
Management of Data Model Evolution in Object-Oriented Database Systems

C. Huemer
Institute of Applied Computer Science and
Information Systems; University of Vienna

A-1010 Vienna, Austria
ch@ifs.univie.ac.at

G. Kappel
Institute of Computer Science

Univ. of Linz
A-4040 Linz, Austria

gerti@ifs.uni-linz.ac.at

S. Vieweg
Institute of Applied Computer Science and
Information Systems; University of Vienna

A-1010 Vienna, Austria
sv@ifs.univie.ac.at

Abstract
Object-oriented database systems are designed to meet the
requirements of advanced database applications. These
requirements may evolve in the course of time and must
be managed consistently at all levels of abstraction of a
database system - the database level, the database schema
level, and the data model level. Approaches to the
management of changes at the database level and the
database schema level have been investigated in the
literature. Approaches to the management of changes at
the data model level are still missing. In this paper we
introduce a framework for handling evolution at the data
model level based on database migration. Our approach
consists of a detailed analysis of the involved database
systems and the application’s database requirements. We
illustrate our framework by means of migrating a
production planning and control system from the object-
oriented database system ONTOS to ObjectStore*.

1 Introduction
Object-oriented database systems (ooDBS) are
designed to meet the requirements of advanced
database applications such as Computer Integrated
Manufacturing [6, 10]. These requirements refer to
complex object modelling, extended query and
manipulation features, and long transactions, to
mention just a few. However, these requirements
may change in the course of time. Change manage-
ment accomplishes the task of managing these
changes consistently and provides techniques for
coping with the modifications of database systems
[21]. In this paper we will introduce an approach to
change management at the data model level.
The controlled evolution of a database system may
occur in various ways. The management of the
changes may be classified along two orthogonal
dimensions: thelevel of abstraction and thetrans-

* All products mentioned herein are trademarks of their respective
manufacturers

formation mode. In other words, we can ask the
following questions: What may be changed in a
database system? And how are these changes man-
aged?

Figure 1: Aspects of Change Management

From the point of view of data modeling, each
database system can be divided into multiplelevels
of abstraction. Each of these levels provides a
description of the entities and their relationships at
the next lower level. The levels are related in a
intension-extension dimension [14,22]. Based on
this ordering we can group the changes occurring
in a database system into the following: changes at
the database level, changes at the database schema
level, and changes at the data model level. The sec-
ond dimension is thetransformation mode of the
above mentioned changes. By transformation we
denote the way the changes of the database are
managed in general. We distinguish two policies to
manage changes in database systems,evolution
management andversion management. Evolution
denotes the process of change in a certain direc-
tion. In connection with ooDBS we consider evo-
lution as the development of the ooDBS in the
course of time. The original entities are replaced
by the modified entities and become inaccessible
after transformation. In contrast, version manage-
ment (orversioning) describes the management of
changes in a more flexible way. The history of
changes in the database is recorded for retrospec-
tive access.
Following the two dimensions of our classification
- abstraction and transformation - we can identify
the following aspects of change management

Le
ve

l o
f

Transformation

Evolution

Version

Database Schema Data Model

Managem.

Managem.

Instance
Evolution

Instance
Versioning

Schema
Evolution

Schema
Versioning

Data Model
Versioning

Data Model
Evolution

Mode

Level Level Level

A
bs

tr
ac

tio
n

PROCEEDINGS OF THE INTERNATIONAL SYMPO-
SIUM ON ADVANCED DATABASE TECHNOLO-
GIES AND THEIR INTEGRATION (ADTI ’94),
OCTOBER 26-28, 1994, NARA, JAPAN

(depicted in Figure 1): instance evolution, instance
versioning, schema evolution, schema versioning,
data model evolution, and data model versioning.

