Management of Data Model Evolution in Object-Oriented Database Systems

C. Huemer G. Kappel S. Vieweg
Institute of Applied Computer Science and Institute of Computer Science Institute of Applied Computer Science and
Information Systems; University of Vienna Univ. of Linz Information Systems; University of Vienna
A-1010 Vienna, Austria A-4040 Linz, Austria A-1010 Vienna, Austria
ch@ifs.univie.ac.at gerti@ifs.uni-linz.ac.at sv@ifs.univie.ac.at
Abstract formation modeln other words, we can ask the

Object-oriented database systems are designed to meet tfllowing questions: What may be changed in a
requirements of advanced database applications. Thestatabase system? And how are these changes man-
requirements may evolve in the course of time and musaged?

be managed consistently at all levels of abstraction of a Transformation

database system - the database level, the database schema Mode

level, and the data model level. Approaches to the

management of changes at the database level and theersion Instance Schema Data Model
database schema level have been investigated in the&fanagem.| Versioning Versioning Versioning

literature. Approaches to the management of changes at
the data model level are still missing. In this paper we . ,.ion

introduce a framework for handling evolution at the data managem.| poance Schema_ pata Model
model level based on database migration. Our approach
consists of a detailed analysis of the involved database
systems and the application’s database requirements. We
illustrate our framework by means of migrating a Database Schema Data Model
production planning and control system from the object- Level Level Level
oriented database system ONTOS to ObjectStore

1 Introduction . . _
Object-oriented database systems (0oDBS) arerom the point of view of data modeling, each
designed to meet the requirements of advancedftabase system can be divided into multéplels
database applications such as Computer Integrat€fl abstraction Each of these levels provides a
Manufacturing [6, 10]. These requirements refer tlescription of the entities and their relationships at
complex object modelling, extended query andhe next lower level. The levels are related in a
manipulation features, and long transactions, tétension-extension dimensifi,22]. Based on|
mention just a few. However, these requirementghis ordering we can group the changes occurring
may change in the course of time. Change managi# & database system into the following: changes at
ment accomplishes the task of managing thesée database level, changes at the database schema
changes consistently and provides techniques fdgvel, and changes at the data model level. The sec-
coping with the modifications of database system&nd dimension is thgansformation modef the

[21]. In this paper we will introduce an approach toabove mentioned changes. By transformation we
change management at the data model level. ~ denote the way the changes of the database are
The controlled evolution of a database system ma{i@naged in general. We distinguish two policies to
occur in various ways. The management of théhanage changes in database systewwlition
changes may be classified along two orthogondhanagemerandversion managemertvolution

dimensions: théevel of abstractiorand therans- ~ denotes the process of change in a certain direc-
tion. In connection with ooDBS we consider evo-

* All products mentioned herein are trademarks of their respective|ytion as the deve|0pment of the 0oDBS in the
manutacturers course of time. The original entities are replaced

by the modified entities and become inaccessible
after transformation. In contrast, version manage-
ment (orversioning describes the management of

PROCEEDINGS OF THE INTERNATIONAL Sympo- ¢hanges in a more flexible way. The history of

SIUM ON ADVANCED DATABASE TECHNOLO- changes in the database is recorded for retrospec-

GIES AND THEIR INTEGRATION (ADTI'94), tive access.

OCTOBER 26-28, 1994, NARA, JAPAN Following the two dimensions of our classification

- abstraction and transformation - we can identify
the following aspects of change management

Level of
Abstraction

Figure 1: Aspects of Change Management

S1 S2 S3 S4

Environment Overlapping
Analysis | ¥\ Features

Candidate

System
Configuration

Strategy
for

~

Shallow
Migration

.}

Shallow Features © > Shallow
Source 00DBS Migration 2 59 Migration o
> - =
Features E g g E
00DBS Candidate i g_(ga é
Target 00DBS Evaluation Deep Migration % S -%_ 3
. Features = 2 o Q
Clustering =) o c £
S Deep [aP= Strfategy =

- j. == or
Migration

Database Requirements Database Fegz]atures Deep “d

Application Ana.lysis Requirements Migration

Figure 2: Model of the Migration Process

(depicted in Figure 1): instance evolution, instanceeously, thus old instances need not be converted
versioning, schema evolution, schema versioningd3,4,17].
data model evolution, and data model versioning. Wwith data model evolutiomnddata model ver-

