
Reusable Architectural Decision Model for Model and
Metadata Repositories

Christine Mayr, Uwe Zdun, and Schahram Dustdar

Distributed Systems Group
Information System Institute

Vienna University of Technology, Austria
christine.mayr@inode.at,{zdun|dustdar}@infosys.tuwien.ac.at

Abstract Models are gaining importance in software development, for instance
in the MDD field, as well as in other disciplines such as biology and physics.
Hence, tool support is needed to manage these models and metadata about the
models. Model repositories support this trend by managing these model artifacts.
While setting up model and metadata repositories, architects have to make sev-
eral fundamental design decisions and balance various forces. In this paper we
describe reusable knowledge in form of reusable architectural decisions for IT-
architects in setting-up, planning, and developing model and metadata reposito-
ries, as well as the main decision drivers. Our decisions are documented in a
reusable architectural decision model that can be instantiated for a concrete sys-
tem. It also supports a lightweight approach to architecture documentation. A
case study illustrates the decisions made when setting up our own data access
object model repository by walking through the reusable architectural decision
model.

1 Introduction

Today many systems are modeled with precisely specified and detailed models. Reasons
are among others the increasing support for model interoperability between modeling
tools [1] and the increasing use of model-driven development (MDD) [2, 3]. In MDD
many tools in a tool chain must work on a set of models, and they must be able to import
models developed with external modeling tools.

Model repositories [4–7] support this trend by managing modeling artifacts, such
as models, model instances, model relationships, and so on. A model repository en-
ables modelers to create, retrieve, update, and delete modeling artifacts, and to query
for them. Usually additional metadata about the modeling artifacts can be stored and
used in the queries. Some repositories are even pure metadata repositories. In addition,
model repositories can support extra functionality, such as versioning support, security
functions, or storing of related source code artifacts.

Model repositories should often be optimized for the kind of modeling artifacts they
store and the task they should fulfill. For instance, usually custom, model-aware queries
should be provided that are simplified or more powerful compared to standard queries,
such as SQL queries, because they can make use of the information in the modeling
artifacts. Model repositories are often realized on top of existing basic technology such

as databases, but it is not enough to simply store the models in and retrieve them from
such a basic technology. In this context, a number of recurring design decisions must be
made. In this paper, we propose a reusable architectural decision model that describes
these design decisions in a reusable fashion, so that they can be applied step-by-step for
new model repository projects. Our research results are based on field notes and obser-
vations from our own model repository projects, a detailed analysis of existing model
repository projects (both open source and commercial), and interviews and discussions
with other model repository developers.

In this paper we provide architectural decision-support for architects in finding a
suitable solution to resolve fundamental design problems arising when planning and
setting-up model and metadata repositories. For each decision we present recommen-
dations which alternative to choose depending on certain requirements and boundary
conditions. Some of our decisions might be intuitively decided in a suitable way by
architects. However, other decisions might be skipped or decided in a non-optimal way
because of missing knowledge of alternatives and consequences. Our approach mainly
aims at decreasing the costs and impact of making wrong decisions related to setting-up
model and metadata repositories. In addition, our approach can be used as a lightweight
approach to architecture documentation: If the reusable architectural decision model
is used to make decisions, only a reference to the decision model is needed to docu-
ment an architectural decision instead of documenting the whole decision as well as the
rationale.

Our paper is structured as follows: First, we define the terms repository, metadata
repository, and model repository in Section 2. In Section 3 we introduce reusable ar-
chitectural decision models as the background of our work. Section 4 provides detailed
specifications of the architectural decisions and describes the dependencies between
them. We illustrate the applicability of our approach through a case study in the area of
modeling jurisdictional provisions in the context of a district court, described in Sec-
tion 5. Section 6 discusses related work, and finally Section 7 concludes this paper.

2 Repository, Metadata Repository, and Model Repository

Before we go deeper into modeling architectural decisions of a model repository or
metadata repository, we would like to define the terms repository, metadata repository,
model repository and model and metadata repository, as these are forming the basis for
our work. The field of repositories is currently a popular area of research. Therefore
the following definitions are not exhaustive with regard to a full functional and non-
functional requirements specification of a repository. These nominal provisions rather
point out those characteristics of a repository we in particular focus on in this paper.

We define a repository as a central accessible component storing information about
reusable artifacts [8]. Examples of these artifacts are source code, documents, and
special-purpose models such as data models for defining the relationships between ob-
jects in object-oriented environments, models for MDD [2], biology models [9], and so
on. Furthermore, a repository has to provide the means to query these information ar-
tifacts and metadata about these information artifacts respectively according to certain
search criteria. In many cases, querying is performed using some query language.

When setting-up a repository, architects can choose between two alternatives. The
repository can either provide this information by storing the artifacts themselves, or
it stores metadata about where and how a specific artifacts can be accessed, reached,
or invoked. We refer to a repository that stores arbitrary or user-defined metadata on
artifacts as a metadata repository. Typical examples of (categorized) information many
metadata repositories use is information about users, versions, affiliations, etc.

When a repository provides models and/or model instances such that it either stores
models and/or model instances as its artifacts or provides these models and/or model in-
stances stored at other locations, we refer to a repository as a model repository. Usually,
a model repository additionally provides metadata of models or model instances. Hence,
we refer to a repository that provides meta-data of models and/or model instances as a
model and metadata repository.

3 Reusable Architectural Decision Models

According to Taylor and van der Hoek [10], as well as Jansen and Bosch [11], software
architecture is a set of principal design decisions governing a system. During a software
system’s design phase, architects have to make numerous decisions for organizational
and business issues, for matters of broad and detailed design, and for technologies [12].
We refer to a design decision using the term architectural decision, if firstly it affects
either the architecture of a system or the role of the architect. Secondly, the architects
of the system see those decisions as principal decisions. The main argument for using
architectural decision modeling is that such principal decisions should not get lost.

Architectural decision models are used to document architectural decisions [11, 13,
14]. These architectural models capture selected decision options and justifications for
these decisions. In industry, architects often do not attach great value to decision mod-
eling, and, if it is performed at all, architectural decision modeling is usually done in
retrospect. Thus, architectural decision models cannot solve all problems of lacking
documentation [14, 15]. Many techniques such as text templates and tool support have
been proposed, but until now they have not become broadly adopted in practice [12].

