
A Pattern Language for Process Execution and
Integration Design in Service-Oriented Architectures

Carsten Hentrich1, Uwe Zdun2
1 CSC Deutschland Solutions GmbH, Abraham-Lincoln-Park 1, 65189 Wiesbaden,

Germany, chentrich@csc.com
2 Distributed Systems Group, Information Systems Institute, Vienna University of

Technology, Argentinierstrasse 8/184-1, A-1040 Vienna, Austria, zdun@infosys.tuwien.ac.at

Abstract. Process-driven SOAs are using processes to orchestrate services.
Designing a non-trivial process-driven SOA involves many difficult design and
architectural decisions. Examples are: Different kinds of processes exist: long-
running, business-oriented and short-running, technical processes. How to best
integrate them and how to map them to execution platforms? A SOA has many
different stakeholders, such as business analysts, management, software
designers, architects, and developers, as well as many different types of models
these stakeholders need to work with. How to present each of them with the
best view on the models they need for their work? A realistic process-driven
SOA contains many systems that need to be integrated, such as various process
engines, services, and backend systems, running on heterogeneous technologies
and platforms. How to perform integration in a way that is maintainable and
scalable? This article introduces a pattern language that deals with process
modeling, execution, and integration. Its main goal is to help solution
architects, as well as process and service designers, to master the challenges in
designing a stable and evolvable process-driven SOA.

Keywords: Process-Driven Architecture, SOA, Integration Architecture

1 Introduction

Service-oriented architectures (SOA) can be defined as an architectural concept or
style in which all functions, or services, are defined using a description language and
have invokable, platform-independent interfaces that are called to perform business
processes [Channabasavaiah 2003 et al., Barry 2003]. Each service is the endpoint of
a connection, which can be used to access the service, and each interaction is
independent of each and every other interaction. Communication among services can
involve simple invocations and data passing, or complex activities of two or more
services. Though built on similar principles, SOA is not the same as Web services,
which is a collection of technologies, such as SOAP and XML. SOA is more than a
set of technologies and runs independent of any specific technologies.

Even though this definition and scoping of SOA gives us a rough idea what SOA is
about, many important aspects are still not well defined or even misleading. For
instance, the definition is centered on SOAP-style services (so-called WS-* services)
and seems to exclude other service technologies such as REST. More importantly, the

definition does not explain the main purposes of SOAs in an organization such as
supporting business agility or enterprise application integration, to name a few. To get
a clearer picture on what SOA is about and which proven practices exist, we provide
in this article a pattern language describing proven knowledge for an important part of
many SOAs: the process execution and integration design in SOAs.

A SOA is typically organized as a layered architecture (see Figure 1), both on
client and server side [Zdun et al. 2006]. At the lowest layer, low-level
communication issues are handled. On top of this layer, a Remoting layer is
responsible for all aspects of sending and receiving of remote service invocations,
including request creation, request transport, marshalling, request adaptation, request
invocation, etc. Above this layer comes a layer of service client applications on the
client side and a layer of service providers on server side. The top-level layer is the
Service Composition Layer at which the service clients and providers from the layer
beneath are used to implement higher-level tasks, such as service orchestration,
coordination, federation, and business processes based on services.

In this article we view the SOA concept from the perspective of a Service
Composition Layer that is process-driven. That is, the Service Composition Layer
introduces a process engine (or workflow engine) which invokes the SOA services to
realize individual activities in the process (aka process steps, tasks in the process).
The goal of decoupling processes and individual process activities, realized as
services, is to introduce a higher level of flexibility into the SOA: Pre-defined
services can flexibly be assembled in a process design tool. The technical processes
should reflect and perhaps optimize the business processes of the organization. Thus
the flexible assembly of services in processes enables developers to cope with
required changes to the organizational processes, while still maintaining a stable
overall architecture.

Se
rv

ic
e

D
es

cr
ip

tio
n

S
ec

ur
ity

M
an

ag
em

en
t

R
em

ot
in

g
La

ye
r

Fig. 1. SOA Layers.

