(will be inserted by the editor)

Special Issue on Traceability in Model-Driven Engineering manuscript No.

VbTrace: Using View-based and Model-driven Development to Support

Traceability in Process-driven SOAs

Huy Tran - Uwe Zdun - Schahram Dustdar

Received: date / Revised version: date

Abstract In process-driven, service-oriented architectures,
there are a number of important factors that hinder the trace-
ability between design and implementation artifacts. First of
all, there are no explicit links between process design and
implementation languages not only due to the differences
of syntax and semantics but also the differences of granular-
ity. The second factor is the complexity caused by tangled
process concerns that multiplies the difficulty of analyzing
and understanding the trace dependencies. Finally, there is
a lack of adequate tool support for establishing and main-
taining the trace dependencies between process designs and
implementations. We present in this article a view-based,
model-driven traceability approach that tackles these chal-
lenges. Our approach supports (semi-)automatically eliciting
and (semi-)formalizing trace dependencies among process
development artifacts at different levels of granularity and
abstraction. A proof-of-concept tool support has been real-
ized, and its functionality is illustrated via an industrial case
study.

Keywords Software Traceability - View-based - Model-
driven - Process-driven SOA - Tool support

1 Introduction

In a process-driven, service-oriented architecture (SOA) the
notion of process is central [16]. A typical process consists of
a control flow and a number of tasks to accomplish a certain
business goal. Each task performs either a service invoca-
tion or a data processing task. Processes can be deployed
in a process engine for enactment and monitoring. Figure 1

Distributed Systems Group,

Institute of Information Systems, Vienna University of Technology,
Argentinier Str. 8/184-1, A-1040 Vienna, Austria.

E-mail: htran,zdun,dustdar @infosys.tuwien.ac.at

illustrates a small-scale process-driven SOA[16]. Process en-
gines access service-based message brokers, e.g., offered by
Enterprise Service Buses, via service-based process integra-
tion adapters. Service-based business application adapters
are used as bridges between the brokers and back-end com-
ponents, such as databases or legacy systems.

Service 4

Business
Application —>{ Business Application A
Adapter A

Process
Integratio
n Adapter

>

Process Enéine

Business
Application —>{ Business Application B
Adapter B

Q
2
2
@
%]

Service 3
Service 4

Service 2

Fig. 1 Illustrative small-scale process-driven SOA

Business processes are often designed in highly abstract
and primarily notational modeling languages such as BPMN
[43], EPC [20], or UML Activity Diagrams [40]. Process
designs are suitable for business experts to represent domain-
and business-oriented concepts and functionality but mostly
non-executable because many technical details are missing.
Thus, IT experts necessarily need to be involved in the pro-
cess development to transform the process designs into exe-
cutable specifications. For example, IT experts can translate
abstract, high-level concepts of process designs into con-
crete, fine-grained elements in executable process languages
such as BPEL [36] and specify the process interfaces in Web
Service Description Language (WSDL) [57]. Additional de-
ployment configurations might also need to be defined in
order to successfully deploy and execute the implemented
processes.

Understanding trace dependencies between process de-
sign and implementation is vital for change impact analysis,
change propagation, documentation, and many other activi-
ties [50]. Unfortunately, artifacts created during the process
development life cycle likely end up being disconnected
from each other. This impairs the traceability of develop-
ment artifacts. We identify the following important factors
that complicate the establishing and maintenance of trace
dependencies:

— There are no explicit links between process design and
implementation languages. This lack of dependency links
is caused by not only syntactic and semantic differences
but also the difference of granularity as these languages
describe a process at various levels of abstraction.

— A substantial complexity is caused by tangled process
concerns. Either the process design or implementation
comprises numerous tangled concerns such as the control
flow, data processing, service invocations, transactions,
fault and event handling, etc. As the number of services
or processes involved in a business process grows, the
complexity of developing and maintaining the business
processes also increases along with the number of invo-
cations, data exchanges, and cross-concern references,
and therefore, multiplies the difficulty of analyzing and
understanding the trace dependencies.

— There is a lack of adequate tool support to create and
maintain trace dependencies between process designs
and implementations.

Design (BPMN)

BPEL

Interaction

WSDL+XML Schema

Service

Flow Datg Message \ Interface
Handling -

) Partner Service

Transaction LinkTypes | Binding

Implementation (WSBPEL)

[Process descriptors)(Service endpoints)
Deployment configuration

Fig. 2 The Travel Booking process development

To illustrate the aforementioned factors we use the well-
known Travel Booking process [18]. Figure 2 shows the pro-
cess development scenario from design to implementation

Design Implementation Deployment
(BPMN) (BPEL) (PDD)
Task 7 BPEL activity 13 Partner Reference 5

Correlation 7 Endpoint Reference 4

Control structure 3 Control flow 12 Service Reference 5

Control edge 11

Data object 3 BPEL variable 10
Association 11 Message 11
XML data type 11
Data handling 30

Partner (pool) 6 PartnerLink 5
Partner link 9 PartnerLinkType 5
PortType 5
Role 5
Binding 4
Service 4

Total element 14
Dependency 20
Cross-concern 20

Total element 85
Dependency 104
Cross-concern 49

Total element: 19
Dependency 31
Cross-concern 20

Table 1 Complexity and dependency statistics of the Travel Booking
process

and deployment. We summarize the statistics of the complex-
ity in terms of the number of elements as well as their depen-
dencies in Table 1. Even though the syntactic and semantic
differences are omitted in Figure 2, the elements represented
in executable process languages (here: BPEL and WSDL)
are more concrete and of much finer granularity than the
design counterparts (here expressed in BPMN). Practically,
abstract, high-level model elements are often described or
implemented by one or many technology-specific elements.
For instance, a Data Object in BPMN is often represented
by the corresponding variable in BPEL and the message type
from WSDL or the XML Schema type. In addition, some
artifacts which are necessary for describing specific features
in process implementation or for successfully deploying the
process have no corresponding elements in the process de-
sign. For instance, there are no corresponding design con-
cepts or elements for the correlation of service invocations in
BPEL, service bindings and service endpoints in WSDL, to
name but a few. Existing process development approaches or
tools merely support the stakeholders in importing, parsing,
validating, and referencing elements between languages of
the same level of abstraction, for instance, between BPEL,
WSDL, and XML Schema, but have no support for cross
references between process designs and implementations.

The complexity caused by numerous tangled process
concerns such as the control flow, service and process inter-
actions, data handling, transactions, and so forth, hinders the
understanding and analyzing of trace dependencies. Table 1
also shows the statistics of the cross-concern dependencies
of process design (20/31), process implementation (49/104),
and deployment configuration (20/20). These numbers mean:

In order to thoroughly understand or analyze a certain con-
cept of either a process design or an implementation, the
developer has to go across numerous dependencies between
various concerns, some of which are even not suitable for the
developer’s expertise and skills.

We present a view-based, model-driven traceability ap-
proach that supports stakeholders in (semi-)automatically
creating and maintaining traceability between process de-
signs and implementations and/or deployment configurations.
In the context of this article, BPMN[43], a standard for busi-
ness process modeling, is used as a representative example of
a process design language, whilst BPEL[36] and WSDL[57],
which are very popular process/service modeling descriptions
used by numerous companies today, are used as represen-
tative examples for languages for implementing executable
processes. Although establishing trace dependencies alone is
not sufficient for tasks like change impact analysis or change
propagation, it crucially lays the foundation for any such
tasks. In this sense, our approach presented in this article
is the initial effort that overcomes the aforementioned chal-
lenges to support (semi-)automatically eliciting as well as
(semi-)formalizing trace dependencies among model arti-
facts in model-driven development (MDD) at different levels
of granularity and abstraction. The (semi-)formalization of
the trace dependencies is one of the features needed for the
interoperability of tools utilizing them.

In our approach, we exploit the notion of views and the
model-driven stack introduced in our previous work [53, 55]
in order to separate process representations (e.g. process de-
signs or implementations) into different (semi-)formalized
view models. In this way, stakeholders can be provided
with tailored perspectives by view integration mechanisms
[53, 55] according to their particular needs, knowledge and
experience. This is a significant step toward the support of
adapting process representations and trace relationships to
particular stakeholder interests. Additionally, view models
are also organized into appropriate levels of abstraction: high-
level, abstract views are suitable for business experts whilst
low-level, technology-specific views are mostly used by IT
experts. Given these levels of abstraction, process designs are
adequately aligned with the abstract view models, and the im-
plementation counterparts are lined up with the technology-
specific view models. This can be done in a (semi-)automatic
manner using the view-based reverse engineering approach
described in [54]. Such mappings produce trace dependencies
between designs and the view models, and between the view
models and the source code that implements the processes.
These dependencies are parts of the traceability meta-model
which is the key component of our traceability approach.
Moreover, the traceability meta-model also supports stake-
holders in capturing intrinsic dependencies between view
models and view elements.

This article is organized as follows. In Section 2 we
briefly introduce the View-based Modeling Framework
(VbMF) [53, 55]. Next, Section 3 presents our view-based,
model-driven traceability approach along with the details
of the traceability meta-model. A CRM Fulfillment process
from an industrial case study is exemplified to illustrate our
traceability approach and the realization of the approach in
Section 4. Then Section 5 discusses related work. Finally,
Section 6 summarizes our main contributions.

2 View-based modeling framework for process-driven
SOAs

In this section, we briefly introduce the View-based Model-
ing Framework (VbMF) [53, 55] that is the foundation of our
traceability approach described in the next section. VbMF
exploits the notion of views to separate the various process
concerns in order to reduce the complexity of process-driven
SOA development and enhance the flexibility and extensibil-
ity of the framework. VbMF offers a number of modeling
artifacts, such as view models and view instances (or views
for short) organized in two levels of abstraction (see Fig-
ure 3). Each view embodies a number of view elements and
their relationships that represent a business process from a
particular perspective. View elements and their relationships
are precisely specified by a view model. In other words, a
view model is a (semi)-formalization of a particular process
concern and the views conforming to that view model are
concrete instances of the process concern.

VbMF initially provides three foundational (semi-)-
formalizations for representing a business process which
are the FlowView, CollaborationView and InformationView
models. The FlowView model describes the orchestration
of process activities, the CollaborationView model specifies
the interactions with other processes or services, and the
InformationView model elicits data representations and
processing within processes as well as messages exchanges.
However, VbMF is not merely bound to these view models
but can be extended to capture other concerns, for instance,
human interaction [17], data access and integration [31],
transactions, and fault and event handling [55]. VbMF
view models are derived from fundamental concepts and
elements of the Core model. Therefore, these concepts of
the Core model are the extension points of the view-based
modeling framework [53, 55]. In our traceability approach,
we exploit this feature of the VbMF Core model to derive
trace dependencies between different views and between
views and view elements.

In addition, VbMF introduces a model-driven stack which
is a realization of the model-driven development (MDD)
paradigm [12, 52]. The model-driven stack separates the
view models into abstract and technology-specific layers.
In this way, business experts, who mostly work with the

T Core
Model
» A A | | A
© Abstract extends extends extends extends
c > Layer
0L | F- --—-—|=-—-------f-—---------p-------—f—-——— |
» <
g 2 | FlowView CollaborationView InformationView |
go| ! Model Model Model !
=8 |
o (W ——_
S® A A
£ 2| Technology- | extends extends extends
o ‘5, | specific Layer
S| TTT T T T T T T T T T e) I
< | | BpelFlowView BpelCollaborationView BpelnformationView | |TransactionView| |
: Model Model Model Model |
|

horizontal dimension
mastering the complexity of tangled process concerns

Fig. 3 Overview of the View-based Modeling Framework ([53, 55, 17])

high level view models, can better capture, manipulate, and
analyze domain- and business-oriented concepts and knowl-
edge as the technical details have been abstracted away. For
specific technologies, such as BPEL and WSDL, VbMF pro-
vides extension view models which add details to the abstract
view models that are required to depict the specifics of these
technologies [55, 53]. These extension views belong to the
technology-specific layer shown in Figure 3.

Reverse engineering
tool-chain

Forward engineering
tool-chain

1 > |
I generates : |
I View Model View/Instance |
} < Editor |
| creates, I
I extends }
| A . ‘
} based on uses| integrates }
,,,,,,,,,,,,,,,,,,,,,, |
[I }
I
} View produces|| View |
} Interpreter » } } Instance }
I I I
I
} based on interprets } } A I
A 4 v I uses }
I I
I I
} Process Descriptions } | Code I
i (BPEL, WSDL, XML | Generator }
} Schema, etc.) | }
I I
| defined in | generates }
} v I v }
I I
I Process Description } } Schematic }
} — Language Syntax & I Executable I
[Semantics i Code }
} I I
I I I
I I I
I I }
I
| i |

Fig. 4 VbMF forward and reverse engineering tool-chains

The view models and view instances are manipulated via
a number of components provided in VbMF (see Figure 4).
The View/Instance Editors are derived from the VbMF view
models. Using these editors, a new view model can be devel-
oped from scratch by deriving from the Core model, or an
existing view model can be extended with some additional
features to form a new view model. Moreover, these edi-
tors also support stakeholders in creating new view instances
or editing existing instances. Last but not least, the editors
enables stakeholders to integrate relevant view instances in
order to produce a richer view or a more thorough view of a
certain business process [53, 55]. Code Generators use the
technology-specific view instances to generate executable
code. Before generating outputs, the code generators validate
the conformity of the input views against the correspond-
ing view models. View Interpreters are leveraged to extract
views from legacy process descriptions. These components
of VbMF shape the forward engineering and reverse engi-
neering tool-chains for process-driven SOA development.