Reusable architectural decision models proposed by Zimmermann et al. [12, 16]
focus on solving these problems. A reusable architectural decision model enhances
the basic decision model by steering the architectural decision making activities [12].
Reusable decision models are closely related to software pattern concepts (see [15]). For
instance, Zimmermann et al.’s approach uses the resuable decision models for pattern
selection. The advantage of this approach is that a decision model that is based on
patterns does not have to copy the pattern text and hence is easier to create than a self-
contained decision model.

In this paper, we describe a reusable architectural decision model for model and
metadata repositories. Each architectural decision is characterized by a decision name.
In our model, the decisions either have a number of alternatives or options for which the
architect can decide. Some alternatives or options have variants, which can be selected,
too. For each decision, we describe the forces or decision drivers that must be con-
sidered when selecting an alternative or option. Usually, the different alternatives and
options have different consequences with regard to the forces. To illustrate the alterna-

���������	����
����

�������

���������	����
����

�������

���������	����
����

�������

���������	����
����

�������

����������	
��	��

���

�	�������	
��	����������

���������
�	�����������������

���	
��	�

�������

���������

���
���������	����
����

�������

������������	
��	����������
	����
���

�������

��������	�������

�����
���	����

����������	
��	�

	����
���

�������

�������

�

	�����	���	����

���������
���

���	
��	��

�����	�	�

�����������

������
�������
���������

���������

��������������

������	����

������
�

 �������!��!�����������

������

�����	� ���

�������

������

�����	����

�������

	����
����

�������

���������	����
����

�������

��������!��	���

"	��

����#	���

��������

	����
���

�������

	����
����

�������

�������

�����	�������

�������

���������

	����
�����������

$�������

�

	�����	��

�	���

���������

��������� �	#�����	���
�������%�������	��

������������

�������&��
�	��

������������

����������!����

������������

���������"��%����

������������

Figure 1. Dependencies between architectural decisions

tives or options, we describe a few known uses. Finally, decisions have relationships to
other decisions. For instance, a decision can be a follow-on decision to another decision,
if a specific alternative or option is chosen.

4 Architectural Decisions

In this section, we describe architectural decisions architects must make for planning,
setting-up, developing, and installing a model repository. In particular, we focus on
the underlying data model design – the core of a model repository. At first, we give a
short overview over these decisions and the dependencies between them (see Figure 1).
Subsequently, we present each of these decisions in detail.

The decision model is distilled from our experiences, our study of other projects
(both open source and commercial), as well as the documented experiences of others.
Please note that the decisions and their alternatives are for this reason not exhaustive.

– Select Basic Repository Technology: Usually, one of the first decisions is which
basic technology should be used for the repository. Depending on the types and
amounts of models or metadata to be stored, either an XML database, a specific file
structure, or a standard relational database are alternatives.

– Select XML to NXD Mapping: When architects decide for an XML database, they
can select between two basic mapping alternatives, namely an XSD model-based
and a text-based approach.

– Select XML to RDBMS Mapping: When architects choose an RDMBS, an important
follow-on decision is how to map the XML documents to the database, namely by
a domain model mapping or an XSD model mapping.

– Select XML to File Mapping: When architects decide for a file storage solution, they
can select between three basic mapping alternatives, namely a XSD model-based,
a domain model-based and a simple text-based approach.

– Select Repository Type: Depending on important decision drivers such as searching
capabilities and data categorization, architects can decide for a Model Repository,
a Metadata Repository, or a Model and Metadata Repository.

– Select Support for Metamodel: When architects decide for storing models by select-
ing the Model Repository and Model and Metadata Repository respectively, they
optionally can choose a Metamodel that specifies the elements of the stored models.

– Select Modeling Levels Stored in the Repository: Architects have to select the mod-
eling levels such as models, model instances, source code, and runnable code to be
stored in a Model Repository or a Model and Metadata Repository.

– Select Metadata Types: In case a Metadata Repository or a Model and Metadata
Repository is used, architects can select model-independent metadata such as ver-
sion information, ownership, affiliations, and security data.

– Select Version Metadata Types: An optional follow-on decision of selecting neces-
sary metadata types is choosing an adequate version granularity. Versioning can be
either settled on the model or model element level.

– Select Change Log Metadata Types: According to the decision of selecting version
metadata, architects have to decide whether to add change log metadata to either
the model or model element level.

– Select Security Metadata Types: Architects can choose among several security meta-
data options. Unlike the decisions described before, security metadata does not
solely focus on several artifacts, but on mechanisms to secure the whole repository.

– Select Life Cyle Metadata Types: Architects can opt for a life cycle manager, that
can determine if a requested action is allowed dependent on the current state.

– Select Association Model: This decision deals with whether to model relationships
in the domain models themselves or using a general association model [17].

4.1 Architectural Decision: Select Basic Repository Technology

A fundamental task of a model repository architect is to choose a basic storage technol-
ogy for the repository. As illustrated in Figure 2, there are three basic alternatives for
storing artifacts: Native XML Databases (NXD), (XML-enabled) RDMBS, and a File
System using a specific file structure. RDF triple stores are a popular variant of NXD.

Important decision drivers for this decision are the amount of data to be stored in
the repository and the expected performance/throughput the repository should provide.
For developers and administrators it is important to know which technology know-how
is needed in order to set-up and run the repository technology. One important aspect
of the repository technology are the searching capabilities provided. When a partner

���������	
��

���	
����

��������

���
�������

������	������������������

	
��������������������

�����������
�
�����	���

����������� ��

�����
����

������	�

����������� �������

������������

����
��

������������������

���������

������������������

��!�

����� ��

�����������

�����������

�������

���������

����
��

���
��� ��
�����������

�������

�������
���

����
��

���������

������������������

�����������

�����������

�����������

�����������

Figure 2. Architectural Decision: Select basic Repository Technology

or a customer should be enabled to search for a model or model instance, it is helpful
to use a repository based on standard technology, as standard interfaces often ease the
integration. For standard technologies, often a number of tools and IDE plugins exist,
which help developers and partners to work with the repository.

There are a number of follow-on decisions related to mapping XML to one of these
storage alternatives. Although we mention alternative exchange formats such as ob-
jects of a programming language (e.g., as possible in EMF [18]), because XML is the
common model data exchange format, in the following we focus only on an in-detail
description on XML model exchange format mappings.

