak), the more recent modified date, and the local copy prevail.
Additional data contained in an imported entity, such as recursively contained
entities or included media data, is added to a local entity by simultaneously
raising the export mode. If there are two entities wlocal and wbundle with the
same OID, with wlocal stored in the local database and wbundle contained within
the imported bundle structure, then we distinguish four different cases:

1. If mode(wlocal) ≥ mode(wbundle) and date(wlocal) ≥ date(wbundle),
then wlocal prevails and wbundle is ignored.

2. If mode(wlocal) < mode(wbundle) and date(wlocal) < date(wbundle),
then wbundle prevails and wlocal is ignored.

3. If mode(wlocal) < mode(wbundle) and date(wlocal) ≥ date(wbundle),
then any additional content captured by wbundle is added to wlocal, and
subsequently the export mode of wlocal is changed to the export mode of
wbundle.

4. If mode(wlocal) ≥ mode(wbundle) and date(wlocal) < date(wbundle),
then wlocal prevails and wbundle is ignored.

Reflecting the export mode and modified date when transferring EMMOs guar-
antees that EMMOs are maintained in a consistent manner and capture maxi-
mum and most recent information about their content.



8.1. EMMO CONTAINER INFRASTRUCTURE 97

8.1.4 Displaying and Authoring of EMMOs

For displaying EMMOs to the user, the implementation is supplied with a simple
graphical EMMO Viewer. Figure 8.5 shows a screenshot of the EMMO Viewer
displaying EMMO “The Fall – Poem by Rivner” that was authored within the
context of the CULTOS project (see Sect. 9.1).

Figure 8.5: Screenshot of the EMMO Viewer

Logical media parts are represented as pentagons by employing color codes to
their top section to denote their respective types, and associations are illustrated
as labeled edges. The dialog window at the right hand side of Fig. 8.5 provides
further details on the logical media part, e.g. the media instance and a human
readable description is displayed for the painting “Icarus’ Fall by Breugel”.

For the construction of EMMOs, the EMMO Authoring Environment – a
tool which was developed by one of our partners within the CULTOS project
(see Sect. 9.1) – can be used. The EMMO Authoring Environment consists
of a Media Import Tool and an EMMO Authoring Tool. The Media Import
Tool provides means for the import and the definition of segments from media
objects, and the construction of logical media parts by associating them with
ontology objects, attributes, and connector information. The EMMO Authoring
Tool enables the construction of EMMOs and facilitates the rendering of an
EMMO’s content in HTML format.

Figure 8.6 shows a screenshot of the EMMO Authoring Tool displaying again
the EMMO “The Fall – Poem by Rivner”.

In future work, we aim to integrate all those tools into one single EMMO
Development Environment providing a profound basis for the integration of on-
tological knowledge within the EMMO management as described in Chapter 7.



98 CHAPTER 8. IMPLEMENTATION AND EVALUATION

Figure 8.6: Screenshot of the EMMO Authoring Tool

8.2 EMMA Query Processing

Because of an EMMO’s capability of encapsulating other entities and EMMOs,
its versioning mechanism, and its graph structure, the EMMA query algebra,
which enables the access to the information stored within EMMOs, can pro-
duce quite complex query operations. Depending on the structure and size of
the EMMO containers, as well as the size of the integrated ontology, the query
execution time might become too long for many practical applications. There-
fore, it is important to limit or, if possible, to reduce query execution time.
This can be realized by query optimization. Thus, for fulfilling this important
requirement, the EMMA query processing environment has to provide a basis
for query optimization through query rewriting.



8.2. EMMA QUERY PROCESSING 99

We have implemented the EMMA query processing architecture with query
optimization in mind, however, the realization of a query optimizer is subject
of future work. The EMMA query processing architecture, which is depicted in
Fig. 8.7, is based on the implementation of the EMMO container infrastructure
described in the previous section. Its focus is the extraction and navigation of
information stored within the EMMO containers. The EMMA query processing
architecture takes syntactically well-defined query expressions as input. The
processing of the query expressions reflects the definition of the EMMA query
operators and produces a set of EMMO objects in a pre-defined output format.

EMMA query

model

Optimized EMMA

query model

EMMA

query

Query

result

EMMA parser Query optimizer

Query execution engine

[ validation ]

Figure 8.7: The EMMA query processing architecture

For the implementation of the EMMA operators, we have chosen a func-
tional approach, i.e. each operator has a corresponding function that evaluates
according to its implementation-specific algorithm. For enabling consistency
and integrity checking, each function has a signature that defines the number
and types of input arguments, and, additionally, the types of the expected out-
put values. By typing all EMMO and EMMA model constructs according to an
internal hierarchy, those constructs can be used for specifying the signature of
functions.

For realizing complex queries, i.e. the nesting of modular EMMA operators,
the EMMA query model is built up. The EMMA query model is a tree consisting
of nodes and leafs. Nodes represent algebraic operators, and leafs correspond
to EMMO and EMMA model constructs, i.e. values of the underlying EMMO
container. The EMMA query model is supplied with a built-in validation mech-
anism, ensuring that operators in the query tree contain only valid references
to subsequent nodes, i.e. before evaluating the complex structure of the query
model tree, a consistency and integrity check concerning the signature of the
functions implementing the EMMA operators is performed.

The design of the EMMA query processing architecture was inspired by the
work of [Gra93] who proposes five important steps for the efficient and fast re-



100 CHAPTER 8. IMPLEMENTATION AND EVALUATION

trieval of query results: parsing and evaluation, query resolution, optimization,
plan compilation, and query evaluation. In the following, we illustrate how to
realize the five steps within the EMMA query processing architecture:

1. For each EMMA query expression that is sent to the query processor, the
EMMA parser checks whether it is syntactically well-formed.

2. The EMMA parser resolves the logical query expression into physical,
system-specific operators. Each modular operator is specified by an algo-
rithmic implementation, and complex queries, i.e. nested sets of operators,
are resolved by building up the EMMA query model.

3. Query optimization is realized by the EMMA query optimizer, which takes
a query model and transforms it into an equivalent model that can evaluate
more efficiently. The design of the transformation algorithm is based on
the evaluation of the response time of query expressions and is subject of
future work.

4. A query plan assures maximum efficiency by defining the chronological
order for evaluating single operators in complex query trees. So far, we
have implemented a rather simple query plan. Using evaluation results,
we will refine the query plan in future work.

5. By applying a bottom-up evaluation technique, the execution computes the
final query result. This evaluation technique runs through several steps.
First, any EMMO or EMMA model construct captured by the EMMO
containers that represents a valid input value of the query expression is
fetched. Then, all possible output values – represented as tuples – that
can be derived when applying the function’s algorithm reflecting the def-
inition of the corresponding EMMA operator to the fetched input values,
are computed. Going up the tree hierarchy, this process is repeated by
applying functions to the set of objects in the EMMO store together with
those tuples which were inferred in the previous step. This process is re-
peated until the root of the query tree is reached and the final result set
is delivered.

As already mentioned, the current implementation covers the building and eval-
uation of the EMMA query model as part of the query execution engine. Cur-
rently, we are working on query optimization techniques that are tailored to
the physical EMMA algebra. As starting point for the design of the query op-
timizer, we have done some evaluation experiments illustrated in the following
subsection. We expect our future implementation to evaluate query requests on
an optimized EMMA query model. Moreover, as in our current implementation
each algebraic operator is implemented in terms of an ObjectStore function,
we plan to integrate query optimization strategies as outlined in [L+97], i.e. we
want to translate the EMMA queries into an object algebra, such as [O+95], for
which query optimization techniques are readily available.

8.2.1 Evaluation

In order to evaluate the efficiency of the EMMA query execution engine and the
potential for query optimization, we carried out some first experiments to com-
pare the performance of a selected number of representative EMMA operators.