In the VbMF forward engineering tool-chain abstract
views are designed first. Then, by using View/Instance Ed-
itors, these instances are manipulated or refined down to
their lower level counterparts, the technology-specific view
instances. The Code Generators uses the technology-specific
view instances to produce schematic process code and/or
necessary configuration code. In our traceability approach,
View/Instance Editors and Code Generators need to be ex-
tended such that they can automatically establish trace de-
pendencies between view models, between view models and
view elements, and between different view elements. The
generated schematic code might need some manually written
code (so-called individual code) to fulfill a certain business
logic [52]. Our approach supports developers in establish-

ing and maintaining those relationships via the traceability
meta-model.

In the reverse engineering tool-chain, the View Inter-
preters take as input legacy process descriptions and extract
more appropriate representations, i.e. process views, out of
the legacy code. These process views can be used in the for-
ward engineering tool-chain for re-generating certain parts
of the process code. During the reverse engineering process,
high-level, abstract views and low-level, technology-specific
views can be recovered from the existing code. This way,
the reverse engineering approach helps stakeholders to get
involved in process re-development and maintenance at dif-
ferent abstraction levels [54]. The View Interpreters play
a central role in the reverse engineering tool-chain. In the
scope of this article we extend the View Interpreters from
[54] for transforming process implementations in terms of
BPEL and WSDL code, or process deployment descriptors
in XML, onto VbMF technology-specific views. Other View
Interpreters are developed to map process designs in terms
of BPMN diagrams onto VbMF abstract views. Relevant
trace dependencies generated by these mappings are tracked
and recorded in the traceability meta-model, the (semi-)-
formalized representation of trace dependencies in our ap-
proach.

To summarize, the view-based modeling approach real-
ized in VbMF is the foundation for dealing with the com-
plexity of various tangled concerns in business processes,
i.e., the second challenge we mentioned above in Section
1. Moreover, the model-driven stack in VbMF is the basis
to organize view models into adequate levels of abstraction,
and therefore, to deal with the differences of granularity at
these abstraction levels. In the next section, we present our
key contributions, the view-based, model-driven traceabil-
ity approach, along with the traceability meta-model and
the supporting mechanisms and tools for establishing and
maintaining the trace dependencies.

The concepts and mechanisms mentioned above have
been realized as a view-based modeling framework [53, 54,
55]. In this modeling framework, view models are based on
Eclipse Ecore, a MOF-compliant meta-model [9]. The code
generation templates have been developed using openArchi-
tectureWare’s XPand and Xtend languages [44]. The VbMF
tooling also provides a number of tree-based view editors
for manipulating view instances. These tree-based view edi-
tors are extended for producing corresponding relationships
between views and view elements and used for illustration
purposes in this article.

3 View-based, model-driven traceability framework

3.1 Fundamentals of the view-based, model-driven
traceability framework

In the previous section we introduce the view-based modeling
framework (VbMF) which supports stakeholders in modeling
and developing processes using various perspectives which
are tailored for their particular needs, knowledge, and skills at
different levels of abstraction. We propose in this section our
view-based, model-driven traceability approach (VbTrace)
in terms of a traceability framework which is an additional
dimension to the model-driven stack of VbMF (see Figure 5).

VbTrace supports stakeholders in establishing and main-
taining trace dependencies between the process designs and
implementations (i.e., process code artifacts) via VbMF. The
trace dependencies between process design and abstract, high-
level views and those between low-level, technology-specific
views and code artifacts can be automatically derived during
the mappings of process designs and implementations into
VbMF views using an extended version of the view-based
reverse engineering approach presented in [54]. These trace
dependencies are represented by the solid arrows in Figure 5.
The relationships between a view and its elements are in-
trinsic whilst the relationships between different views are
established by using the name-based matching mechanism
for integrating views [53, 55]. These relationships are indi-
cated in Figure 5 by dashed lines because they are merely
derived from the view models and mechanisms provided by
VbMF [53, 55]. Therefore, in this article we will concen-
trate more on the former kind of trace dependencies, i.e.,
the trace dependencies between process designs and imple-
mentations and view models. Nonetheless, the case study in
Section 4 will illustrate a complete consolidation of the afore-
mentioned kinds of trace dependencies as a whole. In the
subsequent sections, we present the view-based traceability
meta-model that is a (semi-)formalization of trace dependen-
cies between process development artifacts. Based on the
traceability meta-model, we extend and use the components
and mechanisms provided by VbMF to shape a view-based,
model-driven traceability framework that supports stakehold-
ers in (semi-)automatically establishing and maintaining the
corresponding trace dependencies.

3.2 View-based traceability meta-model

At the heart of VbTrace, we devise a traceability meta-model
that provides concepts for precisely eliciting trace dependen-
cies between process development artifacts. This traceability
meta-model is designed to be rich enough for representing
trace relations from process design to implementation and be
extensible for further customizations and specializations. Fig-
ure 6(a) shows the conceptual overview of the meta-model

Process DA
designs
VbMF | § x
>
VA1 abstract [~ T T Vzabstract = g
~ == So
T SE
Lo - I =
VﬂOW ;< = =—_| | g 18
PN TS - >
Se | ~—— T =l T =
~ | e e Q=
- S g
V1 technology- V2technology- V3techno|ogy- ° 8
specific specific specific 5 ©
/\ S | o
VA ~N
CA1 CA2 CAz CA4 CAs
Process implementation and deployment
Legend

DA: Design artifact ~ V: View models
Intrinsic trace dependencies

CA:Code artifact

Generated trace dependencies

Fig. 5 View-based, model-driven traceability approach as an additional dimension of VbMF

that defines a TraceabilityModel containing a number of
TraceLinks. There are two kinds of TraceLinks representing
the dependencies at different levels of granularity: Artifact-
Traces describing the relationships between artifacts such as
BPMN diagrams, view models, BPEL and WSDL files, and
so on; ElementTraces describing the relationships between
elements of the same or different artifacts such as BPMN
notations, view elements, BPEL activities, WSDL messages,
XML Schema elements, and so forth. The source and target
of an ArtifactTrace are ArtifactReferences each of which con-
sisting of either the location path, the namespace URI, or the
UUID! of the corresponding artifact. An artifact may contain
a number of elements described by the ElementReference
meta-class. Every ElementReference holds either an XPath
expression [56] or a UUID which is a universal reference of
the underlying actual element.

Each ElementTrace might adhere to some TraceRa-
tionales that comprehend the existence, semantics, causal
relations, or additional functionality of the link. The Trac-
eRationale is open for extension and must be specialized
later depending on specific usage purposes, for instance, for
reasoning on trace dependencies concerning the traceability
types: dependency, require, transform, extend, general-
ize/refine, implement, generate, use, etc., [40, 50] or setting
up dependency priorities or development roles associated
with the trace link. Figure 6(b) depicts the extensibility of
TraceRationales by a number of concrete realizations such
as Role standing for stakeholders roles and RelationType

! UUID: Universally Unique Identifier

which is further specialized by several types of commonly
used trace dependencies [40, 50].

The traceability meta-model explained so far provides
abstract and generic concepts shaping the basis for a typical
traceability approach. In the context of our traceability ap-
proach, these abstract concepts are refined to represent trace
dependencies of the various view models at different levels of
granularity (see Figure 6(b)). We devise four concrete types
of TraceLinks: DesignToViews represent traceability between
process designs and VbMEF, ViewToViews describe internal re-
lationships of VOMEF, i.e., relationships between view models
and view elements, ViewToCodes elicit the traceability from
VDbMEF to process implementations, and finally, CodeToCodes
describe the relationships between the generated schematic
code and the associated individual code.

Languages used for designing processes typically com-
prise highly abstract, notational elements that business ex-
perts are familiar with. A process design artifact presented in
the traceability meta-model by the Design meta-class. Each
Design includes several DesignElements standing for process
design notational elements. The mapping from process de-
signs onto the VbMF abstract layer produces trace links of
the DesignToView type. Moreover, each DesignToView main-
tains one or many DesignViewPairs which are responsible
for tracing the mapping relationships at the level of elements,
i.e., mapping from design elements to view model elements.

One of the important modeling artifacts provided by
VbMF is the ViewModel that embodies a number of ViewEle-
ments. Because there is probably a dependency between two

a) Conceptual traceability meta-model

Traceability
Model

link
/\

ElementTrace
annotated with

*

ArtifactTrace <l

elementTrace

\4 source ?1
* source [1.* 1.* | target

-

1 ? targe

ArtifactReference

TraceRationale

ElementReference

location: String

. K xpath: String
description: String uuid: String

nsURI: String
uuid: String

A A

A

1

Role

RelationType

p
-

Formalize Use

Extend Generate

Satisfy Depend Conflict

FragmentPosition

path: String
lineStart: Integer
lineEnd: Integer

position

DesignElement om
element
ViewElement
element
*

DesignViewPair DesignToView

ViewToView

ViewToCode
CodeToCode

ViewElementPair

ViewCodePair
CodeFragmentPair

[
i

<> ViewModel

contains

SchematicCode

b) View-based traceability meta-model

Fig. 6 VbTrace meta-models: (a) the conceptual traceability meta-model, and (b) the view-based, model-driven traceability meta-model

view models, we use ViewElementPairs to capture the rela-
tionships between view elements of those view models in a
fine-grained manner. In particular, a ViewToView inherits the
two associations from its parent ArtifactTrace and holds a
number of ViewElementPairs standing for the finer granular-
ity of the traceability among view model elements.

In VOME, the technology-specific view models are rarely
developed from scratch but might be gradually refined from
existing abstract view models (see [53, 55]). As such, extract-
ing of trace links is straightforward because VbMF provides
the necessary information concerning model refinements.
The technology-specific view models can also be extracted
from process implementations using the reverse engineer-
ing approach from [54, 55]. In contrast, process implementa-
tions (i.e., code artifacts) can be automatically produced from
technology-specific view models by VbMF code generators.
By extending the reverse engineering interpreters and the
code generators, we obtain the relevant trace links in terms
of ViewToCodes, and even finer grained relationships at the
level of code fragments by using ViewCodePairs that keep
references from ViewElements to generated CodeFragments.

A CodeArtifact is composed of one or many CodeFragments
each of which might contain other code fragments. For in-
stance, a WSDL [57] file is a CodeArtifact that has a number
of fragments such as XML schema definition, message types,
service interfaces, service bindings, and service implementa-
tions.

Code artifacts generated from the model-driven stack of
VbMF are mostly schematic recurring code that needs to be
augmented by manually written code, for instance, using the
patterns suggested in [52]. Therefore, the traceability meta-
model provides another concept for code association, the
CodeToCode meta-class. Each CodeToCode should hold a
reference between a certain SchematicCode and one of its
required manually written Code instances.

Last but not least, the abstract TraceRationale concept
is realized and extended by, but not limited to, a number of
popular trace relationships such as Extend, Generate, Imple-
ment and Use that can be employed to augment the semantics
of the trace dependencies explained above. Additional ratio-
nales or semantics can be derived in the same manner for any
further requirements.

-- artifact-to-artifact traces
context DesignToView inv:
source.isKindOf (Design) and target.isKindOf (ViewModel)
context ViewToView
inv: source.isKindOf (ViewModel) and target.isKindOf (
ViewModel)
context ViewToCode
inv: source.isKindOf (ViewModel) and target.isKindOf (
Code)
context CodeToCode
inv: source.isKindOf (SchematicCode) and target.
isKindOf (Code)
-- element-to-element traces
context DesignViewPair
-- each source must be an element of container’s
sources
inv: source->forAll(container.source.element->includes
(source))
-- each target must be an element of container’s
targets
inv: target->forAll(container.target.element->includes
(target))
context ViewElementPair
-- similar to those for DesignlViewPair
inv: source->forAll(container.source.element->includes
(source))
inv: target->forAll(container.target.element->includes
(target))
context ViewCodePair
-- each source must be an element of container’s
sources
inv: source->forAll(container.source.element->includes
(source))
-- each fragment must belong to the set of container’s
fragments
inv: fragment->forAll(container.fragment->includes(
fragment) or container.fragment->collect(
subFragment) ->includes (fragment))
context CodeFragmentPair
-- each fragment must belong to the set of container’s
fragments
inv: fragment->forAll(container.fragment->includes(
fragment) or container.fragment->collect(
subFragment) ->includes (fragment))
inv: fragment->forAll(container.fragment->includes(
fragment) or container.fragment->collect(
subFragment) ->includes (fragment))

Listing 1 OCL constraints for the traceability meta-model

Note that the relationships between Design and De-
signElement, between View and ViewElement, and between
Code and CodeFragment in the traceability meta-model
are merely presented for clarification purpose because
those relationships can be straightforwardly derived from
process design artifacts, VbMF modeling artifacts, and code
artifacts, respectively. Toward more strictly modeling of
aforementioned traceability links, Listing 1 presents OCL
constraints [41] for the meta-classes of the traceability
meta-model that are required for specifying more precise
semantics as well as for the verification of traceability model
instances built upon the meta-model.

