
Distribute by permission

Work-stealing for mixed-mode parallelism
by deterministic team-building ∗

Martin Wimmer, Jesper Larsson Träff
Faculty of Computer Science, Department of Scientific Computing

University of Vienna/Wien
Nordbergstrasse 15/3C, A-1090 Wien, Austria

{wimmer,traff}@par.univie.ac.at

Abstract
We show how to extend classical work-stealing to deal also with
data parallel tasks that can require any number of threads r ≥ 1
for their execution. As threads become idle they attempt to join
a team of threads designated for a task requiring r > 1 threads
for its execution. Team building is done following a deterministic
pattern involving log p possibly randomized steal attempts where
p is the number of started hardware threads. Deterministic work-
stealing often exhibits good locality properties that are desirable
to preserve. Threads attempting to join the team for a task requir-
ing a large team may help smaller teams instead of waiting for
the large team to form. We explain in detail the so introduced idea
of work-stealing with deterministic team-building which in a natu-
ral way generalizes classical work-stealing. The implementation is
done with standard lock-free data structures, in addition to which
only a single extra compare-and-swap (CAS) operation per thread
is required as a team is being built. Once formed, teams can stay
to process further tasks requiring the same (or smaller) number
of threads; this requires no further coordination. In the degenerate
case, where all tasks require only a single thread, the implementa-
tion coincides with a (deterministic) work-stealing implementation,
has no extra overhead, and therefore similar theoretical properties.
We demonstrate correctness of the generalized work-stealing al-
gorithm by arguing for deadlock freedom and completeness (all
tasks will eventually be executed, regardless of their resource re-
quirement r ≤ p), discuss its load-balancing, task execution order
and memory-consumption properties, and discuss a number of al-
gorithmic and implementation variations that can be considered. A
prototype C++ implementation of the generalized work-stealing al-
gorithm has been given and is briefly described. Building on this,
a serious, well-known contender for a best parallel Quicksort al-
gorithm has been implemented, which naturally relies on both task
and data parallelism. On an 8-core Intel Nehalem system, a 16-core
AMD Opteron system, a 16-core Sun T2+ system supporting up to

∗ The research leading to these results has received funding from the Euro-
pean Union Seventh Framework Programme (FP7/2007-2013) under grant
agreement no. 248481 (PEPPHER Project, www.peppher.eu).

[Copyright notice will appear here once ’preprint’ option is removed.]

128 hardware threads, and a 32-core Intel Nehalem EX system we
compare our implementation of the published Quicksort algorithm
using fork-join parallelism to a mixed-mode parallel implementa-
tion with a data parallel partitioning step using our deterministic
team-building work-stealer. Results are consistently better. often
by a significant fraction. For instance, sorting 227 − 1 randomly
generated integers we could improve the speed-up from 5.1 to 8.7
on the large 32-core Intel system, on this system being consistently
better than the tuned, task-parallel Cilk++ system.

1. Introduction
Work-stealing is a now classical, efficient strategy for dynamically
scheduling parallel work-loads of independent, sequential tasks on
shared-memory systems with possibly varying number of avail-
able processing resources [1, 3]. With work-stealing, the sequential
tasks of a DAG-structured computation are executed by the avail-
able independent hardware threads. Ready (and newly spawned)
tasks are kept in local queues, and only when a thread locally
runs out of tasks does it attempt to steal work (tasks) from other
threads. Despite its localized nature with no global synchroniza-
tion, it is nevertheless often possible to prove good time bounds
and thread and memory/cache utilization for work-stealing based
schedulers [1, 3]. Work-stealing is used as the basis in Cilk [2],
Intel’s TBB [12], and many other task-parallel programming sys-
tems. Efficient implementation of work-stealing relies heavily on
lock- and/or wait-free data structures [11].

In the dynamic task-based programming models that fit well
with work-stealing, data-parallel loops are typically handled by re-
cursively breaking the loop into chunks that are then handled se-
quentially by the available hardware threads. Work-stealing pro-
vides no means of ensuring simultaneous scheduling of the tasks
responsible for such pieces, and no control over where (and when)
the pieces are eventually executed. Thus, data-parallel tasks with
dependencies are not well suited to work-stealing. This limitation
has often been addressed and frameworks which allow communi-
cating tasks have been proposed, see e.g. [8]. Phasers as known
from Habanero [16] allow loose synchronization of single-threaded
tasks. Conversely, sometimes parallel algorithms (e.g. the Quick-
sort algorithm that will be explained in Section 5) are conveniently
formulated as a sequence of parallel (recursive) steps followed by a
bunch of independent sequential work (perhaps followed by merg-
ing of results again done in parallel). Such computations are like-
wise not easily executed by work-stealing schedulers.

Mapping data-parallel algorithms to task-based programming
models has drawbacks, which can be resolved by mixing task- and
data-parallel programming. Algorithms naturally requiring task and
data parallelism and the benefit that can be expected from mixed

Technical report, University of Vienna 1 2010/11/25



data and task parallel programs are discussed in [5]. Centralized
scheduling methods for handling mixed data and task parallel
programs were discussed for instance already in [5], see also [4,
6, 7, 9, 13–15].

The model we consider here is DAG-structured computations
with dynamically spawned, non-malleable tasks with fixed thread
requirements, that is, each new task must be executed by some
number of threads determined at spawn time. The problem here is
how to gather the threads that will eventually execute data-parallel
tasks requiring more than a single thread, avoid unnecessary idle
times in the process, make sure that such gathered threads can be
activated together, and that a convenient virtual numbering of the
threads is available, such that the co-scheduled tasks have a means
of identifying and communicating with each other.

A dynamic, greedy approach like work-stealing might be able
to circumvent or alleviate some of these problems, and still provide
a (provably) efficient utilization of resources. In this paper we
propose to extend classical work-stealing in this direction. As far
as we are aware, such a generalization of work-stealing has not
been given before.

This model does at first glance not fit naturally with work-
stealing in which coordination is done locally by thieves running
out of work and no centralized resources are available for co-
scheduling data parallel tasks over some set of available hardware
threads. The contribution of this paper is to give a natural extension
of work-stealing that allows for execution of such mixed data and
task parallel programs. The extension is called deterministic team
building. When a thread runs out of tasks in its local queue, it
tries to help other threads to execute a data-parallel task requiring
more than a single thread for its execution thereby forming a team.
Coordination is thus, like in work-stealing, done by the thieves
and not coordinated from “the top” by the threads having the data-
parallel tasks in their local queues. The overhead for forming a new
team is a single extra atomic compare-and-swap (CAS) instruction
per thread joining a team. In order to avoid idle times of threads
waiting for large teams to form, threads wanting to join a large
team can help threads with tasks requiring fewer threads. In order
to ensure that sufficiently large teams can be formed fast, and that
a consecutive thread numbering within teams can be computed,
work-stealing and team-building is done following a deterministic
pattern. Each thread becoming idle and wanting to steal has log p
unique partners (p being the number of hardware threads) from
which it attempts to steal work respectively build teams.

This paper concentrates on presenting the algorithmic idea of
work-stealing with deterministic team-building. A basic implemen-
tation has been given in C++, and we have used this to give a very
natural implementation of a parallel Quicksort algorithm [18] with
exactly the properties of having dependent, data parallel computa-
tions (of decreasing granularities) mixed with sequential sorting of
smaller chunks of the input.

The work described here was partly motivated by the Euro-
pean FP7 project PEPPHER (for “PErformance Portability and
Programmability for Heterogeneous many-core aRchitectures”, see
www.peppher.eu) that develops a framework for enhancing per-
formance portability of applications that consist of component-
tasks that may already have been parallelized and make ex-
plicit requirements for specific (processor) resources (with com-
plimentary guarantees of staying within the requested limits).
Such component-tasks are in this context typically non-malleable.
Among other issues, PEPPHER investigates scheduling strategies
and software for such situations.

2. Standard Work-stealing
To set the stage for the description of deterministic team-building,
the standard work-stealing framework upon which our algorithm is
built is shown as Algorithms 1, 2, 3 and 4.

From now on the number of hardware threads is denoted by p.
Individual threads maintain tasks in local, double-ended queues de-
noted by Q with the usual operations popBottom(), pushBottom(),
popTop() and isEmpty(). These queues are assumed to be imple-
mented in a lock/wait-free manner [1, 11]. The main loop (Algo-
rithm 1) terminates when all local queues are empty and no tasks
are running. Termination detection details are not shown. Tasks are
run by invoking their run() method. Running tasks can spawn new
tasks, and are responsible for putting these onto the bottom of the
local queues by corresponding pushBottom() operations.

Algorithm 1 Basic local work-stealing loop
1: while (task← getTask()) 6=⊥ do
2: {Get a new task and run it (eventually spawning new tasks

in the process)!}
3: task.run()
4: end while

Algorithm 2 The getTask() procedure
1: repeat
2: if Q.isEmpty() then {Local queue empty}
3: stealTasks()
4: end if
5: task←Q.popBottom() {A fresh task or⊥ if stolen by other

thread}
6: until task6=⊥
7: return task

Procedure getTask() (Algorithm 2) returns a task from the bot-
tom of the local queue, or steals tasks from some other thread if the
local queue is empty.