Traditional database systems offerinstance evolu-
tion. The database is transformed from one consis-
tent state into another by a sequence of read and
write operations arranged within transactions. As
soon as a transaction reaches a committed state the
original data become inaccessible. No recording of
the changes in the database is performed [7]. In
case of recording the database changes we face
instance versioning. There are multiple approaches
to record these changes. If changes are recorded
automatically by the database system using some
time-stamping mechanism we face temporal data-
base systems [20]. However, in certain application
domains such as design applications temporal
database systems are not always appropriate.
These applications require a logical application
driven notion of history. In contrast to temporal
databases, instance versioning allows for the appli-
cation driven recording of database changes. A
new version of a data item is generated in terms of
the application’s semantics; it is a “meaningful
snapshot of a design object at a point in time” [11].
The evolution of requirements involves changes
not only at the database level but also at the data
description level.Schema evolution deals with the
management of modifications at the schema level
and the resulting necessary modifications at the
database level [2,23]. As the old schema is inacces-
sible after evolution, the instances must be con-
verted to conform to the new schema.Schema
versioning extends schema evolution in such a way
that old and new schemas are supported simulta-

neously, thus old instances need not be converted
[3,4,17].
With data model evolution anddata model ver-
sioning we describe the management of changes at
the data model level. Data model evolution is the
management of changes with loss of the old data
model information. Data model versioning extends
data model evolution in the same way as schema
versioning extends schema evolution. The old data
model remains valid for each of the subsequent
levels. The same holds true for database schemas
and the instances that follow the old data model.
Changes at the database level and at the schema
level, especially for ooDBS, have been extensively
investigated in literature. Approaches to the man-
agement of changes at the data model level for
ooDBS are still missing. The purpose of this paper
is to fill this gap. We will present an approach to
data model evolution in ooDBS based on a data-
base migration framework - a pragmatic yet feasi-
ble approach to data model evolution. Our
approach is illustrated by means of a case study.
Database migration is the process of mapping a
database application from asource database sys-
tem to atarget database system. The migration
process consists of a set of conversion operations
or conversion techniques that are applied to the
source application and which results in a target
application [8]. Migrating from source database
systems to a target database system is thus part of
the maintenance process of database applications.
Traditional (i.e. relational) approaches to database
migration are based on the distinction of the data-
base interaction part and the computation part of a
database application [16,19]. Due to the inherent

Figure 2: Model of the Migration Process

Database
Application

Source ooDBS

System
Configuration

Target ooDBS

Requirements

Analysis

ooDBS

Database
Requirements

Candidate

Candidate
Deep Migration

Overlapping

Shallow

Features

Features

M
ig

ra
tio

n
A

na
ly

si
s

Shallow

Deep
Migration
Features

Migration
Features

D
ev

el
op

m
en

t o
f a

Strategy
for

Shallow
MigrationMigration

Features

Im
pl

em
en

ta
tio

n

S1 S2 S3 S4

Strategy
for

Deep
Migration

M
ap

pi
ng

 S
tr

at
eg

y

Environment

Clustering

Analysis

Evaluation

integration of these two parts in ooDBS and thus
reducing the impedance mismatch, traditional
approaches fail when applied to ooDBS and thus
motivate the development of new techniques.
In ooDBS, two approaches to migration are possi-
ble: shallow migration and deep migration [5].
With shallow migration we denote the task of re-
engineering the source database application on the
target ooDBS, whereasdeep migration focuses on
the re-development of the application in order to
exploit the whole functionality of the target
ooDBS. Shallow migration only requires a re-
design of those database components of the appli-
cation which have a different semantics in the
source ooDBS and the target ooDBS or which are
missing in the target ooDBS and, hence, have to be
simulated. In our migration framework we con-
sider both migration techniques.
The data models of the source DBS and the target
DBS need not necessarily be related by an evolu-
tionary modification step such as the release of a
new product version leading to new data model
features. Rather the data model of the target DBS
may be completely different selected in the course
of continual requirements analysis of the applica-
tion domain leading to the transition from one
database product to another. Although based on
different assumptions these two tasks are related
and result in the need for migration concepts.
This paper is organized as follows. In Section 2 we
present a framework for the migration of object-
oriented database applications. In Section 3 we
will discuss experiences with the presented frame-
work gathered during a migration project. We con-
clude with a summary and an outlook on further
research that has to be done in this area.

2 Migrating Object-Oriented Database
Applications

In this section we present a general outline for data
model evolution. The proposed framework
describes the single phases which have to be per-
formed when migrating from one data model to
another. We informally describe what has to be
done in each of the migration phases and define a
useful order of the steps.
The framework helps to systematically select those
data model features which have to be considered
for the migration leading to an implementation of
the necessary code changes. For this purpose, we
analyze all the components involved in the migra-
tion process - thesource ooDBS, thetarget ooDBS,
thesystem configuration, and thedatabase appli-
cation - based on the same set of criteria. The anal-
ysis of the involved ooDBS is based on a set of
criteria developed from [1,9,10,18].