Each of these approaches has its own advantages and limitations [19]. Particularly
with regard to throughput and huge amount of data, a NXF system may work best,
because no mapping process from XML files to database schemes is required [19]. Fur-
thermore most native XML databases support sophisticated full-text searches. However,
due to the document-centric approach, complex queries can have longer response times
compared to (XML-enabled) RDBMS systems [20]. One known use is XTC, the XML
Transformation Coordinator for XML Document Transformation Technologies [21].

Relational databases provide both maturity, scalability, portability, and stability [19,
22], and they are the RDBMS that are probably most widely used today [19]. Known
uses of model repositories based on RDMBS are the SWISS–MODEL Repository [23]
for three-dimensional comparative protein structure models and the BrainML Model
Repository [24] storing neuroscience data.

Alternatively, especially for small amounts of data, architects could choose a sim-
ple file structure as repository storage. For this, one of many known uses is the CellML
Model Repository [9] for storing and exchanging computer-based mathematical mod-
els. Of course, when using a file storage, searching a large amount of data, could be
rather inefficient in comparison to using either a NXD system or RDBMS. However,
for repositories with only small amount of data, this might be the simplest and most
appropriate solution. In particular when using proprietary file formats, the repository
can be set-up quickly, because no data mapping is required.

4.2 Architectural Decision: Select XML to NXD Mapping

Provided that architects opt to use a Native XML database, they can decide between two
basic storing alternatives (see Figure 2). Either the entire XML document can be stored
in Text format or the XML document can be modeled as DOM and mapped to XSD
Model objects such as Elements, Values, etc. [19]. In the former case the database or file
managing component has to manage indexes to improve performance on its own. In the
latter case, XML documents can be stored as type-annotated trees on disk pages [25].
These database trees are indexed with path-specific indexes, and can be queried with
XQuery and SQL/XML [25].

Whether to use a text-based or an XSD model-based mapping depends on the re-
quired performance and on the effort to establish the system. There are many NXD sys-
tems both commercial and open-source. Most XML databases such as DB2 [25] support
the XSD Model for Mapping XML to corresponding tree structures in NXD [20].

4.3 Architectural Decision: Select XML to RDBMS Mapping

Provided an RDMBS database is selected as the basic repository technology and the
raw models are provided in XML format, an important follow-on decision is how to
resolve the conflict between the hierarchical nature of an XML data model and the row
and column nature of a relational data model [19, 20]. Architects can mainly choose
between two alternatives: They can either decide to map the Domain Model elements
to a database schema or use an XSD model approach by mapping standard XML model
elements to RDBMS. By using the Domain Model mapping approach, a separate ta-
ble is generated for each domain model element. In contrast, the XSD Model mapping
approach is characterized by a lesser number of resulting tables and columns, because
unlike the Domain Model approach, several XML elements are combined into a single
table. Moreover, the resulting RDBMS schema, here, can either be generated from an
XSD or from a DTD. Algorithms for mapping XML data to relational data can be found
in [20]. See [26] for a comparison of the most cited and DTD-independent methods in
terms of resource usage and query response times.

Many commercial XML-enabled database systems such as SQL Server and Oracle
support both the XSD Model and the Domain Model mapping. In the latter approach the
existing data model is extended to an additional XML data type [20].

Decision drivers are both performance and the effort to accomplish the mapping.
In case neither an XSD nor a DTD exists, architects should decide to use the XSD
Model mapping approach. Additionally, this approach can reduce the number of join
operations incurred during query operations [19]. Florescu’s and Kossmann’s work [27]
shows that even the simplest and most obvious approaches provide a good performance.
Thus, in most cases, we would clearly recommend to use the XSD model mapping
approach, especially if performance is the most important decision driver.

4.4 Architectural Decision: Select XML to File Mapping

In case architects decide to use an appropriate file system structure and the models
are stored as XML documents, they can select among three basic storing alternatives

(see Figure 2). The file itself can contain the entire XML document as Text, the XML
document can be separated according to the XSD model, or the document can be split
into several files according to its Domain Model.

The advantages and disadvantages for using the XSD model-based or the Domain
model-based approach were already discussed in Section 4.2 and Section 4.3 respec-
tively. The obvious advantages of the text-based alternative are simplicity and the low
effort to establish the system. Thus which alternative to use depends on the required
performance and on the effort to establish the file system storage.

4.5 Architectural Decision: Select Repository Type

Depending on the repository’s functional requirements, models, model instances, and/or
metadata must be stored in a model repository. As already defined in Section 2, we can
distinguish three alternative repository types: Model Repository, Metadata Repository,
and Model and Metadata Repository. Figure 1 depicts these alternatives. Most reposi-
tories use metadata to describe general characteristics such as version information, user
information, and security data. In contrast to metadata, models contain domain-specific
elements. Some metadata, such as version information, is linked to specific models as
add-on data, other metadata, such as user authorization data, can be considered as gen-
eral repository data that is not linked to specific model data. In Section 4.8 we focus on
selecting adequate metadata types.

The decision drivers for storing models in the repository are mainly functional re-
quirements. Examples are: An important decision for architects is if the MDD paradigm
[2] should be supported using the repository architecture. When using MDD, the source
code is generated from the underlying models and these models must be accessible from
the repository. In Section 2 we stated that a repository should provide query mechanisms
to search for repository artifacts according to certain search criteria. These query mech-
anisms are based on categorized data such as domain specific model data and repository
metadata.If architects want to store non-model artifacts, in order to provide appropriate
searching mechanisms, they should at least provide these artifacts with some add-on
metadata. Accordingly, in case solely non-model artifacts are stored in the repository
and provided with add-on metadata, architects decide in favor of a Metadata Repository.

Architects choose a Model Repository if they intend to store models in the repository
and do not require additional metadata, because the domain models possibly contain
part of this information. Moreover, adding special-purpose metadata such as ownership
and affiliation information to repositories in small companies may not be necessary.

If more sophisticated queries about the repository artifacts are required, architects
should consider storing categorized model data and thus select the Model and Metadata
Repository alternative. A known use of a Model and Metadata Repository is the Data
Access Object (DAO) Repository that we developed during our studies. In our case
study (see Section 5) we give more details about the DAO repository by applying it to
our reusable architecture decision model.