8.2. EMMA QUERY PROCESSING 101

Table 8.1: Response times for selected operations (in ms)

Query performance evaluation 

DB 1 (100 EMMOs) DB 2 (300 EMMOs) DB 3 (500 EMMOs) 

flat normal deep flat normal deep flat normal deep 

AllEncEnt(eroot) 8.67 17.44 14.11 15.56 36.33 74.56 138.86 118.29 160.71 

AllEncEnt(ex) 15.4 14.2 18.6 61.1 31.2 45.3 54.7 79.7 104.7 

AllSuccessors(ex) 14.2 3.2 8 3.2 11.2 6.4 9.6 11.2 6.4 

JumpRight(ex, ly, oz+) 8 11.2 6.4 11.2 9.6 12.8 11.2 16 11.2 

All experiments were run on a PC with Intel Pentium 4 processor with
2.6 Ghz and 512 MB DDR memory running Windows XP SP1 and the Java
Development Kit 1.4.2.

We have implemented an evaluation environment that allows the creation
of EMMO data sets with definable size and structure. In all our experiments
the EMMO eroot encapsulates all the other generated EMMOs ex. Each EMMO
has between 0 and 50 successors and can contain up to 100 entities. In order
to create navigation paths of arbitrary length, we connect the entities with
associations to establish a graph structure.

The values displayed in Table 8.1 represent the mean of the results obtained
after performing the experiments ten times. The columns “flat”, “normal”, and
“deep” indicate the maximum level of nesting: in a flat hierarchy the maximum
level of nesting is 1, in a normal hierarchy 5, and in a deep hierarchy 10.

Unsurprisingly, the response time of all operators that access the hierar-
chical structure of EMMOs increases with the number of EMMOs contained
in the database. Regarding the influence of the maximum level of nesting on
the response time of queries that access the hierarchical structure, the evalu-
ation results were inconclusive. This might be caused by a trade-off between
the additional workload and efficiency gains during the recursive processing of
the queries. For the two other query types the response time remains almost
constant. Further tests will be required to obtain a more detailed analysis and
understanding of the various effects on query performance. One important point
we learned from the experiments is that the development of a query optimization
strategy cannot be separated from the semantics determined by a specific appli-
cation scenario. In the experiment above, we artificially constructed databases
of different size and structure. However, as there are too many factors influenc-
ing the query performance, such as the total number of entities, the percentage
of EMMOs, level of versioning, level of recursion, and the size and structure of
the ontology, we could not identify characteristic classes of databases showing
similar query performance. Consequently, we will carry out further experiments
based on real-world EMMO data derived from the application scenarios de-
scribed in the following chapter. By using application-specific data as starting
point for the EMMA query optimizer, the results of restructuring the EMMA



102 CHAPTER 8. IMPLEMENTATION AND EVALUATION

query model enable the reformulation of hierarchical queries through rewriting
that is customized to the particular application scenario.

8.3 Summary

The platform independent and scalable EMMO container infrastructure pro-
vides adequate export and import facilities and is supplied with the EMMO
Viewer for displaying EMMOs and the EMMO Authoring Tool for the author-
ing of EMMOs. In future work, we plan to integrate all these tools into one
EMMO Development Environment providing a profound basis for the integra-
tion of ontological knowledge within the management of EMMOs. The EMMA
query processing architecture provides a basis for query optimization. First
evaluation tests based on artificially constructed databases showed inconclusive
results. Thus, further evaluation tests in real-world applications to obtain a
more detailed analysis and understanding of the various effects on query perfor-
mance are required. In the following chapter, we introduce application scenarios
that will produce the required data for future evaluation tests.



Chapter 9

Application Scenarios for
the EMMO Model

After having introduced and described the EMMO approach for the semantic
modeling of multimedia content and the algebra EMMA for ontology-enhanced
querying of EMMOs, we want to illustrate in this chapter by means of three
application scenarios how our approach may be practically applied and what
benefits it offers. The first scenario is the development of a platform for the
exchange of cultural knowledge (Sect. 9.1). The second scenario addresses the
domain of eLearning (Sect. 9.2), and the third scenario introduces a multimedia
task management system (Sect. 9.3). All three application scenarios have in
common that they require an infrastructure providing means for the distributed
and collaborative authoring of multimedia content.

9.1 Management of Cultural Knowledge

The EMMO model has been originally developed to fulfil the requirements of
the EU-funded project CULTOS. CULTOS lasted from September 2001 until
October 2003 and was carried out by 11 partners from different EU-countries,
Israel, and Estonia. CULTOS addressed the need of researchers in the domain of
intertextual studies for an integrated view on individual and culture-dependent
perceptions of interrelationships between cultural artefacts, such as literature,
artworks, movies, etc. For that purpose, we had to develop an Internet-based
multimedia collaboration platform for authoring, managing, retrieving, and ex-
changing so-called InterTextual Threads (ITTs) [B+02],[SWZK03] – knowledge
structures that semantically interrelate and compare cultural artefacts. ITTs
represent trails of associations between different “texts”, where “text” can be
anything ranging from paintings, advertisements, melodic patterns in songs,
theater recordings, etc. The main aim of ITTs is to make the cultural memory
of Europe more attractive and appealing to its citizens. For instance, the de-
velopment of reverse chronological threads that start with well-known elements
of the popular culture, such as movies, pop songs, cartoons, or novels, and sub-
sequently connect those elements to artefacts originating from the traditional
Western cultural canon, such as allusions or parodies, supports and improves the
comprehensibility of the European cultural heritage. Moreover, ITTs render it

103



104 CHAPTER 9. APPLICATION SCENARIOS

possible for the community of intertextual studies to create and exchange pieces
of a world-wide collection of semantically connected and multimedia-enriched
artifacts incorporating the community’s different cultural backgrounds – an im-
portant contribution to the preservation of European cultural heritage.

ITTs are basically graph structures that describe semantic relationships be-
tween pieces of literature, artworks, and other kinds of cultural artefacts. They
can take a variety of forms, ranging from spiders over centipedes to associative
maps. The example ITT depicted in Fig. 9.1 highlights several relationships of
the poem “The Fall” by Tuvia Ribner to other works of art. It states that the
poem makes reference to the 3rd book of Ovid’s “Metamorphoses” and that the
poem is an ekphrasis (an ekphrasis is defined as “literary representation of visual
art”) of the painting “Icarus’ Fall” by the famous Flemish painter Breugel.

Metamorphoses by Ovid

Book 3

Referencing

The Fall
by Ribner

Text

Painting

Icarus`s Fall
by Breugel

Ekphrasis

Text

Figure 9.1: Simple InterTextual Thread

The graphical representation of the ITT bears strong resemblance to tech-
niques from the domain of knowledge engineering like conceptual graphs and
semantic nets, though it lacks their formal rigidity. However, the complexity of
ITTs should not be underestimated. ITTs make use of constructs that are very
challenging from the perspective of knowledge representation, such as encapsu-
lation and reification of statements.

Encapsulation is intrinsic to ITTs because intertextual studies are not exact
sciences. Certainly, the cultural and personal context of a researcher affects the
kind of relationships between pieces of literature he discovers and are of value
to him. For instance, Fig. 9.2 illustrates two ITTs that manifest two different
points of view on Ribner’s poem by describing that the author of the ITT on
the left hand side emphasizes the context of the poem to other works of art,
whereas the author of the ITT on the right hand side stresses the relationship of
the poem to the religious concept of the “Fall of Adam and Eve” in “Genesis”.
Furthermore, ITTs themselves can be relevant subjects of discourse and thus
be contained as first-class artifacts within other ITTs, as, for instance, the two
ITTs in Fig. 9.2 are described as opposed representations.