Traditional database systems offetance evolu- Sioningwe describe the management of changes at
tion. The database is transformed from one considh€ data model level. Data model evolution is the
tent state into another by a sequence of read afganagement of changes with loss of the old data
write operations arranged within transactions. Adnodel information. Data model versioning extends
soon as a transaction reaches a committed state &l model evolution in the same way as schema
original data become inaccessible. No recording of€rsioning extends schema evolution. The old data
the changes in the database is performed [7]. | odel remains valid for each of the subsequent
case of recording the database changes we fa els. The same holds true for database schemas
instance versioningThere are multiple approaches and the instances that follow the old data model.

to record these changes. If changes are recordéthanges at the database level and at the schema
automatically by the database system using sonievel, especially for ooDBS, have been extensively
time-stamping mechanism we face temporal datanvestigated in literature. Approaches to the man-
base systems [20]. However, in certain applicatio@gement of changes at the data model level for
domains such as design applications tempora&loDBS are still missing. The purpose of this paper
database systems are not always appropriatés to fill this gap. We will present an approach to
These applications require a logical applicatiorflata model evolution in 00DBS based on a data-
driven notion of history. In contrast to temporal base migration framework - a pragmatic yet feasi-
databases, instance versioning allows for the applkle approach to data model evolution. Our
cation driven recording of database changes. &pproach is illustrated by means of a case study.
new version of a data item is generated in terms dbatabase migratioris the process of mapping a
the application’s semantics; it is a “meaningfuldatabase application fromsaurce database sys-
snapshot of a design object at a point in time” [11]temto atarget database systemhe migration

The evolution of requirements involves changeprocess consists of a set of conversion operations
not only at the database level but also at the datar conversion techniques that are applied to the
description levelSchema evolutiodeals with the source application and which results in a target
management of modifications at the schema levedpplication [8]. Migrating from source database
and the resulting necessary modifications at theystems to a target database system is thus part of
database level [2,23]. As the old schema is inaccethe maintenance process of database applications.
sible after evolution, the instances must be contraditional (i.e. relational) approaches to database
verted to conform to the new schensehema migration are based on the distinction of the data-
versioningextends schema evolution in such a waybase interaction part and the computation part of a
that old and new schemas are supported simultaatabase application [16,19]. Due to the inherent

integration of these two parts in 0oDBS and thusl'he subtasks of the migration framework may be
reducing the impedance mismatch, traditionalgrouped into the following four phasesialysis
approaches fail when applied to 0oDBS and thugnd evaluationmigration analysisdevelopment of
motivate the development of new techniques. a mapping strategyndimplementationThe input

In 00DBS, two approaches to migration are possiand output dependencies of these phases are
ble: shallow migration and deep migration [5]. depicted in Figure 2. In the following we will
With shallow migrationwe denote the task of re- describe these phases in detail.

engineering the source database application on thgnalysis and Evaluation (S1)

target 00DBS, whereafgep migratiorfiocuses on gince the source 00DBS and the target 00DBS are
the re-development of the application in order t0g, 5yated for a specific hardware and software
exploit the whole functionality of the target gnyironment, thanalysis of the system configura-
00DBS. Shallow migration only requires a re- s is an integrative component of the 00DBS
design of those database components of the applis, 5 ation.

cation which have a different semantics in thérpe 45k of thanalysis of the 00DBS to evaluate
source 00DBS and the target 00DBS or which arg, g 'te a1 res of the two 00DBS leading to a set of
missing in the target 00DBS and, hence, have 10 bg 5y res supported by each system. Furthermore, a
simulated. In our migration framework we COn- ¢omnarison of these features will result in three
sider both migration techniques. subsets (which correspond to the three areas within

The data models of the source DBS and the targeke dark borders shown in Figure 3) according to
DBS need not necessarily be related by an evoluy,eir effect on the migration.

tionary modification step such as the release of @ Overlapping features are syntactically and

new product version leading to new data model gemantically identical in both 00DBS and - as a
features. Rather the data model of the target DBS consequen?:/e - have no effects on the migration.

may be completely different selected in the course : N

of continual requirements analysis of the applica® Candidate shallow migration features are
tion domain leading to the transition from one Supported only by the source 0oDBS or they are
database product to another. Although based onimplemented differently in the two 0oDBS and

different assumptions these two tasks are relatedthus, have to be simulated in the target 0ooDBS.
and result in the need for migration concepts. These features have to be considered in further