In summary, the traceability meta-model provides es-
sential concepts for eliciting trace dependencies at different
abstraction levels ranging from process design artifacts to ab-
straction levels of VbMF view models down to code artifacts
of process implementations. Each trace link between two
levels of abstraction can also support elicitation of the dif-
ferences of granularity, such as pairing design elements and
view elements, or view elements and code fragments. Fur-
thermore, the traceability meta-model is open for extension
to finer granularity by deriving new subclasses of pairings
such as DesignViewPair, ViewElementPair, and ViewCode-
Fair, or for adding new higher or lower abstraction levels by
deriving new sub-types of the TraceLink, ArtifactTrace, or
ElementTrace meta-classes. In the subsequent sections, we
present the view-based traceability architecture along with
the components and mechanisms that supports stakehold-
ers in (semi-)automatically establishing and maintaining the
trace dependencies based on the concepts of the aforemen-
tioned meta-model.

3.3 View-based, model-driven traceability framework
architecture

The view-based, model-driven traceability framework archi-
tecture shown in Figure 7 extends the components of VbMF
(see Figure 4) in order to acquire traceability relationships.
For instance, the extended View/Instance Editors produces
trace links between view models, between view models and
elements, as well as between elements of different view mod-
els. These relationships, as mentioned above, are intrinsic
parts of VbMF views, and therefore, are straightforwardly
extracted. In addition, the extended View Interpreters can be
utilized for collecting trace dependencies between process
designs and view models, and between view models extracted
from process implementations and the corresponding imple-
mentations. Last but not least, the extended Code Generator
can establish trace links from view models used for gener-
ating executable process code to the resulting source code
artifacts. These extended components retrieve the aforemen-
tioned trace dependencies and deliver them to the VbTrace
as instances of the traceability meta-model. The traceability
meta-model and its instances are models themselves, and
therefore, can be persisted in the model repository of VbMF
for later use and maintenance. The model repository is one
of our ongoing works, but beyond the scope of this article.

3.4 View-based modeling and traceability tool-chain

The traceability meta-model and components mentioned
above are essential parts forming the view-based model-
ing and traceability tool-chain shown in Figure 8. In this
tool-chain, process design are mapped into VbMF abstract

templates
View/Instance !
Editors

(Model | \I
. Repositol S
Abstract "‘ __________ P Yo — —— — — — _ N) | |
RSy | View models, V';V;t;%iesls’ !
|nsta|nces Technology instances - Code
| specific VbTrace | generation
| view instances model
I
I

Extended
View-based
interpreters

Extended Code
Generator

| — — -Schematic Recurring Code”
Process (
designs S G

2 Legacy *

process

I descriptions™ — — —

I Code | JFreeEEs Process deployment

I (manually implementations e iene

\ Process design written code) (BPEL, WSDL)

supporting tools
(BPMN Designers)

Process implementations and deployments

Legend: — — —p» VbMF specific flows =~ ——» VbTrace flows

Fig. 7 View-based, model-driven traceability framework architecture

Process design Abstract views

Transformation templates

Deployment configuration

Code
Generator

Technology-specific views

Process implementation <

Fig. 8 View-based modeling and traceability tool-chain

10

views whilst process implementations are aligned with VbMF
technology-specific views by extending the view-based re-
verse engineering approach presented in [54, 55]. During
these mappings, the extended view-based interpreters are able
to establish the relevant trace dependencies DesignToViews
and ViewToCodes, respectively, as well as the fine-grain rela-
tionships that are DesignViewPairs and ViewCodePFairs.

Nonetheless, the ViewToCodes and ViewCodePairs can
also be derived in the course of the generation of process
implementations (e.g., BPEL and WSDL code) and deploy-
ment configurations (e.g., process descriptors for deploying
and executing processes in the ActiveBPEL, an open source
BPEL engine [1]), from VbMF technology-specific views.
The transformation templates specify the rules for genera-
tion code from VbMF models. We extend these templates to
generate the relevant trace dependencies between the view
models, view elements, and the generated code artifacts and
code fragments.

In the following sections, we elaborate on extending the
view-based interpreters and code generation templates using
some scenarios in which trace dependencies are established
by using our extended code generators and extended view-
based interpreters.

3.4.1 Establishing trace dependencies using extended
view-based interpreters

protected AtomicTask bp_reply(Element element, 0XPath gxp) throws Exception {
¥ ev element from the co

AtomicTask task = FlowFactory.eINSTANCE.createAtomicTask();
task.setMame{XMLULi]l.getNameValue(element));

gatablish the dependency */

/ co
¥iewElement source = TraceUtil. createviewElement(task); |

| rresponding trace
| CodeFragment target = TraceUtil.createCodeFragment(element);
|

ViewCodePair pair = TraceUtil.createViewCodePair(source, target);
viewZecode, getElementTrace(). add{pair);

return task;

a) Extended FlowView interpreter for extracting FlowView from BPEL code
and establishing corresponding trace links

= «TraceabiityModels
3-[" «DesignToViews
+-[E) «iewToCode»
=i eviewToCodes
«ViewModeks CRMFlowVievs [view crm,Flow]
|8 «Codex [impljcrm.bpel]
o NiewCodePars T T T T T T T |
i «ViewElement» SendCenfirmation [UUID={f2ff0711-3182-333f-b914-72686 1 7cfefc}] |
«# | «CodeFragment» [{descendant-or-self: ibpireply[1]] |

b) Trace dependencies produced from the extended FlowView
interpreter

Fig. 9 Illustration of extracting VbMF views from BPEL code and
establishing the relevant trace dependencies

The view-based reverse engineering approach [54] can
be utilized for extracting VbMF views from existing pro-
cess implementations in BPEL and WSDL. We extend this
approach such that the relevant trace dependencies are also
established during the course of the reverse engineering pro-

cess. Figure 11(a) presents an excerpt of the FlowView in-
terpreter in Java code that can extract AtomaticTasks of the
FlowView from BPEL code. In addition, we instrument ad-
ditional Java code for creating trace dependencies between
the BPEL code fragment and the resulting AfomicTasks. The
generated trace dependencies are parts of the Traceability
model shown in Figure 9(b). This approach can also be ap-
plied for the other view-based interpreters such as the Col-
laborationView, InformationView, BpelCollaborationView,
and BpellnformationView interpreters [54] in order to auto-
matically establish the relevant trace dependencies between
BPEL and WSDL descriptions and VbMF views. For better
supporting stakeholders in reasoning and analyzing the result-
ing trace dependencies, for instance, change impact analysis,
Generate and Formalize are automatically annotated to each
trace dependency.

Create BusinessObject from BPMM data objects
«DEFINE MapData{List viewList,
trace::DesignToYiew ds2iv)

T LET createBusinessObject(this) AS object»

<LET createDesignElement{this) AS sources |

«LET createViewElement{object) AS target» |

«LET createDesignViewPair(source, target) AS pairs m
«ds2iv.elementTrace.add(pair)>
«viewList.getInfornationView().getBusinessObject().add{object)s|

«ENDDEF INE»

a) Extended template rules for mapping a DataObject (BPMN) to a
BusinessObject (InformationView) and establishing corresponding
trace links

= 8] «TraceabilyModel»
=" «DesignToViews
_@ «Desigree BpranCRM [design/ TravelBooking, bpmn]

| = e* «DesigniiewPair> |
o ..[;"] «DesigrElement» CustomerCrder [UUID={_grOXoFtREJEbFLGKYDCIINH] |<—
L —[3) <viewElanents verfyinput (UID={bf4f5015.Srhe-3265:209b-82501908291 8})

b) Trace dependencies produced from the mapping of BPMN elements
onto VbMF views

Fig. 10 Illustration of mapping BPMN designs to VbMF abstract views
and establishing relevant trace dependencies

Although the view-based reverse engineering approach
presented in [54] is exemplified using process implementa-
tion languages such as BPEL and WSDL, it is extensible
and applicable for mapping the concepts of a process design
into VbMF abstract views. Let us recall that VbMF view
models at the abstract layer are intentionally designed for
business experts. As a result, the concepts embodied in these
view models have a close relationship to the elements of lan-
guages used for designing processes, such as BPMN, UML
Activity Diagram, EPCs, and so on. A minor difference of
these high-level view interpreters to the view interpreters
mentioned above is that we realize the view-based reverse en-
gineering approach using openArchitectureWare Xpand and
Xtend languages [44] due to their sufficient transformation

11

mechanisms. Figure 10(a) shows an excerpt of the template-
based transformation rules written in XPand language that
maps a BPMN Data Object into a Business Object element
of the InformationView. In addition, the transformation rules
also generate relevant trace dependencies between the design
and view elements. We illustrate in Figure 10(b) a part of
the traceability model comprising two DesignToView trace
links between the design and the FlowView of the CRM Ful-
fillment process from the case study presented in Section 4.
These trace dependencies are augmented with the Formalize
of type TraceRationale.

3.4.2 Establishing trace dependencies using extended code
generators

Generate <{receiver
«DEFINE ATOMICTASK(bpelcollaboration::Receive task,
List wiewList,
String base)
FOR trace::TraceabilityModels
<bp:ireceive name="<«task.names»"
«IF (task.variable != null)»
variable="«task.variable.names"
<ENDIF>
«IF (task.createlnstance != null)»
createlnstance=«IF task.createlnstances"yes"+«ELSE»"no"«ENDIF»
«ENDIF=»
«IF (task.interface != null)»
portType="«getPrefix(task)=>:«task. interface.names"
«ENDIF=»
partnerLink="«task, . partner. names”
operation="<task.operation.names">
</bp:receiver
I«LET (base + "/bp:receive[” + index + "]") AS paths |
| LET createVievElenent (task . name) AS elementReferences |
«LET createCodeFragment{path) A5 codeReference»
|«LET createViewCodePair(eRef, cRef) AS ViewCodePairs
cevzusdl . elementTrace, add(pair)->""s |
LfEHDLET»(ENDLET»'ENDLET’«EHDLET’

<ENDDEF INE=>

a) Extended template rules for generating BPEL <receive> from
VbMF technology-specific views and establishing corresponding
trace links

= r‘[ﬂ «viewToCodes
i [E) «viewModels CRMBpelCollsborationiiew [view|crm, bpelcollabor ation]
P E «Cades [implicrm.bpel]
| Eof® eMiewCodePsrs _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ \
| @ «¥iewElements ReceiveCustomerOrder [UUID={c3b61567-a722-3529-8934-dd17F41ec223}]
@ «MiewElements ReceiveCustomerOrder [UUID={e620etas-7ebd-4ece-90be-af 1Fa9c9b7al}]
L] «Codefraqments (boeceivelt). _ _ _ . _ _ _ _ _ _ _ _ p

b) Trace dependencies produced from code generation

Fig. 11 Generating BPEL code from VbMF technology-specific views
and establishing relevant trace dependencies

Code generation (or so-called model-to-code transforma-
tion) is an important step of any realization of the MDD
paradigm to gain productivity and ensure better software
quality [52]. The results of code generation process are often
the schematic, recurring code that shapes the skeleton of the
software or systems. Some manually written code (aka indi-
vidual code) might augment the generated schematic code
in order to realize the individual parts of the business logic
[52]. VbDMF provides a template-based code generation ap-
proach that is able to generate schematic implementations of

processes in terms of BPEL and WSDL descriptions. This
approach has been realized in VbMF using the openArchi-
tectureWare Xpand and Xtend languages [44]. We extend
the template-based code generation rules in VbMF such that
the trace dependencies between the involved views, view
elements, and generated code fragments are automatically
established. Figure 11(a) presents an excerpt of the VbMF
code generation rules for generating BPEL <invoke> ele-
ments from VbMF technology-specific views along with our
instrumented rules for generating trace dependencies. The
resulting trace dependencies are illustrated in Figure 11(b)
containing a ViewToCode trace link between the VbMF Bpel-
CollaborationView and BPEL <invoke> fragment extracted
from the case study (see Section 4). Although these trace
dependencies are generated in the opposite direction to those
extracted from the reverse engineering of process implemen-
tations, they share similar semantics and rationales of the
trace relations that are Generate and Formalize.