Reification of statements is also occurring frequently within ITTs. Since
experts in intertextual studies extensively base their position on the position
of other researchers, statements about statements are common practice within
ITTs. Figure 9.2, for instance, expresses through reification that the statement



9.1. MANAGEMENT OF CULTURAL KNOWLEDGE 105

Metamorphoses by Ovid

Book 3

Referencing

The Fall
by Ribner

Text

Painting

Icarus`s Fall
by Breugel

Opposed 

Representation

B. Zoa

believes

Ekphrasis

Text

Genesis,ch.II

The Fall of 

Adam&Eve

NewTestament

Text

The Fall
by Ribner

Text

Cultural Concept

Figure 9.2: Complex InterTextual Thread

describing the two depicted ITTs as opposed representations is only the opinion
of the researcher B. Zoa.

Given these characteristics of ITTs, we find that EMMOs are indeed very
well suited for their representation within the Internet-based multimedia collab-
oration platform for intertextual studies:

• The semantic aspect of EMMOs offers sufficient expressiveness to cap-
ture ITTs. Figure 9.3 shows how the complex ITT of Fig. 9.2 could be
represented using EMMOs. Due to the fact that associations as well as
EMMOs themselves are entities, it is no problem to deal with reification
of statements as well as with encapsulation of ITTs.

RenderingImplementation

Rendering

Zoa�s Research

opposed
representation

B. Zoa

believes

Bible Text 
Studies

cultural concept

New Testament

The Fall of 
Adam & Eve

http://.../Adam.txt

format: txt
..... full

The Fall

http://.../fall.doc

format: doc
..... full

Ribner

Author

Text

reference

Metamorphoses

ekphrasis

Studies 
about the Fall

format: jpg
..... full

Icarus� Fall

http://.../IcarusFall.jpg

Painter

The Fall

http://.../fall.doc

format: doc
..... full

Ribner

Author

http://.../metam.pdf

format: pdf
..... full

Author

Ovid

Text

Painting

Text

Text

Breugel

Figure 9.3: An ITT represented by an EMMO



106 CHAPTER 9. APPLICATION SCENARIOS

• The media aspect of EMMOs allows to enrich ITTs that so far expressed
interrelationships between cultural artefacts only on an abstract level
with digital media about these artefacts, such as a JPEG image showing
Breugel’s painting Icarus’ Fall, a Word document with the poem of Tuvia
Ribner, etc. The ability to consume these media while browsing an ITT
certainly enhances the comprehension of the ITT and the relationships
described therein.

• The functional aspect of EMMOs permits to attach functionality to ITTs.
For instance, an EMMO representing an ITT might know how to render
itself as a centipede, associative map, or spider via SVG, or might offer
rights clearing functionality for the media by which it is enhanced.

• By using EMMA’s query facilities, the researcher can access all the infor-
mation captured by EMMOs. For example, a researcher can first create
a new EMMO by unifying all EMMOs representing ITTs that discuss
Breugel’s painting “The Fall”, and subsequently navigate along the se-
mantic graph structure of the newly created EMMO.

• By integrating ontological knowledge within EMMA query processing,
imprecise queries can be refined by drawing inferences from ontological
knowledge. For example, a researcher who is looking for all ancient texts
serving as “cultural concept” for the poem “The Fall”, should also receive
the ancient text “The Fall of Adam and Eve”, which is not directly classi-
fied as ancient text but certainly falls into this category as it is published
in the New Testament.

• The EMMO container infrastructure provides a suitable foundation for
the realization of the cultural knowledge platform. By enabling the per-
sistent storage of EMMOs and providing interfaces that allow applications
to traverse and manipulate the stored EMMOs as well as to invoke their
operations, EMMO containers establish an ideal ground for the implemen-
tation of authoring, browsing, and querying applications for ITTs that had
to be realized within the CULTOS project. Furthermore, their decentral-
ized approach renders it possible to set up independent EMMO containers
at the sites of different researchers, and by providing means for the import
and export of EMMOs through bundling all their aspects and versioning
information, the exchange of ITTs including their media data and offered
functionality can be realized. This allows researchers to share and col-
laboratively work on ITTs in order to discover and establish new links
between artworks as well as different personal and cultural viewpoints,
thereby paving the way to novel insights into a subject. Moreover, re-
garding the integration of ontological knowledge, the EMMO container
provides the basis for the inflation and deflation of EMMOs. For instance,
by removing redundant associations from an EMMO, its original repre-
sentation is transformed into a deflated, i.e. compact minimum version for
efficient transfer.

• Versioning within the EMMO model supports this kind of collaboration,
allowing to create different versions of an ITT independently and concur-
rently at different sites, to merge these versions, as well as to highlight
differences between these versions. By versioning, it is also possible to



9.2. ELEARNING 107

reflect the evolution of a researcher’s viewpoint onto a subject that might
change over time.

Within the CULTOS Project, groups of Cultural Studies specialists based in 11
different countries, formulated a commonly agreed ontology – the Ontology of
Intertextual Studies [B+03b]. The ontology is divided in three parts:

• The upper ontology encompasses the concepts that are not specific to
intertextual studies, such as “agent”, “event”, “object”, and “place”.

• The middle ontology consists of hundred major concepts and more than
hundred specified relationships. The relationships are hierarchically struc-
tured and define all types of connections that can occur between “texts”.
As the knowledge model is intended to answer the needs of different ap-
proaches to intertextuality, it will be subject to evolution.

• The lower ontology establishes an intertextual taxonomy, i.e. it specifies
properties of relationships, such as symmetric, transitive, or inverse rela-
tionships, relates relationships to other concepts or relationships by de-
scribing their domain and range values, and associates attribute values to
relationships.

Concepts and relationships provide the semantics of the application domain and
can be used for describing the interrelations between cultural artefacts.

By using the EMMO Authoring Tool (see Sect. 8.1.4), the researchers in in-
tertextual studies produced 14 individually authored case studies of intertextual
relations across various areas of European cultural production [B+03c]. The re-
alization of the case studies as EMMOs served as a first practical evaluation to
show the feasibility of the EMMO approach in a real-world setting.

9.2 eLearning

eLearning is currently a very broadly discussed topic in academia as well as
in industry [Sto04]. In a globalized world with increasingly faster innovation
cycles, people are confronted with the challenge of lifelong learning. The basic
hope of eLearning is to be able to tackle this challenge by providing individuals
with access to multimedia learning and training material via the Internet, in-
dependent from time and location and as much as possible personalized to the
individual’s context, such as prior education and knowledge, information needs,
language, preferred learning style, etc.

To fulfil this vision, it is certainly not sufficient to simply put pre-canned
coarse-grained learning material such as the slides, notes, or video recordings
of a whole lecture onto a Web server. Instead, it is necessary to modularize
learning material into smaller, reusable units that can be flexibly assembled
into highly individual presentations that satisfy a user’s current information
needs and context. As a prerequisite to this, it is necessary to semantically
describe the learning units and their interrelationships by means of a suitable
eLearning domain ontology so that these units can be matched with a user’s
profile, preferences, and information needs.

The situation is similar for the realization of the mobile learning approach,
i.e. the representation of learning content by means of mobile devices, to meet



108 CHAPTER 9. APPLICATION SCENARIOS

the requirements of learners studying on their own. By modularizing the learn-
ing material into small units covering different formats, levels of details, and
quality ranges, device-aware presentations can be generated.

Systems that follow such a semantic modeling approach for eLearning mate-
rial already exist, e.g. the eLearning Portal introduced in [SSS01] or MultiBook
[S+99]. These systems define ontologies which allow to apply content, context,
and structure relations for the description of learning units: content relations es-
tablish a classification scheme for concepts and notions of the selected domain –
e.g. “dealsWith”, “partof”– context relations put learning units into their ped-
agogical context – e.g. “exampleOf”, “discussionOf”– and structure relations
describe structural relations between learning units – e.g. “basedOn”, “next”.