This paper is organized as follows. In Section 2 we détail to provide the same database functionality
present a framework for the migration of object- &S offered by the source 0oDBS (shallow migra-

oriented database applications. In Section 3 we t0n)-

will discuss experiences with the presented frames Candidate deep migration featuresare only
work gathered during a migration project. We con- supported by the target ooDBS but not by the
clude with a summary and an outlook on further source 0oDBS and, hence, would extend the
research that has to be done in this area. database functionality if considered in the migra-

2 Migrating Object-Oriented Database tion process (deep mlgratlor.l) ')
Applications Due to the fact that there exist some interdepen-

In this section we present a general outline for datéencies between different features, changes of the
model evolution. The proposed frameworkapplication code required by migrating one feature
describes the single phases which have to be pgiRight cause changes of another. Since related
formed when migrating from one data model tochanges should be considered together, we propose
another. We informally describe what has to belo cluster features which require associated
done in each of the migration phases and define eéhanges. Each of the so-callddsters of interde-
useful order of the steps. pendent functionalities (CIHprms a separate
The framework helps to systematically select thos@nigration unit, which can be migrated indepen-
data model features which have to be consideredently from the features outside of this specific
for the migration leading to an implementation ofcluster. The membership in the clusters is indepen-
the necessary code changes. For this purpose, wient from their membership in the set of shallow or
analyze all the components involved in the migra-deep migration features. Membership in the CIF is
tion process - theource ooDBShetarget ooDBS due to code dependencies that must be considered
the system configuratigrand thedatabase appli- during the implementation of the migration
cation- based on the same set of criteria. The analvhereas membership in the sets of shallow and

ysis of the involved 00DBS is based on a set ofleep migration features is determined by the
criteria developed from [1,9,10,18]. semantics of the features provided by the source

Direction of the Migration Process candidate deep |mp|ementa’[ion (84)
- migration features

Source 00DBS / The implementationprocess

Target 00DBS includes thae-engineering of the
codeaccording to the developed
mapping strategies and further-
more theevaluationof the target

29 application (= the application run-
52 ning on top of the target coDBS).
o= \-\ In the following we will present our
Sg ~ experiences with the migration
2 ? Database Requirements feeaetﬁrg‘s'gra“"” framework presented above.
° X

v overlapping features 3 Case StUdyZ Data Model

shallow migration features
Figure 3: 00DBS Features and Database Requirements

Evolution in KBL

In this section we will describe the
and the target 00DBS, respectively. migration of the KBL application (Knowledge-

A carefulanalysis of the application’s database B@sed Leitstand), a prototype system for interac-

requirementsonsidering the data model require- iv€ production planning and control. KBL was
mgnts, querying and rrganipulation require(rqnentsde"empe‘.j within an ESPRIT project and is based
and integration requirements is of great impor-bn the object-oriented paradigm. It is implemented
tance. It is a prerequisite to be able to collect t_hos\%%??(p doefstrc](rei gggisbf?vl\gt(c))sr'n\i/g?;tsee?(gf ‘;rr%rpne'
I%erl]tures which have to be considered for migrag(r5q7, ObjectStore. We refer to [12,13] and to
' the product literature for a further description of

Migration Analysis (S2) the Knowledge-Based Leitstand and the involved

. L : 00DBS, respectively.

During migration analysisve compare these data-
base requirements with the result of the DBS evalAnalysis and Evaluation (S1)
uation, which is represented by three different Set?heapplication’s database requiremerasKBL
of features as outlined in Figure 2. The maintask is s, pe identified as the following [10,15]:
to find the features which are relevant for thegqyanced data models, meta-data access,’ naviga-
migration and to remove those features which argong| and associative access, version management
not required by the application or which are proof schedules, and distributed data processing.
vided by both 00DBS in the same manner (0Veragyanced data modetsdmeta-data management
lapping features). Therefore, the result of theyre essential for controlling the scheduling infor-
migration analysis is the set of shallow migrationyation in the knowledge base. When given the
features, which are defined by intersecting thgignt integration of the knowledge base and the
database requirements with the candidate shalloygjtstang logic a Leitstand must provide bovi-
migration features, and the set of deep migratioational accessf highly interrelated data and
features, which are defined intersecting the datgsssociative accedsy querying collections of data.
base requirements with the candidate deep Migrsersion managemeit required for the simulation
tion features. of different schedules of work orders. Since a Leit-

