
Software Service Engineering: Tenets and Challenges

Willem-Jan van den Heuvel, Olaf Zimmermann2, Frank Leymann3, Patricia Lago4, Ina
Schieferdecker5, Uwe Zdun6, and Paris Avgeriou7

1Tilburg University, 2IBM Zurich Research Lab, 3Stuttgart University,
4VU University Amsterdam, 5Fraunhofer Institute, 6Vienna University of Technology,

7University of Groningen

Abstract

Service-Oriented Architecture (SOA) constitutes an

important, standards-based and technology-
independent distributed enterprise-computing
paradigm and architectural style for discovering,
binding, assembling, and publishing loosely-coupled
and network-available software services. With SOA-
enabled applications operating in highly complex,
distributed, and heterogeneous execution
environments, SOA engineers are confined by the
limits of traditional software engineering. In this
article, we scrutinize the fundamental tenets
underpinning the development and maintenance of
SOA systems. In particular, we introduce software
service engineering as an emerging discipline that
entails a departure from traditional software
engineering disciplines such as component-based
development, embracing the ‘open world assumption’.
Lastly, this article surveys research challenges.

1. Introduction

Service Oriented Architecture (SOA) is rapidly
emerging as the premier distributed computing
paradigm for developing, integrating, and evolving
enterprise applications [8]. Many organizations are
now in their early use of SOA, and assume that to
engineer services they can simply apply principles and
techniques from pre-existing software engineering
paradigms such as Object Orientation (OO, [5]) or
Component-Based Development (CBD, [2]), or the
traditional architecting approaches (views like
components and connectors) which are too generic for
SOA. However, while SOA-enabled applications are
operating in highly complex, distributed, unpredictable
and heterogeneous execution environments, SOA
engineers quickly encounter the limits of such
traditional software engineering paradigms. Moreover,

and probably more problematic, SOA confines itself to
prescribing a rather rudimentary reference model for
application development and deployment, defining
basic roles such as service consumer (requester),
service provider and service broker (repository). It is
left up to the discretion of the engineers how to
engineer software service applications within this
model.

Our ultimate objective is to scrutinize the viability of
existing engineering paradigms for developing and
maintaining software service-based applications,
including CBD and OO, and to explore their
shortcomings. In particular, in this paper we
investigate and further explore the distinguishing
characteristics of a new engineering discipline for
SOA-enabled applications, which we call Software
Service Engineering (SSE). We define the key SSE
tenets. Lastly, this article aims at landscaping the key
challenges for establishing SSE as a discipline.

The research that is presented herein has been
conducted adopting a hybrid research approach,
combining our background from literature surveys,
case studies and best practices, and brainstorming
sessions with key representatives of several
communities – including key researchers and
practitioners from the domain of software engineering,
software patterns, SOA, and method engineering.

2. Background: SOA Principles and
Patterns and SOA Design

Service-oriented architecture (SOA) as an architectural
style based on common principles and patterns (such
as Business Process Orchestration/Choreography and
Enterprise Service Bus, [6]) allows service engineers
to effectively (re)organize and (re)deploy business
processes, functional components, and information

assets as business-aligned, loosely-coupled and
autonomous software services. SOA is unique in that it
aims at combining various related, yet up to now
largely isolated disciplines such as business process
management, distributed computing, enterprise
application integration, software architecture, and
systems management.

Software architects on SOA projects are responsible
for defining the architecturally-significant
requirements (ASRs) during architectural analysis,
such as use case and business process models, but also
software quality attributes. Subsequently they propose
design decisions to satisfy the ASRs during
architectural synthesis resulting in designing the
different aspects of the system by choosing and
populating a number of architectural views iteratively
and incrementally. The architects must ensure that the
decisions made during synthesis are an optimal match
against the ASRs defined through analysis, during the
activity of architectural evaluation [3]. Finally,
architects lead project teams via coaching and review
activities, and manage the relationships with external
stakeholders on the technical level. All these activities
and interactions influence each other.