Algorithm 3 The stealTasks() procedure
1: v ← random() modp {Choose random victim}
2: T ← min(v.Q.size()/2,MAX STEAL)) {Attempt to transfer

T tasks from top of v.Q to local Q}
3: if Q.popappend(v,T ) > 0 then {At least one task stolen}
4: {Number of successfully stolen tasks returned}
5: return
6: end if
7: {Unsuccessful stealing}
8: backoff()

Tasks are stolen from a victim thread by the stealTasks() pro-
cedure (Algorithm 3). Instead of stealing only one task, it is most
often beneficial to steal some fraction of the tasks of the victim’s
queue. This is implemented by the popappend() procedure, which
balances thief’s and victim’s queue by stealing half the victim’s
tasks. For simplicity this is implemented by repeated application
of popTop() and pushBottom() operations. The number of synchro-
nization operations could be reduced by the use of more complex,
real bulk remove and append primitives. The number of tasks to
steal is a typical, tunable parameter in work-stealing schedulers
that can often significantly affect performance. In practice, the last
stolen task should not be added onto the queue in order to ensure
it cannot be stolen back. We omitted this from our algorithms for
readability reasons. If stealing is unsuccessful the thief performs a
backoff(), the details of which can likewise affect performance (see
Section 4).

Technical report, University of Vienna 2 2010/11/25



Algorithm 4 The popappend(v,T ) method implemented by stan-
dard queue operations.

1: i← 0
2: while i < T do
3: task← v.Q.popTop()
4: if task 6=⊥ then
5: Q.pushBottom(task)
6: else
7: return i
8: end if
9: i← i+ 1

10: end while
11: return T

3. Work-stealing with deterministic
team-building

We can now extend work-stealing to cater also for mixed data and
task parallelism. In this case each newly spawned task can require a
certain, determined number of threads for its execution. This thread
requirement is denoted by r. In the standard work-stealing setting
r = 1 for all tasks, whereas we want to allow for any 1 ≤ r ≤ p
number of required threads (requirements r > p are of course
infeasible). Thread requirements are fulfilled by building teams of
threads for tasks with r > 1. When a team of r threads has been
formed for some task, the task can be executed. For applications it
is most often important that the threads of the team are numbered
consecutively, in order that a thread can identify and communicate
with the other tasks of the team.

In the following we first present deterministic team-building
for the case where the number of initially available threads is a
power of two, and the number of required threads for each newly
spawned task is also a power of two. We can present the algorithm
as an extension to the standard work-stealing implementation of
the previous section by appropriately modifying the procedures for
getting and stealing tasks. As will be explained later, if thread i has
a task requiring a team of r > 1 threads for execution, the team
that will eventually be built will consist of consecutively numbered
hardware threads kr, kr + 1, . . . , i, . . . (k + 1)r − 1 for some k
in the range 0 ≤ k < p/r. From this a virtual numbering of the
threads in the team from 0 to r−1 can easily be computed. We then
discuss main properties of the idea as compared to standard work-
stealing, and then finally show how the technique generalizes to
both arbitrary thread requirements and number of hardware threads.

In addition to the thread local queues Q that will still be used
to hold tasks to be executed, each now with a thread requirement
r ≥ 1, each thread has a local, fixed (integer) id I , which is
used to deterministically determine the partner for work-stealing
and team-building attempts. For each of log p partners the id of
partner i, 0 ≤ i < log p is determined by flipping the ith bit
of I . To access data structures associated with threads we need
an array ThreadRef[] that maps thread id’s into references to the
corresponding hardware threads.

Teams are coordinated by a coordinator and threads locally
maintain a reference c to their coordinator, which they use to poll
whether a task is ready to be executed, or if their registration at the
coordinator has been revoked.

The data-structure for each thread has the following members,
which may be accessed by other threads during the stealing and
coordination phases:

• A unique id I in the range 0 ≤ I < p.

• A double ended queue Q containing tasks. Local accesses al-
ways happen at the bottom, while stealing is done from the top
of the queue.

• A reference to the coordinator c of the thread. If the thread is
itself a coordinator, it contains a self-reference. This is always
the case when scheduling tasks with r = 1.

• A registration structure R that will be described below is used
for team creation at coordinating threads.

• A reference to a ready task that can be executed by the current
team, stored in the c.task field. As soon as this field is nonempty,
all threads in the team are allowed to start execution.

• A countdown G for the ready task is provided, and is initialized
to r − 1 (r is the number of threads required for this task).
Each non-coordinator thread has to atomically decrement this
field when execution starts. As soon as the field is zero, the
coordinator can be sure that execution has started by all threads
in the team, and is then allowed to reset the c.task field.

Each thread maintains a registration structure R that is modified
by a compare-and-swap (CAS) operation when necessary. The
registration structure is used for keeping track of a team being built
for a task currently at the bottom of the threads queue, and contains
the following fields:

• The number of required threads r for the task at the bottom of
the queue. This is modified every time a new task is added to
the bottom of the local queue.

• The number of acquired (or registered) threads a, which is
the number of threads currently registered for the team. Only
threads can be registered that are required for a team of size r
(a team of a certain size at a specific coordinator always consists
of the same threads due to the deterministic construction of the
team, as will be explained in the following). If a new task is
added to bottom that requires more threads, this number can
stay. If it requires less threads, we have to reset it to the number
of teamed threads and increment the new counter N (see below)
to ensure that no invalid thread has registered.

• The number of teamed threads t which is the number of threads
currently teamed up to work on a task. Teamed up threads are
not allowed to do any coordination work, except polling the
coordinator for work. A team is formed by the coordinator at
task launch time, as soon as all threads have registered. After
execution of a task, the coordinator may decide to either execute
another task using the same team, execute a task requiring
less threads using a part of the team (thereby freeing all other
threads in the team), or disbanding a team. In case a larger team
has to be created for the next task, the team must be disbanded,
and team-building for the new task restarted.

• A new counter N which is incremented every time the coor-
dinator decides to reset the number of acquired threads to the
current team size, to signal to all acquired threads that team-
building has to start over again. This happens every time a new
task with thread requirement r′ is pushed to the bottom of the
queue, where the previous task on the bottom requires r > t
threads and the new requirement r′ is smaller than r, r′ < r.
This is needed to ensure that only consecutive threads can reg-
ister for a task. Each registered thread locally stores the current
counter during registration to be able to determine, whether the
registration is still active.

The full registration structure can be packed into a 64-bit inte-
ger, and thus all fields updated by a single 64-bit CAS instruction
by assigning 16 bits to each field. For smaller numbers of hardware
threads even a 32-bit CAS suffices.

Technical report, University of Vienna 3 2010/11/25



Except for the CAS required for modifying the registration
structure, and the atomic decrement required for updating the
countdown G for the ready task, all other fields at the coordina-
tor structure are only written by the coordinator itself and therefore
do not require atomic primitives.

When a task spawns a task, the new task is pushed to the local
queue with pushBottom(). In addition, the registration structure
is modified depending on the number of threads required by the
new task. If the new number of required tasks r is larger than the
previous value, we can just update this value. In case it is smaller,
we have to reset the number of acquired threads a to the current
team size t to ensure that we have not acquired any threads outside
the boundaries of the new task. In addition to that, we have to
increment the registration counter to notify all threads outside the
current team that they have to re-register. We do not allow for r
dropping below t, so if the new task requires less than t threads, we
set r ← t .

Initially, each thread starts out with the coordinator reference
pointing to itself, c = ThreadRef[I].

The modified getTask() procedure is shown as Algorithm 5. If
the thread has a coordinator c 6= ThreadRef[I] (set by previous
stealTasks() attempts), it will either start executing the coordina-
tor’s task if there is one ready (team has been built), or help coordi-
nating the task by polling its partners (this is explained separately).
If the thread’s local queue is empty a modified steal attempt is exe-
cuted (see Algorithm 7). Otherwise the thread starts coordinating a
task.

Algorithm 5 The modified getTask() procedure.
1: while G > 0 do
2: {Make sure we do not have a previous coordinated task that

has not yet been started by all threads.}
3: backoff()
4: end while
5: task←⊥
6: repeat
7: if c 6= ThreadRef[I] then
8: {This thread is in a team coordinated by another thread}
9: if c.task 6=⊥ then

10: {The coordinators task is ready, and this thread is in
the team}

11: return c.task
12: else
13: pollPartners(c.I , c.R.r)
14: end if
15: else if Q.isEmpty() then
16: stealTasks()
17: else
18: coordinateTask()
19: if task =⊥ then
20: backoff()
21: end if
22: end if
23: until task6=⊥

Algorithm 6 lists the coordinateTask() procedure. It is called by
the coordinating thread, and checks whether execution of a task can
start. If so, it signals that execution can be started by setting t to r
and storing the currentTask into task and starts execution.

The modified stealTasks() procedure is shown as Algorithm 7.
It is called by a thread when its queue has run empty. It tries to
either find a coordinated task to work on, or to steal tasks. Partners
are checked by flipping the bits of the thread id from least to most
significant, taking at most log p iterations. This is done by bitwise
exclusive or (denoted by ⊕) with 2` for ` = 0 to log p− 1.