The subtasks of the migration framework may be
grouped into the following four phases:analysis
and evaluation, migration analysis, development of
a mapping strategy, andimplementation. The input
and output dependencies of these phases are
depicted in Figure 2. In the following we will
describe these phases in detail.
Analysis and Evaluation (S1)
Since the source ooDBS and the target ooDBS are
evaluated for a specific hardware and software
environment, theanalysis of the system configura-
tion is an integrative component of the ooDBS
evaluation.
The task of theanalysis of the ooDBS is to evaluate
the features of the two ooDBS leading to a set of
features supported by each system. Furthermore, a
comparison of these features will result in three
subsets (which correspond to the three areas within
the dark borders shown in Figure 3) according to
their effect on the migration.
• Overlapping features are syntactically and

semantically identical in both ooDBS and - as a
consequence - have no effects on the migration.

• Candidate shallow migration features are
supported only by the source ooDBS or they are
implemented differently in the two ooDBS and
thus, have to be simulated in the target ooDBS.
These features have to be considered in further
detail to provide the same database functionality
as offered by the source ooDBS (shallow migra-
tion).

• Candidate deep migration features are only
supported by the target ooDBS but not by the
source ooDBS and, hence, would extend the
database functionality if considered in the migra-
tion process (deep migration).

Due to the fact that there exist some interdepen-
dencies between different features, changes of the
application code required by migrating one feature
might cause changes of another. Since related
changes should be considered together, we propose
to cluster features which require associated
changes. Each of the so-calledclusters of interde-
pendent functionalities (CIF)forms a separate
migration unit, which can be migrated indepen-
dently from the features outside of this specific
cluster. The membership in the clusters is indepen-
dent from their membership in the set of shallow or
deep migration features. Membership in the CIF is
due to code dependencies that must be considered
during the implementation of the migration
whereas membership in the sets of shallow and
deep migration features is determined by the
semantics of the features provided by the source

and the target ooDBS, respectively.
A carefulanalysis of the application’s database
requirementsconsidering the data model require-
ments, querying and manipulation requirements,
and integration requirements is of great impor-
tance. It is a prerequisite to be able to collect those
features which have to be considered for migra-
tion.

Migration Analysis (S2)

Duringmigration analysis we compare these data-
base requirements with the result of the DBS eval-
uation, which is represented by three different sets
of features as outlined in Figure 2. The main task is
to find the features which are relevant for the
migration and to remove those features which are
not required by the application or which are pro-
vided by both ooDBS in the same manner (over-
lapping features). Therefore, the result of the
migration analysis is the set of shallow migration
features, which are defined by intersecting the
database requirements with the candidate shallow
migration features, and the set of deep migration
features, which are defined intersecting the data-
base requirements with the candidate deep migra-
tion features.

Development of a Mapping Strategy (S3)

For the features being member of the set of shallow
or deep migration features astrategy for their
implementation into the target ooDBS must be
developed. According to the two different kinds of
migration features, this step results in amapping
strategy for shallow migration to obtain the same
database functionality for the application as it was
available from the source ooDBS and in amapping
strategy for deep migration to extend the database
functionality.

Implementation (S4)
The implementat ion process
includes there-engineering of the
code according to the developed
mapping strategies and further-
more theevaluation of the target
application (= the application run-
ning on top of the target ooDBS).
In the following we will present our
experiences with the migration
framework presented above.

3 Case Study: Data Model
Evolution in KBL

In this section we will describe the
migration of the KBL application (Knowledge-
Based Leitstand), a prototype system for interac-
tive production planning and control. KBL was
developed within an ESPRIT project and is based
on the object-oriented paradigm. It is implemented
on top of the ooDBS ONTOS. We used the frame-
work described above to migrate KBL from
ONTOS to ObjectStore. We refer to [12,13] and to
the product literature for a further description of
the Knowledge-Based Leitstand and the involved
ooDBS, respectively.