Once this decision has been made and if we have decided for one of the alternatives
that include metadata, we need to make a follow-on design decision, selecting the types
of metadata that are represented in the repository. Accordingly, if we have decided for

�����������	
��

�	
�

����	���

������ ��������	���

��������	���������

��������	���������

�
	�
���
������	���������

�	��������������	���������

(a) Select Support for Metamodels

�������

��	��
��������

������ ��	���

��	������������

���������	�

�����������	�

������

������

������

(b) Select Modeling Levels Stored in the
Repository

Figure 3. Architectural Decisions

one of the alternatives that include modeling data, we need to make one or two follow-
on decisions: An optional follow-on decision is selecting support for metamodels, and
an mandatory decision is selecting the modeling levels stored in the repository.

4.6 Architectural Decision: Select Support for Metamodel

Provided that architects decide for a Model Repository or a Model and Metadata Repos-
itory, they can select a metamodel for the domain models to be stored. A metamodel
describes models and thus is the basis for model validation by tools. Eessaar illustrates
the advantages of using metamodels [28]: Metamodels are a clear and useful supple-
ment to textual specifications. Compared to a purely textual specifications, metamodels
enable a much more compact and clear overview of the model. In addition, metamodels
such as UML and EMF [18] can support visualizing models and thus ease model read-
ability and understandability. It has also been demonstrated that a metamodel could be
used to compare heterogeneous models. In the literature there are various approaches
addressing the problem of integrating heterogeneous models [29, 30].

Decision drivers are both the functional and technical requirements. Firstly, archi-
tects might use an explicit metamodel if they wish to benefit from one or more of the
properties described above. Secondly, technology reasons such as using MDD [2] can
be a determining factor for using a metamodel. In case of MDD [2], architects profit
from tool support. For instance, they can use a metamodel-based generator, such as
openArchitectureWare [31], to generate source code from models specified by a corre-
sponding metamodel such as EMF [18]. If architects do not want to profit from these
functional and technical features, they can make use of a simple, but much less flexible
approach: To support no explicit meta-model. That means, to hard-code the metamodel
information and thus specifying a model without an underlying metamodel.

In addition to that option, in Figure 3(a) we illustrate several metamodel options
among which architects can select: EMF [18], UML, XSD, and a proprietary domain
meta model (see Figure 3(a)). They should choose a proprietary domain metamodel, if
standard metamodels such as UML and EMF [18] do not fulfill the requirements.

A known use of using EMF [18] metamodels, is our VbMF [32] repository that we
developed during our studies. A known use for a model repository that loads UML2
models into EMF is the AndroMDA’s EMF UML2 Repository [33]. In contrast, the
BrainML Model Repository [24] consists of a standard XML Schema, defining XML
elements, and referencing other schema definitions using standard mechanisms.

4.7 Architectural Decision: Select Modeling Levels Stored in the Repository

Provided that architects choose a Model Repository or a Model and Metadata Repos-
itory, an important follow-on decision is to select the modeling levels stored in the
repository: Models, model instances, source code, runnable (byte) code, or all of them.

Figure 3(b) depicts this architectural decision and its four modeling layer options.
In the following we specify important decision drivers for each of these layers.

At first, architects should face the question whether to store models or not. In this
context an important decision driver is automatic validation of new models and model
instances. When storing models in addition to model instances, the model instances
can be validated using their models. In order to accomplish this validation, the model
instances have to be linked with their specific models. Accordingly, if an automatic
syntax-check fails, the publishing request can be rejected by the repository. Further-
more, in an extended version the repository could try to automatically adapt existing
model instances when the underlying model changes. When architects do not want to
profit by the advantages of automatic syntax checking and automatic adaption of source
code, they can ignore the model layer in favor of saving storage space and effort.

The next decision is whether architects should store model instances in the repos-
itory. This decision is closely related to the required search capabilities. Besides the
desired search capabilities, another decision driver is whether to support MDD or not.
In case MDD is supported, model instances rather than source code are stored by the
repository because the generator can use transformations to generate the source code. In
some cases, this means that the transformations for the generator should also be placed
in the repository . However, even for non-model-driven projects, we recommend storing
model instances, if at least simple queries to find certain source code are required.

There is also the option to store the model instances but not the models. An example
of a known use that stores model instances, but no models is the Eclipse CDO Project
[6]. In contrast, another known use, the Netbeans Metadata Repository (MDR) [7],
stores both models and model instances.

Whether the repository should provide source code, depends both on the technical
requirements, such as using MDD [2], and on the development environment and plat-
form of repository users. When MDD is used, commonly technology- and platform-
independent model instances are stored in the repository. Accordingly, on the client
side, repository users can generate source code from these model instances according to
their specific platform- and technology requirements. Thus, if more than one technology
or platform should be supported, source code should not be stored in the repository, but
generated by the repository users. Otherwise, if no technology- and platform-dependent
source code generators are required, architects can decide to store the source code in
the repository. In this case, generated source code can also be stored in the repository,
e.g., to archive it. Alternatively, the source code can be stored in an external repository

�����������	����

���

�������

����	���
������

��������

����	���

��	��

��	���

�������
�����������

����	���

����	����
�

��������

����	���

�����������

����	���

���������������������

����	���

�	������������������

��	���������������

����	���

�������������	���

����������������	�

������������

����	���

������

������

������

������

������

������

�����������	�

����������������	���

������

������

������

�������������������

��������� ���������

��������

!������"�������

#�������	��

����	����
�

����	����
�

����	����
�

������������������

����	����
���

��������������

����	����
���

���������

��������

���������

��������

����������������

����	����
���

���������

��������

������������������

����	����
���

���������

��������

Figure 4. Architectural Decisions: Select Metadata Types

specified by references in the models (if the model instances should be aware of the
source code artifacts) or appropriate metadata information (for more information about
selecting metadata types please refer to Section 4.8).

The next decision architects should make is whether the repository should supply
runnable byte code and how. In the following we present three alternatives: The first
alternative proposes to build the source code on the client side. This alternative primar-
ily depends on the users’ source code build environment that has to fulfill the technical
requirements to build the source code. The second alternative discusses storing the byte
code in the repository itself. A disadvantage of this alternative are the associated storage
costs. An advantage is that building the source code on the client side is not necessary.
The third alternative only provides metadata about where and how to locate a runnable
software component. From the users’ point of view, this alternative is probably the sim-
plest one. However, for technical reasons, such as performance issues, architects could
reject this alternative and decide in favor of storing or building the byte code.