Algorithm 6 The coordinateTask() procedure
1: repeat
2: RR← R
3: if RR.r = RR.a then
4: {Enough threads have registered, attempt to fix the team}
5: RR′ ← RR
6: RR′.t← RR.r
7: if CAS(R, RR, RR′) then
8: {Team built! Start execution}
9: G← RR′.r − 1

10: task← Q.popBottom()
11: R.r ← max(R.t, Q.bottom.r)
12: else
13: backoff()
14: end if
15: else
16: pollPartners(I , R.r)
17: end if
18: until task 6=⊥

Algorithm 7 Modified stealTasks()
1: `← 0
2: while 2` < p do
3: x← ThreadRef[I ⊕ 2`] {Deterministic partner}
4: xc← x.c {The partner’s coordinator}
5: xcR← xc.R {Copy coordinators registration structure}
6: if xcR.r ≥ 2`+1 then {Partner’s coordinator requires this

thread for execution of its task}
7: RR← xcR
8: RR.a← RR.a+1 {Coordinator has acquired one more

thread}
9: if CAS(x.R, xcR, RR) then

10: {Successful registration with new coordinator}
11: c← xc {Partner is new coordinator}
12: coordinatorCounter← RR.N
13: return
14: end if
15: else
16: {Steal from partner instead}
17: T ← min(x.Q.size()/2, 2`)
18: if Q.popappend(x.Q, T ) > 0 then
19: {At least one task stolen}
20: return
21: end if
22: {Nothing to steal, next partner}
23: `← `+ 1
24: end if
25: end while
26: {No success in stealing procedure}
27: backoff()

Technical report, University of Vienna 4 2010/11/25



The pollPartners(c,r) procedure shown as Algorithm 8 is the
new polling method. It takes two parameters: A coordinator c and
the number of required threads r. It polls all partners required for
the execution of a task. If the partners are working on tasks that are
smaller than the current task to execute, we steal tasks from them to
help them complete faster and start looking for partners. If a partner
is also working on a large task (with large, we mean that it requires
many threads for execution), we have to make sure that exactly one
of them wins. In our case, we deterministically choose the task with
a smaller thread requirement r. If both tasks are of the same size,
the task of the thread with the smaller id wins. Although it might
be more intuitive to prefer larger tasks to smaller tasks, we may not
do this as threads are only guaranteed to find larger tasks as soon
as they run out of smaller tasks.

There might be better ways of breaking ties, e.g. based on size of
local queues, which might improve performance, and this is subject
to experimentation. It is easy to see that the chosen criterion is
correct.

The switchToCoordinator(xc) procedure presented in Algo-
rithm 9 tries to set the coordinator reference c to the coordinator
given as parameter. It also performs deregistration from the old
coordinator if necessary, and checks whether the coordinator still
requires help from this thread, before registering for it. The over-
lap() function used in this method checks whether the given thread
ids would both be in the same team for a task of the size specified
as the third parameter. This works similar to the calculation of local
thread id’s described in Section 3.1.

3.1 Basic properties
Teams are always built out of consecutive threads, as the threads
allowed to join a team of a certain size at a certain coordinator
are static and deterministic as determined by the bit-flipping in
the stealTasks() and pollPartners(c,r) procedures. If we switch to a
different task, where some registered threads might not be required,
we reset the acquired counter a to enforce this property. Due to
this bit-flipping, teams always consist of the thread id’s kr, kr +
1, . . . , i, . . . (k + 1)r − 1 for some k in the range 0 ≤ k < p/r.

Teams stay together as long as the coordinator’s next task is
the same size as the team. If the next task is smaller, the team
is deterministically shrunk to the required size. This is done by
the coordinator by updating t. Each thread can deterministically
calculate, whether it is still on the team. If the next task is larger, the
coordinator breaks up the team as soon as execution of the previous
task has finished. This is done, by setting t = 1. The team for the
larger task then has to be rebuilt from scratch.

Stealing follows a deterministic pattern in our scheduler. We
contact log p partner threads, before backing off. This was neces-
sary in order for the teams to build properly, and may furthermore
be advantageous to ensure memory-locality. If threads are initially
numbered such that threads within each memory-hierarchy level
are consecutive, bit-flipping will ensure that teams are formed by
threads that are close in the memory hierarchy. Such locality opti-
mizations by deterministic stealing have often been considered, see
for instance the BubbleSched framework [17].

An important property of work-stealing with double ended
queues is that tasks are executed in depth-first order. With de-
terministic team-building it can happen that larger (r > 2) tasks
are stolen back and forth until they are finally executed if there are
smaller tasks in-between. This may also lead to two tasks of the
same size switching order inside a queue, therefore violating the
depth-first order. We address this issue in Refinement 1. There we
also show correctness of the algorithm.

Another property of work-stealing is that as long as a thread can
execute tasks it does not have to communicate with other threads.
We can expand this property to teams of arbitrary sizes, with the

Algorithm 8 pollPartners(c,r)
1: `← 0
2: while 2` < r do
3: x← ThreadRef[I ⊕ 2`] {Deterministic partner}
4: xc← x.c {Copy partners coordinator pointer}
5: xcR← xc.R {Copy partners registration structure}
6: if xc.I 6= c.I then
7: if xcR.r = r then
8: if xc.I < c.I then
9: {The partner’s task wins. Switch to its task}

10: if task 6= ⊥ then
11: Q.pushBottom(task)
12: task←⊥
13: end if
14: switchToCoordinator(xc)
15: return
16: end if
17: {We win, partner will eventually register for our task}
18: else if xR.r < r then
19: {The partner’s task wins.}
20: if xR.r < 2`+1 then
21: {The partner doesn’t require help from this thread.

We steal some tasks to make sure it’s queues are
empty sooner.}

22: if x.Q.size() > 0 then
23: if task 6= ⊥ then
24: Q.pushBottom(task)
25: task←⊥
26: end if
27: T ← min(x.Q.size()/2, 2`)
28: Q.popappend(x.Q, T )
29: return
30: end if
31: else
32: {The partner requires help from this thread. We

switch to its task}
33: if task 6= ⊥ then
34: Q.pushBottom(task)
35: task←⊥
36: end if
37: switchToCoordinator(xc)
38: return
39: end if
40: end if
41: {We win, partner will eventually register for our task}
42: end if
43: `← `+ 1
44: end while
45: if ¬ c.taskIsReady(I) then
46: backoff()
47: end if

Technical report, University of Vienna 5 2010/11/25



Algorithm 9 switchToCoordinator(xc)
1: loop
2: xcR← xc.R
3: if overlap(xc.I , I , xcR.r) then {Coordinator requires help

from this thread}
4: if c 6= ThreadRef[I] then
5: {First drop previous coordinator}
6: RR← c.R
7: if overlap(c.I , I , RR.t) then
8: {We are in our current coordinators team and there-

fore can’t drop out}
9: return

10: end if
11: RR′ ← RR
12: RR′.a← RR′.a− 1
13: if ¬ CAS(c.R, RR, RR′) then
14: backoff();
15: else
16: return
17: end if
18: else
19: RR← xcR
20: RR.a← RR.a+ 1
21: if CAS(xc.R, xcR, RR) then
22: {We have successfully registered for coordinator}
23: if R.r > 1 then
24: {If this thread was coordinating a task, we have

to stop coordinating}
25: RR′ ← R
26: RR′.r ← 1
27: RR′.t← 1
28: RR′.a← 1
29: RR′.N ← RR′.N + 1
30: R← RR′

31: end if
32: c← xc
33: cN ← RR.N
34: else
35: backoff()
36: end if
37: end if
38: else
39: return
40: end if
41: end loop

restriction that this only holds as long as the next task requires the
same amount of threads as the previous one. Of course, communi-
cation cannot be completely omitted with tasks requiring more than
one thread, as threads in a team have to poll the coordinator for the
next task, and have to notify it when execution starts, but this over-
head is small. If task sizes in a single queue vary, communication
is needed every time a larger task follows a smaller task. This issue
also becomes less problematic with Refinement 1, although it is not
completely resolved if we allow arbitrary task sizes (Refinement 2).

We finally explain how a consecutive numbering of the threads
in a team starting from 0 is achieved. As soon as a thread knows
the size of the team, it can use its global thread id to calculate the
boundaries of the team, and therefore its local id. This is done by
first retrieving the position of the most significant bit in t. Retriev-
ing the most significant bit can either be done in log b operations
where b is the number of bits in the integer, but most modern pro-
cessors support this operation in hardware. The leftmost thread id
in the team is calculated by setting all bits in the coordinator id that

are below the most significant bit of t to 0. For the rightmost thread
id we have to set all those bits to 1. The local id’s for the execu-
tion of a task can simply be calculated by subtracting the leftmost
thread id from the id of the actual thread.

We estimate the extra overheads in deterministic team-building
as follows: an extra CAS used in Algorithms 6 and 7. If all tasks
require r = 1 the algorithm coincides with a deterministic work-
stealing scheduler, where log p fixed partners are tried before the
backoff(). The additional CAS that do not appear in classic work-
stealing are never executed in this case. Actually, as now written
in Algorithm 6 a CAS in coordinateTask() would be executed
as some code was omitted for readability reasons. In the actual
implementation, the CAS is only executed if the new team size
differs from the old one, and this is never the case for one-thread
tasks.

3.2 Refinement 1: Multiple work queues
In the basic variant, two tasks may switch order in a queue, if there
are some smaller tasks between them (by being stolen back and
forth, as explained above). This means that in the worst case tasks
are not executed in a depth-first order any more by a single thread.
Also, larger tasks might switch often between two queues, until
most smaller tasks are processed. We can resolve this problem by
using log p local queues instead of one.

Each queue stores tasks of a certain size, in particular queue Qi

keeps tasks requiring r = 2i threads. A thread always executes
the smallest tasks first, and moves to queues with larger tasks as
soon as all queues with smaller tasks are empty. When a team of
threads works on a queue, it continues working on this queue, even
if queues containing smaller tasks get filled again. Only after the
queue is empty, the team is resized to work on a queue containing
smaller tasks.

We can now forbid threads to steal tasks, where both threads
would be in the same team. This reduces the required communica-
tion.

This refinement improves some of the properties of the algo-
rithm. The main improvement is, as described before, that tasks of
a certain size are now executed in a depth-first order. Reordering of
such tasks is impossible. Also, on one thread, tasks requiring less
threads are executed before larger tasks. The only exception occurs
for small tasks that are created after a larger team has been formed
by this method. They have to wait until the team is resized. Due
to the clustering of the execution of same-size tasks, we reduce the
required coordination due to varying task sizes.