The implementations of these systems typically follow centralized server ar-
chitectures. Learning units can be uploaded onto a server and then described
using the ontology defined by the respective system. The server, among oth-
ers, offers functionality for the search and retrieval of suitable learning material
using these descriptions as well as personalized rendering functionality, which
automatically selects learning material and composes it to an individual mul-
timedia presentation that suits the context of the user, including information
need, educational level, and preferred learning style.

While systems, like the eLearning Portal or MultiBook, that follow a seman-
tic approach to the modeling of learning material definitely constitute important
steps towards modern context-aware eLearning environments, they suffer from
their centralistic architectures. On the one hand, they have not been designed
with the sharing and exchange of content in mind. Instead, they expect all learn-
ing material to be uploaded on central servers. However, learning material is
inherently distributed on the Internet and authors of such material, even though
they are often very well willing to share their material with others, might be
reluctant to publish it by uploading it onto a central server not under their con-
trol. This insight gave rise to recent developments of distributed, peer-to-peer
infrastructures for the sharing of learning materials such as Edutella [N+02].
On the other hand, these centralistic systems ignore the fact that people not
just want to share material in the sense of publishing but also to collabora-
tively work on it. Moreover, they offer no support for collaborative authoring,
such as versioning, etc. However, today, it is common practice, for instance,
that professors in charge of preparing a new lecture typically borrow slides from
their colleagues and adapt them to their purposes at the price of handing over
their adaptations back to the lender so that he might profit from some of these
changes as well.

We believe that the EMMO model and container infrastructure offers the
prospect of realizing appealing distributed and collaborative eLearning environ-
ments that follow the semantic modeling approach but avoid the problems of
the centralized systems. Figure 9.4 gives a sketch of an example EMMO which
– roughly following the organization of the learning material on the Hyper-
Physics system Website [Ron03] – models some of the learning material from
the domain of physics, in particular material covering mechanics formulas. The
material consists of two EMMOs which represent learning units about the Law
of Work and Newton’s 2nd Law.

Using the example EMMO, we can demonstrate the benefits provided by the
EMMO infrastructure:



9.2. ELEARNING 109

RenderingImplementation

Rendering

Beginner

Newton´s 2nd Law

illustrate

Advanced

Example of 
Newton 2nd Law

http://.../ExaNe2.avi

duration: 5min
format: AVI full

Definition of 
Newton 2nd Law

http://.../DefNe2.txt

format: txt
..... full

Limitation of 
Newton 2nd Law

http://.../LimNe2.txt

format: jpg
..... full

Newton�s 
2nd Law

Illustration of 
Newton 2nd Law

http://.../IllNe2.txt

format: jpg
..... full

Cause of Motion 

describe

exemplify
Advanced

define

Beginner

limitate

Basic

AdvancedMechanics 
Formulas

contains

Law of Work 

Mechanics Formulas

PaymentImplementation

Payment

Law

Law

Figure 9.4: EMMO “Mechanics Formulas” (emechanics)

• By capturing the media aspect, an EMMO which models eLearning mate-
rial encompasses not just a semantic description of the material but also
all the media content of which the material consists readily available for
consumption by the student. For instance, our example EMMO dealing
with Newton’s 2nd Law consists of a textual definition of the law, two
JPEG images graphically illustrating the law and its limitations, and a
video that exemplifies the law.

• The semantic aspect of an EMMO can provide a semantic description of
the learning material it represents according to an appropriate eLearning
domain ontology. By the EMMO model’s support of encapsulation, learn-
ing material can be logically organized into hierarchies of self-contained
modular units with well-defined boundaries. Thus, even complex content
can be structured in a way that enables the reuse of learning modules in
different contexts. In the example of Fig. 9.4, the EMMO “Newton’s 2nd
Law” encapsulates and refers to the EMMO “Cause of Motion”, which
may again have a complex structure. This embedded EMMO constitutes
a logical unit on its own, which may be addressed, accessed, reused, and
transferred independently from the outer EMMO. The ability to reify as-
sociations also comes handy: it could be applied to denote, e.g. the source
and ownership of an association, copyright issues, etc.

• By its functional aspect, an EMMO can ship with its own rendering func-
tionality for adequately presenting the learning material to the user and
device. For instance, the operation “Rendering” attached to the EMMO
about Newton’s 2nd Law might create an HTML document containing
the definition of the law, and two images illustrating the definition of the
model and its limitation for a student who prefers a textbook approach
for learning. For another student who prefers a visual style of learning,



110 CHAPTER 9. APPLICATION SCENARIOS

the same operation might generate an HTML document that makes use
of these images as well but also includes the exemplifying video. Finally,
a third student using a mobile device could receive only text documents
and the low level images illustrating the definition. As rendering function-
ality is attached to the EMMO to which it applies and is no global system
functionality, it is also possible to supply different EMMOs with differ-
ent rendering operations tailored to their particular requirements avoiding
the need of developing “one size fits all” rendering algorithms. Another
functionality important in the eLearning context, are payment operations
which check whether payment demands are fulfilled before allowing to
consume the material represented by the EMMO.

• The expressivity of the EMMA query algebra enables the generation of
multimedia representations of the physics content reflecting a specific task,
context, and background knowledge of teachers or students. For example,
an advanced student in physics might require for the final preparation
of his exams a summary of only the definitions of mechanics laws, i.e. a
document listing all media objects described by logical media parts of type
“Definition” which are contained within EMMOs of type “Law”.

• By integrating ontological knowledge described within the eLearning On-
tology, imprecise queries can be refined. For instance, the knowledge that
the domain of mechanics is just one part of the domain of physics can be
used for refinement. If a student is asking for all media objects exempli-
fying a physics law, then he should also receive those media objects which
are assigned to the examples of mechanics law, but not explicitly to the
examples of physics law.

• The EMMO containers with their ability to persistently store EMMOs
and their interfaces that permit the fine-grained traversal and manipu-
lation of EMMOs as well as the execution of EMMO operations provide
an ideal ground for the realization of an eLearning environment based on
semantically modeled learning material. The infrastructure provides vi-
sual tools for the authoring of, the search for, as well as the personalized
presentation of such material. By being further able to export and import
whole EMMOs encompassing their media and semantic aspects as well as
their functionality, EMMO containers may form the cornerstone of a dis-
tributed content sharing infrastructure for semantically modeled learning
material that easily can be extended to a peer-to-peer network similar to
Edutella.

• Given the profound versioning support incorporated into the EMMO
model, a distributed network of EMMO containers would also support
the efficient collaborative authoring of learning material.

9.3 Multimedia Task Management

Every employee in an enterprise or organization is expected to accomplish a
specific set of tasks and jobs. Although some of these tasks might be simple
standalone tasks, most tasks are of a more complex nature and consist of sub-
tasks, which may have dependencies, have to be executed in a certain order,



9.3. MULTIMEDIA TASK MANAGEMENT 111

run in parallel, etc. To make things worse, subtasks are frequently under the
authority of different persons. To get things done correctly, it is important for
employees to know how these complex tasks are organized and which people are
involved. A documentation of these workflows is therefore essential. However,
in many organizations, such as a typical university, a system for managing the
individual tasks is lacking. People simply know how to get their work done. If
an employee is assigned a task he has never performed before, he will typically
look for people who know how to perform the task and talk to them. However,
if these people are unavailable, e.g. due to illness, and a deadline is approaching,
things get stressful.