Analysis and Evaluation (S1)
Theapplication’s database requirements of KBL
can be identified as the following [10,15]:
advanced data models, meta-data access, naviga-
tional and associative access, version management
of schedules, and distributed data processing.
Advanced data modelsand meta-data management
are essential for controlling the scheduling infor-
mation in the knowledge base. When given the
tight integration of the knowledge base and the
Leitstand logic a Leitstand must provide bothnavi-
gational access of highly interrelated data and
associative access by querying collections of data.
Version management is required for the simulation
of different schedules of work orders. Since a Leit-
stand system is integrated with other components
such as the shop floor managementdistributed
data processing plays an important role. However,
in the current prototype of KBL it was not consid-
ered a main requirement on the critical path and
thus abandoned from the list of database require-
ments.

Migration Analysis (S2)
In this subsection we will discuss the second phase
of the migration process, namely the migration
analysis for migrating KBL from ONTOS to

Figure 3: ooDBS Features and Database Requirements

Source ooDBS
Target ooDBS

Database Requirements

overlapping features

deep migration

shallow migration features

candidate deep
migration features

ca
nd

id
at

e
sh

al
lo

w
m

ig
ra

tio
n

fe
at

ur
es

Direction of the Migration Process

features

ObjectStore. Our investigations in the course of
this specific migration are based on the main topics
of the evaluation schema of [9]. Figure 4 presents
the grouping of the main topics of the evaluation
schema into the various sets of migration features.
For brevity, we will only explain the most impor-
tant topics, namelydata model, persistence and
query management.

Both ONTOS and ObjectStore are based on the
C++ data model. They both use the C++ basic
data types and some additional data types, e.g. to
support collections. Furthermore, in both ooDBS
the C++ data model is extended to provide typical
database features such as transaction support. Con-
cerningbasic data types ONTOS and ObjectStore
have overlapping functionality. Concerning addi-
tional data types and database extensions each data
model uses its own syntax and semantics. Thus,
data model is included in the candidate shallow
migration features. Since the functionality of the
data model is crucial for the KBL application, the
data model is part of the application’s database
requirements, and thus, it is included in the shallow
migration features for which a strategy must be

developed.

Query management
is implemented differ-
ently in both systems.
In ONTOS it is possi-
ble to provide each
object with a synonym
which can serve as a
unique identifier stored
in a separate data dic-
t ionary. Persistent
objects can be
retrieved via these syn-
onyms or v ia an
instance iterator over
all persistent objects
which belong to a spe-
cific class and its sub-
classes. In ObjectStore,
the entry points of the
database are persistent
root objects. All other
objects stored in the
database can be
reached by naviga-
tional access. Due to
these different access
methods and since

KBL, like any other database application, requires
persistent object retrieval query management is
included in the set of shallow migration features.

Persistence is required by any database applica-
tion. In ONTOS persistence is reached by inherit-
ance. Therefore, each persistent object must be an
instance of a class which directly or indirectly
inherits from the ONTOS specific persistent root
classObject. Writing objects to disc require an
explicit call of theObject’s methodputObject().
Furthermore, each persistent class definition in
ONTOS must include some additional ONTOS
specific methods, e.g. to activate/deactivate an
object to/from disc. Since in ObjectStore persis-
tence is reached by declaration a persistent object
can be an instance of any class. It has simply to be
declared persistent or to be created with a persis-
tent constructor. There is no need to call an opera-
tion like putObject () to write it to secondary
storage nor to equip the class definitions with addi-
tional methods. Since these two paradigms to
implement persistence are completely different we
have to includepersistence in the shallow migra-
tion features and have to develop a mapping strat-

Figure 4: Migration Process of KBL from ONTOS to ObjectStore

Host Prog. Lang.

Recovery
Architecture

Distribution

Authorization

Operational Cond.
Change Control

Data Model

Data Dictionary
Persistence

Query Manag.
Schema Evolution

Concurrency Control

Storage Manag.

Constraints & Triggers

Version Management

Query Optimization

Interfaces

Data Model

Data Dictionary
Persistence

Query Management

Concurrency Control

Storage Management

Constraints & Triggers

Version Management

Query Optimization

Data Model
Constr. & Triggers
Persistence
Data Dictionary
Query Management
Host Prog. Lang.

Concurrency Control
Recovery
Architecture
Storage Manag.
Query Optimization
Operational Cond.