This refinement is necessary for the following two refinements.

3.3 Correctness
For our correctness argument, we assume we have log p queues
per thread (as per Refinement 1), and that the number of threads
required per task, as well as the total number of threads, are powers
of two.

Lemma 1. Assume that the computation is finite. A thread i has a
task requiring r ≥ 1 threads. This task will eventually be executed.

Proof. For r = 1 the case is clear. A task requiring a single thread
will in general be executed before tasks using more threads. No co-
ordination is required before execution, so the task will eventually
be executed, similar to classical work-stealing.

Similar findings apply to r > 1. If we assume that all tasks
in the computation require r threads, all threads will coordinate to
join teams of r threads with i ∈ [kr, (k+1)r−1]. Assume, thread
i is the coordinator, then the task will eventually be executed. Oth-
erwise, the team will dissolve to search for another coordinator as
soon as the current coordinator’s queue runs empty, and eventually
thread i will become a coordinator.

Technical report, University of Vienna 6 2010/11/25



If we relax the restriction that all tasks require r threads, the
given task will be executed at latest after we run out of tasks
requiring less than r threads. Tasks with thread requirements larger
than r cannot block execution of the given task, as tasks requiring
less threads are always prioritized.

Lemma 2. Assume, we have two tasks x and y in the same queue
with n ≥ 0 tasks in-between them. When using log p queues per
thread, x and y cannot be reordered inside a single queue.

Proof. Let’s assume that x is nearer to the top of the queue than y.
Therefore, x would be stolen first. Assume, both get stolen by the
same thread, then the order of both tasks in the target queue would
stay the same, even if stolen at different times. The only case when
x and y could switch order would be if a thread has y in its queue,
and then steals x. A task can only be stolen in two cases: If all
queues of the stealing thread are empty, or during coordination. If
all queues of the stealing thread are empty, they cannot contain y.
During coordination, only tasks are stolen that require less threads
than the task to coordinate. As coordination is always done for
the task that requires the least amount of threads, we require that
rx < ry , which contradicts our assumption that both x and y are in
the same queue.

Lemma 3. All conflicts are resolved deterministically.

Proof. Assume that thread x and thread y both try to coordinate a
task with y ∈ [krx, (k + 1)rx − 1] and x ∈ [kry, (k + 1)ry − 1].
Assume rx = ry , and x < y then x will be chosen deterministi-
cally. All threads with y as coordinator will switch to x as soon as
they encounter a thread with x as coordinator during coordination.
Assume rx < ry , then again x will be deterministically chosen.
Assume that thread x wins, but thread y steals another task during
coordination of y before encountering threads coordinated by x. As
we only allow to steal tasks during coordination that require less
threads than the coordinated task, the new thread requirement r′y
must be less than the old requirement. Assume that now rx > r′y ,
then if x ∈ [kr′y, (k + 1)r′y − 1] still holds, thread x will switch
to thread y as coordinator. Otherwise, thread y is independent of
thread x and the conflict therefore resolved. As each stolen task
has to be smaller than the previous one, the conflict will be resolved
either way sooner or later.

Lemma 4. Each task is only executed once by each of the threads
in a team.

Proof. A task is always managed by only one thread (the coordina-
tor) and cannot occur in two queues at the same time. The start of
task execution is managed by the coordinator, and the reference to
an executed task removed before the coordinator starts coordinat-
ing again. Coordinated threads in a team have to remember the last
executed task to make sure they do not execute it again, until they
either drop out of the team, or the coordinator starts coordinating a
new task.

3.4 Refinement 2: Arbitrary thread requirements
We now show how to cope with the case where each new task
can require an arbitrary number of threads, r ≤ p, and not only
requirements that are powers of two.

The easiest way to do this would be to just allocate a team with a
size equal to the next-highest power of two, and to let some threads
sit idle during execution. This, of course, is far from ideal, and
it would be preferable if the threads that would otherwise be idle
worked on smaller tasks. Nonetheless, we cannot completely ignore
those threads, as they might be the first partners, some thread that
is required for the team visits.

We propose that during coordination, such threads that will
not actually work on a task silently register at the coordinator.
Registering silently means, that the thread’s coordination pointer
is set to the coordinator, but it does not increment the registration
counter. As soon as execution of the task starts, the thread may start
working on another task.

We note that it is still necessary to help those tasks empty their
queues, even if they might not always interfere in coordination and
might later run out of work. Sometimes, some of those threads
might be coordinating another task that requires a team that does
not intersect with the team of our task. We do not need to steal
from those threads as they won’t interfere with our task.

Although it is possible to support arbitrary task sizes, we can
only provide weak guarantees concerning the utilization of the
hardware threads. In the worst case, nearly half of the threads
may sit idle. This would happen if we have tasks with r = 2k +
1 to execute, and all smaller tasks on silently registered threads
would have been executed before forming the team. Therefore the
programmer should preferably use tasks that are aligned to a power
of two.

Another problem is that teams might dissolve before a queue
has been processed, because of a larger task following a smaller
task. Therefore the programmer should try not to have varying task
sizes in single queues. For some applications it might be feasible to
provide additional queues for certain sizes that are often used, but
this approach cannot be generalized, and providing p queues is not
feasible anyway with increasing number of cores.

3.5 Refinement 3: Arbitrary number of hardware threads
We finally extend to the general situation where an arbitrary (finite,
fixed) number of threads is given from the outset, and each newly
spawned task can require an arbitrary number of threads.

In the standard algorithm, we assume that each level ` at which
a thread has one partner, contains exactly 2` threads. We relax this
constraint by allowing a level to contain n` tasks, where n`−1 <
n` ≤ 2n`−1 and n0 = 1. This information has to be statically
precomputed at startup time, and has to be accessible to all threads.
This relaxation has two implications: First, some threads will not
have a partner at certain levels `. Second, some threads won’t have
access to the full number of threads for a team n` on level `.

As the information about a thread’s partner cannot be conve-
niently generated on the fly any more, each thread has to precom-
pute and store an array P of its log p partners. If, for a thread,
the partner at level ` is missing, we store P [`] =⊥. Also, each
thread has to precompute and store the actual team-sizes n′ avail-
able at level `, where n′`−1 ≤ n′` ≤ n`. Each thread has log p
task-queues, where the queue for level ` stores tasks in the range
n′`−1 < x ≤ n′`. Some threads might have queues that are never
used, and therefore do not have to be reserved in memory.

The actual execution proceeds similarly to the standard execu-
tion, only that instead of relying on bit-flipping, we have to rely on
precomputed information about partners and team-sizes. Also, as
partners at some levels might not be available, we should be able to
handle that. Last, but not least, we have to be aware that stolen tasks
will not necessarily be stored in a queue at the same level as in the
originating thread. This might create balancing issues, where tasks
are not stolen from a partner, as they are in a queue at the same level
as the level of the partner, which is not allowed by the algorithm,
even though two or more of those tasks could be executed in par-
allel by all threads at this level. This case may actually only occur,
if a thread has queues that would never be used as described in the
previous paragraph. If we use those queues for storing the tasks in
question, we can resolve the issue.

The properties of the algorithm should more or less stay the
same with this refinement, only that the ideal task-size is no longer

Technical report, University of Vienna 7 2010/11/25



a power of two and may vary depending on the actual thread the
task is executed on. An advantage of this approach is that it can
sometimes provide a more suitable representation of a homoge-
neous multi-core and therefore provide good locality in many cases.
For example, if we take a dual-socket system with two three-core
processors, we would structure the threads with n0 = 2, n1 = 3
and n2 = 6. This guarantees, that a 3-processor task is executed on
one core, which reduces memory access times.

3.6 Refinement 4: Randomizing stealing and team-building
The deterministic work-stealing scheme can be augmented with
randomization which can theoretically guard against (easily con-
structible) degenerate cases where threads may sit idle waiting for
any partner thread to finish working on its current task and starting
to steal from threads that this thread may not reach. When choos-
ing a partner for stealing and/or team-building at a certain level `,
in addition to applying a bitwise exclusive or with 2` to the id of the
stealing thread, we also randomize all bits below the `th bit. This
can be implemented by performing the exclusive or with a random
integer 2` ≤ i < 2`+1 − 1 instead of the fixed bit 2`. Thus, in-
stead of always deterministically choosing the same thread at level
`, a random thread is chosen out of a set of 2` threads. Using this
strategy, each thread may steal from any thread over a total of log p
steal attempts, but the required hierarchy between the threads is
preserved.

4. Implementation
We have implemented a prototype of the work-stealing scheduler
with deterministic team-building as described above in C++ us-
ing Pthreads to start the p hardware threads. The atomic operations
used in the implementation are compare-and-swap and fetch-and-
decrement, which are all available as atomic builtins in gcc. The
compare-and-swap primitive is required for modifications on the
registration structure, and for accesses to the work-stealing deque.
fetch-and-decrement is used for counting down started tasks. For
retrieving the most significant bit of an integer, we use the bsrl as-
sembly instruction available on Intel architectures, as this operation
is not provided as a library call under the Linux operating system.
Under BSD, the fls library function can be used instead. Retrieving
the most significant bit is necessary for calculating the boundaries
of a team as explained in Section 3.1, and for choosing in which
queue to store a task.

Furthermore, the following design decisions have been made for
the implementation:

• Tasks are implemented as objects derived from a base task class,
quite similar to TBB [12].

• For simplicity, we only provide one linear stack per thread in
our implementation. A cactus-stack as used in Cilk [2] might
be more efficient.