[GH95] define a workflow as collection of tasks organized to accomplish some
business process, where a task can be performed by one and more software sys-
tems, one or a team of humans, or a combination of these. According to [Hol95],
workflow management systems are then systems that define, manage, and ex-
ecute workflows through the execution of software whose order of execution
is driven by a computer representation of the workflow logic. Existing work-
flow management systems, such as [V+04] or [C+04], often focus on the design
of complex distributed applications reusing existing software components, and
rather neglect the integration of human tasks. Therefore, in many cases techni-
cal instructions for individual tasks are not provided. Within our approach, we
focus on the workflow of tasks that are performed by humans. To ensure that
the person who is responsible for performing a task has all the necessary knowl-
edge available, tasks need to be described by multimedia-enhanced technical
instructions.

RenderingImplementation

Rendering

Lecture Room Reservation

Post Lecture Room 
Reservation

Introduction
to I3V 

http://.../i3v_intro.html

format: html
..... full

supplements

responsible John Doe

permission

Post booking
on I3V

http://.../lec_book.avi

format: AVI
..... fullsupplements

secretary

Find
lecture room

http://.../lec_find.doc

format: doc
..... full

Book
lecture room

http://.../IllNe2.txt

format: jpg
..... full

entails

responsible

Lecture room
locations

http://.../lec_loc.avi

format: avi
..... full

Jane Doe

entails

Choose
Lecture Room

Figure 9.5: EMMO “Lecture Room Reservation” (ereservation)

In the following, we want to illustrate how the EMMO infrastructure can be
employed to realize a multimedia task management system. Figure 9.5 gives a
simplified example of an EMMO that documents the task of reserving a room



112 CHAPTER 9. APPLICATION SCENARIOS

for a lecture at the University of Vienna, which represents just a small task pos-
sibly described within an university administration system. Using the example
EMMO, we can demonstrate the benefits provided by our approach:

• By addressing the semantic aspect of multimedia content, EMMOs are
very well suited for the description of tasks by means of an appropriate
workflow ontology. Via associations, it is possible to extensively describe
the interrelationships and dependencies between tasks, to describe the ob-
jectives achieved by a task, and to relate tasks to the persons responsible
for them. With their container-like nature and their support for encapsu-
lation, EMMOs further provide a natural means of structuring even very
complex tasks. Each complex task, i.e. a task which consists of subtasks,
can be represented by a corresponding EMMO; as these EMMOs can be
included in arbitrary other EMMOs, it is possible to assemble more com-
plex tasks from other tasks and to reuse a task in different contexts. The
task in Fig. 9.5 consists of two subtasks each represented by correspond-
ing EMMOs, namely the task “Choose Lecture Room” which “entails” the
task “Post Lecture Room Reservation”. Inside these subtasks primitive
tasks exist that have no further substructure and are modeled as logical
media parts. It is stated that choosing a lecture room involves identifying
the most appropriate room and calling the person in charge of the rooms,
Jane Doe, to find out whether it is available at the desired time slot to
book it. It is also stated that after this, the reservation must be made
known to the students by posting it on the university’s central course ad-
ministration system I3V. There is again a single person responsible for
this (John Doe) who must be called to do so. It is also specified by fur-
ther associations that supplementary information on how to reach lecture
rooms and how to use the I3V system is available.

• By means of their media aspect, EMMOs are not just capable to describe
tasks on an abstract level but also to enrich these abstract descriptions
with illustrating media. In our example in Fig. 9.5, we have modeled
primitive tasks as logical media parts, which can be augmented with pro-
files of media explaining how to perform these tasks, e.g. through textual
descriptions, videos, etc.

• The functional aspect of EMMOs once more allows the realization of a
context dependent and personalized rendering of task descriptions. For
example, in case that the secretary gets ill and a visiting professor needs
to reserve a lecture room himself, he executes the rendering operation
associated to the EMMO “Lecture Room Reservation”. The implementa-
tion of this operation could consider his user profile which might say that
the visiting professor has limited knowledge of the locations of the lecture
rooms and also no idea what the I3V system is. Therefore, the operation
might produce a SMIL presentation, which not just includes the basic
descriptions of the tasks but also the supplementary material available.
Since the dependencies between the tasks are explicitly modeled within
the EMMO, the implementation might also be able to take account of
the progress of the task, explaining only those things that still need to be
finished.



9.4. SUMMARY 113

• By using the EMMA operators, one can access very detailed and personal-
ized information captured by the task management system. For example,
an employee who is only interested in the task he is responsible for asks
for all associations of type “responsible” that specify the ontology object
representing his person as target entity.

• By describing each employee and the hierarchical structure of the en-
terprise within the underlying ontology, this knowledge can be used for
refining a query request. Thus, for example, a head of group can now
easily access all the tasks the employees of his group are responsible for.
As another example, if an employee responsible for a task is not available,
the head of group can search for the employees responsible for the corre-
sponding supertask and assume that they are also competent to attend to
this task.

• The EMMO container infrastructure constitutes a suitable foundation for
the realization of a task management system. EMMO containers pro-
vide persistent storage of and fine-grained access to EMMOs modeling
tasks and permit the execution of EMMO operations. Moreover, through
their ability to import and export EMMOs (and thus task descriptions)
they render it possible to move and share EMMOs between different con-
tainers. Therefore, they fulfil essential prerequisites to establish a task
management system in a distributed setting. This is particularly useful
since different units within an organization might show a considerable
autonomy, such as the different schools and departments of a university.

• Finally, versioning support of EMMOs, for instance, allows to express
the differences in the structure of similar tasks occurring in different au-
tonomous units, which is a very important functionality for the strategic
management in many organizations.

9.4 Summary

In this chapter, we have illustrated the appealing prospects offered by the
EMMO approach to multimedia content modeling by illustrating three attrac-
tive application scenarios. All three scenarios are distributed content sharing
applications which benefit from the essential characteristics of the EMMO in-
frastructure, i.e. EMMOs covering the semantic, media, and functional aspect
of multimedia content, providing versioning support, and implemented as ex-
changeable EMMO containers supported by an ontology-enhanced query mech-
anism. The first application scenario describes how the EMMO infrastructure
has been successfully used for the modeling and exchange of multimedia en-
hanced intertextual threads in the CULTOS project. The second and third
scenario, although not yet implemented, show the usefulness of an EMMO in-
frastructure for the realization of a distributed eLearning environment and a
multimedia task management system.

In our future work, we will focus on a case study in the domain of eLearning
to verify the feasibility and scalability of our approach in a real-world applica-
tion. Additionally, we plan to extend the eLearning scenario by integrating the



114 CHAPTER 9. APPLICATION SCENARIOS

features and functionality established by a multimedia task management sys-
tem for educational administration to demonstrate the benefits of the seamless
integration of multiple ontology instances – possibly originating from different
domains – within one realization of the EMMO approach.



Chapter 10

Conclusion

In this thesis we have introduced EMMOs as a novel approach for the collabo-
rative and distributed modeling of multimedia content. An EMMO establishes
a self-contained piece of multimedia content that unifies three aspects of multi-
media content. The media aspect reflects that an EMMO aggregates the basic
media objects of which the multimedia content consists, the semantic aspect
enables the specification of semantic associations between an EMMO’s media
objects, and, finally, the functional aspect provides means for the definition
of arbitrary, domain-specific operations on the content that can be invoked by
applications. Moreover, EMMOs are versionable – they can be modified con-
currently in a distributed environment – and tradeable, i.e. all three aspects of
the multimedia content and the versioning information can be bundled into one
unit and serialized into an exchangeable format. The formal basis of EMMOs
are entities, which are characterized by thirteen properties. Entities occur in
four different kinds, i.e. logical media parts representing the media data, ontol-
ogy objects representing concepts of an ontology, associations describing binary
relationships, and EMMOs aggregating semantically related entities.