4 Tool support and case study

In this section, we illustrate the realization of the aforemen-
tioned concepts in VbTrace via the CRM Fulfillment process
adapted from an industrial case study concerning customer
care, billing and provisioning systems of an Austrian Inter-
net Service Provider (cf. [11] for more details). The process
is designed using BPMN and implemented using process-
driven SOA technology: BPEL and WSDL. BPMN, BPEL,
and WSDL are used for exemplification because these are
likely the most popular process and service description lan-
guages, which are widely adopted in research and industry
today. Nevertheless, our approach is not limited to those but
is generally applicable for other process-driven SOA tech-
nologies. To illustrate the process deployment configurations,
we exemplify a specific BPEL engine, namely, ActiveBPEL,
and develop the necessary configurations for the deployment,
enactment and monitoring of the CRM Fulfillment process.

In the subsequent sections, we first quickly introduce the
tool support for our traceability approach. Next, we present in
detail the case study and important steps of establishing and
maintaining appropriate traceability meta-data between pro-
cess designs and VbMF, among VbMF views, and between
VbMF views and process implementations. At the end of
this section, we introduce a sample of using traceability path
derived from the traceability model for better understand-
ing and analyzing the relationships of process development
artifacts.

12

4.1 View-based, model-driven integrated development
environment

A proof-of-concept of view-based, model-driven approach
has been implemented in [53, 54, 55] using the Eclipse
Modeling Framework (EMF) [9] and openArchitectureWare
MDD Framework [44]. In this article we have realized the
concepts of our view-based, model-driven traceability ap-
proach presented based on the aforementioned VbMF imple-
mentation and integrated them with VbMF in terms of an
view-based, model-driven integrated development environ-
ment. In order to effectively reuse and extend VbMF concepts
and mechanisms, the traceability framework is derived from
the EMF Ecore meta-model. The biggest advantage of using
Eclipse Modeling Framework is that we gain better inter-
operability with the Eclipse BPMN Modeler [19] which is
developed based on EMF Ecore.

For the sake of demonstration, we use the BPMN dia-
grams designed in the Eclipse BPMN Modeler to represent
the process design, and extend the tree-based editor generated
by EMF for presenting and manipulating Traceability models
from now on. The components of our traceability framework,
such as Extended Code Generators and Extended View-based
Interpreters (see Figure 7), are derived from corresponding
VbMF components (see Figure 4) using the mechanisms
described in Section 3.4.

4.2 CRM Fulfillment process

The CRM Fulfillment process is a part of the customer re-
lationship management (CRM), billing, and provisioning
systems of an Austrian Internet Service Provider [11]. The
main business functionality of the CRM Fulfillment process
is to handle a customer order of the company’s bundle of
Internet and telecom services including a network subscriber
line (e.g., xDSL), email addresses, Web-based administration
(VMX), directory number, fax number, and SIP URL for
VoIP communications. The process uses a wide variety of in-
house services and services provided by various partners. The
company has developed and deployed in-house services for
customer relationship information management, assigning
fax numbers, SIP URLs, and mail boxes, initializing VMX,
and sending postal invoices to customers.

The process uses a credit bureau service provided by a
third party business partner of the financial institution that
acquires, stores, and protects credit information of individ-
ual and companies. The credit bureau service can verify a
customer’s payment account for accuracy and validity and
charge the payment according to the customer’s purchase
order. Customer premise equipment (CPE) partners supply
services for ordering and shipping home modems or routers.
Telecom partners offer services for checking, assigning, and
migrating customer directory numbers (DN). These services

expose their functionalities in terms of WSDL interfaces that
can be orchestrated using BPEL processes.

Figure 12 shows the design of the CRM Fulfillment pro-
cess in terms of a BPMN diagram in Eclipse BPMN Modeler.
The process is initiated as a customer places a purchase or-
der. Then, the customer relationship management service is
invoked to update the customer’s profile. Next, the process
invokes a bank service to validate the customer’s account
validity. In case a negative confirmation is issued from the
bank service, e.g., because the account number is invalid or
the owner and account do not match, the order will be can-
celed. Otherwise, the positive confirmation will trigger the
second branch in which the process continues with a number
of concurrent activities to fulfill customer order’s requests
and deliver networking equipments, e.g., home modems or
routers, to the customer’s shipping address. For the sake
of simplicity, we assume that those activities finish without
errors. After all of these activities finished, the customer’s
payment account is charged and a postal invoice will be sent
to customer’s billing address.

4.3 CRM Fulfillment process development and traceability

Figure 12 depicts one of development perspective of the CRM
Fulfillment process using our view-based, model-driven inte-
grated environment, which is an Eclipse-based workbench.
The stakeholders can create and manipulate process views in
the various VbMF view editors or extract views from process
designs and implementations using the built-in view-based
reverse engineering. Given these process views, stakehold-
ers can generate process implementations such as process
code in BPEL, service interfaces of processes in WSDL and
process deployment configurations by using the predefined
template-based code generation rules. Moreover, the code
generation templates can also be customized according to
further needs by using the the XPand language editor [44]. In
addition, the trace dependencies established during the course
of process development are presented to the stakeholders in
the Traceability view.

The subsequent sections present the various scenarios
to demonstrate how relevant trace dependencies between
process designs and VbMF views, between VbMF views,
and between VbMF views and process implementations are
established during the course of modeling and developing
the CRM Fulfillment process.

4.3.1 Scenario 1: Traceability between process design and
VbMF views

The CRM Fulfillment process design is a BPMN diagram
that comprises a number of notational elements such as a
pool, tasks, data objects, and sequential flow connectors (see
Figure 12). For the sake of readability and demonstration, we

& Java - crm-tra ‘m.bpmn_diagram - Eclipse Platform = ﬁl
File Edt Disgram Navigate Search Project Run ‘Window Help r‘\ h
Eer 0 W- \1} & amflow &2 \gﬂ crm.bpelcollsboratio 3 01
B« T 24 [Resource Set [Resource Set
L:J crm-trace i CRMFlowiiew ;] = [E] CRMBpelCollaborationView =
== design E «Sequences) @] «Receiver ReceiveCustom
[crm.bpmn b Q—Q @ ReceiveCustomerOrder 4| «reply> CancelCustomerC
i e} crm,bpmn_diac @ DataMapl 4| ereply» SendConfirmation
B-E impl @ UpdateCustomerProfile -4 «lnvokes UpdateCustomes
P BankService.w @ DataMapz & <nvokes VerifyBankAccoL
P CpeService.ws| @ verifyBankaccount -4 elnvokes CheckDN
\X| crm.pdd =] 2 «Exclusives <§ «Invoke» AssignDN
; -2 crmz0.bpel EI/_\ «Branchs ; {9 «lnvokes MigrateDN -
2P cmz0.wsdl B % «Sequences & anvokes AssignsiP
2P FaxService.ws ! @ DataMap3 «Invoke» CreateMailbox
- InvoiceService || | £ - @ CancelCustomerOi -4 elnvoke» TnitializeVh
2P MailService.ws i =€, eDefaults & dnvokes AssignFax
- AP ProfileService.: B E «Sequences - <nvokes ShipCPE
2P sipService.wsc & E «Paralleb & <nvokes ChargeCustome:
2P TelecomService @ DataMaplZz «lnvoke» Sendinvoice
2D VmxService ws ® ChargeCustomera #-%2 <Services CRM
B (= template @ DataMapl3 -9 <Services BankService
B trace ~ @ Sendinvoice #-% <Services Fax
(2 crm.trace @ DataMapi¢ -9 «Services Mail
ID trace.ecore - @ SendConfirmation = | E|--ﬂr_;e «Service» Sip 'ﬂ
B trace.genmade = L | llay])
B& ui <] [JO] Selection | Parent | List | Tree | Table | Selection | Parent | List | Tree | Table [
B view =
[B) erm-wsbpel.ca| L crmitrace]](H crm20.bpel £3 Y ¢ \
- crm bpelcollabe L[Resource Set <bpel ivariable name="profi laDu‘tput”ugefgpa:"nSQ:LlpdatecustomerProf ileRea
Q crm bpelinform —ﬂ </bpel:varisbles>
=) «TraceabiltyModels -
@ .
% crm, collaborati 52 «DesignToviews (hp;l ::;EQUBHE:E) X ink li
] crm.core 2 . . " <bpel:receive name="ReceiveCustomerOrder" partnerLink="Client" portType="tns
& am o Léljﬁ'mﬁfmmrfdﬁw;;d?éﬂ"?-bamlﬂl) <hpeliassign validates"no" nane<"DataMapl’s
o iewhodels nformation wiewferm.information] <bpel icopy
! aminformatiol e «DesigniiewiPair <bpel:from>$orderIinput</bpel:from
1 <DesignElement> CustomerOrder [UUID={_orOXoFtREASOFLGKIBCIICH] . IE‘JE?‘_;;E"fPrUf"EI”PU“’ bpel:to>
«iewElements orderInput [UUID= f.3075-aF16-5e 15] /bpel ass i
E-o* «Design¥iewPair» <bpel: irw?ke namgz”UpdatecuatumerProfile" partnerLink="ProfilePartner" opers
[&) epesignElements CustomerOrder [UUID={_grOXoFtREA6bFLGKYBCIIGY] (be:;;?:::;gz>val|dav_e= no” name="DataMapz">
: : 4WiewElements verifylnput [UUID={bf4f5915-Sche-3265-299b-625b1905291a}] <bpel:from $orderInput</bpel: froms
=" «DesignToviews <bpel:toy$verifylnput</bpel:to>
&) <Designe BpmnCRM [design/ TravelBooking.bpmn] </bpel:copy>
£ i
N : </bpel:assign>
“Viewtodeb» CRMFowView [view/am.flow] l <bpel: invoke name="verifyBankaccount” partnerLink="#ccountvalidator® operati
e «DesignViewPair» <bpel:if>
B eViewToCodes <bpel:condition>not($verifylnput.response/Status)</bpel:condition>
. - . . N <bpel i sequence> .
E x::::o[d;:ng::::;uleburdmwsw [viewjerm.bpelcollaboration] P 3:"19" validate="no" name="DataMap3">
.| by !
1 o ot | B bttt <t e |L|
il | D < | 3
ki | || selection |Parent |List | Tree | Table | Tree with Columns | || Design | Source
| o° | leBleR D

Fig. 12 The development of CRM Fulfillment process in view-based, model-driven integrated environment: (1) The process design in BPMN

Modeler (2) VBMF views, (3) Traceability view, and (4) Generated process implementation

Cancel
CustomerOrder

Receive
Customer Order

Reply
Order Confirmation

a) CRM Fulfillment process design

>

B B «DesignToViews

U <Design» BpmnCRM [design/crm.bpmn]
[E] «viewiodels CRIMFlonview [view/crm. flow]

e «DesigniiewPair>

i [8) «iewElement» Dataiapz [ULID={10s3bd30-28a4-3ac0-a76b-4dealibb2dsc}] |

igniiiewPairs . _ _
«DesignElements ReceiveCustomerOrder [UUID={__oBUEKHSEd2dQ-ZWaqMtGla}] :‘

«DesignElemant> UpdateCustomerProfile [UUID={_oZxAwkHSEd2dQ-ZWaMtGigH |
3) sthiewElements Datahlap! [UID={10e3bd30-2854- 3ac0-a76b-4deadfbb2dsc)]

verifyBankAceount [UUID-

ignviewPair»

B o «DesigniiewPairs
Bee _-Igesgmwab

1 [UUID={_Ix

T <DesianElements ReplyOrderConfirmation [UUID={_LFIlYWHVEQ2d0- ZWaMiGia] 3
S) etiewElements Datahapi4 [LUID={66397536-10e5-3d5f-531 3-5bb1c6 13004} e

Selection | Parent | List | Tree | Table | Tree with Colurns |

| Resource Set
=1 B E] crRMFlowview -
B3 <Sequences_ _ _
5 CatabiapZ |
________________ J
|
________________ =
W AT
& DataMap3
@ CancelCustomerOrder
=6, «Default>
6cSebbd-dé le 1@-&:@«5@@3}1’7
|
Q-TWaMtGlgy] | 2 «Exclusiver
«Sequences
«Sequences
«Sequence»
————————————— = «Seguence»
77f9052-bbd2-3occ-a01c-51F29855e2d}
| =
Selection | Parent | List | Tree | Table | Tree with Columns |

b) CRM Traceability model

c) The CRM Fulffillment FlowView

Fig. 13 Illustration of mapping CRM Fulfillment process design (left) onto VbMF Flow View (right), and establishing trace dependencies (middle)

14

adapt the design of CRM Fulfillment process and omit the
Data Objects which are irrelevant in this scenario.

In the context of process-driven SOAs, VbMF leverages
the FlowView model as the central notation because this
model represents the orchestration of the process activities
[53, 55]. We demonstrate the mapping of the BPMN de-
sign onto the FlowView of the CRM Fulfillment process
along with the trace dependencies established during the
mapping (see Figure 13) by using the approach mentioned
in Section 3.4. The trace dependencies includes trace links
at coarse-grained levels, i.e., between the BPMN diagram
and the FlowView model, or at finer granularities, e.g., be-
tween a BPMN task and a FlowView’s Aromic Task, between
a BPMN GatewayDataBasedExclusive and a conditional
switch, namely, Exclusive of the FlowView, and so on. Taking
the same approach of mapping the CRM Fulfillment process
design onto the FlowView, we have developed more view-
based interpreters for extracting abstract view models from
the process design and establishing tracing relationships.