4.8 Architectural Decision: Select Metadata Types

Common repositories include metadata to provide additional, model-independent in-
formation of repository artifacts. Figure 4 shows a few options: Metadata can include
versioning information; change log data; ownership and/or affiliation information; se-
curity data such as information on role-based access control and identity management;
location information; life cycle data and data for internationalization features (see Sec-
tion 4.8). In the following we give a detailed overview of each of these metadata options
commonly used in repositories. Architects can use this checklist to decide whether to
apply a certain metadata type or not. We have developed this checklist by studying com-
mon repositories to the best of our knowledge. However, due to the diversity of possible
metadata types, the list is not exhaustive. After illustrating the checklist, in the proceed-

ing sections (4.9, 4.10, 4.11, 4.12) we particularly focus on the follow-on decisions as
well as resulting options and alternatives depicted in Figure 4.

Version Information Metadata Architects have to decide whether to add version meta-
data or not. In the simple case, architects can opt for using no versioning. For this
purpose, they solely need to provide the most recent version of repository artifacts.
Otherwise, if the repository shall support version management, the have to make the
follow-on decision illustrated in Section 4.9.

Change Log Metadata Change log metadata can include information about which user
inserted or updated a certain repository artifact. The decision whether to add change
log data is based on the previous decision of adding version information metadata.
Thus, architects can not opt for providing change log metadata, not until they decide in
favor of using version metadata. In Section 4.10, we present the follow-on decision of
selecting different change log metadata types.

Ownership and Affiliation Metadata Architects can decide to tag repository artifacts
with ownership and affiliation metadata. This information can contain name, contact
details, and affiliation information of repository artifact owners. By using this meta-
data, architects can enhance reuse of stored artifacts such as models, model instances
and source code. Adding this metadata and thus being able to search for specific arti-
facts, is especially essential in large and medium-sized companies. If, however, stored
repository artifacts are intended to be solely used by a small team of developers anyway,
architects could determine to omit this type of metadata.

Security Metadata According to their security requirements, architects can choose one
or more types of security metadata (see ebXML Registry Services and Protocols [17]).
Please note that unlike other types of metadata, security metadata does not solely focus
on several artifacts, but on mechanisms to secure the whole repository. In Section 4.11
we present some basic security options architects can install.

Location Metadata Another type of metadata architects can choose is location meta-
data. As already mentioned in Section 4.7, source code and runnable code can be linked
to models and model instances stored in other repositories. The decision drivers for de-
ciding whether source code and runnable (byte) code should be stored in the repository
itself or in an external repository are the same as those describd in Section 4.7. Besides
source code and runnable code, location metadata can be important, e.g., for linking
model instances or source code to specific documentation on document servers. In or-
der to save storage cost and maintainance efforts, we recommend to decide in favor of
referring to existing documentation instead of storing this information redundantly.

Life Cycle Metadata A repository incorporating life cycle metadata manages all life
cycle actions such as inserting, updating, deleting, and deprecating repository artifacts.
Besides these basic actions, the life cycle manager can oversee further actions such as
validating model instances and finally publishing changes to repository users. Depend-
ing on the current life cycle state, the life cycle manager determines if the requested

action is allowed and consequently performs or rejects the action. In Section 4.12 we
present the follow-on decision of selecting a suitable life cycle metadata type.

Internationalization Metadata Internationalization metadata can be used for storing
location-specific settings, such as different languages and coding sets. In the EBXML
standard [17] internationalization metadata is defined as attributes that are I18N capable
and may be localized into multiple native languages. Architects may choose internation-
alization metadata, if e.g. international project members shall access the repository or
different coding sets shall be supported.

4.9 Architectural Decision: Select Version Metadata Types

When storing models, architects can decide to either add version information meta-
data to the whole model or to each model element. The CellML Model Repository [9]
is a known use of a repository, that stores version information at the model level. If
a CellML model is modified, the new updated version(s) are added to the repository
and they are automatically allocated a new version number [9]. The BrainML Model
Repository [24] is another known use that adds version information metadata at the
model level. Version numbers start at 1 and are incremented whenever an augmented
or modified version of the model is submitted. Earlier versions remain available in the
repository and can be referenced by their version number to support data using them.

Standards such as UDDI [34], EbXML [17], and the Content Repository API for
Java Technology of Java Specification Request (JSR) 170 [35] support adding version
information to model elements. JCR consists of one or more workspaces that each con-
sist of a tree of items representing either nodes or properties. A content repository [35]
workspace that supports versioning may contain both versionable and nonversionable
nodes. A known use open-source implementation variant of a Java Content Reposi-
tory is eXo JCR [36]. According to the JCR , eXo JCR supports separate versioning of
repository artifacts such as model elements.

The decision, which of the alternative to select, depends on the type of update-
strategy in case of changes. If selective updates are desirable, we recommend using
versioning for Model Elements. If artifacts such as models should be updated as a whole,
the alternative of versioning Models rather than Model Elements should be chosen.

4.10 Architectural Decision: Select Change Log Metadata Types

The decision whether to set-up versioning on the model or model element level is
closely related to the question how fine-grained changes need to be traced and mon-
itored. When choosing the alternative to version Model Elements a specific event log of
changes for each model element is stored. An alternative is versioning of Models where
an event log of changes is only available on the model level.

If architects want to provide change log data on the model element level, the corre-
sponding change log information on the model level can be a view of all related model
element change log data. Moreover, when architects only need change logging on the
model level, they save effort compared to storing logs on the model element level. How-
ever, if architects already decided in favor of versioning, the change log information

should be set-up on the same model and model element respectively as selected for the
previous version management decision.

4.11 Architectural Decision: Select Security Metadata Types

Provided that architects settled for storing security metadata, they can decide in favor
of one or more of the following options.

The first option is to provide access log metadata. Hereby, the repository keeps
a journal of all significant actions performed by repository requesters on repository re-
sources. Another option is to establish identity management and authentication. Choos-
ing this option means, the repository manages the identity and credentials associated
with authorized users and services. Finally, architects can enable authorized users to
perform specific actions or to access specific resources by establishing the authorization
and access control option. The repository provides a mechanism to protect its resources
from unauthorized access. In this context, architects can augment a role based access
control solution with well-defined authorizations for each role.

4.12 Architectural Decision: Select Life Cycle Metadata Types

In this decision, architects have two basic alternatives: They can either assign a life cy-
cle state to each repository artifact or implement a general process model containing
flows of activities. In the latter case, a process engine is needed to drive the execution
of activities [8]. When deciding for the first alternative, the complexity of the life cycle
grows much more than proportional by the number of life cycle states. Thus, if archi-
tects intend to use only basic life cycle actions such as insert, update, and delete, this
alternative is a very effective one.