For enabling the efficient retrieval of the knowledge represented by EMMOs,
we have developed the query algebra EMMA. EMMA is based on the formal
definitions of the EMMO model and defines five general classes: the extraction
operators provide means to query an EMMO’s three aspects as well as its ver-
sioning information. The navigational operators enable the navigation along an
EMMO’s semantic graph structure and also facilitate the integration of onto-
logical knowledge. The constructors render it possible to modify, combine, and
create new EMMOs. The selection predicates allow the selection of only those
entities fulfilling a specific characteristic, and finally, the join operator relates
several entities or EMMOs with a join condition. EMMA’s operators enable
the access to all information and aspects stored within EMMOs, are based on
precise semantics, orthogonal, and arbitrarily combinable. Thus, EMMA offers
a formal basis for query rewriting and optimization.

Both, the EMMO model and the EMMA algebra, establish a sound foun-
dation for the integration of ontological knowledge. In this thesis, we have
illustrated three different ways of using ontological knowledge within the man-
agement of EMMOs, i.e. for checking integrity constraints within the design
and authoring process of EMMOs, for inflating and deflating an EMMO’s graph
structure, and for refining EMMA query expressions.

115



116 CHAPTER 10. CONCLUSION

Moreover, we have implemented the platform independent and scalable
EMMO container infrastructure that is supplied with adequate export and im-
port facilities, the EMMO Viewer for displaying EMMOs, the EMMO Authoring
Tool for the authoring of EMMOs, and the EMMA query processing architecture
for the efficient retrieval of EMMOs.

By outlining three attractive application scenarios, i.e. a platform for the
management of cultural knowledge, an eLearning environment, and a multi-
media task management system, we have highlighted the benefits of using the
EMMO infrastructure for distributed, collaborative applications. The first sce-
nario has already been successfully deployed, which proved the feasibility and
scalability of our approach in a real-world application.

In our future work, we will focus on the realization of the eLearning sce-
nario. Additionally, we plan to extend the eLearning scenario by integrating
the features and functionality described in the third scenario, i.e. the multime-
dia task management system. By integrating the underlying workflow ontology,
we want to demonstrate the benefits of seamlessly integrating multiple ontology
instances – possibly originating from different domains – within one EMMO
application.

Based on real-world data gathered from this use case, we will carry out
further experiments for performance evaluation, in particular to achieve a more
detailed analysis and understanding of the effects of the various factors on query
performance. We will use the application-specific data as starting point for the
development of an EMMA query optimizer.

Furthermore, our future work will focus on the development of an ontology
description language that is fully compatible with the EMMO model. To enable
the integration of any arbitrary ontology structure, our intention is the develop-
ment of an ontology description language with the same expressiveness as the
standard ontology description language OWL DL, and to provide a converter
between the two languages. This will guarantee full compatibility with other
ontology creation initiatives.

Moreover, we plan to establish an EMMO Development Environment by
integrating the EMMO container infrastructure, the EMMA query processing
environment, and the ontology engineering tools to provide a profound basis for
the seamless integration of ontological knowledge to unleash its full potential
for efficient authoring, management, and retrieval of multimedia content.



Bibliography

[A+97] S. Abiteboul et al. The Lorel Query Language for Semistructured
Data. International Journal on Digital Libraries, 1(1):68–88, 1997.

[A+01] J. Ayars et al. Synchronized Multimedia Integration Language (SMIL
2.0). W3C Recommendation, World Wide Web Consortium (W3C),
August 2001.

[ASS99] S. Adali, M. Sapino, and V. Subrahmanian. A Multimedia Presen-
tation Algebra. In Proc. of the ACM SIGMOD International Con-
ference on Management of Data, Philadelphia, Pennsylvania, USA,
1999.

[B+02] M. Benari et al. Organising the Knowledge of Arts and Experts for
Hypermedia Presentation. In Proc. of the Conference of Electronic
Imaging and the Visual Arts, Florence, Italy, May 2002.

[B+03a] F. Baader et al., editors. The Description Logic Handbook – The-
ory, Implementation, and Applications. Cambridge University Press,
Cambridge, UK, 2003.

[B+03b] M. Benari et al. Proposal for a Standard Ontology of Intertextuality.
Public Deliverable Version 2.0, CULTOS Consortium and Project
Planning, June 2003.

[B+03c] F. Billiani et al. Demonstrator of Intertextual Cultural Threads –
Standard Ontology-Extended Ontology. Public Deliverable Version
2.0, CULTOS Consortium and Project Planning, January 2003.

[B+05a] A. Berglund et al. XML Path Language (XPath). W3C Working
Draft Version 2.0, World Wide Web Consortium (W3C), February
2005.

[B+05b] S. Boag et al. XQuery 1.0: An XML Query Language. W3C Working
Draft, World Wide Web Consortium (W3C), February 2005.

[Bau02] S. Baumeister. Enterprise Media BeansTM Specification. Public Draft
Version 1.0, IBM Corporation, March 2002.

[Bec04] D. Beckett. Resource Description Framework (RDF) Model and Syn-
tax Specification. W3C Recommendation, World Wide Web Consor-
tium (W3C), February 2004.

117



118 BIBLIOGRAPHY

[BFS00] P. Bruneman, M. Fernandez, and D. Suciu. UnQL: A Query Language
and Algebra for Semistructured Data Based on Structural Recursion.
The VLDB Journal – The International Journal on Very Large Data
Bases, 9, 2000.

[BG02] R. Barta and J. Gylta. XTM::Path – Topic Map Management, XPath
Like Retrieval and Construction Facility. Online Article, available un-
der http://cpan.uwinnipeg.ca/htdocs/XTM/XTM/Path.html, 2002.

[BG04] D. Brickely and R.V. Guha. RDF Vocabulary Description Language
1.0: RDF Schema. W3C Working Draft, World Wide Web Consor-
tium (W3C), February 2004.

[BHL01] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Sci-
entific American, May 2001.

[BKW00] S. Boll, W. Klas, and U. Westermann. Multimedia Document For-
mats – Sealed Fate or Setting Out for New Shores? Multimedia –
Tools and Applications, 11(3), 2000.

[Bog04] D. Bogachev. TMPath – Revisited. Online Article, available under
http://homepage.mac.com/dmitryv/TopicMaps/TMPath/TMPath
Revisited.html, 2004.

[BT99] C. Beeri and Y. Tzaban. SAL: An Algebra for Semistructured Data
and XML. In Proc. of the Second International Workshop on the Web
and Databases (WebDB 99), Philadelphia, Pennsylvania, USA, 1999.

[C+95] H. Chang et al. Tele-Action Objects for an Active Multimedia System.
In Proc. of the International Conference on Multimedia Computing
and Systems (ICMCS 1995), Ottawa, Canada, 1995.

[C+01] D. Connolly et al. DAML+OIL (March 2001) Reference. W3C Note,
World Wide Web Consortium (W3C), December 2001.

[C+02] M. Champion et al. Web Services Architecture. W3C Working Draft,
World Wide Web Consortium (W3C), November 2002.

[C+04] L. Costa et al. WebComposer: A Tool for Composition and Exe-
cution of Web Service-Based Workflows. In Proc. of the Joint Con-
ference 10th Brazilian Symposium on Multimedia and the Web 2nd
Latin American Web Congress, Ribeirao Preto-SP, Brazil, 2004.

[Cat94] R. Cattell, editor. The Object Database Standard: ODMG-93. Mor-
gan, Kaufmann, San Francisco, CA, 1994.

[CZ01] S. Chang and T. Znati. Adlet: An Active Document Abstraction for
Multimedia Information Fusion. IEEE Transactions on Knowledge
and Data Engineering, 13(1), 2001.

[DLP98] R. Daniel, C. Lagoze, and S. Payette. A Metadata Architecture for
Digital Libraries. In Proc. of the Advances in Digital Libraries Con-
ference, Santa Barbara, California, 1998.