Note that VOMF is a realization of the separation of
concerns principle [53, 55]. In VbMF, the Flow View model
merely represents the control structures, i.e., the orchestra-
tion concern of business processes that describe the execution
order of process activities in order to accomplish a certain
business goal. However, the FlowView does not contain any
details of these tasks. Other views, according to their specific
syntaxes and semantics, provide the concrete definitions of
each of FlowView’s tasks. For instance, a service invocation
task of the FlowView is realized in a CollaborationView or
an extension of the CollaborationView whilst a data process-
ing task is defined in an InformationView or an extension
of the InformationView. In this way, the FlowView model
aims at supporting stakeholders, especially business experts,
to quickly design the business functionality by orchestrating
named activities rather than being stuck with other details
such as performing remote invocations, activity compensa-
tion, and so on. These details are accordingly defined in
abstract view models and/or refined down to technology-
specific view models by the relevant IT experts. As a con-
sequence, these views, regardless whether they are abstract
or technology-specific, can be integrated with the Flow View
using the view integration mechanism [53, 55] in order to
produce richer views or a thorough view of the whole process
with respect to the particular needs, knowledge, and skills of
stakeholders.

4.3.2 Scenario 2: Traceability between VbMF views

View models at the abstract layer of VbMF are intentionally
designed for business experts alike who are not familiar or
able to work with the technical details. As such, these mod-
els supplement the FlowView with adequate concepts and
perspectives. In other words, the abstract views can be con-

sidered platform-independent models (PIMs) [12, 52] that
have close relationships with process designs rather than the
implementation counterparts. In the model-driven stack of
VbMEF, an abstract view can be gradually refined down to
its corresponding technology-specific view. For instance, the
BpelCollaborationView is a stepwise refinement of the more
abstract CollaborationView (cf. [53, 55]). Thus, refinement
relationships are important for tracing from process design to
implementations. We track these relationships by using trace
links of the type ViewToView for supporting the traceability
between two view models, and a number of ViewElement-
Pairs each of which holds references to the corresponding
view elements.

Figure 14 shows an illustration of establishing the trace
dependencies out of the refinement of the CRM Collabora-
tionView (Figure 14(a)) down to the CRM BpelCollabora-
tionView (Figure 14(c)) described by the ViewToView and its
constituent ViewElementPairs. For the sake of readability, we
only present a number of selected trace dependencies and use
the arrows to depict the links described by each dependency.
Each trace dependency is augmented with the Refine of type
TraceRationale.

Additionally, VbMF views can be integrated to produce
richer views. For instance, a certain stakeholder might need to
see the orchestration of the CRM Fulfillment process activi-
ties along with the interactions between the process and other
processes or services. The combination of the FlowView
model and either the CollaborationView or the BpelCollab-
orationView based on the name-based matching approach
described in [53, 55] can offer such a perspective. Figure 15
shows an illustration of establishing the trace relationships
out of such combinations. The main purpose of view integra-
tion is to enhance the flexibility of VbMF for providing vari-
ous adapted and tailored perspectives of the process model.
Because those perspectives might be used by the stakeholders
for analyzing and manipulating the process model, we track
down the relationships caused by the above-mentioned com-
bination in the traceability according to specific stakeholders’
actions and augment them with the Dependency type.

4.3.3 Scenario 3: Traceability between VbMF views and
process implementations

In the previous sections, we illustrate the methods for estab-
lishing the traceability path connecting the CRM Fulfillment
process design to VbMF view models at the abstract layer
down to the technology-specific layer. The relationships be-
tween view models and process implementations, however,
can be achieved in two different ways. On the one hand,
schematic code of process implementations or process de-
ployment descriptors can be generated from the technology-
specific views (such as the BpelCollaborationView, Bpelln-
formationView, etc.) at the final step of VbMF forward en-

(& erm.collaboration 53
[[:,RemmSet

[2) cRMviewzview.trace 51

Q_—,ResuruSot

=[5 CrmCollaborationyiew

- enteractions ReplyOrderConfirmation
: & «lnteraction» UpdakeCustomerProfie
; &dnter«:ﬂhn» VerifyBankaccount
@ «Interactions CheckDN
| e «Interactions AssignDi
& «lnteraction» MigrateDN

8 «Interaction> AssignSIP

& «Interactions CreateMailboo

& slnteractions IntislizeVMy
- «Interactions AssignFax
& elnteraction ShipCPE
| & «lnteractions ChargeCustomer Account
! & «lnteraction: SendInvoice
- «Services CRM

= «Interfacer CRM

5 99 «Services BarkService
=€) «interfaces BankPortT

: r"gf «5ervice> Fax
0 «services Mail

- i «Services Sip

+ E «Service Profile

[T
~ B

-G «Services Ymx

< |
a) CRM Fulfillment CollaborationView

5 «Services Telecom rll |
»]

:] =) @ «TraceabfityModel»
B «iewToviaws

i ViewModels CRMCollaborationView [view/crm.collabaration]

i (L] «ViewModels CRMEPELCollaborationview [viewfcrm, bpelcollabor stion]

=2 Id’ ViewElementPairs

=

______________ J

«WiewElement» ReceiveCustomerOrder [UUID=4bff38cd6-9ae3-4320-9be2-39d238d77c44}]

¥ o s¥iewElementPairs
B-o® «¥iewElementPair»
#-o® eViewElementPairs
o eViewElementPairs
B o eViewElementPairs
o s¥iewElementPairs
o2 sviewklemenkPairs _ _ _ _ _ _ _ _ __________
«WiewElement» process [ULUID={1646ef54-F49-4675-8467-e7a19c2 3 sea}] |
I «ViewElement> process [UUID={d4d250cf-c2a8-4e79-830d- 1ed07dE4c3b0}] :‘_

o s¥iewElementPair>
&= «¥iewElementPairs
- eViewElementPairs

b) CRM Traceability model

90-bbaa-efecfecdacs})

|
o

! E «vigwElement» chargeAccount (UUID=+1fdd66ed-5f71-4ebf-5704-dbcd43014b97}]) |

il LS

Replys ReplyOrderConfirmation

«Invokes UpdateCustomerProfile

«lnvokes VerifyBankAccount

«Invoke» CheckON

«Invokes AssignDi

«Invokes MigrateDN

«Invokes AssignSIP

«Invoke> CreateMaibox

«lnvokes InitislizeVMy

«lnvokes AssignFasx

«Invokes ShipCPE

«lrvokes ChargeCustomerAccount

I «Invokes Sendlnvoice

B4 «Services CRM

= O antertacer CRM__ _ _

{ﬁ;} «Cperstion» process |

TR 4 cchamebs !

| chomeb

Qbbb hhihhsy

= @ anterfaces BarkPortType

5 Cocrsiom oot |
| 1. % «Channel» :

| Lt schonneb i

I IET «Operation chargeAccount |
| 4 «Channel» |

c) The CRM Fulfillment BpelCollaborationView

Fig. 14 Illustration of establishing traceability (middle) of model refinements from the CRM CollaborationView (left) to the BpelCollaborationView

(right)
r =\
@ omFlow E2 [(& ermubrace 52
[, Resource Set [, Resource Set
=151 CRMFlowMiew |- /8 «TraceabiltyModels
B-2 #- [«DesignToViews
- «DesignToViews
@5 <iewToviews
5l <viewToviews
: iiewodel> CRMFlowiew [viewcrm. flow]
Viewodels CRMEPELCollaborationiew [view/crm.bpelcollaboration]
o° eViewElementPais & sInvokes AssigrDN -
.r ¥iewElements ReceiveCustomerOrder [ULID={c3b61567-2723-3559-8934-dd1 74 1ec223}] & dnvoke> MigrateON
& «rvokes Assignsip
@ <nvokes CreateMailbox
P <nvokes IntializeVMx
- cnvokes AssignFax
& amvolesStiecPE _______
L & <nvokes ChargeCustomerAccount !
@ DataMapl3 '_@ s¥iewElement= VerifyBankaccount [UUID={F271b5C3-fad1-4F36-af 54-betize3e0s637]_ _ | & <Invoke» Sendlnvoice
@ Sendinvoice O o oMiewElementPair _ _ _ _ _ _ _ _ _ __ _ _ _ _ ________ %9 <Services CRM
@ DataMapls \ &) <viewElements ChargeCustomeraccount D.n.lm-{mum41draeda-919f-awaz74dcas}h/ (65 <Services BankService
@ ReplyOrderConfimation '~ 1) sViswElement> ChargeCustomerAccount [ULIID=1{ches73-5a5-4dse-023-6349ca1492cFH] '_| -7 <Service Fax I _I:J
Al I» |» 4] »

a) CRM Fulfillment FlowView

b) CRM Traceability model

c) The CRM Fulfillment BpelCollaborationView

Fig. 15 Illustration of establishing trace dependencies (middle) of an integration of CRM FlowView (left) and BpelCollaborationView (right)

) crmz0.bpel 53

| Resource Set

)
O,

=1 (5] CRMFlowiiew
B~ E _sSequencex __ __ __ __

| ® RreceiveCustomerOrder |- — — — — — 1

<bpel:process name="CRN">
<bpel:partnerLink name="Client"

partnerLinkType="CRN"
myRole="CRHProvider" />

<bpel:partnerLink name="AccountValidator®

partnerLinkType="AccountValidatorPLT"

— e — — — — — —

_r E «Receiver ReceiveCustomerOrder | — 4 — — —
' wokes OpdaECTstomerTofiE
I &' «lrvokes YerfyBankAccount
& «Invokes CheckDN

(? «Invokes AssignDM

| operation="process”
variable="orderInput”

<bpel:copy>

Lb_ _ _ __ createlnstance="yes” />
<bpelTassign valldate="no" name="DataMapi™

<bpel:from»$orderInput<s/bpel:from>

shnal ctantnrafilalanutsdhnal s bas

-® Datatlapt I partnerRoles"Accountvalidator"/>
@ UpdateCustomerProfile | </bpel :partnerLinks>
@ DataMap2 I <bpel:variables>
@ VerifyBankdccount <bpel:variable name="orderInput” messageType="CRHRequest” />
& 9 <Exclusi | ¢bpel:variable name="orderOutput” messageType="CRMResponsze” |
= HElLISTER </bpel:variables>
1 «Rranchs |
) | <bpel:sequence>
| l(hpel:r‘eceive name="RecelveCustomerOrder”
Resource Set partnerLink="Client”
| | portTypes="tns:CRN"
= CRMEPELCollabor ationView = |— o————>

G)

ER

—_

=

- [E] sViewModels CRMBpelCollaborationView [vilw/crm.bpelcallaboration]

\J

«¥iewToCodes

B <Codes [impliomebeel]_ _ _ _ _
&= «\iewCodePairs

@ e¥iewElements ReceiveCustomerOrder [ULID={c3b61567-a725-35a9-8934-dd1 7f4 la:223}-1

F @ a¥fiewElement» ReceiveCustomerOrder [UUID={e620e6a2-7ebd-4eee-20be-af1fa2c%b7al}]

¢ | «CodeFragments [fbp:receivel1]]

Fig. 16 Illustration of establishing traceability (3) between VbMF views (1) and process implementations (2)

(1)

Resource Set

®

=0 [

<pdd:process name="bpelns:CRN" location="crm2@.bpel™>

=% «Services CRM

[=-[%] CRMBPELCallaboration'iew -
; @/ «Receiver ReceiveCustomerOrder
& elrwokes UpdateCustomerProfile
- 4F dlnwokes VerfyBankAccount
a «Irvokes CheckDM
& elrwokes AssignDN |

- #-0 dnterfaces CRM
M= «Service» BankService il
I R L] c]nterfane:aanld’a't‘lyggr

<pdd:partnerLinks>
¢pdd:partnerLink name="Client"»
<pdd:myRole binding="H5G" service="CRM" />
¢</pdd: partnerLink:

r
|<pdd:partnerLink name="AccountValidator">

-—_— — <wsa:Address>http://bank.at</wsa:Address>
<wsa:ServiceMame PortHale:"BankPort“)s:BankService(j’wsa:ﬁerviceﬂqmd
———————— 1 | | l</usa:EndpointBeferencer |
— — -@- | </pdd:partnerfole>

«/pdd: partnerlink:

<pdd:partnerRole endpointBeference="static"s __ __ __
<wsa:EndpointReference xmlns:s="http://bank.at" >

-2 «Services Vmc I—-.__ i T e T T T T T T T T T T T
oy . < tpartnerLink name= Accoun arger >
B2 «Servicer Td&w | p(pda:partnerRole endpointReFerengew"atar_ic")
jﬁﬁ‘bﬂw&r_ — <wsa:EndpointReference xmlns:s="http://bank.at" >
| A eRoles Accountvalidator F — — —F — | <wsa:Address>http://bank.at</vsa:dddress>
TE$ <Partoers Clet. I ¢wsa:ServiceNane PortNames="BankPort®>s:BankService</usa:ServiceNant
T T _ </wsa:EndpointReference>»
L0# sPartners Accountvalidator_ > ¢/pdd:partnerfole> b
4] 4 | »
Seled:im[PuutlList]Trm[Tdel”; MmlSourcel

@ ||

-[iy eviewToCodes
L] e¥iewModel» CRMBpelCollaboratiofiiew [
Bl «Codes [impljcrm.pdd]
Bo? siewCodePair | | _
[[@ evenlements Accountvalidatfr [UUID={fad0dsd4-bede-467c-a66e-a5rBafdaadae}] |
j @ e¥iewElements Accountyalidatdr [UU[D=-|a1833588—&5h?4ab9~3d1c—c64c316?3aab}]l
| L @E@Fmﬂtﬂf@@%@nw"w\’_ﬁ”@" ______ l
Ee2 syiewCodePairs __ __ __ __
I i @ a¥iewElement» BankService [UUID={6b323dfd-7935-48dc-aslc-44f8c875a18a}]
| @ eViewElements BankPort Type [UUID={8bfbcbbb-436b-4283-29:7-8ac09 1 d063ed}]

L £ sCodeFragments [jwsa:EndpointReferencel1]] _ _ _ _ _ _ _ _ __

\/

ferm. bpelcollaboration]

Fig. 17 Illustration of establishing traceability (3) between VbMF views (1) and process deployment descriptors (2)

17

gineering tool-chain [53, 55]. On the other hand, the reverse
engineering can also automatically extract view models from
existing (legacy) process implementations [54]. Regardless of
using any of these methods, the trace dependencies need to be
recorded to maintain appropriate relationships between view
models and process implementations to fully accomplish the
traceability path from process designs to the implementation
counterparts (see Figure 16).