A known use implementation incorporating life cycle metadata is the ebXML Reg-
istry Reference Implementation Project [37]. The exXMLRR project aims at delivering
a functionally complete reference implementation for the OASIS ebXML specifica-
tion [17]. According to the ebXML standard, each RegistryObject instance must have a
life cycle status indicator that is assigned by the registry. In contrast, the alternative of
using a general process model should be used if there are potentially new actions that
will be developed in future. Accordingly, if architects attach a great value on life cycle
scalability, they should decide in favor of a general life cycle model.

4.13 Architectural Decision: Select Association Model

Modeling associations among models and model instances is a commonly addressed
problem today. As described in [38] a current problem in process-driven SOAs is to re-
trieve the relationships between different components, such as which service operations
can be invoked from which process activity and which services access which data. Fur-
thermore components that are not depending on any component can be seen as obsolete
and thus can be deleted [38]. Another benefit of modeling dependencies between differ-
ent components is to visualize these dependencies to better support understandability
of the models. For this purpose, graphical tools can be designed because the tools are
what give value to a repository [39].

����������	
��	��

���

�	�����������������

���	
��	�

�������

���������

���

��������	�������

�����
���	����

����������	
��	�

�������

�

	�����	���	����

���������
���

���	
��	��

�����	�	�

��������������

������	����

������
�

�����������	���

 	��

����!	���

�������

�����	�������

�������

�	!�����	���

�����	���

�	���

�	����"�
�����

#�$�����!	���

%��
�	��

��������

�	����	�

��������

�	���

&�������	��

��������

�������

��������

�� ��&����

��������

"�������������!����

����������������	�

��������

����

��	����������

����	��'���	������

����

�&	���	�

��������

()���
��������

� ������	����������

�

��������� ��&����

�������	����	
��	��

���� ���

�������&�������	��

������������

�������%��
�	��

������������

���������������

������������

��������� ��&����

������������

Figure 5. Case Study: Selected Architecture Decisions of the DAO Repository

As seen in Figure 1 there are two basic alternatives among which architects can
choose: As described in our previous work [38], general models can specify associations
between certain special-purpose models. In the example, our view-based models of the
View-based Data Modeling Framework describe the associations between processes,
services, and DAOs [38]. If domain models do not specify associations between them,
the repository should handle these associations by defining a general Association Model
as specified in the EbXML standard [17]. EbXML’s Association Information Model
defines classes that enable artifact instances to be associated with each other.

5 Case Study

In this case study we illustrate major design decisions that we made when setting-up
our own Data Access Object (DAO) Model Repository. During the design process of the
repository we were faced with several fundamental architectural decisions. In this case
study we reflect the decisions made to set-up our DAO Model Repository by walking
through the reusable architectural decision model presented in the section before (see
Figure 5).

Before we walk step by step through our reusable architecture decision model we
would like to shortly motivate the use of a Data Access Object (DAO) Model Reposi-
tory: Developers typically store DAOs in local file systems and concurrent versioning
systems, such as CVS or SVN. However, especially as the number of DAOs grows,
finding a particular DAO on a concurrent versioning system, in order to reuse the DAO,
can become rather time-consuming. Thus, developers need more sophisticated query

mechanisms to quickly locate existing database operations in order to increase DAO
reuse. The DAO Model Repository supports queries for retrieving desired DAOs by
diverse search criteria, such as finding all DAOs accessing a particular database, all
DAO operations inserting data into a particular table, or all DAO operations updating a
certain column of a table. Moreover, DAO developers are able to query ownership in-
formation about a certain DAO and thus look for all DAOs registered by a certain user
or department. Furthermore we use a model-driven approach so that DAO developers
do not have to deal with various Object Relational Mapping (ORM) technologies. The
goal was that developers simply need to generate source code from a chosen model in-
stance persistently stored in the DAO Model Repository or from a newly defined model
respectively to create a DAO for a specific ORM technology.

1. Select Basic Repository Technology: When setting-up our DAO repository, we de-
cided in favor of the (XML-enabled) Relational Database alternative. Our main
decision driver was that RDBMS are very common and hence, we can benefit from
tool support. We decided against using a NXD system, because our DAO repository
models have many associations between them and thus many joins are necessary
when querying DAO data. Accordingly, they are the joins in NXD storages, that can
have longer response times compared to RDBMS. As searching a large number of
DAOs could be rather inefficient, for us, a File System storage, was out of question.

2. Select XML to RDBMS Mapping: We decided in favor of the XSD Mapping Model
alternative because this approach requires less tables to join and thus results in
quicker response times than the Domain Model approach.

3. Select Repository Type: Our DAO Model Repository should primarily store models,
but also to be defined metadata. As a consequence we opted for the Model and
Metadata Repository alternative.

4. Select Support for Metamodel: We chose EMF [40] as an explicit metamodel to
specify our models of Viewbased Data Modeling Framework [38]. Thus, we can
benefit from existing tool support such as openArchitectureWare [31] to generate
code from existing model instances.

5. Select Modeling Levels Stored in the Repository: Our generated DAO source should
be dependent on the specific Object Relational Mapping (ORM) technology such
as HIBERNATE [41] or IBATIS [42]. For this purpose our DAO Repository stores
technology- and platform-independent model instances, that are used for source
code generation on the client side. Another requirement was to automatically val-
idate checked-in model instances. In order meet this requirement, we settled for
storing models in addition to model instances. As they are the repository users that
have to generate the source code, they need to integrate required source code gener-
ation tools into their development environment. Accordingly, repository users gen-
erate runnable code by compiling the generated source code. Thus our repository
does neither store source code nor runnable code.

6. Select Metadata Types: According to the decision of selecting the Model and Meta-
data Repository as repository type, we decide to add metadata to our repository. In
the following we focus on those decisions that are not covered by follow-on de-
cisions: We settled for adding ownership and affiliation metadata to being able to
efficiently set-up our prototype in medium-sized and large companies. Up-to-now,

we do not relate to documentation or source code stored on other repository. Thus
we do not store location metadata in our repository. As our Repository still is a pro-
totype solution, at the moment, we do not provide internationalization metadata.

7. Select Version Metadata Types: Our DAO repository requires versioning artifacts.
However, we wanted to save extra efforts related to versioning model elements.
Thus, we decided in favor of adding version information metadata to whole models
and model instances.