Version Management

Overlapping Features

Candidate Shallow
Migration Features

Candidate Deep
Migration Features

Database Requirements

Shallow
Migration Features

Deep

R
eq

ui
re

m
en

ts
A

na
ly

si
s

M
ig

ra
tio

n
A

na
ly

si
s

oo
D

B
S

 E
va

lu
at

io
n

D
ev

el
op

m
en

t
S

tr
at

eg
y

Migration Features

of
 a

 M
ap

pi
ng

Clusters of Interdependent Functionalities

Tools

S1 S2 S3

egy.
Development of a Mapping Strategy and
Implementation (S3, S4)
In this subsection we will show the development of
a mapping strategy for the main features query
management andpersistence.
Query management in ObjectStore neither offers
an instance iterator nor synonyms for object
retrieval. In order to simulate the instance iterator
in ObjectStore, each persistent class includes a
static persistent class variable namedextent of
typeos_Set containing all the instances of this
class and of all subclasses, respectively. Therefore,
the constructor has to include a call which inserts
the created object into this static set and the
destructor must include a call which removes the
deleted object from this set. The synonyms have
been simulated by embedding an identifying prop-
erty (char *Name) into the root classKBLObject
of the KBL application. Since these measurements
effect the persistent class definitions in ObjectStore
(see further below) the featuresquery management
andpersistence reside in the same cluster of inter-
dependent functionality (CIF).
The fact thatpersistence is reached by declaration
simplifies the persistent class definition in Object-
Store. In ObjectStore we do not have to care about
a derivation path from some system defined root
class and we can remove all additional methods
included in the ONTOS persistent class defini-
tions.
Below we present the persistent class definitions in
ONTOS and in ObjectStore and exemplify the use
of the instance iterator in ONTOS and the corre-
sponding simulation in ObjectStore. The example
methodgetScheduledSAList() operates on the set
of ScheduleAgent objects that have been consid-
ered during the scheduling process and have
already been scheduled on a specific resource.
ONTOS class definition
class KBLObject : public Object
// KBLObject directly inherits from Object
{

...
};
class IntervalObject : public KBLObject
// IntervalObject indirectly inherits from Object
{

...
};
class ScheduleAgent : public IntervalObject
// ScheduleAgent indirectly inherits from Object
{
private:

Reference ivMasterDataAgent;
// indirect Reference to a MasterDataAgent object
Reference ivResource;
// indirect reference to a Resource object
// Constructor which is called by the
//constructor of the related MasterDataAgent
ScheduleAgent (MasterDataAgent *);
// ONTOS required function
virtual void deleteObject

(Boolean deallocate = FALSE);
//delete the object from database

public:
// returns a pointer to the related
// MasterDataAgent object
virtual MasterDataAgent

*getMasterDataAgent ();

// schedules Agent object on the Resource object
virtual void putSingleResource

(SingleResource *);
// returns a pointer to the Resource object
// on which the Agent object is scheduled
virtual SingleResource *getSingleResrce ();

// returns a list including the ScheduleAgent
//objects already scheduled
List* ScheduleAgent::getScheduledSAList();
ScheduleAgent (); // constructor
...
// ONTOS required functions

ScheduleAgent (APL *);
// activation constr. to activate the object from disk
~ScheduleAgent (); // destructor

// ret. a pointer to the object repr. the class info
virtual Type *getDirectType ();
virtual void Destroy

(Boolean aborted = FALSE);
// deactivate the object from main memory
virtual void putObject(Boolean deallocate

= FALSE); // write the object to the database
};

ObjectStore class definition
extern os_database *db;
class KBLObject
{
public:

// static persistent set which includes all instances
// of KBLObject
persistent<KBLdb>

os_Set<KBLObject*> * extent;
...
char *ivName; // impl. of the object naming
...

};

class IntervalObject : public KBLObject
{
public:

// static persistent set which includes
// instances of IntervalObject
persistent<KBLdb>

os_Set<IntervalObject*>* extent;
...