Furthermore, a number of process engine specific descrip-
tors are necessary for successfully deploying and executing
the CRM Fulfillment process. In this article, ActiveBPEL is
exemplified as the reference process engine to deploy and exe-
cute the CRM Fulfillment process in this article. Utilizing the
extended code generators mentioned in Section 3.4, VbMF
can generate the process deployment descriptors and estab-
lish the trace links. Figure 17 depicts the trace dependencies
created during the course of generating process deployment
descriptor required by the ActiveBPEL engine from VbMF
Views.

4.4 Leveraging VbTrace — A sample traceability path

Establishing trace dependencies alone is not sufficient for
tasks like change impact analysis, change propagation, arti-
fact understanding, and so on, it is the important factor for
supporting any such tasks [50]. In this section, we examine a
sample traceability path based on the traceability model cre-
ated in the previous sections to illustrate how our traceability
approach can support these tasks. Figure 18 depicts a simple
traceability path from the CRM Fulfillment process design
through the VbMF framework to the process implementa-
tions. The traceability path comprises the trace dependencies
between the process design and VbMF views mentioned in
Section 4.3.1 followed by the relationships among VbMF
views retrieved in Section 4.3.2. The process implementation
is reached at the end of the traceability path by using the trace
dependencies between VbMF technology-specific views and
process code described in Section 4.3.3.

Let us assume that there is a business expert working on
the BPMN Modeler in order to analyze the CRM Fulfillment
process functionality and change the process design. These
changes must be accordingly reflected in the process imple-
mentations in BPEL and WSDL and even in process deploy-
ment configuration. Without our traceability approach, the IT
experts have to look into the BPMN diagram and manipulate
BPEL, WSDL code and process descriptors manually. This
is time consuming, error-prone and complex because there
is no explicit links between these languages. In addition, the
stakeholders have to go across numerous dependencies be-
tween various tangled concerns, some of which might be not

2 For the sake of readability, we omitted irrelevant elements and
namespace bindings in the BPEL and WSDL code and process deploy-
ment configurations

relevant to the stakeholders expertise (cf. the statistics in Fig-
ure 2). Using our approach, the business experts can analyze
and manipulate business processes by using either the process
designer or the VbMF abstract views such as the Flow View,
CollaborationView, InformationView, and so on, depending
on their needs and knowledge. The IT experts, who mostly
work on either technology-specific views or process code,
can better analyze and assess coarse-grained or fine-grained
implications of these changes based on the traceability path
connecting the process design and implementation at differ-
ent levels of granularity.

5 Related work

Being extensively studied in literature and industry, depen-
dency relationships between designs and implementations are
often used for tracing through development artifacts, support-
ing change impact analysis, artifacts understanding, and other
tasks [50]. Spanoudakis and Zisman [50] presented a sum-
mary of the state-of-the-art traceability approaches that focus
on the tracing between stakeholders and requirements [14],
between requirements [23, 4, 14, 48, 21, 61, 46], between
requirements and designs [8, 10, 48, 23, 47, 22], between
designs presented in [10, 21, 48, 60], between requirements
and code [10, 6, 29, 48], and between code artifacts [48].
There are only a few approaches for supporting traceabil-
ity between designs (e.g., UML Class diagrams) and code
[10, 8, 29, 48, 23]. Each of the aforementioned design-to-
code traceability approaches, however, merely focus on spe-
cific types of dependencies, for instance, overlap relations
[10], evolution relations [8, 48, 29], and generalization/re-
finement relations [23]. These approaches do not mention the
extensibility to other types of dependencies or the ability to
cover different levels of granularity of trace dependencies.
The difference of abstraction and granularity and the di-
versity of language syntaxes and semantics hinder the automa-
tion of establishing and maintaining the traceability between
high-level artifacts, such as requirements or design specifica-
tions, and very low-level artifacts, such as executable code.
There are few promising efforts on supporting automatic gen-
eration of trace dependencies that use information retrieval
techniques [26, 25, 5, 6, 15, 30] or rule-based traceability
[47, 28, 51]. To the best of our knowledge, the traceability
retrieved from the aforementioned approaches does not cover
the difference of granularity at multiple levels of abstrac-
tion, which is the first challenge we described in Section 1.
In addition, [48, 24] suggested that a traceability approach
only supports the representation of different trace dependen-
cies between artifacts, but the interpretation, analysis, and
understanding of the relationships extremely depend on the
stakeholders. According to his specific needs, knowledge,
and experience, a stakeholder might be interested in differ-
ent types of dependencies of different levels of abstraction.

CRM

Fulfillment FlowView

Diagram

«AtomicTask»
ReceiveCustomerOrder

Receive
Customer Order

Legend :
-—p !
|
Artifact traces | «Code»
— — —» : crm.bpel
Element traces |
|

«Interaction»
ReceiveCustomerOrder

o

CRM
CollaborationView

«receive»
ReceiveCustomerOrder

<bpel:sequence>
<bpel:receive name="Receiveluste

variable="orderInput”
createlnstance="yes" />
<bpel:assign validate="no" name="DataMapl"s

Fig. 18 Illustration of a traceability path from the CRM Fulfillment process design (1) through VbMF views (2) to process implementations (3)

Most of traceability approaches described above, except [14],
have not provided adequate support for different stakeholder
interests.

Recently, model-driven development (MDD) [52, 12],
which gradually gains widespread adoption in both industry
and research, provides an efficient paradigm to potentially
reconcile the difference of granularity at various levels of
abstraction by introducing a number of intermediate (semi)-
formal modeling layers, such as the platform-independent
models (PIMs) and platform-specific models (PSMs) [12, 38].
Each modeling layers can provide different abstractions of
systems and software which are tailored to specific stake-
holders’ knowledge and experience. Moreover, model trans-
formations provide better facilities for the automation of
creating and maintaining traceability relationships [2, 13]. A
number of research approaches have exploited these advan-
tages for establishing and maintaining traceability between
development artifacts [7, 3, 27, 35, 37, 58], to name but a
few, in order to support reducing the gap between design and
implementation.

The lightweight traceability approach TRACES proposed
in [3] can support tracing requirements across different mod-
els and levels of abstraction. Based on the assumption that
each artifact has a unique identifier, and code is fully gen-
erated from the models (which is hard to achieve in reality
[52]) TRACES offers mechanisms for eliciting traceability
links from requirements to models, i.e., PIM and PSM, and
from the models to code. Méder et al. [27] analyze and clas-
sify Unified Process (UP) artifacts to establish a traceability
link model that helps in (semi)-automatically establishing
and verifying traceability links in Unified Process develop-
ment projects along with a set of rules for management of
the links. Leveraging model transformations, Naslavsky et al.

[35] propose an approach for creating fine-grained traceabil-
ity among model-based testing artifacts in order to support
result evaluation, coverage analysis, and regression testing.
Oldevik and Neple [37] present an approach for handling
text-based traceability links in model-to-code transforma-
tions (aka code generations) which is a key contribution to
OMG MOF Model to Text Transformation standardization
effort [39]. This approach provides a meta-model including
a set of concepts for traceability between model elements
and locations in code artifacts. The corresponding part of our
traceability meta-model, i.e., the trace dependencies between
views and code artifacts, is inspired by [37]. Walderhaug et
al. [58] present a generic approach for traceability in MDD
aiming to enhance sharing and integrating of traceability
information from different development tools. The authors
propose a high-level representation of the traceability process
in the course of software development that provides general
concepts for representing different kinds of stakeholders and
artifacts used for traceability, such as trace model, trace repos-
itory, and the interactions between the stakeholders and these
artifacts. Bondé et al. [7] propose an approach that offers
a traceability meta-model for representing the relations be-
tween artifacts and the transformation operations associated
with these relations. Once the traceability is accomplished, it
then can be used to enforce the interoperability of models at
different levels of abstraction, for instance, between a PIM
and PSM.

Our work has the commonalities with the MDD-based
traceability approaches in using traceability meta-models for
(semi-)formalizing trace dependencies in order to enhance
the interoperability of tools. In contrast to the related work,
we introduce the combination of the separation of concerns
principles realized by the notion of views and the separa-

19

tion of abstraction levels realized by the MDD paradigm
as a better solution for supporting traceability in process-
driven SOAs. We exploit the notion of views to efficiently
represent different process concerns such that stakeholders
are provided with tailored perspectives by view integration
mechanisms according to their specific needs, knowledge,
and experience. This is a significant step toward the support
of adapting process representations and trace dependencies
to particular stakeholder interests. In addition, the separation
of abstraction levels offers appropriate intermediate layers to
gradually bring the business experts working at high levels
of abstraction close to the IT experts working at lower levels
of abstraction. Using the separation of process concerns in
terms of (semi-)formalized views and the view integration
mechanism, the refinement between two adjacent abstraction
levels can be alleviated in a better and more flexible manner.
Obviously, the relationships between our modeling artifacts
such as views and view elements are intrinsic and can be
retrieved straightforwardly from the view models.

Leveraging these modeling concepts and mechanisms, we
perform the mapping of process designs (here: BPMN) onto
high-level, abstract views and process implementations (here:
BPEL and WSDL) onto low-level, technology-specific views
and devise a traceability meta-model that is rich enough
to represent the trace dependencies from design to imple-
mentation through different abstraction levels and different
granularity. Furthermore, our framework is quite open for
extensibility, such as adding more traceability relationships
at finer granularity with adequate specializations of the Arti-
factTrace and the ElementTrace, adding more intermediate
view model layer, or adding more appropriate specializa-
tions of the TraceRationale meta-class to support enhancing
traceability reasoning or change impact analysis.

In the area of process-driven development, there are a
number of approaches that define transformations between
different languages [45, 49, 33, 59, 34, 32]. These approaches
partially provide the link between process design and imple-
mentation. However, most of these approaches focus on only
one process concern, namely, the orchestration concern, and
ignore other significant ones, such as collaborations, data pro-
cessing, fault handling, and so on. As a consequence, each
of these approaches is applicable for transforming of control
structures of two specific kinds of languages, for instance,
BPMN and BPEL [45, 49], EPC and BPEL [59, 33], and so
forth. As a consequence, these approaches offer neither the
extensibility to support the various process concerns, except
the control flow, nor the traceability of these concerns of
processes. Nonetheless, our traceability approach benefits
from different algorithms described originally in those ap-
proaches for mapping the control flow of process design onto
our FlowView model (cf. Scenario 1).

Table 2 presents qualitative comparisons of our view-
based, model-driven traceability approach, VbTrace, and a

number of selected related approaches which are most closely
related to VbTrace, such as the MDD-based traceability ap-
proaches that utilize model-driven paradigm with modeling
layers ranging from high-level into low-level and/or exploit
model transformations for traceability between design and
implementation [3, 27, 37, 58]. The comparison criteria are
adapted from [50].