: stand system is integrated with other components
Development of a Mapping Strategy (S3) such as the shop floor managemeistributed
For the features being member of the set of shallowata processinglays an important role. However,
or deep migration featuressérategy for their in the current prototype of KBL it was not consid-
implementatiorinto the target ooDBS must be ered a main requirement on the critical path and
developed. According to the two different kinds ofthus abandoned from the list of database require-
migration features, this step results imapping ments.
strategy for shallow migratioto obtain the same _,. . .
database functionality for the application as it wad/ligration Analysis (S2)
available from the source 00DBS and mapping In this subsection we will discuss the second phase
strategy for deep migratioto extend the database of the migration process, namely the migration
functionality. analysis for migrating KBL from ONTOS to

S2 s3 developed.

S1
Overlapping Features Query management
@ ost Prog. Lang. Authorization »e is implemented differ-
Change Control Architecture .
S Recovery Operational Cond. P ently n bOth SyStemS
5 ~ Shallow g | In ONTOS it is possi-
% Candidate Shallow Migration Features % b|¢ to prowde each
s Mlgratlon Features Data Model e object with a synonym
o B G o Sl which can serve as a
g Persistence gt%rage Manlag ggtear D,'\‘A:g?]gargmem ? _Unlque Identlﬁer Store_d
S e Phiaonary. Schema Evolution Storage Management 5| in aseparate data dic-
| tionary. Persistent
=| objects can be
« | retrieved via these syn-

onyms or via an
instance iterator over

Constraints & Triggers
Query Optimization

32

0

=

[

c

<

Constraints & Triggers c

Query Optimization o

Interfaces @®

@ Versmn Management o

Tools 2

=

Candidate Deep

Migration Features ?7

Vers"’”D“fje“ageme”‘ = | all persistent objects

igration Feature 2 Wthh belong to a spe-

" Database Requirements §| cific class and its sub-
c CatatMog??l'l (F:eoncurrency Control 0>J classes. In Qb]eCtStore,

£ ng%m{ 0 Riecte 3 | the entry points of the
%Q gg{wa”ﬁgﬁymem 83‘;?2% pt?ﬁ*r‘?"‘“é’” database are persistent

U§ Version anaggment perational Zon roqt ObJeCtS. All _other
< objects stored in the
database can be

Clusters of Interdependent Functionalities reached by naviga-

tional access. Due to

Figure 4: Migration Process of KBL from ONTOS to ObjectStore these different access

methods and since

ObjectStore. Our investigations in the course oKBL, like any other database application, requires
this specific migration are based on the main topicgersistent object retrieval query management is
of the evaluation schema of [9]. Figure 4 presentscluded in the set of shallow migration features.

the grouping of the main topics of the evaluationsg gjstanceis required by any database applica-
schema into the various sets of migration feature§ion In ONTOS persistence is reached by inherit-
For brevity, we will only explain the most Impor- 500 “Therefore peach ersistent object n){ust be an
tant topics, namelgata modelpersistenceand ! . Ject my

i instance of a class which directly or indirectly
query managemen inherits from the ONTOS specific persistent root
Both ONTOS and ObjectStore are based on thelassObject. Writing objects to disc require an
C++data model They both use the C++ basic explicit call of theObject’s methodhutObject().
data types and some additional data types, e.g. Eurthermore, each persistent class definition in
support collections. Furthermore, in both ooDBSONTOS must include some additional ONTOS
the C++ data model is extended to provide typicaspecific methods, e.g. to activate/deactivate an
database features such as transaction support. Caject to/from disc. Since in ObjectStore persis-
cerningbasic data type®NTOS and ObjectStore tence is reached by declaration a persistent object
have overlapping functionality. Concerning addi-can be an instance of any class. It has simply to be
tional data types and database extensions each ddtclared persistent or to be created with a persis-
model uses its own syntax and semantics. Thugent constructor. There is no need to call an opera-
data models included in the candidate shallow tion like putObject() to write it to secondary
migration features. Since the functionality of thestorage nor to equip the class definitions with addi-
data model is crucial for the KBL application, thetional methods. Since these two paradigms to
data model is part of the application’s databasemplement persistence are completely different we
requirements, and thus, it is included in the shallovihhave to includeersistencen the shallow migra-
migration features for which a strategy must bdion features and have to develop a mapping strat-

egy. Reference ivMasterDataAgent;