}
class ScheduleAgent : public IntervalObject
// neither IntervalObject nor ScheduleAgent
// inherit from any predefined class
{
private:

MasterDataAgent *ivMasterDataAgent;
// direct reference to a MasterDataAgent object
STResource *ivResource;
// direct reference to a Resource object
ScheduleAgent (MasterDataAgent *);
// constr. as in ONTOS but implemented differently

public:
// static persistent set which includes all
// instances of ScheduleAgent
persistent<db>

os_Set<ScheduleAgent*>* extent;

virtual MasterDataAgent
*getMasterDataAgent (); // as in ONTOS

virtual void putSingleResource
(SingleResource *); // as in ONTOS
virtual SingleResource

*getSingleResource (); // as in ONTOS
os_List<ScheduleAgent*>

*ScheduleAgent::getScheduledSAList();
...
ScheduleAgent (); // constructor
~ScheduleAgent (); // destructor
// no system required methods

};
// ObjectStore implementation of the constructor:
ScheduleAgent::ScheduleAgent
(MasterDataAgent * theMasterDataAgent)
{

...
// Insertion of the created ScheduleAgent
// object into the class extent
extent->insert(this);

}

ONTOS implementation:
List* ScheduleAgent::getScheduledSAList()
{

List *scheduledSAList;

// Creation of the instance iterator for the

// class ScheduleAgent
InstanceIterator scheduleAgentIterator

((Type*) OC_lookup (''ScheduleAgent''));

// The iterator function moreData returns the next
// value in the iteration; if there is no further value
// the iteration will terminate.
while (scheduleAgentIterator.moreData()) {

// The function getSingleResource returns a
// pointer to the Resource object on which the
// Agent object is scheduled. If a Resource
// object exists the object is inserted into the
// appropriate list.
if (scheduleAgentIterator->getSingRes)

!= 0
scheduledSAList->Insert

(Entity*) scheduleAgentIterator);
}
return scheduledSAList;

}

ObjectStore implementation:
os_List<ScheduleAgent*>
*ScheduleAgent::getScheduledSAList() {

os_List<ScheduleAgent*> *scheduledSAList;
ScheduleAgent* currentScheduleAgent;
// the foreach-statement allows to iterate over
// the elements of the set specified as second
// argument. The element of each iteration will
// be referenced by the first spec. argument
foreach(currentScheduleAgent,

ScheduleAgent::extent) {
// selection criteria like in ONTOS
if (currentScheduleAgent->getSingleResource)

!= 0)
scheduledSAList->
insert(currentScheduleAgent);

}
return scheduledSAList;

}

4. Experiences & Further Research
The original KBL application consists of several
modules comprising 60 classes and about 45000
lines of code (LoC, without comments). Due to the
fact that we carried out a shallow migration rather
than a complete re-design of the application, no
additional classes had to be implemented. The total
LoC for the migrated application was reduced to
about 40000. This yields a reduction of 15% com-
pared with the original size of the application. The
reduction mainly results from a simpler class defi-
nition in ObjectStore. The additional methods for
the manipulation of persistent objects that must be
implemented in ONTOS can be omitted in Object-
Store. Furthermore, we noticed a much tighter
integration of ObjectStore into the C++ program-

ming language than it is the case for ONTOS. On
the contrary, we had to implement extension man-
agement for persistent classes in ObjectStore since
ObjectStore does not support this feature. Never-
theless, the reduction due to simpler class defini-
tions exceeded the effort for implementing the
management of class extensions.
The experiences mentioned above concern the
migration of KBL from ONTOS to ObjectStore.
Migrating applications between the two ooDBS in
the reverse direction - from ObjectStore to ONTOS
- is more difficult. This is due to the fact that the
two systems differ in their paradigm to implement
persistence. Migrating from ObjectStore to
ONTOS requires persistent classes to inherit from
the ONTOS classObject and to implement addi-
tional methods. Consequently, the size of the appli-
cation would increase. On the contrary, migrating
between ooDBS that follow a similar approach to
reach persistence (e.g. ONTOS and Versant)
requires less effort than the former case and proba-
bly has minor effects on the size of the application
code.
Considering the personnel involved in the migra-
tion process we can distinguish three implementa-
tion phases: analysis of the application and the
involved ooDBS, migration analysis, and imple-
mentation of the migration. The whole migration
process was carried out in 14 weeks (person-
weeks). The analysis of the application and of the
ooDBS together with the migration analysis took
about 8 weeks. Note, that there was hands-on
experience with ObjectStore beforehand. The
implementation of the migration was carried out in
6 weeks. In the initial planning of the migration we
scheduled a bigger effort for the actual implemen-
tation process. The experience we gained is that
the framework presented above helps to focus on
the main efforts and therefore leads to increased
productivity in the migration process.
Further investigations in this topic will include
approaches for the (semi-) automatic migration of
ooDBS applications, the development of strategies
for deep migration, and approaches to data model
versioning based on this approach.