6 Conclusion

Traceability support in process-driven SOAs development
suffers from the challenging gap due to the fact that there is
no explicit links between process design and implementation
languages because of the differences of syntaxes and seman-
tics and the difference of granularity and abstraction levels.
In addition, the substantial complexity caused by various tan-
gled process concerns and the lack of adequate tool support
have multiplied the difficulty of bridging this gap. The view-
based, model-driven traceability approach presented in this
article is our effort to overcome the issues mentioned above
and support stakholders in (semi-)automatically eliciting and
(semi-)formalizing trace dependencies between development
artifacts in process-driven SOAs at different levels of gran-
ularity and abstraction. A proof-of-concept Eclipse-based
tool support has been developed and illustrated via the CRM
Fulfillment process extracted from an industrial case study.

The view-based, model-driven traceability framework
presented so far lays a solid foundation for change impact
analysis, artifact understanding, change management and
propagation, and other activities. Our ongoing work is to
complement this framework with a model repository that
alleviates collaborative model-driven development and trace-
ability sharing with different stakeholders as well as tool
integrations.

Acknowledgements This work was supported by the European Union
FP7 project COMPAS, grant no. 215175. We are grateful to anonymous
reviewers for their constructive and truly helpful comments.

20

JIom pajerar Jo uostredwod Y 7 9[qeL

'sj003 jueridwos-JO Jo Anjiqeradooyur
pue Surreys Ayiqeasen uoddns 1910q ‘Aqaroy) pue ‘ooud)sisiod
[opow 10} pazI[nn St [g{] prepuels ([NX) d5UBYoIU] BIBPRIdIN
TAX (I' uonoag °J9) uawdo[oadp YOS UIALIP-ssaoold 1oy
AdIA 2Iep21mdAIYaIyuddo pue 21007 douerdwoo-JON JINT
Uuo paseq JUSWUOIIAUD pAjerSajur paseq-osdifog [eordKjojord v

[SS ‘1€]012 ‘suonoriur uewny ‘Surp
-URY JUIAQ ‘SUONOBSURI) SB JONS SUIIUOJ J3YI0 0 S[GISUXD SIIng
‘Burgpuey e1Ep PUB ‘UONLRIOQR[[09 $53001d ‘MO[J [0NUOD Y} St Yons
S[onde 1Y) Ul pay1dwoxa suIeouod $sa201d Y 01 punoq Jou St
ORITGA “TOAOQIOIA *(T'€ UONIAS 'JO) 2juonnyaon.], Swiziferdsads
£q suone[a1 a0e1) Y} JO SONUBWIAS dY) JO PUB ‘20D [JUduia]q 10
20D [10oDfi14Yy ‘Yyurgaov. 1Yo Suruyal £q s1oke] Surjopow JjeIp
-QULIAUI PUE S[OAQ] AJLIR[NURIS JO AN[IQISUIXA) SIQJJO RIT A

*(7°€ uon9ag o) sar>
-uopuadop 2oe1 jJo Ajue[nuers Jo S[oAd] Auew jo uonejudsaidor
Sunzoddns Joj 9[qISUIXS PUR YILI ST [9POUI-BIOW AJI[IqRades) Y],

‘uonoensqe
JO S[OAQ] JUSIYIP 1B SIoAR] SUI[OPOW AJRIPIULIAUI JUAIDJIP OJUT
SMOTA JO uoTeIedos oY) SIOJJ0 YIoMoweI} SUT[OPOUl PASeq-MaIA

's1opjoyaye)s Jenonted o3 3oadsar yum yred Lijiqeasen
pue sorouapuadap aoer jo Suruosear pue uoneidepe 1oddns 193
-12q 0) SYUI] 20} 3} 0} PAILIOUUE q UED ‘2]DUONDY2IVL] JO UOT)
-eZ1[e100ds © ‘SSR[0-RIOW 270y) ‘TOAOIIOJA] "SISQINUI JP[OYNe)S
snoteA 0) sarouspuadop doex pue suoneuesaidar sseooid jo uon
-eydepe oy woddns premo) doys JueoyruSis € sI S[OA9] UONIENS
-qe jo uoneredes pue su1EdUO Jo uoneIedas JO UONBUIQUIOD A,

*(7'€ uonoag 'Jo) sarouspuadap doen Jo SuLreys
pue Aypiqeredorojur Sunioddns je Jurwre [opow-elour A)IjIqeaden
9[qISUAXS ‘YOLI B JO SULID) Ul UONLIUISAIdal PIZI[BUWLIO)(-IWS)

“(€'y uon
03§ “J0) A[PIEMIOPYSIEIS PIASLIAI B SJUSWS[MITA PUE SMITA
U20M)2q ‘A[[eonewoIne(-1was) paysidiioooe dre 9pod pue SMIIA
UQ0M19q ‘SMATA pue USIsp ssed01d usamiaq sorouspuadop ooel],

('€ UoNIAS “J0) SIIPUODYIIDL],
qrenbope jo uonejouue ayy Aq sadA) uonear sidnnuw 1oddng

‘pauonuawi 21e syproddns
[00) 9JaI0U0D ON °S[00) JO Uuon
-e13oyur pue Surreys Suntoddns je
Sunwre yoeoxdde Lyijiqeasen [9A9]
ySiy ‘oreuas e s1opj0 A[orouw [86]

*SU0JJo
[euonIppe sa1nbar ‘roremoy ‘fen
-udod st [g¢] jo ANqiqIsuaixe oy,

‘[opowr A)[Iqeader) oY) dZI[erd
-ads 01 5110330 JoyIng saxmbar [g6]

‘[opowr AI[1Iqeade) oY) dZI[erd
-ods 0y syu0jj9 1oy)Ing spasu [g6]
*S1SQI9IUL SISP[OYINEIS SNOLIBA

ayp 01 sarouapuadap a8 Jo uone)
-depe oy 1oddns 03 swistueyoIW
apraoxd jou soop nq wSipered
QN Ay ur aAjoAur oym ‘rard
-dns oo} pue ‘reSeuew Ajqqe
-ooen ‘resn aoen ‘1odofoadp se
yons ‘sojol SIOP[OYae)S pauyop
-o1d jJo Ioqunu e s1djjo [g6]
*SUONORIAUL SIOP[OYNRIS

oY) se [[om se 0)0 ‘adk) doen
ad£y 10eJnre ‘[opow 9oen SB YIns
‘fqiqeaoen jo s3doouod [erouad
Juasa1dar 0) pauyep oIe S[Epow
-BloW [9A9] Y31y JO Idqunu Yy

*[L€] se yons sarouopuadap 20en
Suradmyoe 10y seyoeoxdde Ajpiqe
-o0eI) JOYI0 0} sIojal A[arow [6]

'Spooul Ie|
-noned o) spepowr K1ojisodar pue
Aiqeaoen ayy jdepe pue dzIfeId
-ods 0) pammnbor are suope 1Y
-INJ ‘SN, “PIIOPISUOD dIE SAIOUIP
-uadop ooer) 9)10U00 ou ‘AN
10§ KJI[IqEadET 0} UOTIN[OS JLIUST
pue [9A9] Y31y e spuasaid [gG] sy

19 payioddns jJoN

104 peytoddns jJoN
*$Y00[q 9POJ puR sjudUI

9]0 [opoul U2IMIq SUOT)
-e[a1 sojerouad Aquo [/¢]

124 paytoddns JoN

124 payioddns 10N
‘sjoejnIR
9pOd Ul SUONBOO] pue

SIUQWIAO [9POW UIIMIaq
Aniqeasen 10y sydoouod
Jo 10s ® Jurpraoid [opowr

eow ® seuyap [Lg]
.m:OENE.—O%m uer
MUOUlOH:ﬁOUOE EOHM

pojerouad A[[eonewoine
are soruopuadop odeI],

‘SUOTIR[I 2ID2UIL)
9’1 ‘S[opOW JY) WOIJ pare
-10u93 X3} puB ‘SNSJ '
‘S[opOW UAIMIdq SUOTR[AI
Qoe1) Ay} Uo $3asnd0J [L¢]

394 payioddns JoN

104 payroddns JoN

‘sarouapuad
-9p 90BI) paureI3-ouy uo
S91eNUAOU0 A[row [G¢]

*syoejnIe Sursa) pue
swreIderp aouanbas TINN
U9oM19q SISA®] QJRIpIWL
-I9MUI 9y} SB [opoul-eioul
Ayoreidry uonerouas 1s9)
pue sydeiS mopy [onuod
paseg-epowr asn [g¢]

12K payioddns JoN

‘Tepouwt

21007 ue se pasisrad st
pue UONBULIOJSUR) POt
[eorddy e ur poaaryoe
sdrysuoneor oy) soquos
-op [opou AJI[Iqeaden Ay],

‘[enueu
Apua1md st [opowr Ajiqe
-90BI) JUBAJ[AI PUB $ISBD
159) JO uoneIaudad Ay,

*$10BJ1LIR 159 pUk S[opoul
usamiaq suomne[ar dden
Ay} saenuaduod [gg]

‘12K payroddns JoN

"TNN/N

0) punoq Aferow st [£7]
'S[AQ] UOT)OBNS

-qe dN Jo spemre TAN
JISeq U2aM)2q ANI[IqRAORT)
oy uoddns o0y swre [/z]

‘s[opowt
uonejuawadwr pue ‘udis
-op ‘sisAJeue ‘yuowarinb
-1 i) JO S[oAd] uon
-oensqe Inoj ueamiaq A
-[1qeaden uo sasndoJ [/z]

124 pauroddns joN
‘SUONRIOUUE SB 9POd
90INOS Ay} Ul PIIOIS Are
sooudpuadop dvI], "SI0
-uopuadop ooen Sunuasar
-dor 103 pasn a1e s)UAWAD
[euonelou TN SUnsIxg

‘dN Jo sIap[oyaels
Jo suonuaAdul 2jenb
-ope WIM - pIySI[QeIsd
ore sopuspuadop ooel],

‘auyfa(pue ‘Afiia
221102y ‘auifay :suonex
9081} INOJ U0 $3sndoj [£7]

*SJeULIO} TINX 1O TINTX Toyite
U PaI0}s Ik S[3POIA “AII[Iqeaoer)
pue juowdo[oAdp J10J Ioweag
-opo) pue asdipog yim pojers
-JUI 9q UBD UOIYM JUSWUOIIA
-ud jJuowdopaadp [eordKjojord v

104 patoddns joN

194 paytoddns joN
‘(uonoensqe JuaeAInba ue aary
A[oIow 9pod pue [opowr 9T
s10Ae] Surfopowr QJRIPAWLIAUT
10J Joddns Aue uonuow jou
S0P INQ 9pOd PUB SIUSWI[D
[opPOWl U99MIOq PUEB SIUSW[
[opowl pue juowaIinbal uoam)
-oq Anqqeasen suoddns [¢]

124 pautoddns joN

'Sa1d

-uopuadop 2oe1) JO UOTBZI[EULIO]
® juasaxd Aprordxa jou seop [¢]
"UONEBIdUST 9POJ WOILJ PIAILL)
-1 A[[eonewone oq Os[e ued
syuI] A)[Iqeasel], “I9[opouwr Ay}
Jo Aypiqisuodsar ayy st s[opowr
pue sjuowaIInbar usemiaq suI|
Aqiqeasen JIdXxa Jo uoneai)

*SUONBAI 2A0qE WIOTJ PALIOJUT oq
ued SUONB[AI 221]D2Y "9POd pue
S[OPOW U9IM]IQ SUONR[AI 2ID42
-U20)) PUB S[OPOW PUB SIUSW
-onnbar usomlaq suonefar a2in
-2y 10 20u242f2y) s1YJo [¢]

1oddns j00],

suondo
Supqisuarxsy

SoyLDIMUDLS
adumu

d0f 1oddng

s124p] Su1ja
-pout apIpaut
-19qu1 j1oddng

S1S2.42)U1
Aapjoyayvis

Jo uonvidvpn
1oddng

UoONDJUIS2L
-da4 uonv)ay

suonvjaL
20D4] Jo
UODIIUID)

suoyv)aL
20p.43 2)dynu
dof poddng

ABILGA

‘Te 32 Sneyroprea
£q Anpqedden QAN AU

Te 12 Y1A9P[O Aq LTI

‘Te 12 AysAe[seN
£q Sunsd) paseq-[PPOIN

Te 19 JopBIN
Aq Anpqesden dn

‘Te 19 AYs9lV A9 STOVIL

21

References

1.

10.

11.

12.

13.

14.