8. Select Change Log Metadata Types: As this decision is based on the decision of se-
lecting version metadata types, we opted for adding change log metadata to models
and model instances rather than to model and model instance elements.

9. Select Security Metadata Types: As we intend to provide our repository to industry,
we added basic security metadata for all three security options illustrated before,
namely access log metadata, identity management and authentication metadata
and authorization and access control metadata.

10. Select Life Cycle Metadata Types: Our repository incorporates a basic life cycle
manager, that manages basic actions such as insert, update, delete and validate. As
we required both a simple solution and the life cycle manager not necessarily to be
scalable related to new actions and states, we opted for assigning a life cycle state
to repository artifacts. We have decided against using a general process model,
because this solution seems a bit oversized for our prototype repository solution.

11. Select Association Model: Our DAO models incorporate relationships between do-
main model instances. Thus, we use our own domain models to specify associations
between DAO model instances instead of using a general association model.

6 Related Work

To be able to accomplish this work we were inspired of repositories in general. In [8],
Bernstein and Dayal give a fundamental overview of repository technology as well
as functional requirements of a repository. Afterwards, we focused on repositories in-
corporating metadata. A common representative of Metadata Repositories are service
repositories that contain metadata about location information such as service bindings
according to the Web Service Description Language (WSDL). Here, there exist various
standards such as [34], ebXML [17] and related implementations such as the ebXML
Repository Reference implementation [37] and the WebSphere Service Registry and
Repository that is based on UDDI.

Furthermore we focused on current model repository standards and implementa-
tions. As illustrated in this paper, there are many known model repository implemen-
tations such as Netbeans MDR [7] that stores models and model instances and Eclipse
CDO [6] that stores models, but no XMI model instances. In [43] France et.al.’s inter-
esting approach introduces a development plan for setting up model repositories storing
MDD artifacts. In contrast to our paper, the authors of the ReMoDD project in particu-
lar focus on the types of interactions that are most useful for repository users. Besides,
the ReMoDD project’s scope of research does not include storing metadata.

Finally, there are many articles that focus on each of the illustrated decisions for
their own. For example, several work [19, 20] focus on algorithms of mapping XML

model instances to a certain Repository storage type. However, for the best of our
knowledge there is no work that connects all these illustrated architecture decisions
with each other. In [44] Milanovic et.al. presents an approach of designing and imple-
menting a repository that supports storing and managing of artifacts such as metamod-
els, models, code, and their metadata. As our approach, the illustrated repository stores
metadata such as versioning information. However they do not provide an overview
about different types of metadata such as those presented in our work. They exem-
plary illustrate the design of the BIZYCLE repository architecture without identifying
architecture decisions to select different alternatives and options. Instead of involving
management issues such as project management and user control, our decisions primar-
ily deal with the question which artifacts should be stored in a repository and how to
model the associations between them.

7 Conclusion and outlook

In this paper we introduced a Reusable Architecture Decision Model (RADM) for
setting-up Model and Metadata Repositories. These decisions in particular aim at data
design for Model and Metadata Repositories. We provided a decision basis for fun-
damental choices such as selecting a basic repository technology, choosing appropri-
ate repository metadata, and selecting suitable modeling levels of the model informa-
tion stored in the repository. Our experiences result from developing our own Model
Repositories, from researching on other works, discussions with other people involved
in repository projects, and applying our RADM in a case study.

Part of our future work could be a more precise evaluation of our decisions based
on using quality management methods such as Quality Function Deployment (QFD).
QFD could capture the repository’s requirements and thus selectively deploying the
activities for each decision alternative. Besides specifying reusable architecture deci-
sions for setting-up Model and Metadata Repositories we increasingly concentrate on
server-client interactions and repository client tools, that give value to the repositories.
Finally, using ontologies for querying repository artifacts could improve the quality of
the retrieved result sets.

Acknowledgement This work was supported by the European Union FP7 project
COMPAS, grant no. 215175.

References

1. Riggio, R., Ursino, D., Kühn, H., Karagiannis, D.: Interoperability in meta-environments:
An XMI-based approach. In: CAiSE. (2005) 77–89

2. Völter, M., Stahl, T.: Model-Driven Software Development: Technology, Engineering, Man-
agement. Wiley (2006)

3. Greenfield, J., Short, K., Cook, S., Kent, S.: Software Factories: Assembling Applications
with Patterns, Models, Frameworks, and Tools. John Wiley & Sons (2004)

4. Sriplakich, P., Blanc, X., Gervais, M.P.: Supporting transparent model update in distributed
case tool integration. In: SAC ’06: Proceedings of the 2006 ACM Symposium on Applied
Computing, New York, NY, USA, ACM (2006) 1759–1766

5. Kramler, G., Kappel, G., Reiter, T., Kapsammer, E., Retschitzegger, W., Schwinger, W.: To-
wards a semantic infrastructure supporting model-based tool integration. In: GaMMa ’06:
Proceedings of the 2006 international workshop on Global integrated model management,
New York, NY, USA, ACM (2006) 43–46

6. Eclipse: Eclipse CDO. http://wiki.eclipse.org/CDO (CCopyright 2009)
7. NetBeans Community: Metadata repository (MDR). http://mdr.netbeans.org/ (Retrieved

January, 2009)
8. Bernstein, P.A., Dayal, U.: An overview of repository technology. In: VLDB ’94: Proceed-

ings of the 20th International Conference on Very Large Data Bases, San Francisco, CA,
USA, Morgan Kaufmann Publishers Inc. (1994) 705–713

9. Lloyd, C.M., Lawson, J.R., Hunter, P.J., Nielsen, P.F.: The cellml model repository. Bioin-
formatics 24(18) (2008) 2122–2123

10. Taylor, R.N., van der Hoek, A.: Software design and architecture: The once and future focus
of software engineering. Future of Software Engineering (FOSE ’07) (2007) 226–243

11. Jansen, A., Bosch, J.: Software architecture as a set of architectural design decisions. In:
Proceedings of the 5th Working IEE/IFP Conference on Software Architecture, WICSA.
(2005)

12. Zimmermann, O., Zdun, U., Gschwind, T., Leymann, F.: Combining pattern languages
and reusable architectural decision models into a comprehensive and comprehensible de-
sign method. In: WICSA ’08: Proceedings of the Seventh Working IEEE/IFIP Conference
on Software Architecture (WICSA 2008), Washington, DC, USA (2008) 157–166