BIBLIOGRAPHY 119

[DWG94] A. Duda, R. Weiss, and D. Gifford. Content Based Access to Alge-
braic Video. In Proc. of the IEEE First International Conference on
Multimedia Computing and Systems, Boston, MA, USA, 1994.

[F+00] Dieter Fensel et al. OIL in a Nutshell. In Proceedings of the 12th
European Workshop on Knowledge Acquisition, Modeling and Man-
agement (EKAW ’00). Springer-Verlag, 2000.

[F+02] F. Frasincar et al. RAL: An Algebra for Querying RDF. In Proc.
of the Third International Conference on Web Information Systems
Engineering (WISE 2000), Singapore, 2002.

[Fen01] D. Fensel. Ontologies: A Silver Bullet for Knowledge Management
and Electronic Commerce. Springer, Heidelberg, 2001.

[FHH03a] R. Fikes, P. Hayes, and I. Horrocks. DAML Query Language (DQL).
Abstract Specification, DAML Joint Committee, 2003.

[FHH03b] R. Fikes, P. Hayes, and I. Horrocks. OWL-QL – A Language for
Deductive Query Answering on the Semantic Web. Technical report,
Knowledge Systems Laboratory, Stanford University, Stanford, CA,
2003.

[FJJ03] J. Ferraiolo, F. Jun, and D. Jackson. Scalable Vector Graphics (SVG)
1.1. W3C Recommendation, World Wide Web Consortium (W3C),
January 2003.

[Gar03] L. Garshol. Tolog 0.1. Ontopia Technical Report, Ontopia, 2003.

[Gen95] M. Genesereth. Knowledge Interchange Specification. Working Draft
for an American National Standard, X3T2 Ad Hoc Group on KIF,
March 1995.

[GH95] D. Georgakopoulos and M. Hornick. An Overview of Workflow Man-
agement: From Process Modeling to Workflow Automation Infras-
tructure. Distributed and Parallel Databases, 3(2):119–153, 1995.

[Gra93] G. Graefe. Query Evaluation Techniques for Large Databases. ACM
Computing Survey, 25(2):73–169, 1993.

[Gru93] T. Gruber. A Translation Approach to Portable Ontology Specifica-
tions. Knowledge Acquisition, 5(2), 1993.

[Hol95] D. Hollingsworth. Workflow Management Coalition – The Workflow
Reference Model. Technical Report, January 1995.

[ISO86] ISO/IEC JTC 1/SC 34. Information Processing – Text and
Office Sytems – Standard Generalized Markuplanguage (SGML).
ISO/IEC International Standard 8879:1986, International Organiza-
tion for Standardization/International Electrotechnical Commission
(ISO/IEC), July 1986.

[ISO96] ISO/IEC IS 13522-5. Information Technology – Coding of Hyperme-
dia Information – Part 5: Support for Base-Level Interactive Appli-
cations. International Standard, ISO/IEC, 1996.



120 BIBLIOGRAPHY

[ISO97] ISO/IEC JTC 1/SC 34/WG 3. Information Technology –
Hypermedia/Time-Based Structuring Language (HyTime). Interna-
tional Standard 15938-5:2001, ISO/IEC, September 1997.

[ISO00a] ISO/IEC JTC 1/SC 34/WG 3. Information Technology –
SGML Applications – Topic Maps. ISO/IEC International
Standard 13250:2000, International Organization for Standardiza-
tion/International Electrotechnical Commission (ISO/IEC), Febru-
ary 2000.

[ISO00b] ISO/IEC JTC1 SC34 WG3. New Work Item Proposal, Topic Map
Query Language (TMQL). New Proposal, International Organiza-
tion for Standardization/International Electrotechnical Commission
(ISO/IEC), December 2000.

[ISO01a] ISO/IEC JTC 1/SC 29/WG 11. Information Technology – Multime-
dia Content Description Interface – Part 5: Multimedia Description
Schemes. Final Draft International Standard 15938-5:2001, ISO/IEC,
October 2001.

[ISO01b] ISO/JTC 1/SC 32/WG 2. Conceptual Graphs. ISO/IEC In-
ternational Standard, International Organization for Standardiza-
tion/International Electrotechnical Commission (ISO/IEC), April
2001.

[JH98] D. Juke and I. Herman. A Standard for Multimedia Middleware. In
Proc. of the ACM Multimedia Conference, Bristol, UK, 1998.

[K+95] M. Kifer et al. Logical Foundations of Object-Oriented and Frame-
Based Languages. Journal of the Association for Computing Machin-
ery, May 1995.

[K+02] G. Karvounarakis et al. RQL: A Declarative Query Language for
RDF. In Proc. of the 11th International World Wide Web Conference
(WWW 2002), Honolulu, Hawaii, 2002.

[KKS92] M. Kifer, W. Kim, and Y. Sagiv. Querying Object-Oriented
Databases. In Proc. of the ACM SIGMOND Conference on Man-
agement of Data, San Diego, CA, 1992.

[L+93] T. Leung et al. The Aqua Data Model and Algebra. In Proceedings of
the Fourth International Workshop on Database Programming Lan-
guages – Object Models and Languages, Manhattan, New York City,
1993.

[L+97] J. Li et al. MOQL: A Multimedia Object Query Algebra. In Proc.
of the Third International Workshop on Multimedia Information Sys-
tems, Como, Italy, 1997.

[L+99] T. Lee et al. Querying Multimedia Presentations Based on Content.
IEEE Transactions on Knowledge and Data Engineering, 11(3), 1999.

[Lea98] P. Leach. UUIDs and GUIDs. Network Working Group Internet-
Draft, The Internet Engineering Task Force (IETF), February 1998.



BIBLIOGRAPHY 121

[LLD96] C. Lagoze, C. Lynch, and R. Daniel. The Warwick Framework: A
Container Architecture for Aggregating Sets of Metadata. Technical
Report TR 96-1593, Cornell University, Ithaca, New York, 1996.

[M+03] D. McGuinness et al. DAML-ONT: An Ontology Language for the
Semantic Web. In Spinning the Semantic Web: Bringing the World
Wide Web to Its Full Potential, Cambridge, Massachusetts, February
2003.

[Mae02] A. Maedche. Ontology Learning for the Semantic Web. Kluwer Aca-
demic Publishers, Massachusetts, USA, 2002.

[MH98] V. Matena and M. Hapner. Enterprise Java BeansTM . Specification
Version 1.0, Sun Microsystems Inc., March 1998.

[Mic98] Microsoft Corporation. Distributed Component Object Model Pro-
tocol. Internet Draft Version 1.0, Microsoft Corporation, January
1998.

[Mil02] L. Miller. Inkling: RDF Query Using SquishQL. Online Article,
available under http://swordfish.rdfweb.org/rdfquery/, 2002.

[Mil03] L. Miller. SWAD-Europe Deliverable 7.2: Databases, Query, API,
Interfaces Report on Query Languages. Deliverable, Semantic Web
Advanced Development for Europe (SWAD-Europe), IST-2001-34732
Project, 2003.

[MS98] M. Marchiori and J. Saarela. Query + Metadata + Logic = Meta-
log. In Proc. of the Query Languages Workshop (QL’1998), Boston,
Massachussets, USA, 1998.

[MSR02] L. Miller, A. Seaborn, and A. Reggiori. Three Implementations of
SquishQL, a Simple RDF Query Language. In Proc. of the First
International Semantic Web Conference (ISWC2002), Sardinia, Italy,
2002.

[MSS02] B.S. Manjunath, P. Salembier, and T. Sikora, editors. Introduction
to MPEG-7. John Wiley & Sons, West Sussex, UK, 2002.