References
[1] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D.

Maier, S. Zdonik; The object-oriented database manifesto;
Proc. Intl. Conf. on Deductive and Object-Oriented Data-
bases, 1989

[2] J. Banerjee, H. Chou, J. Garza, W. Kim, D. Woelk, N. Bal-
lou, H. Kim; Data Model Issues for Object-Oriented
Applications; ACM TOIS; Vol. 5, No. 1; 1987

[3] A. Björnerstedt, C. Hultèn; Version Control in an Object-
Oriented Architecture; in: [Kim89a]; 1989

[4] H. Chou, W. Kim; A Unifying Framework for Version
Control in a CAD Environment; Proc. of the VLDB
Conf., 1986

[5] K. Dittrich; Migrating from conventional to object-ori-
ented databases: a “can”, a “must” - or none of both?
Wirtschaftsinformatik, 35/4; 1993

[6] J. Encarnação, P. Lockemann; Engineering Databases,
Connecting Islands of Automation Through Databases;
Springer Verlag; 1990

[7] J. Gray, A. Reuter; Transaction Processing: Concepts and
Techniques; Morgan Kaufmann; 1993

[8] C. Huemer, G. Kappel, S. Vieweg; Migrating a Leitstand
System between Object-Oriented Database Systems - An
Experience Report; Proc. of the STAK’94 Conf.; 1994

[9] G. Kappel, S. Rausch-Schott, W. Retschitzegger, M.
Schrefl, U. Schreier, M. Stumptner, S. Vieweg; Object-
Oriented Database Management Systems - An Evalua-
tion; ODB/TR 92-21; Inst. of Applied CS and Information
Systems; Univ. of Vienna; 1993

[10]G. Kappel, S. Vieweg; Database Requirements for CIM
Applications; to appear in Journal of Integrated Manufac-
turing; 1994

[11] R. Katz; Toward a Unified Framework for Version Model-
ing in Engineering Databases; ACM Computing Surveys,
Vol. 22, No. 4, 1990

[12]Esprit 5161 KBL; Design, Development and Implementa-
tion of a Knowledge-based Leitstand (KBL); Deliverable
Milestone 3; Commission of the European Community
(CEC), 1992

[13]Esprit 5161 KBL; Design, Development and Implementa-
tion of a Knowledge-based Leitstand (KBL); Final Deliv-
erable; Commission of the European Community (CEC),
1993

[14]L. Mark, N. Roussopoulos; Metadata Management; IEEE
Computer, Vol. 19, No. 12, 1986

[15]U. Schreier; Database Requirements of Knowledge-based
Production Scheduling and Control: A CIM Perspective;
Proc. of the VLDB Conf.; 1993

[16]B. Shneiderman, G. Thomas; An Architecture for Auto-
matic Relational Database System Conversion; ACM
TODS; Vol. 7, No. 2; 1982

[17]A. Skarra, S. Zdonik; Type Evolution in an Object-Ori-
ented Database; in: B. Shriver, P. Wegner (eds.); Research
Directions in Object-Oriented Programming; MIT Press;
1987

[18]M. Stonebraker, L. Rowe, B. Lindsay, J. Gray, M. Carey,
M. Brodie, P. Bernstein, D. Beech; Third-Generation
Database System Manifesto; SIGMOD Record; Vol. 19,
No. 3; 1990

[19]S. Su, H. Lam, D. Lo; Transformation of Data Traversals
and Operations in Application Programs to Account for
Semantic Changes of Databases; ACM TODS; Vol. 6, No.
2; 1981

[20]A. Tansel et.al.; Temporal Databases; Theory, Design, and
Implementation; Benjamin/Cummings Series on database
systems and applications; Redwood City, CA; 1993

[21]C. Thompson; DARPA Open Object-Oriented Database
Preliminary Module Specification, Change Management
Module; Version 2, March 23, 1993

[22]S. Vieweg; Managing Evolving Requirements in Object-
Oriented Database Systems; Ph. D. Thesis; Dept. of Infor-
mation Engineering; Univ. of Vienna; 1994

[23]R. Zicari; A Framework for Schema Updates in An
Object-Oriented Database System; Proc. of the IEEE Data
Engineering Conf.; 1991