• When stealing tasks the last stolen task is not put on the stack
but instead returned immediately from the stealtasks() function.
This is necessary to prevent situations, where a task is stolen
back and forth with no thread being able to execute it.

• The scheduler terminates as soon as all threads have registered
as idle. They can register as idle if their stack and all queues
are empty and stealing has failed multiple times. Registration is
canceled before a thread starts to steal again.

• We have noticed that we can achieve better scheduling in many
cases, if we steal the largest allowed tasks. This comes from the
fact that a thread only steals from a thread at a certain level, if
all partner threads at lower levels had empty queues. Therefore,

the chances are high that the stealing thread will be able to build
up a team soon.

Some of tunable parameters of the implementation are given
below. Performance of the implementation might be improved by
choosing the right values, and the optimal values might differ
depending on the hardware the scheduler is run on.

• Backoff intervals - For our backoff function, we used exponen-
tial backoff, starting at 1 microsecond, and going up to 10 mil-
liseconds.

• Number of tasks to steal - We decided to steal 2` tasks from
a partner, where ` is the position of the bit to flip to get the
partner’s id. This comes from the assumption that, if we reached
the `th partner during stealing, it is likely that all threads in
the 2` block around the current task are running out of tasks.
Therefore it makes sense to steal enough tasks for all of them.

5. An example with experimental results
To evaluate the mixed-parallelism work-stealer we have imple-
mented the parallel Quicksort algorithm described in [18] with the
variations described above. We compare this implementation to the
standard task-based Quicksort algorithm (Algorithm 10). The stan-
dard algorithm sequentially partitions the data and then recursively
sorts both created subsequences in parallel. The async statement
we use here creates a task out of the following function call. The
sync statement waits for all spawned tasks. We provide a CUTOFF
length at which we switch to a sequential implementation when the
task-creation overhead is higher than the gains.

Algorithm 10 qsort(data, n)
1: if n ≤ CUTOFF then
2: return sequential sort(data, n)
3: else
4: pivot← partition(data, n)
5: async qsort(data, pivot)
6: async qsort(data + pivot +1, pivot −n− 1)
7: sync
8: end if

The problem with this algorithm is that during the starting phase
we start with a single sequence that has to be sorted on a single
processor. Only over time we get enough parallel work to fully
utilize all processor resources. In [18] this problem is solved with
a data-parallel partitioning step. It starts off with all processors
partitioning a single array. Then, after partitioning is complete,
the processors are split into two groups, where each group gets a
single subsequence to work on. In the final phase, each processor
has a single subsequence that it can sort locally. To achieve better
load-balancing, a helping scheme similar to work-stealing is used.
Therefore, the last phase can be seen as similar to the task-based
Quicksort algorithm in Algorithm 10.

As classic work-stealing is not able to handle data-parallel tasks,
the implementation of Quicksort with data-parallel partitioning has
to rely on manual scheduling and a manually implemented helping
scheme. Our mixed-parallelism work-stealer fits naturally to this
algorithm, and allows to simplify it. Also, it provides better bal-
ancing if other algorithms are executed at the same time, as both
can use the same scheduler. We modify the Quicksort algorithm to
use a more dynamic scheme, which we present in Algorithm 11.
This mixed-mode parallel Quicksort uses a data-parallel partition-
ing step, and then launches two subtasks on the thread with the local
id 0. We modified the async to allow setting the number of threads
required by the given task. In this example, we delegate the task of

Technical report, University of Vienna 8 2010/11/25



Type Size Seq/STL SeqQS Fork SU Randfork Cilk SU Cilk sample MMPar SU
10000000 0.940 1.022 0.243 3.9 1.027 0.163 5.8 0.185 0.201 4.7

100000000 10.492 11.421 2.244 4.7 9.085 1.828 5.7 1.953 1.669 6.3
Random 1000000000 112.110 122.450 20.964 5.3 31.643 18.903 5.9 20.534 18.130 6.2

8388607 0.781 0.848 0.229 3.4 0.864 0.154 5.1 0.158 0.182 4.3
33554431 3.320 3.639 0.778 4.3 3.357 0.587 5.7 0.681 0.603 5.5

134217727 14.335 15.638 2.924 4.9 9.422 2.112 6.8 2.556 2.236 6.4
10000000 0.937 1.017 0.245 3.8 1.189 0.154 6.1 0.184 0.199 4.7

100000000 9.971 10.883 2.310 4.3 7.713 2.025 4.9 2.280 1.646 6.1
Gauss 1000000000 101.042 110.295 20.151 5.0 34.062 18.385 5.5 24.096 16.580 6.1

8388607 0.785 0.847 0.205 3.8 0.794 0.139 5.7 0.156 0.177 4.4
33554431 3.328 3.609 0.727 4.6 3.403 0.604 5.5 0.649 0.594 5.6

134217727 13.613 14.859 2.881 4.7 10.175 2.171 6.3 2.625 2.103 6.5
10000000 0.873 0.962 0.255 3.4 1.121 0.117 7.5 0.141 0.204 4.3

100000000 10.493 11.691 1.921 5.5 9.489 1.366 7.7 1.687 1.610 6.5
Buckets 1000000000 108.909 121.008 21.008 5.2 31.683 14.691 7.4 18.208 17.451 6.2

8388607 0.721 0.785 0.174 4.2 0.774 0.088 8.2 0.113 0.174 4.2
33554431 3.205 3.535 0.615 5.2 3.262 0.415 7.7 0.502 0.561 5.7

134217727 13.573 14.971 2.344 5.8 8.555 1.465 9.3 1.945 2.129 6.4
10000000 0.869 0.977 0.219 4.0 1.041 0.148 5.9 0.170 0.189 4.6

100000000 9.845 10.837 1.814 5.4 6.621 1.154 8.5 1.480 1.593 6.2
Staggered 1000000000 102.498 112.668 17.593 5.8 24.018 13.869 7.4 18.701 16.096 6.4

8388607 0.731 0.819 0.173 4.2 0.647 0.173 4.2 0.180 0.174 4.2
33554431 3.120 3.591 0.701 4.5 2.612 0.387 8.1 0.485 0.613 5.1

134217727 13.365 14.816 2.356 5.7 8.746 1.720 7.8 2.050 2.174 6.1

Table 1. Quicksort on the 8-core Intel Nehalem system. Average running times over 10 repetitions in seconds. Speedup is calculated relative
to the (best) sequential STL implementation.

Type Size Seq/STL SeqQS Fork SU Randfork Cilk SU Cilk sample MMPar SU
10000000 0.939 1.017 0.232 4.0 0.505 0.162 5.8 0.183 0.194 4.8

100000000 10.483 11.404 2.168 4.8 4.813 1.812 5.8 1.911 1.641 6.4
Random 1000000000 111.442 121.697 20.770 5.4 23.703 18.665 6.0 20.441 16.973 6.6

8388607 0.767 0.834 0.215 3.6 0.696 0.152 5.0 0.158 0.173 4.4
33554431 3.317 3.632 0.765 4.3 1.316 0.585 5.7 0.646 0.577 5.7

134217727 14.240 15.535 2.853 5.0 3.524 2.101 6.8 2.550 2.213 6.4
10000000 0.926 1.006 0.238 3.9 1.086 0.154 6.0 0.183 0.187 4.9

100000000 9.961 10.864 2.250 4.4 4.002 2.014 4.9 2.262 1.573 6.3
Gauss 1000000000 100.551 109.778 19.900 5.1 23.386 18.273 5.5 24.036 15.567 6.5

8388607 0.765 0.826 0.193 4.0 0.304 0.138 5.5 0.155 0.168 4.6
33554431 3.275 3.555 0.704 4.7 1.377 0.599 5.5 0.646 0.568 5.8

134217727 13.607 14.830 2.865 4.7 3.751 2.163 6.3 2.617 2.091 6.5
10000000 0.864 0.950 0.234 3.7 0.980 0.116 7.5 0.140 0.191 4.5

100000000 10.050 11.190 1.893 5.3 5.331 1.357 7.4 1.679 1.583 6.3
Buckets 1000000000 104.524 116.298 20.745 5.0 24.175 14.535 7.2 18.146 16.843 6.2

8388607 0.711 0.774 0.169 4.2 0.404 0.087 8.2 0.112 0.160 4.5
33554431 3.092 3.408 0.593 5.2 1.931 0.410 7.5 0.499 0.546 5.7

134217727 13.363 14.724 2.315 5.8 2.951 1.458 9.2 1.942 2.097 6.4
10000000 0.865 0.971 0.208 4.2 0.610 0.144 6.0 0.165 0.174 5.0

100000000 9.837 10.816 1.785 5.5 2.940 1.146 8.6 1.475 1.569 6.3
Staggered 1000000000 101.711 111.983 17.368 5.9 19.766 13.595 7.5 18.567 15.823 6.4

8388607 0.722 0.807 0.167 4.3 0.272 0.171 4.2 0.177 0.161 4.5
33554431 3.119 3.581 0.662 4.7 1.506 0.379 8.2 0.480 0.566 5.5

134217727 13.357 14.796 2.325 5.7 3.017 1.698 7.9 2.027 2.075 6.4

Table 2. Quicksort on the 8-core Intel Nehalem system. Best (minimum) running time over 10 runs in seconds. Speedup is calculated relative
to the (best) sequential STL implementation.

choosing a good number of threads to the procedure getBestNp(n).
How it is actually implemented may have a major influence on per-
formance as the overhead for data-parallel partitioning is higher
than for sequential partitioning, so it should only be used when ei-

ther the data is large enough so that the overhead is negligible or
there is too little work to do for sequential tasks. In our implemen-
tation we decided on a policy that each thread working on parallel
partitioning should at least have 128 blocks to work on. To achieve