At the early elaboration stages, the conceptual
architectures of SOA-based systems are
straightforward to define: they are variations of
logically layered two- or three-tier client-server
architectures, which use message passing patterns to
let service consumers and service providers
communicate as well as workflow patterns to compose
atomic services. A service registry serves as design
time or runtime directory of service providers available
to respond to service consumer requests.

During SOA design, though, architects are also
concerned with the design, installation, and
configuration of middleware components such as
Enterprise Service Buses (responsible for service
request routing, adaptation, and mediation), business
process orchestration engines (performing service
composition), and service registries (performing
service provider lookup). Individual service consumers
and providers of various types are designed,
developed, and then deployed into such SOA
infrastructures. The design solutions for these issues
and numerous others have been successfully codified
into design and architecture patterns by the software
patterns community. However the use of such patterns
in the daily practice of SOA architects and designers
has not been particularly successful to date.

3. SSE Tenets

Software service engineers cannot be expected to
embark on large-scale and complex SOA-development
and maintenance projects without relying on sound
principles and tenets underpinning the methods,
techniques, and tools offered by SSE. Without sound
SSE tenets, we cannot guarantee that the usage of
SOA-compliant methods and tools results in software
applications that meet the basic SOA criteria ensuring
that services are loosely coupled, self-contained, and
have a clean interface that is geared towards (re-)
composition.

During a Schloss Dagstuhl seminar1 organized in
January 2009, we have gathered the key distinguishing
SSE tenets. This was achieved by organizing two half-
day (brainstorm) sessions in two groups of
approximately 25 participants. During the first session
candidate SSE tenets were identified and analyzed,
while the second session was a plenary session during
which the two proposed lists were correlated,
integrated and consolidated. Note that due to reasons
of space, we have not included transcripts of these
discussions. They may be found in [1]. The discussions
were kick-started by offering a list of potential tenets
that were distilled on the basis of a literature survey
that analyzed fundamental tenets underpinning OO and
CBD (including seminal works such as [9], [10], [11],
and [12]), but also input from other fields such as
telecommunication services [13], networking [14] and
testing [15].

The following list of seven clusters of SSE tenets were
identified and defined:

1. Technical federation. SSE has to cater for service-
enabled software applications that are highly
distributed in nature with many asynchronous
interactions between services. In addition, SSE
has to deal with services that may be deployed on
various run-time platforms, including mobile
devices, computing clouds, and legacy systems,
and have been developed in various programming
paradigms – including, but not limited to, OO and
CBD.

2. Dynamism. A key tenet of SSE is dynamism
regarding both the services that are aggregated
into dynamic service compositions – also referred

1www.dagstuhl.de/de/programm/kalender/semhp/?sem
nr=09021

to as agile service networks – as well as the highly
volatile context in which they operate. Firstly,
dynamism implies that SSE methods, techniques,
and tools have to deal with emergent properties
and behavior of complex service networks, which
may in fact be comprised of thousands of
independent –yet cooperating- services. In fact,
emergent behaviors pertain both to technical
issues such as performance and security, as well as
business issues including profitability, return-on-
investment, and indices of value-creation. This
signifies that software applications that have been
designed in accordance with SSE, typically exhibit
unpredictable, non-linear and non-deterministic
behavior. Dynamism puts requirements on
virtually all layers of the typical SOA stack,
ranging from the network layer (often SOAP) to
the composition layer (e.g. by BPEL and
BPELlight). Late binding and loose coupling
constitute two key principles for increasing the
adaptability of service applications,
accommodating dynamic (re-)composition and
(re-)configuration of services in a network. In
addition, SSE has to accommodate various styles
of composition, fostering user-friendly enterprise
service mash-ups as well as heavy-weight
compositions of industry-strength enterprise
applications by service development professionals.