. // indirect Reference to a MasterDataAgent object
Development of a Mapping Strategy and Reference VR rce-
Implementation (S3, S4) ererence lvikesource,

. . . // indirect reference to a Resource object
In this subsection we will show the development of ,, ~ .structor which is called by the

a mapping strategy for the main featugesry //constructor of the related MasterDataAgent

managemerandperslsgagce S ith ff ScheduleAgent (MasterDataAgent *);
Query managemem Ject tore neilther offers // ONTOS required function

an instance iterator nor synonyms for object irtual void deleteObiect
retrieval. In order to simulate the instance iterator V"' (uéloggan Goallooms o FALSE):
in ObjectStore, each persistent class includes ayejete the object from database
static persistent class variable naneecknt of
typeos_Set containing all the instances of this
class and of all subclasses, respectively. Therefore
the constructor has to include a call which inserts
the created object into this static set and the
destructor must include a call which removes the
deleted object from this set. The synonyms have / schedules Agent object on the Resource object
been simulated by embedding an |dent|fy|ng PrOP- yirtual void putSingleResource

erty (char *Name) into the root clasgBLObject (SingleResource *):

of the KBL appllcatlon. Slnce'these measurements /; oy, s 4 pointer to the Resource object
effect the persistent class definitions in ObjectStore ;; o which the Agent object is scheduled
(see further below) the featurgsery management
andpersistenceeside in the same cluster of inter-
dependent functionality (CIF). // returns a list including the ScheduleAgent
The fact thapersistences reached by declaration /objects already scheduled

simplifies the persistent class definition in Object- | jst* ScheduleAgent::getScheduledSAList():;
Store. In ObjectStore we do not have to care aboutscheduleAgent (); // constructor

a derivation path from some system defined root ...

class and we can remove all additional methods /7 ONTOS required functions

public:
// returns a pointer to the related
'/l MasterDataAgent object

virtual MasterDataAgent
*getMasterDataAgent ();

virtual SingleResource *getSingleResrce ();

included in the ONTOS persistent class defini- scheduleAgent (APL *);
tions. _ o _ // activation constr. to activate the object from disk
Below we present the persistent class definitions in ~ScheduleAgent (); // destructor

ONTOS and in ObjectStore and exemplify the use

of the instance iterator in ONTOS and the corre- / ret. a pointer to the object repr. the class info
sponding simulation in ObjectStore. The example Virtual Type *getDirectType ();
methodgetScheduledSAList() operates on the set Virtual void Destroy _

of ScheduleAgent objects that have been consid- , (Boolean aborted = FALSE);

. - // deactivate the object from main memory
ered during the scheduling process and havevirtual void putObject(Boolean deallocate

already been scheduled on a specific resource. = FALSE); // write the object to the database
ONTOS class definition |3
class KBLObject : public Object ObjectStore class definition
// KBLObiject directly inherits from Object extern os_database *db;
{ class KBLObject
I3 L
class IntervalObject : public KBLObject public: _ o _
// IntervalObject indirectly inherits from Object // static persistent set which includes all instances
{ // of KBLObject
persistent<KBLdb>
} 0s_Set<KBLObject*> * extent;
class ScheduleAgent : public IntervalObject
// ScheduleAgent indirectly inherits from Object char *ivName; // impl. of the object naming
{

private: h

class IntervalObject : public KBLObject

{
public:

// static persistent set which includes
// instances of IntervalObject

persistent<KBLdb>
0s_Set<IntervalObject*>* extent;

}

class ScheduleAgent : public IntervalObject
/I neither IntervalObject nor ScheduleAgent
/I inherit from any predefined class
{
private:
MasterDataAgent *ivMasterDataAgent;
// direct reference to a MasterDataAgent object
STResource *ivResource;
// direct reference to a Resource object
ScheduleAgent (MasterDataAgent *);

// constr. as in ONTOS but implemented differently

public:
// static persistent set which includes all
// instances of ScheduleAgent

persistent<db>
0s_Set<ScheduleAgent*>* extent;

virtual MasterDataAgent
*getMasterDataAgent (); / as in ONTOS

virtual void putSingleResource

(SingleResource *); //as in ONTOS

virtual SingleResource
*getSingleResource (); /as in ONTOS

0os_List<ScheduleAgent*>
*ScheduleAgent::getScheduledSAList();