Technical report, University of Vienna 9 2010/11/25



Type Size Seq/STL SeqQS Fork SU Randfork MMPar SU
10000000 1.305 1.268 0.581 2.2 1.254 0.782 1.7

100000000 14.890 14.575 3.710 4.0 11.836 3.164 4.7
Random 8388607 1.106 1.053 0.457 2.4 1.116 0.502 2.2

33554431 4.751 4.653 1.291 3.7 4.756 1.252 3.8
134217727 20.948 19.972 4.466 4.7 18.034 4.427 4.7

10000000 1.283 1.260 0.503 2.6 1.341 0.647 2.0
100000000 14.356 13.994 3.540 4.1 12.216 2.902 4.9

Gauss 8388607 1.056 1.058 0.478 2.2 1.055 0.517 2.0
33554431 4.734 4.503 1.342 3.5 4.381 1.799 2.6

134217727 19.997 19.244 5.160 3.9 16.887 4.718 4.2
10000000 1.291 1.212 0.488 2.6 1.272 0.821 1.6

100000000 14.734 14.035 3.412 4.3 13.230 3.355 4.4
Buckets 8388607 1.071 0.967 0.403 2.7 1.114 0.583 1.8

33554431 4.670 4.515 1.266 3.7 4.265 1.497 3.1
134217727 20.666 19.031 4.351 4.7 15.014 4.046 5.1

10000000 1.187 1.306 0.631 1.9 1.350 0.828 1.4
100000000 13.897 14.800 4.341 3.2 11.857 3.590 3.9

Staggered 8388607 1.064 1.058 0.440 2.4 1.213 0.671 1.6
33554431 4.597 4.631 1.216 3.8 4.775 1.611 2.9

134217727 19.133 19.660 4.844 4.0 15.354 4.399 4.3

Table 3. Quicksort on the 16-core AMD Opteron system. Average running times over 10 repetitions in seconds. Speedup is calculated
relative to the (best) sequential STL implementation.

Type Size Seq/STL SeqQS Fork SU Randfork MMPar SU
10000000 1.305 1.267 0.536 2.4 0.929 0.676 1.9

100000000 14.884 14.574 3.614 4.1 7.481 2.896 5.1
Random 8388607 1.106 1.052 0.423 2.6 0.608 0.436 2.5

33554431 4.751 4.653 1.233 3.9 4.254 1.069 4.4
134217727 20.947 19.971 4.302 4.9 10.399 4.119 5.1

10000000 1.282 1.260 0.466 2.8 1.092 0.568 2.3
100000000 14.349 13.993 3.429 4.2 9.069 2.699 5.3

Gauss 8388607 1.056 1.058 0.407 2.6 0.621 0.406 2.6
33554431 4.733 4.503 1.294 3.7 2.840 1.368 3.5

134217727 19.989 19.233 4.862 4.1 9.264 4.279 4.7
10000000 1.290 1.211 0.344 3.7 0.734 0.734 1.8

100000000 14.732 14.026 3.153 4.7 8.399 3.096 4.8
Buckets 8388607 1.071 0.967 0.355 3.0 1.102 0.531 2.0

33554431 4.669 4.515 1.138 4.1 2.498 1.294 3.6
134217727 20.655 19.030 3.933 5.3 9.265 3.835 5.4

10000000 1.187 1.306 0.609 2.0 0.762 0.732 1.6
100000000 13.889 14.793 3.820 3.6 6.676 3.117 4.5

Staggered 8388607 1.063 1.058 0.399 2.7 1.182 0.575 1.8
33554431 4.596 4.631 1.121 4.1 3.654 1.405 3.3

134217727 19.129 19.659 4.613 4.1 10.233 3.955 4.8

Table 4. Quicksort on the 16-core AMD Opteron system. Best (minimum) running time of 10 runs in seconds. Speedup is calculated relative
to the (best) sequential STL implementation.

better balancing, we decided to only allow powers of two as the
number of threads for a task.

If the number of threads required by a newly launched task np
equals 1, we switch to the standard task-based implementation from
Algorithm 10.

We now explain how the data-parallel partitioning step works.
During partitioning, the array is split into equally sized, cache-
aligned blocks. (The pivot element should not be inside those
blocks.) Each thread takes one block from each side of the ar-
ray to be sorted, and tries to neutralize (see [18] for the details of
this concept) blocks by swapping elements that are larger than the
pivot and in the left block with elements that are smaller than the

pivot and in the right block. As soon as one of the blocks has been
neutralized, the thread tries to acquire another block from the same
side of the array, until we run out of free blocks.

For the second phase, the paper [18] proposes that a single
thread then collects the remaining blocks from all other threads,
and processes them sequentially. We decided to follow a different
approach. In our implementation, any thread that needs to acquire
a block decides whether it wants to be a producer, or a consumer,
depending on its current id and the number of blocks on this side
that have to be processed. Producing threads put their remaining
block, and the current processing position into an exchanger data-
structure, and then exit the computation. Consuming threads re-

Technical report, University of Vienna 10 2010/11/25



Type Size Seq/STL SeqQS Fork SU Randfork Cilk SU Cilk sample MMPar SU
10000000 1.479 1.620 0.388 3.8 1.818 0.207 7.1 0.206 0.246 6.0

100000000 13.319 13.742 2.891 4.6 13.607 2.421 5.5 2.312 1.372 9.7
Random 1000000000 107.080 117.963 20.287 5.3 50.679 24.018 4.5 23.838 14.200 7.5

8388607 1.447 1.580 0.774 1.9 1.772 0.194 7.5 0.188 0.410 3.5
33554431 4.863 5.265 0.903 5.4 5.690 0.657 7.4 0.641 0.587 8.3

134217727 15.888 16.617 3.103 5.1 12.115 2.525 6.3 2.521 1.835 8.7
10000000 1.252 1.354 0.275 4.6 1.621 0.175 7.1 0.175 0.174 7.2

100000000 11.923 12.971 2.516 4.7 14.972 2.433 4.9 2.484 1.456 8.2
Gauss 1000000000 119.464 130.255 22.288 5.4 106.658 24.641 4.8 24.789 17.397 6.9

8388607 1.029 1.112 0.247 4.2 1.353 0.174 5.9 0.174 0.169 6.1
33554431 4.408 4.236 0.870 5.1 5.492 0.734 6.0 0.712 0.543 8.1

134217727 15.888 17.263 2.771 5.7 19.774 2.479 6.4 2.530 1.763 9.0
10000000 1.131 1.233 0.241 4.7 1.517 0.134 8.4 0.142 0.181 6.2

100000000 12.373 12.801 1.818 6.8 15.136 1.080 11.5 1.094 1.416 8.7
Buckets 1000000000 122.822 135.833 19.214 6.4 121.967 16.566 7.4 17.721 15.072 8.1

8388607 0.969 1.057 0.186 5.2 1.244 0.077 12.5 0.083 0.169 5.7
33554431 4.111 4.505 0.662 6.2 4.774 0.518 7.9 0.560 0.516 8.0

134217727 16.484 17.154 2.038 8.1 17.203 1.844 8.9 2.005 1.787 9.2
10000000 1.151 1.301 0.279 4.1 1.509 0.396 2.9 0.431 0.182 6.3

100000000 12.181 12.498 1.618 7.5 14.449 4.109 3.0 4.295 1.470 8.3
Staggered 1000000000 116.734 131.596 20.067 5.8 100.270 78.455 1.5 83.268 23.365 5.0

8388607 0.971 1.140 0.339 2.9 1.330 0.371 2.6 0.397 0.191 5.1
33554431 4.116 4.527 0.623 6.6 5.042 1.014 4.1 1.111 0.486 8.5

134217727 16.281 16.941 2.299 7.1 17.563 2.146 7.6 2.243 1.904 8.5

Table 5. Quicksort on the 32-core Intel Nehalem EX system. Average running timesover 10 repetitions in seconds. Speedup is calculated
relative to the (best) sequential STL implementation.

Type Size Seq/STL SeqQS Fork SU Randfork Cilk SU Cilk sample MMPar SU
10000000 1.222 1.341 0.292 4.2 1.200 0.192 6.4 0.197 0.187 6.6

100000000 13.232 13.492 2.585 5.1 8.442 2.252 5.9 2.073 1.081 12.2
Random 1000000000 131.266 144.100 24.698 5.3 41.073 23.345 5.6 23.205 11.121 11.8

8388607 1.016 1.113 0.268 3.8 1.126 0.168 6.0 0.157 0.144 7.1
33554431 4.401 4.745 0.775 5.7 3.890 0.581 7.6 0.626 0.473 9.3

134217727 17.537 18.405 3.249 5.4 8.504 2.390 7.3 2.366 1.513 11.6
10000000 1.234 1.331 0.255 4.8 1.481 0.171 7.2 0.171 0.157 7.9

100000000 11.861 12.945 2.454 4.8 9.870 2.372 5.0 2.449 1.343 8.8
Gauss 1000000000 119.297 129.859 22.149 5.4 87.425 23.750 5.0 23.345 13.962 8.5

8388607 1.027 1.105 0.227 4.5 1.045 0.166 6.2 0.166 0.155 6.6
33554431 4.407 4.197 0.837 5.3 4.592 0.713 6.2 0.672 0.483 9.1

134217727 15.824 17.178 2.704 5.9 13.898 2.452 6.5 2.445 1.679 9.4
10000000 1.131 1.229 0.213 5.3 1.386 0.129 8.8 0.138 0.163 6.9