3. Organizational federation. SSE should be shaped
around the doctrine stating that development and
maintenance (operations) be typically achieved in
highly distributed organizational environments,
involving multiple departments, units, enterprises,
and governmental organizations. Typically,
development and maintenance of applications will
be a collaborative effort, implying that in fact
design, coding, deployment etc. will occur in
networks of collaborative service clients and
providers. Organizational federation requires
sound distributed governance policies and
mechanisms, accommodating individual needs of
various stakeholders and constraints stemming
from organization-specific policies or
governmental rules and legislations.
Organizational federation may adopt a range of
coordination mechanisms, ranging from a classical
central control system to a decentralized control,
relying on mechanisms such as service markets
and contracts.

4. Boundaries. Services developed with SSE
methods or tools have to be endowed with clear
and explicit boundaries. In particular, SSE has to
respect service contracts that capture goals and

constraints (pre- and post-conditions and
invariants), capitalizing Bertrand Meyer’s classical
design-by-contract principle [16]. An intrinsic part
of the service contract entails the service interface
that clearly specifies the messages a service
understands and the service end-points that are
available. Enriching the service interfaces with
additional semantic information such as scenarios
or behaviors, allows a more robust and stable
service composition. In addition, given the highly
distributed and volatile nature of service
applications, there is a clear need to align service
contracts with Service Level Agreements between
service clients and providers. Finally SSE can use
the sound principles of built-in testing allowing
for services to contain their own test specification
and enabling their run-time verification [18].

5. Heterogeneity. Any SSE concept, method or tool
has to embrace heterogeneity of the service
application and the context in which it operates.
Just like dynamism, heterogeneity impacts all
phases of the service development lifecycle,
posing restrictions on how software service
systems can be designed, developed, deployed,
and evolved over time. Note that in contrast to
current practice, no assumptions can be made
about the system’s programming, execution, and
management context before, during or after
deployment.

6. Alignment. SSE embraces a new style of
development assuming that software service
applications can be systemically and routinely (re-
) mapped to the business processes they realize,
and vice versa. This in fact points towards the
need for unification of concepts, models, methods,
and techniques from Business Process
Management (BPM) to ensure that these
applications do not only meet system-level Quality
of Service (QoS) criteria, but also perform given
process-level business performance indicators.

7. Holistic Approach. A key distinguishing “meta”
characteristic of SSE refers to its holistic nature.
More than ever before, SSE demands an
interdisciplinary approach towards the analysis
and rationalization of business processes, design
of supporting software service systems, their
realization, deployment, provisioning and
monitoring and adaptation. This implies that SSE
concepts, models, methods are integrated and tools
are interoperable, adhering to open standards and
offering integrated support for several
stakeholders.

4. Key SSE Research Challenges

To derive research and industry development
challenges from the defining tenets and characteristics,
a crowd-sourcing game has been conducted in
Dagstuhl. The participants were asked to write a short
answer to the following question: “What is the most
important challenge of SSE?” 32 participants
submitted an answer; the highest possible score was 20
points (result of four iterations of evaluating the
answers, each round yielding a maximum score of 5).
Result of this voting game was the following
consolidated list of answers, ordered by total scored
points:

1. Address the “open-world” assumption:
unforeseen clients, execution context, usage
(16 points)

2. Bridging a modeling chasm: design/develop
and delivery/execution (15 points)

3. Open world assumption: uncertainty (15
points)

4. IT business alignment, adaptability (15
points)

5. Alignment of technical and business
engineering for services (14)

6. New models and abstractions to represent and
handle SOA dynamics (14)

7. To develop software without knowing in
which context it is used (14)

8. Integration of programming models and
runtime (14)

9. Service resilience, system level (robustness)
(13)

10. The mapping from requirements to services
fulfilling them (13)

11. How to architect SOA with respect to the
heterogeneous nature a.k.a. dealing with
heterogeneity (13)

12. Making the leap from business service to the
right technical service design (11)

13. Alignment of business and technical level in
SSE (12)

14. Composability (11)
15. Testing (11)

Clearly, these research challenges are closely related to
the SSE tenets. Table 1 loosely correlates research
challenges to the SSE tenets. Note that SSE tenet 7
pertains to all research challenges and has therefore not
been included in this table. From this initial and
informal cross-correlation we may carefully draw
some very preliminary conclusions.