13. Kruchten, P., Lago, P., Vliet, H.: Building up and reasoning about architectural knowledge.
In Hofmeister, C., ed.: QoSA 2006 (Vol. LNCS 4214). (2006) 43–58

14. Tyree, J., Ackerman, A.: Architecture decisions: Demystifying architecture. IEEE Software
22(19–27) (2005)

15. Harrison, N., Avgeriou, P., Zdun, U.: Using patterns to capture architectural decisions. IEEE
Software (July/Aug. 2007) 38–45

16. Zimmermann, O., Gschwind, T., Kuester, J., Leymann, F., Schuster, N.: Reusable architec-
tural decision models for enterprise application development. In Overhage, S., Szyperski, C.,
eds.: Quality of Software Architecture (QoSA) 2007. Lecture Notes in Computer Science,
Boston, USA, Springer-Verlag Berlin Heidelberg (July 2007)

17. OASIS/ebXML Registry Technical Committee: Registry Services Specification v2.0. http://
www.ebxml.org/specs/ebrs2.pdf (Dec 2001)

18. Eclipse: Eclipse Modeling Framework Project. http://www.eclipse.org/modeling/emf/ (Re-
trieved December, 2008)

19. Haw, S., Rao, G.R.K.: Query optimization techniques for xml databases. International Jour-
nal of Information Technology 2(1) (2005) 97–104

20. Atay, M., Sun, Y., Liu, D., Lu, S., Fotouhi, F.: Mapping xml data to relational data: A dom-
based approach. In: Eighth IASTED International Conference on Internet and Multimedia
Systems and Applications, Kauai. (2004) 59–64

21. Fotsch, D., Speck, A.: XTC – The XML Transformation Coordinator for XML Document
Transformation Technologies. In: DEXA ’06: Proceedings of the 17th International Confer-
ence on Database and Expert Systems Applications, Washington, DC, USA, IEEE Computer
Society (2006) 507–511

22. Khan, L., Rao, Y.: A performance evaluation of storing XML data in relational database
management systems. In: WIDM ’01: Proceedings of the 3rd international workshop on
Web information and data management, New York, NY, USA, ACM (2001) 31–38

23. Schwede, T., Kopp, J., Guex, N., Peitsch, M.C.: Swiss-model: An automated protein
homology-modeling server. Nucleic Acids Res 31(13) (July 2003) 3381–3385

24. BrainML: Neurodatabase construction kit, repository server. http://brainml.org (Retrieved
January, 2009)

25. Nicola, M., van der Linden, B.: Native xml support in db2 universal database. In: VLDB
’05: Proceedings of the 31st international conference on Very large data bases, VLDB En-
dowment (2005) 1164–1174

26. Emadi, M., Rahgozar, M., Ardalan, A., Kazerani, A., Ariyan, M.M.: Approaches and
schemes for storing dtd-independent xml data in relational databases. Trans. on Engineering,
Computing and Technology 13 (May 2006)

27. Florescu, D., Kossmann, D.: Storing and querying xml data using an rdmbs. IEEE Data Eng.
Bull. 22(3) (1999) 27–34

28. Eessaar, E.: Using metamodeling in order to evaluate data models. In: AIKED’07: Proceed-
ings of the 6th Conference on 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge
Engineering and Data Bases, Stevens Point, Wisconsin, USA, World Scientific and Engi-
neering Academy and Society (WSEAS) (2007) 181–186

29. Nayak, R., Xia, F.B.: Automatic integration of heterogenous xml-schemas. In: iiWAS. (2004)
30. Castano, S., Ferrara, A., Ottathycal, G.S.K., Antonellis, V.D.: A disciplined approach for

the integration of heterogeneous xml datasources. In: DEXA ’02: Proceedings of the 13th
International Workshop on Database and Expert Systems Applications, Washington, DC,
USA, IEEE Computer Society (2002) 103–110

31. openArchitectureWare: oaw. http://www.openarchitectureware.org (Aug 2002)
32. Tran, H., Zdun, U., Dustdar, S.: View-based and model-driven approach for reducing the

development complexity in process-driven SOA. In Abramowicz, W., Maciaszek, L.A., eds.:
Business Process and Services Computing: 1st International Conference on Business Process
and Services Computing (BPSC’07), September 25-26, 2007, Leipzig, Germany. Volume
116 of LNI., GI (2007) 105–124

33. AndroMDA: Emf uml2 repository. http://galaxy.andromda.org/docs-3.2/andromda-
repository-emf-uml2/index.html (Nov 2006)

34. Clement, L., Hately, A., von Riegen, C., Rogers, T.: UDDI Version 3.0.2, UDDI Spec Tech-
nical Committee Draft. http://www.uddi.org/pubs/uddi v3.htm (Oct 2004)

35. Nuescheler, D., Piegaze, P., other members of the JSR 170 expert group: Content Repository
API for Java Technology Specification, Java Specification Request 170. http://www.jcp.org/
en/jsr/all (May 2005)

36. eXo: Java content repository (jcr - jsr 170). http://www.exoplatform.org/portal/public/en/
product/oemisv (Retrieved December, 2008)

37. freebXML: Oasis ebxml registry reference implementation project. http://
ebxmlrr.sourceforge.net/ (July 2007)

38. Mayr, C., Zdun, U., Dustdar, S.: Model-driven integration and management of data access
objects in process-driven soas. In: ServiceWave ’08: Proceedings of the 1st European Con-
ference on Towards a Service-Based Internet, Berlin, Heidelberg, Springer-Verlag (2008)
62–73

39. Bernstein, P.A.: Repositories and object oriented databases. In: BTW. (1997) 34–46
40. Eclipse: Eclipse modeling framework (emf). http://www.eclipse.org/emf/ (2006)
41. Hibernate: Hibernate. http://www.hibernate.org (2006)
42. Ibatis: Ibatis. http://www.ibatis.org (2006-2007)
43. France, R.B., Bieman, J.M., Cheng, B.H.C.: Repository for model driven development (re-

modd). In: MoDELS Workshops. (2006) 311–317
44. Milanovic, N., Kutsche, R., Baum, T., Cartsburg, M., Elmasgünes, H., Pohl, M., Widiker,

J.: Model&metamodel, metadata and document repository for software and data integra-
tion. In: MoDELS ’08: Proceedings of the 11th international conference on Model Driven
Engineering Languages and Systems, Berlin, Heidelberg, Springer-Verlag (2008) 416–430