. Eclipse

ActiveEndpoints ~ (2008) ActiveBPEL Engine.
http://www.activevos.com/community-open-source.php,
(accessed Feb 3, 2008)

. Aizenbud-Reshef N, Nolan BT, Rubin J, Shaham-

Gafni Y (2006) Model traceability. IBM System Jour-
nal: Model-Driven Software Development 45(3), DOI
10.1147/sj.453.0515

. Aleksy M, Hildenbrand T, Obergfell C, Schwind M

(2008) A Pragmatic Approach to Traceability in Model-
Driven Development. In: PRIMIUM

. Alexander I (2003) Semiautomatic tracing of require-

ment versions to use cases - experience and challenges.
In: TEFSE’03: 2nd International Workshop on Trace-
ability in Emerging Forms of Software Engineering

. Antoniol G, Canfora G, de Lucia A, Casazza G (2000)

Information retrieval models for recovering traceability
links between code and documentation. In: ICSM ’00:
Proceedings of the International Conference on Soft-
ware Maintenance (ICSM’00), IEEE Computer Society,
Washington, DC, USA, p 40

. Antoniol G, Canfora G, Casazza G, Lucia AD, Merlo E

(2002) Recovering traceability links between code and
documentation. IEEE Trans Softw Eng 28(10):970-983,
DOI http://dx.doi.org/10.1109/TSE.2002.1041053

. Bondé L, Boulet P, Dekeyser JL (2006) Traceability and

Interoperability at Different Levels of Abstraction in
Model-Driven Engineering, Springer Netherlands, pp
263-273. Applications of Specification and Design Lan-
guages for SoCs

. Constantopoulos P, Jarke M, Mylopoulos J, Vas-

siliou Y (1995) The software information base: a
server for reuse. The VLDB Journal 4(1):1-43, DOI
http://dx.doi.org/10.1007/BF01232471

(2006) Eclipse Modeling Framework.
http://www.eclipse.org/emf, (accessed Jan 3, 2008)
Egyed A (2003) A Scenario-Driven Approach to Trace
Dependency Analysis. IEEE Trans Softw Eng 29(2):116—
132, DOI http://dx.doi.org/10.1109/TSE.2003.1178051
Evenson M, Schreder B (2007) SemBiz Deliverable:
D4.1 Use Case Definition and Functional Requirements
Analysis. http://sembiz.org/attach/D4.1.pdf

Frankel D (2002) Model Driven Architecture: Applying
MDA to Enterprise Computing. John Wiley & Sons, Inc.,
New York, NY, USA

Galvio I, Goknil A (2007) Survey of Traceability Ap-
proaches in Model-Driven Engineering. In: EDOC, pp
313-326

Gotel O, Finkelstein A (1995) Contribution structures
[Requirements artifacts]. In: Proceedings of 1995 IEEE
International Symposium on Requirements Engineering
(RE’95), pp 100-107, DOI 10.1109/ISRE.1995.512550

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Hayes JH, Dekhtyar A, Osborne J (2003) Improving
requirements tracing via information retrieval. In: Re-
quirements Engineering Conference, 2003. Proceedings.
11th IEEE International, pp 138-147

Hentrich C, Zdun U (2006) Patterns for Process-Oriented
Integration in Service-Oriented Architectures. In: Proc.
of 11th European Conference on Pattern Languages of
Programs (EuroPLoP 2006), Irsee, Germany, pp 1-45
Holmes T, Tran H, Zdun U, Dustdar S (2008) Modeling
Human Aspects of Business Processes - A View-Based,
Model-Driven Approach. In: Schieferdecker I, Hartman
A (eds) 4th European Conference on Model Driven Ar-
chitecture Foundations and Applications (ECMDA-FA)
2008, Springer, LNCS, vol 5095, pp 246261

IBM (2006) Travel booking process.
http://publib.boulder.ibm.com/bpcsamp/scenarios/travel-
Booking.html, (accessed Apr 17, 2008)

Intalio, Inc (2006) Eclipse STP BPMN Modeler.
http://www.eclipse.org/bpmn, (accessed May 9, 2008)
Kindler E (2004) On the Semantics of EPCs: A Frame-
work for Resolving the Vicious Circle. In: Business Pro-
cess Management, pp 8§2-97

von Knethen A, Paech B, Kiedaisch F, Houdek F (2002)
Systematic requirements recycling through abstraction
and traceability. In: Requirements Engineering, 2002.
Proceedings. IEEE Joint International Conference on, pp
273-281, DOI 10.1109/ICRE.2002.1048538
Kozlenkov A, Zisman A (2002) Are their design speci-
fications consistent with our requirements? In: RE *02:
Proceedings of the 10th Anniversary IEEE Joint Interna-
tional Conference on Requirements Engineering, [IEEE
Computer Society, Washington, DC, USA, pp 145-156
Letelier P (2002) A framework for requirements trace-
ability in UML-based projects. In: Proc. of 1st Interna-
tional Workshop on Traceability in Emerging Forms of
Software Engineering - 17th IEEE International Confer-
ence on Automated Software Engineering, pp 32—41
Lindvall M, Sandahl K (1996) Practical implications
of traceability. Softw Pract Exper 26(10):1161-
1180, DOI http://dx.doi.org/10.1002/(SICI)1097-
024X(199610)26:10<1161::AID-SPE58>3.3.CO;2-O
Lucia AD, Fasano F, Oliveto R, Tortora G (2007) Re-
covering traceability links in software artifact man-
agement systems using information retrieval methods.
ACM Trans Softw Eng Methodol 16(4):13, DOI
http://doi.acm.org/10.1145/1276933.1276934

Lucia AD, Oliveto R, Tortora G (2008) Adams re-
trace: traceability link recovery via latent semantic
indexing. In: ICSE ’08: Proceedings of the 30th
international conference on Software engineering,
ACM, New York, NY, USA, pp 839-842, DOI
http://doi.acm.org/10.1145/1368088.1368216

22

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Mider P, Philippow I, Riebisch M (2007) A Traceability
Link Model for the Unified Process. In: SNPD (3), pp
700-705

Mader P, Gotel O, Philippow I (2008) Rule-based main-
tenance of post-requirements traceability relations. In:
International Requirements Engineering, 2008. RE 08.
16th IEEE, pp 23-32, DOI 10.1109/RE.2008.24
Maletic JI, Munson EV, Marcus A, Nguyen TN (2003)
Using a hypertext model for traceability link confor-
mance analysis. In: TEFSE’03: 2nd International Work-
shop on Traceability in Emerging Forms of Software
Engineering

Marcus A, Maletic JI (2003) Recovering documentation-
to-source-code traceability links using latent semantic
indexing. In: ICSE ’03: Proceedings of the 25th Interna-
tional Conference on Software Engineering, IEEE Com-
puter Society, Washington, DC, USA, pp 125-135
Mayr C, Zdun U, Dustdar S (2008) Model-Driven In-
tegration and Management of Data Access Objects in
Process-Driven SOAs. In: ServiceWave, pp 62-73
Mendling J, Hafner M (2005) From Inter-organizational
Workflows to Process Execution: Generating
BPEL from WS-CDL. In: OTM Workshops,
pp 506-515, DOI 10.1007/11575863_70, URL
http://www.springerlink.com/content/dkmc5vy91fl4j7j4;/
Mendling J, Ziemann J (2005) Transformation of
BPEL Processes to EPCs. In: Proc. of the 4th
GI Workshop on Event-Driven Process Chains
(EPK 2005), vol 167, pp 41-53, URL http://wi.wu-
wien.ac.at/home/mendling/publications/05-EPK.pdf
Mendling J, Lassen KB, Zdun U (2005) Transformation
Strategies between Block-Oriented and Graph-Oriented
Process Modelling Languages. Technical Report JM-
200510 -10, WU Vienna

Naslavsky L, Ziv H, Richardson DJ (2007) To-
wards traceability of model-based testing arti-
facts. In: A-MOST °’07: 3rd International Work-
shop on Advances in Model-based Testing,
ACM, New York, NY, USA, pp 105-114, DOI
http://doi.acm.org/10.1145/1291535.1291546

OASIS (2007) Business Process Execution
Language @ (WSBPEL) 2.0. http://docs.oasis-
open.org/wsbpel/2.0/0S/wsbpel-v2.0-OS.pdf

Oldevik J, Neple T (2006) Traceability in Model to Text
Transformations. In: 2nd ECMDA Traceability Work-
shop (ECMDA-TW), pp 17-26

OMG (2003) Model-Driven Architecture (MDA)
Guide V1.0.1. http://www.omg.org/cgi-bin/doc?omg/03-
06-01.pdf, (accessed Sep 2, 2007)

OMG (2005) Second revised submission to the
MOF Model to Text Transformation RFP. 2005,
Object Management Group. http://www.omg.org/cgi-
bin/apps/doc?ad/05-11-03.pdf

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

. OMG (2005) Unified Modelling Language (UML) 2.0.

http://www.omg.org/spec/UML/2.0

OMG (2006) Object Constraint Language(OCL) 2.0.
http://www.omg.org/spec/OCL/2.0

OMG (2007) XML Metadata Interchange (XMI) 2.1.1.
http://www.omg.org/technology/documents/formal/xmi.htm
OMG (2008) Business Process Modeling Notation
(BPMN) 1.1. http://www.omg.org/spec/BPMN/1.1
openArchitectureWareorg (2002) openArchitecture-
Ware — A modular MDA/MDD generator framework.
http://www.openarchitectureware.org, (accessed Oct 23,
2007)

Ouyang C, Dumas M, ter Hofstede AHM, van der Aalst
WMP (2006) From BPMN Process Models to BPEL
Web Services. In: IEEE International Conference on
Web Services, pp 285-292

Pohl K (1996) PRO-ART: Enabling requirements pre-
traceability. In: ICRE, pp 76-85

Ramesh B, Dhar V (1992) Supporting systems develop-
ment by capturing deliberations during requirements en-
gineering. IEEE Trans Softw Eng 18(6):498-510, DOI
http://dx.doi.org/10.1109/32.142872

Ramesh B, Jarke M (2001) Toward Reference Models
for Requirements Traceability. IEEE Trans Softw Eng
27(1):58-93, DOI http://dx.doi.org/10.1109/32.895989
Recker J, Mendling J (2006) On the Translation between
BPMN and BPEL: Conceptual Mismatch between Pro-
cess Modeling Languages. In: Eleventh Int. Workshop
on Exploring Modeling Methods in Systems Analysis
and Design (EMMSAD’06), pp 521-532

Spanoudakis G, Zisman A (2005) Software
Traceability: A Roadmap, vol 3, Handbook of
Software Engineering and Knowledge Engineer-
ing: Recent Advances edn, World Scientific
Publishing, pp 395-428. URL http://www.ecsi-
association.org/ecsi/main.asp?l1=library&fn=def&id=514
Spanoudakis G, Zisman A, Pérez-Minana E, Krause P
(2004) Rule-based generation of requirements traceabil-
ity relations. Journal of Systems and Software 72(2):105—
127, DOI DOI: 10.1016/S0164-1212(03)00242-5, URL
http://www.sciencedirect.com/science/article/B6VON-
4B5BH76-1D/2/ee36ef777944b21af3c03a604ec521f7
Stahl T, Volter M (2006) Model-Driven Software Devel-
opment: Technology, Engineering, Management. Wiley
Tran H, Zdun U, Dustdar S (2007) View-based and
Model-driven Approach for Reducing the Development
Complexity in Process-Driven SOA. In: Intl. Conf. on
Business Process and Services Computing (BPSC), GI,
LNI, vol 116, pp 105-124

Tran H, Zdun U, Dustdar S (2008) View-Based Reverse
Engineering Approach for Enhancing Model Interop-
erability and Reusability in Process-Driven SOAs. In:
Mei H (ed) 10th Intl. Conf. on Software Reuse, ICSR

23

55.

56.

57.
58.

59.

60.

61.

2008, Springer, LNCS, vol 5030, pp 233-244, URL
http://dx.doi.org/10.1007/978-3-540-68073-4_23

Tran H, Holmes T, Zdun U, Dustdar S (2009)
Modeling Process-Driven SOAs - a View-
Based Approach, Handbook of Research on
Business Process Modeling edn, Information
Science Reference, chap 2. URL http://www.igi-
global.com/reference/details.asp?ID=33287

W3C (1999) XML Path Language (XPath) 1.0.
http://www.w3.org/TR/xpath, (accessed Jul 8, 2008)
W3C (2001) Web Services Description Language 1.1
Walderhaug S, Stav E, Johansen U, Olsen GK (2008)
Traceability Model-Driven Software Development, In-
formation Science Reference, pp 133-160. Designing
Software-Intensive Systems - Methods and Principles
Ziemann J, Mendling J (2005) EPC-Based Modelling
of BPEL Processes: a Pragmatic Transformation Ap-
proach. In: Proc. of the 7th Int. Conference “Modern In-
formation Technology in the Innovation Processes of the
Industrial Enterprises” (MITIP 2005), URL http://wi.wu-
wien.ac.at/home/mendling/publications/05-MITIP.pdf
Zisman A, Kozlenkov A (2003) Managing inconsisten-
cies in UML specifications. In: Proceedings of the ACIS
Fourth International Conference on Software Engineer-
ing, Artificial Intelligence, Networking and Parallel/Dis-
tributed Computing (SNPD’03), October 16-18, 2003,
Liibeck, Germany, ACIS, pp 128-138

Zisman A, Spanoudakis G, Pérez-Mifiana E, Krause
P (2003) Tracing software requirements artifacts. In:
Proceedings of the International Conference on Software
Engineering Research and Practice, SERP ’03, June 23 -
26, 2003, Las Vegas, Nevada, USA, CSREA Press, pp
448-455