In a process-driven SOA the services describe the operations that can be performed

in the system. The process flow orchestrates the services via different activities. The
operations executed by activities in a process flow thus correspond to service
invocations. The process flow is executed by the process engine. In SOAs different
communication protocols and paradigms, such as synchronous RPC, asynchronous
RPC, messaging, publish/subscribe, etc. can be used and are supported by SOA
technologies, such as Web Service frameworks or Enterprise Service Bus
implementations. For a process-driven SOA, it can generally be assumed, however,
that mainly asynchronous communication protocols and paradigms are used. This is
because it cannot generally be assumed that a business process blocks until a service
invocation returns. In most cases, in the meantime other sensible activities can be
performed by the process. In addition, there are many places in a process-driven SOA
where invocations must be queued (e.g. legacy systems that run in batch mode). It is
typically not tolerable that central architectural components of the process-driven
SOA, such as a central dispatcher, block until an invocation returns. Hence,
synchronous service invocations are only used in exceptional cases, where they make
sense.

This article is structured as follows. In Section 2 we give an overview of the
pattern language presented in this article. Section 3 introduces the challenges in
modeling and executing business-driven and technical processes. We present two
conceptual and two architectural patterns in this context. Integration and adaptation
issues in process-driven SOAs are introduced in Section 4, and four architectural
patterns are presented. In Section 5 we provide a literature review and overview of
related patterns. Finally, in Section 6 we conclude.

2 Pattern Language Overview

The pattern language presented in this article basically addresses conceptual and
architectural design issues in the Service Composition Layer, when following a
process-driven approach to services composition.

The patterns and pattern relationships for designing a Service Composition Layer
are shown in Figure 2. The MACRO-/MICROFLOW1 pattern conceptually structures
process models in a way that makes clear which parts will be run on a process engine
as long running business process flows (below called macroflows) and which parts of
the process will be run inside of higher-level business activities as rather short
running, technical flows (below called microflows). The DOMAIN-/TECHNICAL-VIEW
pattern explains how to split models in a SOA into two views: A high-level, domain-
oriented view and a low-level, technical view. This pattern solves the problem that
executable models sometimes must be designed so that both technical and non-
technical stakeholders can participate in model creation and evolution. This problem
is especially in the context of long-running process flows. In this context, we require
– at some point in the design – a link or translation between conceptual flows and

1 We use SMALLCAPS font to highlight pattern names.

executable flows. The pattern can also be applied for other models in a process-driven
SOA, such as business object models or component models.

The PROCESS INTEGRATION ARCHITECTURE pattern describes how to design a
MACRO-/MICROFLOW architecture in detail. It is based on a number of tiers. In
particular, two kinds of process engines can be used in a PROCESS INTEGRATION
ARCHITECTURE. With regard to the macroflows, you can delegate the business process
execution to a dedicated MACROFLOW ENGINE that executes the business processes
described in a business process modeling language. The engine allows developers to
configure business processes by flexibly orchestrating execution of macroflow
activities and the related business functions. With regard to microflows, you can
delegate the execution to a dedicated MICROFLOW ENGINE that allows developers to
configure microflows by flexibly orchestrating execution of microflow activities and
the related services.

Fig. 2. Pattern relationships overview.

The INTEGRATION ADAPTER pattern explains how to connect the various parts of

the SOA, such as process engines and backend systems, in a maintainable and
evolvable fashion. The INTEGRATION ADAPTER REPOSITORY pattern describes how to
manage and maintain INTEGRATION ADAPTERS.

The CONFIGURABLE DISPATCHER pattern explains how to connect client and target
systems using a configurable dispatch algorithm. Hence, it enables us to postpone
dispatch decisions until runtime. It uses configurable dispatching rules that can be
updated at runtime.