100000000 12.350 12.771 1.777 6.9 10.155 1.018 12.1 1.056 1.330 9.3
1000000000 122.627 135.454 18.904 6.5 92.137 15.295 8.0 17.066 14.109 8.7

Buckets 8388607 0.927 1.010 0.171 5.4 1.104 0.070 13.3 0.071 0.139 6.7
33554431 4.109 4.493 0.621 6.6 4.041 0.490 8.4 0.525 0.471 8.7

134217727 16.429 17.091 1.960 8.4 12.782 1.780 9.2 1.903 1.639 10.0
10000000 1.141 1.287 0.247 4.6 0.840 0.378 3.0 0.413 0.172 6.6

100000000 12.150 12.460 1.574 7.7 10.318 4.007 3.0 4.173 1.309 9.3
Staggered 1000000000 115.845 131.236 19.672 5.9 78.962 77.297 1.5 81.088 17.095 6.8

8388607 0.963 1.126 0.322 3.0 0.934 0.360 2.7 0.370 0.161 6.0
33554431 4.111 4.512 0.569 7.2 2.774 0.938 4.4 1.044 0.452 9.1

134217727 16.217 16.838 2.230 7.3 12.705 2.056 7.9 2.127 1.705 9.5

Table 6. Quicksort on the 32-core Intel Nehalem EX system. Best (minimum) running time over 10 runs in seconds. Speedup is calculated
relative to the (best) sequential STL implementation.

trieve blocks from the exchanger data-structure and continue to
neutralize blocks. During this execution more and more threads
switch from being a consumer to being a producer, until only thread
0 remains.

The third phase starts, when thread 0 only has blocks from
one side remaining. As we now have a sequential execution, we
can use a variation of the sequential partitioner to partition the
rest of the data. Apart from that, our algorithm still uses fork-join

Technical report, University of Vienna 11 2010/11/25



Type Size Seq/STL SeqQS Fork SU Randfork MMPar SU
10000000 4.541 5.449 2.128 2.1 5.036 1.464 3.1

100000000 54.208 64.659 14.672 3.7 38.660 6.385 8.5
Random 8388607 3.718 4.441 1.509 2.5 4.548 1.094 3.4

33554431 16.427 20.167 5.189 3.2 17.693 3.502 4.7
134217727 75.126 86.858 16.198 4.6 45.664 10.849 6.9

10000000 4.474 5.237 1.766 2.5 5.337 1.267 3.5
100000000 52.630 62.650 13.144 4.0 37.754 5.235 10.1

Gauss 8388607 3.552 4.545 1.578 2.3 4.094 1.149 3.1
33554431 16.590 19.514 5.481 3.0 14.815 3.344 5.0

134217727 72.759 90.817 23.120 3.1 56.062 9.452 7.7
10000000 4.787 5.728 2.288 2.1 5.616 1.412 3.4

100000000 56.710 67.763 16.825 3.4 41.877 7.653 7.4
Buckets 8388607 3.807 4.516 1.439 2.6 4.404 1.220 3.1

33554431 17.371 20.607 5.487 3.2 16.907 3.335 5.2
134217727 76.133 91.296 21.056 3.6 68.279 11.717 6.5

10000000 4.315 7.052 3.538 1.2 6.790 2.021 2.1
100000000 52.795 79.495 27.864 1.9 50.690 8.334 6.3

Staggered 8388607 3.570 5.376 2.037 1.8 5.439 1.438 2.5
33554431 16.762 21.383 5.872 2.9 17.774 3.488 4.8

134217727 71.398 102.328 31.826 2.2 56.209 8.327 8.6

Table 7. Quicksort on the 16-core Sun T2+ system running with 32 threads. Average running times over 10 repetitions in seconds. Speedup
is calculated relative to the (best) sequential STL implementation.

Type Size Seq/STL SeqQS Fork SU Randfork MMPar SU
10000000 4.526 5.440 2.025 2.2 3.031 1.252 3.6

100000000 53.822 64.124 13.802 3.9 20.924 4.996 10.8
Random 8388607 3.698 4.418 1.355 2.7 3.055 0.753 4.9

33554431 16.381 20.112 4.972 3.3 9.137 2.399 6.8
134217727 74.520 86.550 15.444 4.8 33.778 8.263 9.0

10000000 4.433 5.222 1.565 2.8 4.171 1.127 3.9
100000000 52.613 62.621 12.395 4.2 18.303 4.021 13.1

Gauss 8388607 3.543 4.532 1.427 2.5 2.881 0.976 3.6
33554431 16.575 19.503 5.116 3.2 10.862 2.686 6.2

134217727 72.733 90.591 21.745 3.3 41.236 7.499 9.7
10000000 4.772 5.712 2.139 2.2 3.138 1.182 4.0

100000000 56.330 67.388 15.747 3.6 23.379 5.964 9.4
Buckets 8388607 3.802 4.511 1.313 2.9 2.546 1.141 3.3

33554431 17.350 20.469 4.917 3.5 11.350 2.799 6.2
134217727 76.076 91.170 20.139 3.8 42.345 8.646 8.8

10000000 4.278 7.003 3.424 1.2 4.547 1.642 2.6
100000000 52.771 79.305 25.658 2.1 42.324 7.288 7.2

Staggered 8388607 3.565 5.363 1.903 1.9 2.879 1.273 2.8
33554431 16.726 21.325 5.579 3.0 8.850 2.535 6.6

134217727 71.388 102.194 30.732 2.3 40.431 6.936 10.3

Table 8. Quicksort on the 16-core Sun T2+ system running with 32 threads. Best (minimum) running time over 10 runs in seconds.

Algorithm 11 mmqsort(data, n)
1: if np = 1 then
2: return qsort(data, n)
3: else
4: pivot← parallel partition(data, n)
5: if localId = 0 then
6: async(getBestNp(pivot)) mmqsort(data, pivot)
7: async(getBestNp((n− pivot −1)/)) mmqsort(data +

pivot +1, n− pivot −1)
8: sync
9: end if

10: end if

parallelism for its execution, meaning that for each subsequence to
sort, a separate task is created. For the number of threads assigned
for each subtask, we decided to select the biggest power of two,
where each thread can process at least 128 blocks on average during
the partitioning step (of course limited by the number of hardware
threads). If only one thread would process the array, we switch to
the classic fork-join Quicksort implementation with a sequential
partitioning step.

The classic fork-join Quicksort implementation has been de-
signed to run on the same scheduler. It contains a sequential par-
titioning step, and creates a new task for each of the resulting sub-
sequences. If a subsequence is smaller than a certain size, we switch
to the standard sequential STL sorting algorithm.

Technical report, University of Vienna 12 2010/11/25



Type Size Seq/STL SeqQS Fork SU Randfork MMPar SU
10000000 4.542 5.449 2.118 2.1 5.761 1.505 3.0

100000000 53.877 64.226 14.608 3.7 44.514 8.583 6.3
Random 8388607 3.704 4.425 1.455 2.5 4.649 1.103 3.4

33554431 16.426 20.168 4.827 3.4 19.653 2.669 6.2
134217727 74.590 86.664 18.152 4.1 66.932 10.323 7.2

10000000 4.439 5.230 1.589 2.8 5.378 1.370 3.2
100000000 52.634 62.659 12.912 4.1 50.805 5.321 9.9

Gauss 8388607 3.550 4.536 1.534 2.3 5.220 1.072 3.3
33554431 16.584 19.630 5.163 3.2 18.954 3.212 5.2
10000000 4.786 5.653 2.002 2.4 5.879 1.393 3.4

100000000 57.969 68.505 17.470 3.3 53.243 8.226 7.0
Buckets 8388607 3.860 4.628 1.545 2.5 4.920 1.075 3.6

33554431 17.131 20.759 5.128 3.3 20.554 3.104 5.5
134217727 77.244 91.977 21.168 3.6 70.394 10.868 7.1

10000000 4.223 10.144 7.348 0.6 12.085 2.755 1.5
100000000 51.521 97.713 54.925 0.9 84.106 15.196 3.4

Staggered 8388607 3.713 6.778 3.117 1.2 6.922 1.915 1.9
33554431 16.565 27.185 9.273 1.8 21.357 5.709 2.9

134217727 71.417 174.611 78.126 0.9 123.443 29.019 2.5

Table 9. Quicksort on the 16-core Sun T2+ system running with 64 threads. Average running times over 10 runs in seconds. Speedup is
calculated relative to the (best) sequential STL implementation.

Type Size Seq/STL SeqQS Fork SU Randfork MMPar SU
10000000 4.528 5.440 1.723 2.6 4.606 1.359 3.3

100000000 53.850 64.167 13.290 4.1 25.881 7.329 7.3
Random 8388607 3.697 4.417 1.335 2.8 3.102 1.042 3.5

33554431 16.382 20.113 4.504 3.6 10.952 2.306 7.1
134217727 74.554 86.591 16.489 4.5 38.155 8.517 8.8

10000000 4.432 5.222 1.475 3.0 4.149 1.252 3.5
100000000 52.619 62.622 12.399 4.2 32.363 3.967 13.3

Gauss 8388607 3.541 4.530 1.356 2.6 4.983 0.931 3.8
33554431 16.557 19.497 4.545 3.6 12.489 2.747 6.0
10000000 4.760 5.625 1.912 2.5 4.390 1.287 3.7

100000000 57.729 68.233 15.612 3.7 31.106 6.472 8.9
Buckets 8388607 3.848 4.621 1.355 2.8 2.966 0.985 3.9

33554431 17.122 20.749 4.799 3.6 16.560 2.683 6.4
134217727 77.210 91.730 20.117 3.8 43.873 9.867 7.8

10000000 4.216 10.131 7.015 0.6 11.826 2.367 1.8
100000000 51.499 97.481 52.498 1.0 68.436 13.338 3.9

Staggered 8388607 3.702 6.768 2.823 1.3 4.519 1.654 2.2
33554431 16.550 27.164 8.826 1.9 11.219 4.665 3.5

134217727 71.394 174.580 74.032 1.0 93.938 24.522 2.9

Table 10. Quicksort on the 16-core Sun T2+ system running with 64 threads. best (minimum) running time over 10 runs in seconds. Speedup
is calculated relative to the (best) sequential STL implementation.