Firstly, it should be noted that the level of granularity
of the research varies; some challenges are very
generic in nature –including challenge 1 and 3- whilst
other research challenges address specific problems
such as service composability and service testing.
Research challenges relating to SSE tenet “Technical
Federation” include the design of service applications
without any knowledge about the context in which
they will be executed. This research challenge is
critical in open and agile service networks, with many
unpredictable interactions between service participants.
In addition, there is a need for novel approaches to
integrate programming models and platforms while
processes –some of which may in fact be transactional
in nature- in service networks are executed. The high
level of change in service networks also demands
services to be dependable.

Because of the ‘open-world assumption’ and the
dynamisms of service-based applications, traditional
test methods for system development and deployment
are not enough: as not all usage contexts and
configurations can be predetermined in pre-
deployment tests setups, tests have to be extended into
the operation and maintenance of these applications.
Contract-oriented build-in tests, active online tests or
run-time auditors and supervisors are first
developments in this direction.

Table 1 Correlation of SSE Tenets and
Challenges

SSE
Tenet

Description Challenge
ID

1 Technical Federation 7, 8, 9, 14,
15

2 Dynamism 1, 3, 6, 15
3 Organizational Federation 1, 3, 7
4 Boundaries 10, 12
5 Heterogeneity 11
6 Alignment 2, 4, 5, 13,

15

The ‘open world assumption’ renders the current
architecting methods obsolete to a large extent, as they
are largely based upon a predefined organizational and
technical context. Some flexibility is taken into
account, but not nearly as much as the open world
requires. Furthermore the traditional architecture-
business cycle [19] that expresses the bidirectional
influence between the technical system and the
business organization cannot be managed using
traditional architecting methods, because of the high

dynamism and heterogeneity. Therefore the
architecting dimension of SSE needs to be thoroughly
re-considered, potentially leading to a new architecting
paradigm.

5. Syntheses and Outlook

SOA-enabled applications cannot be simply developed
and evolved by applying aging software engineering
paradigms, notably CBD and OO. The main reason for
this is that conventional software engineering
paradigms typically adopt the closed world
assumption, hypothesizing that applications have clear
boundaries, and will be executed in fully controlled,
relatively homogeneous, predictable and stable
execution environments. This thesis is backed up by
conclusions drawn from a decade-to-decade analysis of
software engineering by Barry Boehm [17].

Instead, we claim that for SOA to be applied
successfully, SSE has to embrace the open-world
assumption, in which software services are composed
in agile and highly fluid service networks – that are in
fact systems of software systems – operating in highly
complex, distributed, unpredictable, and heterogeneous
execution environments. In addition, the service
networks that are designed based on this assumption
need to be continuously (re-)aligned with business
processes, and vice versa. Adoption of the open-world
assumption is reflected in the seven SSE tenets, which
are thus strongly influenced by the underlying
distributed computing paradigm: SOA.

Based on the research reported in this article, we can
now come up with an initial definition of SSE as the
science and application of concepts, models, methods,
and tools to design, develop/source, deploy, test,
provision, and evolve business-aligned and SOA-
enabled software systems in a disciplined and
routinely manner. Clearly, SSE will benefit from
timeless generic principles and lessons learned from
her elderly parent software engineering; however, we
herein argue that aging computing model specific
principles and practices, e.g., distributed component
technology, clearly need revision given the exclusive
nature of SOA.

In our view, SSE will be based on standards and will
be frequently realized with Web services. In fact,
languages such as SOAP, WSDL, BPEL, WS-Policy,
WS-Agreement already constitute the first step to
realize the technical aspects in some of the SSE tenets,
including tenets 1, 2, 4 and 5. However, it is evident
that research is needed to more effectively satisfy the

open-world assumption. This has also been reflected in
the outcome of the brainstorm on the key open
research challenges.