é.cheduIeAgent (); // constructor
~ScheduleAgent (); // destructor

// no system required methods
|3
/I ObjectStore implementation of the constructor:

ScheduleAgent::ScheduleAgent
(MasterDataAgent * theMasterDataAgent)

{

)./llnsertion of the created ScheduleAgent
// object into the class extent

extent->insert(this);

}

ONTOS implementation:
List* ScheduleAgent::getScheduledSAList()

List *scheduledSAList;

// Creation of the instance iterator for the

// class ScheduleAgent

Instancelterator scheduleAgentiterator
((Type*) OC_lookup ("ScheduleAgent™));

// The iterator function moreData returns the next
// value in the iteration; if there is no further value
// the iteration will terminate.
while (scheduleAgentlterator.moreData()) {
// The function getSingleResource returns a
// pointer to the Resource object on which the
/I Agent object is scheduled. If a Resource
// object exists the object is inserted into the
// appropriate list.
if (scheduleAgentlterator->getSingRes)
=0
scheduledSAList->Insert
(Entity*) scheduleAgentlterator);

return scheduledSAList;

ObjectStore implementation:
os_List<ScheduleAgent*>
*ScheduleAgent::getScheduledSAList() {
os_List<ScheduleAgent*> *scheduledSAList;
ScheduleAgent* currentScheduleAgent;
// the foreach-statement allows to iterate over
// the elements of the set specified as second
// argument. The element of each iteration will
// be referenced by the first spec. argument
foreach(currentScheduleAgent,
ScheduleAgent::extent) {
// selection criteria like in ONTOS
if (currentScheduleAgent->getSingleResource)
I=0)
scheduledSAList->
insert(currentScheduleAgent);

return scheduledSAList;

}

4. Experiences & Further Research

The original KBL application consists of several
modules comprising 60 classes and about 45000
lines of code (LoC, without comments). Due to the
fact that we carried out a shallow migration rather
than a complete re-design of the application, no
additional classes had to be implemented. The total
LoC for the migrated application was reduced to
about 40000. This yields a reduction of 15% com-
pared with the original size of the application. The
reduction mainly results from a simpler class defi-
nition in ObjectStore. The additional methods for
the manipulation of persistent objects that must be
implemented in ONTOS can be omitted in Object-
Store. Furthermore, we noticed a much tighter
integration of ObjectStore into the C++ program-

ming language than it is_ the case for ONTOS. Of#] H. Chou, W. Kim; A Unifying Framework for Version
the contrary, we had to implement extension man- £ontrel o a CAD Environment; Proc. of the VLDB
agement for persistent classes m.ObJeCtStore Sm?ﬁ K. Dittrich; Migrating from conventional to object-ori-
ObjectStore does not support this feature. Never=" ented databases: a “can’, a “must” - or none of both?
theless, the reduction due to simpler class defini- Wirtschaftsinformatik, 35/4; 1993

tions exceeded the effort for implementing thel6] J. Encarnagéo, P. Lockemann; Engf_ineering Databases,
management of class extensions. Connecting Islands of Automation Through Databases;

The experiences mentioned above concern thﬁ Springer Veriag: 1990
. . . J. Gray, A. Reuter; Transaction Processing: Concepts and
migration of KBL from ONTOS to ObjectStore.] Techn?aues; Morgan Kaufmann; 1993 ? g

Migrating applications between the two 00DBS infg] c. Huemer, G. KagB_el, S. Vieweg; Migrating a Leitstand
the reverse direction - from ObjectStore to ONTOS = System between Object-Oriented Database Systems - An