3 Modeling and Executing Business-Driven and Technical
Processes

In many business domains, there is a need to model the processes of the business. A
process model defines the behavior of its process instances. The process model is the
type of the process instances. That is, process instances are instantiations of the same
kind of behavior. Process models are usually expressed in a process modeling
language or notation. There are more high-level, domain-oriented languages and
notations, such as BPMN, EPC, Adonis process flows, UML activity diagrams, and so
on. These focus on expressing the behavior of a business or a domain. In addition,
there are technical process modeling or workflow languages that define how a process
behavior can be executed on a process or workflow engine. Examples are the
Business Process Execution Language (BPEL), the jBPM Process Definition
Language (JPDL), Windows Workflow Foundation models, or the XML Process
Definition Language (XPDL)2. In both cases, the process modeling languages define
which elements can be used in the process models.

Consider the process model example in BPMN depicted in Figure 3. It shows a
very simple order handling process in which first an order is received, then the credit
card is verified, and only if it is valid, the process proceeds. Otherwise, the customer
is informed of the invalid credit card. Next, in parallel, the order shipment and
charging for the order happens. Finally, the order status is reported to the customer.

Fig. 3. Example BPMN process.

This process model can describe different things with regard to an organization,

depending on the purpose of the business process modeling, such as:
• The process model describes how order handling should be handled, as a

guideline or documentation of the business. The people involved in the
execution of the process instances can deviate from the predefined process,
where it makes sense. For instance, in some exceptional cases, shipment
might be postponed, but once the shipment date is fixed, the order status
reply can already be sent. This makes for instance sense in a small business,

2 XPDL actually is not an execution language, but a process design format that can be used to

store and exchange process diagrams. However, XPDL elements can have attributes which
specify execution information. Some process engines, such as Enhydra Shark [Enhydra
2008], use XPDL directly as their execution language.

where people fulfill the order handling process and have an overview of the
orders they handle.

• The process model defines how exactly the process instances must behave.
An automated process management system ensures that each process
instance follows the process model. This makes for instance sense in an
organization where a high volume of similar orders with only a few
exceptions must be processed, and the activities in the process are mostly
automated. People only handle exceptional cases.

• The process model defines how the process instances should behave in the
future. Process modeling is part of a business change initiative, for example
with the goal to improve the business performance. This is one goal of many
SOA initiatives. Such initiatives aim to make the business processes explicit,
optimize them, and then support them through technology.

• The process model has explanatory purposes, such as the following. It
defines the rationale for what happens in an information system. It links to
the requirements of the IT system. It defines the data of the process that can
be used for reporting purposes. It enables management or other non-technical
stakeholders to analyze and plan the IT system.

Many combinations of these reasons for process modeling are possible and many
other reasons exist. This section deals with the situation that you model your business
processes and also want to implement them using IT support.

The first issue that must be addressed is the semantic difference between a domain-
oriented business processes like the one depicted above and an executable process.
Executable in this context means that the process contains all technical information
that is needed to run it on a computer. The BPMN order handling example is not
executable because many technical details are omitted. Some examples in the sample
process are:

• It is unclear how the activities of the process are realized. For instance, the
credit card verification could be realized as a service, a sub-process, a piece
of programming language code, a script, etc. For a service, for example, we
need the endpoint information that is needed to access it, such as host and
port, but this technical information is missing in the BPMN example process.

• It is unclear how the data is passed from the incoming message to the
process activities. For instance, which credit card information is provided
and how is it used in the process?

• It is unclear how the data is mapped to the interface of a component or
service that performs activities, such as credit card verification? How are
interface and data differences handled? It is also unclear how the results are
mapped into the process, so that the process’ control structures, such as the
decision node following the credit card verification in the BPMN example
process, can use it.

All this information is provided in technical modeling languages, such as BPEL.
Please note that some executable processes include human tasks. Others are machine-
executable, meaning that no human tasks are part of the process. In both cases, we
need to add the technical details to the domain-oriented processes executable.

For instance, below you see a very small excerpt from a simplistic BPEL process,
implementing the BPMN process above. The example excerpt just shows the code

needed to receive the initial message, copy some variables to an input type for the
VerifyCreditCard service, and then invoke that service.