The results presented in this article are core results in
nature. Further work is required in several directions.
Firstly, the list of seven tenets has to be validated and
possibly refined further. Indeed, the presented list is
derived from a literature survey, and, expertise and
experience from real-world SOA projects and
discussions with leading industry experts and
renowned researchers in the field of software
engineering, software patterns and SOA; however,
analysis of more case studies is critical in further
validating this initial list. The ICSE workshop will
serve as a first step to achieve this. In addition, the
research challenges will be consolidated in a future
roadmap for SSE.

References

[1] Report on SSE Dagstuhl seminar, 90021. (To appear)
[2] F. Bachmann et al. “Technical Concepts of Component-
Based Software Engineering”, Technical Report, Carnegie-
Mellon Univ., CMU/SEI-2000-TR-008 ESC-TR-2000-007,
2nd Edition, May 2000
[3] C. Hofmeister, P. Kruchten, R. Nord, H. Obbink, A. Ran,
P. America. A general model of software architecture design
derived from five industrial approaches. J. Syst. Softw.,
Elsevier Science Inc., 2007, 80, 106-126
[4] G. Alonso and F. Casati and H. Kuno and V. Machiraju,
Web Services: Concepts, Architectures and Applications,
Springer, Heidelberg, 2004
[5] B. Meyer, Object-oriented Software Construction, 2nd
Edition. Prentice Hall, 2000
[6] G. Hohpe, SOA Patterns – New Insights or Recycled
Knowledge? Available from
www.eaipatterns.com/docs/SoaPatterns.pdf
[7] M.P. Papazoglou, and W. van den Heuvel. Service-
oriented design and development methodology. Int. J. Web
Eng. Technol. Vol. 2(4), Jul. 2006
[8] M.P. Papazoglou, W. van den Heuvel. Service oriented
architectures: approaches, technologies and research issues.
VLDB J. 16(3): 389-415, 2007
[9] C. Szyperski. Component technology: what, where, and
how? In: Proceedings of the 25th international Conference
on Software Engineering International Conference on
Software Engineering. IEEE, 684-693, 2003
[10] P. Herzum, O. Sims “Business component Factory”, J.
Wiley & Sons Inc., 2000
[11] G. Booch. Object-Oriented Analysis and Design with
Applications (2nd Ed.). Benjamin-Cummings Publishing,
1994
[12] I. Jacobson. Object-Oriented Software Engineering.
ACM, 1992
[13] Popescu-Zeletin, R.; Arbanowski, St.; Fikouras, I.;
Gasbarrone, G.; Gebler, M.; Henning, H.; van Kranenburg,

H.; Portschy, H.; Postmann, E.; Raatikainen, K.: Service
Architectures for the Wireless World. Computer
Communications, Vol. 26, No. 1, January 2003, pp. 19 – 25
[14] B. Sarikaya. Principles of protocol engineering and
conformance testing, Ellis Horwood, Series in Computer
Communications and Networking, 1993
[15] I. Schieferdecker, J. Grabowski: Advances in Test
Automation, STTT Special Issue, Springer Berlin /
Heidelberg, ISSN1433-2779, Apr. 2008
[16] B. Meyer, Object-oriented software construction (2nd
ed.), Prentice-Hall, Inc., Upper Saddle River, NJ, 1997

[17] B. Boehm. A view of 20th and 21st century software
engineering. In Proceedings of the 28th international
Conference on Software Engineering ICSE, 12-29, ACM
Press, 2006
[18] C. Atkinson, D. Brenner, G. Falcone, M. Juhasz.
Specifying High-Assurance Services. Computer 41, 8 (Aug.
2008), 64-71
[19] L. Bass, P. Clements, R. Kazman. Software Architecture
in Practice, 2nd Edition, Addison Wesley, 2003
[20] O. Zimmermann, P. Krogdahl, C.Gee, Elements of
Service-Oriented Analysis and Design, IBM
developerWorks, 2004