- is more difficult. This is due to the fact that the _ Experience Report, Proc. of the STAK'94 Conf.; 1994

i i i i i 9] G. Kappel, S. Rausch-Schott, W. Retschitzegger, M.
two systems differ in their paradigm to |mplement[] Schre ,pU. Schreier, M. Stumptner, S. \ﬁeweg;g(gbject—

persistence. Migrating from ObjectStore to Oriented Database Management Sgstems - An Evalua-
ONTOS requires persistent classes to inherit from tion; ODB/TR 92-21; Inst. of Applied CS and Information
the ONTOS clasebject and to implement addi- Systems; Univ. of Vienna; 1993

tional methods. Consequently, the size of the appl[lolg- Klaprt).el, S-t\ﬁeweg: DaBabasel Rl?lql{'ifemtegtlswfm Cf”\/l
cation would increase. On the contrary, migrating ing. 1904 — P 1 o otimegrated Mandiac

between 0oDBS that follow a similar approach t? 1] R. Katz; Toward a Unified Framework for Version Model-
reach persistence (e.g. ONTOS and Versan mq in Engineering Databases; ACM Computing Surveys,
requires less effort than the former case and proba- Vol. 22, No. 4, 1990

bly has minor effects on the size of the applicatior12] Esprit 5161 KBL; Design, Development and Implementa-

Coyde bp tion of a Knowledge-based Leitstand (KBL); Deliverable
L . . . Milestone 3; Commission of the European Community

Considering the personnel involved in the migra- (CEC), 1992

tion process we can distinguish three implementg43] Esprit 5161 KBL; Design, Development and Implementa-

tion phases: analysis of the application and the tion of a Knowledge-based Leitstand (KBL); Final Deliv-

involved 0oDBS, migration analysis, and imple- ﬁg%%e; Commission of the European Community (CEC),

mentation of the m_igration._The whole migration 14] L. Mark, N. Roussopoulos; Metadata Management, IEEE
process was carried out in 14 weeks (person- ~Computer, Vol. 19, No. 12, 1986

weeks). The analysis of the application and of thi5]u. Schreier; Database Requirements of Knowledge-based
00DBS together with the migration analysis took Production Scheduling and Control: A CIM Perspective;
about 8 weeks. Note, that there was hands-op _Po¢. of the VLDB Cont.; 1993

; ; ; 6] B. Shneiderman, G. Thomas; An Architecture for Auto-
experience with ObjectStore beforehand. Thél matic Relational Database System Conversion; ACM

implementation of the migration was carried outin TODS; \ol. 7, No. 2; 1982
6 weeks. In the initial planning of the migration we[17]A. Skarra, S. Zdonik; Type Evolution in an Object-Ori-
scheduled a bigger effort for the actual implemen- ented Database; in: B. Shriver, P. Wegner (eds.i; Research

tation process. The experience we gained is that pirections in Object-Oriented Programming; MIT Press;
the framework presented above helps to focus 0@8]

. " M. Stonebraker, L. Rowe, B. Lindsay, J. Gray, M. Carey,
the main efforts and therefore leads to increased™ \' Brodie. p. Bernstein. D. Boeon’ Third Generation

productivity in the migration process. Database System Manifesto; SIGMOD Record; Vol. 19,

Further investigations in this topic will include ___NO- 3:1990

i ; ; ; 19]S. Su, H. Lam, D. Lo; Transformation of Data Traversals
approaches for the (semi-) automatic migration OE and Operations in ApBIication Programs to Account for

00DBS applications, the development of strategies Semantic Changes of Databases; ACM TODS; Vol. 6, No.
for deep migration, and approaches to data model 2;1981

versioning based on this approach. [20] A. Tansel et.al.; Temporal Databases; Theory, Design, and
Implementation; Benjamin/Cummings Series on database
References systems and applications; Redwood City, CA; 1993

[1] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. [21]C. Thompson; DARPA Open Object-Oriented Database
Maier, S. Zdonik; The object-oriented database manifesto; ~ Preliminary Module Specification, Change Management
Proc. Intl. Conf. on Deductive and Object-Oriented Data- ~ Module; Version 2, March 23, 1993
bases, 1989 [22]S. Vieweg; Managing Evolving Requirements in Object-

[2] J.Banerjee, H. Chou, J. Garza, W. Kim, D. Woelk, N. Bal- ~ Oriented Database Systems; Ph. D. Thesis; Dept. of Infor-
lou, H. Kim; Data Model Issues for Object-Oriented mation Engineering; Univ. of Vienna; 1994

Applications; ACM TOIS; Vol. 5, No. 1; 1987 ~ [23]R. Zicari; A Framework for Schema Updates in An
[3] A. Bjornerstedt, C. Hulten; Version Control in an Object- Object-Oriented Database System; Proc. of the IEEE Data
Oriented Architecture; in: [Kim89a]; 1989 Engineering Conf.; 1991