[N+02] W. Nejdl et al. EDUTELLA: A P2P Networking Infrastructure Based
on RDF. In Proc. of the Eleventh International World Wide Web
Conference (WWW 2002), Honolulu, Hawaii, 2002.

[NPS02] D. Newman, A. Patterson, and P. Schmitz. XHTML+SMIL Profile.
W3C Note, World Wide Web Consortium (W3C), January 2002.

[O+95] M. Özsu et al. TIGUKAT: A Uniform Behavioral Objectbase Man-
agement System. The VLDB Journal, 4:100–147, 1995.

[OMG02] OMG Object Management Group. Common Object Request Broker
Architecture: Core Specification. Specification Version 3.0, OMG
Object Management Group, November 2002.



122 BIBLIOGRAPHY

[OP98] I. Ounis and M. Pasca. Effective and Efficient Relational Query Pro-
cessing Using Conceptual Graphs. In Proc. of the 20th Annual BCS-
IRSG Colloquium on IR, Autrans, France, 1998.

[PE02] F. Pereira and T. Ebrahimi, editors. The MPEG-4 Book. Pearson
Education, California, 2002.

[PGW95] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object Ex-
change Across Heterogeneous Information Sources. In Proc. of the
Eleventh International Conference on Data Engineering, Taipei, 1995.

[Pin04] R. Pinchuk. Toma. Online Article, available under http://www.space
applications.com/toma/Toma.html, Space Applications Services,
2004.

[PM01] S. Pepper and G. Moore. XTM Topic Maps (XTM). TopicMaps.Org
Specification, TopicMaps.Orgs, August 2001.

[PS04] E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for
RDF. W3C Working Draft, World Wide Web Consortium (W3C),
2004.

[RG03] A. Reggiori and D. Gulik. RDFStore. Online Article, available under
http://rdfstore.sourceforge.net/, SourceForge.net, 2003.

[RHJ99] D. Raggett, A. Le Hors, and I. Jacobs. HTML 4.01 Specification.
W3C Recommendation, World Wide Web Consortium (W3C), De-
cember 1999.

[Ron03] C. Ron. HyperPhysics. Website available under http://hyperphysics.
phy-astr.gsu.edu/hbase/hph.html, 2003.

[S+99] A. Steinacker et al. Multibook: Metadata for Webbased Learning
Systems. In Proc. of the Second International Conference on New
Learning Technologies, Bern, Switzerland, 1999.

[SD01] M. Sintek and S. Decker. TRIPLE – An RDF Query, Inference, and
Transformation Language. In Proc. of the Deductive Database and
Knowledge Management Workshop (DDLP’2001), Japan, 2001.

[Sea04] A. Seaborne. RDQL – A Query Language for RDF. W3C Member
Submission, World Wide Web Consortium (W3C), 2004.

[SHH04] P. Schneider, P. Hayes, and I. Horrocks. OWL Web Ontology
Language Semantics and Abstract Syntax. W3C Recommendation,
World Wide Web Consortium (W3C), February 2004.

[Sow00] J. Sowa. Knowledge Representation – Logical, Philosophical, and
Computational Foundations. Brooks/Cole, Pacific Grove, USA, 2000.

[SSS01] L. Stojanovic, S. Staab, and R. Studer. E-Learning Based on the
Semantic Web. In Proc. of the World Conference on the WWW and
Internet(WebNet2001), Orlando, Florida, USA, 2001.



[Sta04] Stanford Medical Informatics. What is Protege-2000? Online Doc-
umentation, available under http://protege.stanford.edu/, Stanford
University School of Medicine, 2004.

[Sto04] D. Stockely. E-learning Definition and Explanation. Website available
under http://derekstockley.com.au/elearning-definition.html, Febru-
ary 2004.

[SWZK03] K. Schellner, U. Westermann, S. Zillner, and W. Klas. CULTOS: To-
wards a World-Wide Digital Collection of Exchangeable Units of Mul-
timedia Content for Intertextual Studies. In Proc. of the Conference
on Distributed Multimedia Systems (DMS 2003), Miami, Florida,
2003.

[V+04] T. Vieira et al. An Ontology-Driven Architecture for Flexible Work-
flow Execution. In Proc. of the Joint Conference 10th Brazilian
Symposium on Multimedia and the Web 2nd Latin American Web
Congress, Ribeirao Preto-SP, Brazil, 2004.

[WZSK05] U. Westermann, S. Zillner, K. Schellner, and W. Klas. EMMOs:
Tradeable Units of Knowledge Enriched Multimedia Content. In
U. Srinivasan and S. Nepal, editors, Managing Multimedia Seman-
tics. IDEA Group Publishing, Hershey PA, USA, 2005.

[ZW04a] S. Zillner and W. Winiwarter. Integrating Ontology Knowledge into
a Query Algebra for Multimedia Meta Objects. In Proc. of the Fifth
International Conference on Web Information Systems Engineering
(WISE 2004), Brisbane, Australia, 2004.

[ZW04b] S. Zillner and W. Winiwarter. Ontology-Based Query Refinement
for Multimedia Meta Objects. In Proc. of the Sixth International
Conference on Information Integration and Web Based Applications
& Services (iiWAS 2004), Jakarta, Indonesia, 2004.

[ZW05] S. Zillner and W. Winiwarter. Integration of Ontological Knowledge
within the Authoring and Retrieval of Multimedia Meta Objects. In-
ternational Journal of Web and Grid Services (IJWGS), 1(4), 2005.

[ZWW04a] S. Zillner, U. Westermann, and W. Winiwarter. EMMA – A Query
Algebra for Enhanced Multimedia Meta Objects. In Proc. of the Third
International Conference on Ontologies, Databases and Applications
of Semantics (ODBASE 2004), Larnaca, Cyprus, 2004.

[ZWW04b] S. Zillner, U. Westermann, and W. Winiwarter. EMMA – Towards
a Query Algebra for Enhanced Multimedia Meta Objects. In Proc. of
the Fourth International Conference on Computer and Information
Technology (CIT 2004), Wuhan, China, 2004.



Lebenslauf

Name: Sonja Zillner
Wohnhaft: Mittersteig 2/26

A-1040 Wien
Geboren: 21. Juni 1971 in Starnberg, Deutschland
Vater: Hermann Zillner
Mutter: Ingeborg Zillner, geb. Schnitzler
Nationalität: deutsch
Familienstand: ledig

Schule, Ausbildung und Studium

1978 - 1982 Volksschule Pöcking, Deutschland
1982 - 1991 Gymnasium Starnberg, Deutschland

Abschluß: Abitur
1991 - 1999 Studium der Mathematik mit Nebenfach Psychologie

an der Albert-Ludwig Universität Freiburg, Deutschland
Abschluß: Diplom-Mathematikerin

Seit 2002 Doktoratsstudium an der Technischen Universität Wien

Beschäftigungsverhältnisse

1992 Praktikum Datenverarbeitung
im Deutschen Zentrum für Luft und Raumfahrt (DLR),
Oberpfaffenhofen, Deutschland

1993 - 1999 Programmiertätigkeit
am Institut für Informatik und Gesellschaft,
Universität Freiburg, Deutschland

1999 - 2000 Wissenschaftliche Projektarbeit
am FWF-Projekt “BHUTAN - Ein virtuelles Museum”
an der Universität Wien

2000 - 2002 Vertragsassistentin
am Institut für Informatik und Wirtschaftinformatik
der Universität Wien

2002 - 2003 Wissenschaftliche Projektarbeit
am EU-Project CULTOS
an der Universität Wien

2002 - 2004 Externe Lektorin
am Institut für Informatik und Wirtschaftinformatik
der Universität Wien

2004 - dato Wissenschaftliche Assistentin
am Institut für Distributed and Multimedia Systems
der Universität Wien