Tunable parameters of the Quicksort algorithm are the follow-
ing:

• Blocksize for parallel partitioning - The Blocksize for parallel
partitioning should be at least as large as the cache-line size. We
decided on a block-size of 4096. (We sorted 4-byte int values.)

• Number of threads for the data-parallel partitioning step - In our
implementation, a thread should be able to process at least 16
blocks on average. We only allow powers of two for the number
of threads. Other values might provide better results.

• Cutoff for task-based Quicksort - We decided to let all subse-
quences with less than 512 elements be sorted by STL sort.

We did not concentrate on finding the best values for those pa-
rameters (or the tuning parameters of the work-stealing scheduler),
therefore performance might be improved using different values.

We compare the mixed-mode parallel Quicksort to a standard
task-based Quicksort implementation. Both are run on our sched-
uler. We also implemented a work-stealing scheduler with random
stealing and executed the standard task-based Quicksort on it. We
were not able to achieve good performance with this version. It
seems that random work-stealing is much more sensible to tuning-
parameters, and requires some more tricks to work well. Where
possible, we also compared to a task based implementation imple-
mented in Cilk [2].

Speed-up is in all cases computed relative to the best available
sequential sort implementation which we take to be the STL sort

Technical report, University of Vienna 13 2010/11/25



function. This is also used in our implementation for subsequences
shorter than 512 elements. In the current version of the STL de-
livered with gcc, the Introsort algorithm is used that is based on
Quicksort, but has a better worst-case complexity. For each variant,
we took the average and the best (minimum) result out of 10 mea-
surements. We sorted differently generated sequences of 4-Byte in-
tegers distributed as in the papers [10, 18], namely uniformly ran-
dom, random Gaussian, and Buckets and Staggered.

The implementations have been run on four different systems,
namely

• a 2-socket Intel Nehalem system, where each CPU has 4 cores
(Intel Xeon X5550 2.66Ghz, 8MB cache).

• a 8-socket AMD Opteron system, where each CPU has 2 cores
(AMD Opteron 8218 2.6 GHz)

• a 4-socket Intel Xeon X7560 system, where each CPU has 8
cores (Intel Xeon X7560 2.26 GHz, 24MB cache)

• a 2-socket Sun UltraSPARC T2+ system, where each CPU has
8 cores and 64 hardware threads

The collected results are shown in Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, and
10. In these tables, colums Seq/STL list running times for the “best”
sequential implementation available (STL), while columns SeqQS
give the running times for the handwritten reference Quicksort im-
plementation that uses the same cutoff to switch to STL sort, as the
parallel implementations. Columns Fork are the running times with
a standard, task-based parallel Quicksort implementation using our
work-stealer (all tasks have thread requirement 1); here both a de-
terministic and a randomized variant of the work-stealer have been
used. Columns Cilk give the running times using Cilk++, wher-
ever Cilk++ could be run (this was not possible on the Solaris sys-
tems). Cilk sample denotes the sample quicksort implementation
provided with the Cilk++ compiler, whereas Cilk is a handwritten
example following the same pattern as the other implementations,
including the cutoff. Finally, columns MMPar are our mixed-mode
parallel algorithm shown as Algorithm 11.

Compared to the task-based Quicksort, our mixed mode im-
plementation on top to the new work-stealing scheduler improves
speed-up, often by a significant fraction; most notably for the Sun
T2+ and the large 32-core Intel system. Randomization in the task-
based implementation was tried but turned out to perform poorly,
illustrating again that tuning is important in getting the best per-
formance from a work-stealing system. Compared to Cilk, in most
cases performance is comparable, sometimes better, but for the 8-
core Nehalem system Cilk gives systematically better speed-up.
This could be due to the fact that Cilk is more carefully tuned than
our prototype system. On the 32-core Nehalem system we achieve
consistently better results than even with Cilk. On the Sun T2+ sys-
tem, low speed-up is achieved with 64 threads, while it is quite
competitive for 32 threads. It seems that the cores are already well
utilized with this algorithm when using 2-way SMT, so that nothing
can be gained when using more hardware threads.

6. Conclusion
We showed how to extend standard work-stealing to deal with
mixed-mode task and more tightly coupled data parallel programs,
in which dynamically spawned tasks can have fixed requirements
for a number (larger than one) of threads for their execution. We
concentrated on explaining the basic algorithm, which we termed
work-stealing with deterministic team-building, and outlined a
number of variations and tunable parameters. A prototype imple-
mentation of a such a work-stealer was given in C++, and used
as the basis for implementing a parallel Quicksort algorithm. On
four different many-core systems with 8 to 32 cores we showed
that speed-up could be improved from 4.8 using the standard task-

based algorithm to 5.6 using our mixed-mode Quicksort, with an
arguably more natural implementation than in the classic data-
parallel Quicksort [18].

In future work we will evaluate further mixed-mode parallel ap-
plications, and continue to improve the work-stealing implementa-
tion, including additional ways of improving processor utilization
in cases where the number of threads per task and the number of
processors is not a power of two. One way to do this might be to
allow tasks that are malleable within certain limits. We also hope to
explore the theoretical properties of work-stealing with determin-
istic team-building and to explore bounds on the time that threads
may be idle compared to other mixed-mode scheduling approaches.
Eventually we would like to experiment with the approach within
the overall PEPPHER framework.

References
[1] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread scheduling

for multiprogrammed multiprocessors. Theory of Computing Systems,
34(2):115–144, 2001.

[2] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou. Cilk: An efficient multithreaded runtime sys-
tem. Journal of Parallel and Distributed Computing, 37(1):55–69,
1996.

[3] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded compu-
tations by work stealing. Journal of the ACM, 46(5):720–748, 1999.

[4] V. Boudet, F. Desprez, and F. Suter. One-step algorithm for mixed
data and task parallel scheduling without data replication. In 17th In-
ternational Parallel and Distributed Processing Symposium (IPDPS),
page 41, 2003.

[5] S. Chakrabarti, J. Demmel, and K. A. Yelick. Models and scheduling
algorithms for mixed data and task parallel programs. Journal of
Parallel and Distributed Computing, 47(2):168–184, 1997.

[6] L. A. Crowl, M. Crovella, T. J. LeBlanc, and M. L. Scott. The advan-
tages of multiple parallelizations in combinatorial search. Journal of
Parallel and Distributed Computing, 21(1):110–123, 1994.

[7] F. Desprez and F. Suter. Impact of mixed-parallelism on parallel
implementations of the Strassen and Winograd matrix multiplication
algorithms. Concurrency - Practice and Experience, 16(8):771–797,
2004.

[8] J. Dümmler, T. Rauber, and G. Rünger. Communicating
multiprocessor-tasks. In Languages and Compilers for Parallel Com-
puting (LCPC), volume 5234 of Lecture Notes in Computer Science,
pages 292–307, 2007.

[9] P.-F. Dutot, T. N’Takpé, F. Suter, and H. Casanova. Scheduling parallel
task graphs on (almost) homogeneous multicluster platforms. IEEE
Transactions on Parallel and Distributed Systems, 20(7):940–952,
2009.

[10] D. R. Helman, D. A. Bader, and J. JáJá. A randomized parallel
sorting algorithm with an experimental study. Journal of Parallel and
Distributed Computing, 52(1):1–23, 1998.

[11] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming.
Morgan Kaufmann Publishers, 2008.

[12] A. Kukanov and M. J. Voss. The foundations for scalable multi-core
software in intel threading building blocks. Intel Technology Journal,
11(4), 2007. http://www.intel.com/technology/itj/2007/
v11i4/5-foundations/1-abstract.htm.

[13] A. Radulescu and A. J. C. van Gemund. A low-cost approach towards
mixed task and data parallel scheduling. In Proceedings of the 2001
International Conference on Parallel Processing (ICPP), pages 69–
76, 2001.

[14] T. Rauber and G. Rünger. A coordination language for mixed task
and and data parallel programs. In Proceedings of the 1999 ACM
Symposium on Applied Computing (SAC), pages 146–155, 1999.

[15] T. Rauber and G. Rünger. Mixed task and data parallel executions
in general linear methods. Scientific Programming, 15(3):137–155,
2007.

Technical report, University of Vienna 14 2010/11/25



[16] J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. S. III. Phasers: a uni-
fied deadlock-free construct for collective and point-to-point synchro-
nization. In Proceedings of the 22nd Annual International Conference
on Supercomputing (ICS), pages 277–288. ACM, 2008.

[17] S. Thibault, R. Namyst, and P.-A. Wacrenier. Building portable thread
schedulers for hierarchical multiprocessors: The BubbleSched frame-
work. In Euro-Par, Parallel Processing, volume 4641 of Lecture Notes
in Computer Science, pages 42–51, 2007.

[18] P. Tsigas and Y. Zhang. A simple, fast parallel implementation of
quicksort and its performance evaluation on SUN Enterprise 10000. In
Eleventh Euromicro Conference on Parallel, Distributed and Network-
Based Processing (PDP), pages 372–381, 2003.

Technical report, University of Vienna 15 2010/11/25