<sequence>
 <receive name="ReceiveOrder" createInstance="yes"
 partnerLink="Customer"
 operation="OrderHandlingOperation"
 xmlns:tns=
 "http://j2ee.netbeans.org/wsdl/OrderHandling"
 portType="tns:OrderHandlingPortType"
 variable="OrderHandlingOperationIn"/>
 <assign name="AssignCreditCardInfo">
 <copy>
 <from>$OrderHandlingOperationIn.
 orderHandlingInputMessage/ns0:creditCardNumber
 </from>
 <to>$IsValidIn.parameters/number</to>
 </copy>
 <copy>
 <from>$OrderHandlingOperationIn.
 orderHandlingInputMessage/ns0:creditCardHolder
 </from>
 <to>$IsValidIn.parameters/holder</to>
 </copy>
 <copy>
 <from>$OrderHandlingOperationIn.
 orderHandlingInputMessage/
 ns0:creditCardSecurityCode
 </from>
 <to>$IsValidIn.parameters/securityNumber</to>
 </copy>
 </assign>
 <invoke name="VerifyCreditCard"
 partnerLink="VerifyCreditCard"
 operation="isValid" xmlns:tns="http://orderHandling/"
 portType="tns:VerifyCreditCard"
 inputVariable="IsValidIn"
 outputVariable="IsValidOut"/>

In addition to the BPEL code, we require the WSDL files that describe the

interfaces of the services and of this process, and the XML Schema definitions of the
data types that are passed.

All these technical specifications are even hard to understand and complex for
technical experts. For that reason, many modeling tools exist. For example, the
following Figure 4 shows a simplistic BPEL process implementation of our order
handling process modeled in the BPEL modeler of the NetBeans IDE. In addition to
modeling BPEL graphically, designer tools offer support for designing WSDL
interfaces, XML Schema definitions, and data mappings. The typical tooling around

process engines has been described in pattern form by Manolescu (see [Manolescu
2004]).

In cases where process execution is the main goal of the process modeling, it
seems to make sense to model the processes directly in BPEL using such a modeling
tool, instead of modeling in BPMN. However, it is rather seldom the case that process
execution is the only goal that process modeling is needed for. Usually, the technical
experts are not domain experts and hence need to discuss the processes with the
domain experts to incorporate the domain knowledge in the right way. BPEL is
usually not a good representation for tasks that involve domain experts because BPEL
processes are overloaded with technical details. This is certainly valid for the BPEL
code itself. But it is also the case for what is shown in BPEL modeling tools: While
these technical process modeling tools are a very helpful aid for developers, the
models they expose are still pretty technical and complex. It is awkward to use them
for the discussion with domain experts and usually impossible to let domain experts
themselves work with these tools. For the same reasons, they are also not the best
solution for technical stakeholders, if their work requires only getting a quick
overview of the existing processes. The technical process code or the technical
process modeling tools should only be used for in-depth technical work.

Fig. 4. Example BPEL Process.

The DOMAIN-/TECHNICAL-VIEW pattern solves this problem by splitting the models

into two views:
• A high-level, domain-oriented view that represents the process in a

technology-independent fashion leaving away all details not needed for the
domain task.

• A low-level, technical view that contains the elements of the domain view
and also contains additional technical details.

This pattern is not only applicable for process models, but also for all other kind of
models that must be shown in two views. An example is a data model that has a
logical data view and a technology-dependent view. Here, the technology-dependent
view would model the mapping of the logical view to a database (access) technology.
Another example is a class model that represents a high-level domain model and an
implementation model showing how the domain model elements are realized using
e.g. a component technology.

So far, we did not distinguish different kinds of processes. However, in a typical
SOA in the enterprise field we can observe different kinds of behaviour that could be
modelled as process flows. For instance, there are strategic, very high-level business
processes that are hard to automate or support through technology. These are often
broken down – sometimes in a number of steps – into more specific business
processes, such as the order handling example above. The result is long-running
business processes, perhaps with human involvement, which can possibly be mapped
to a supporting technology. Finally, when implementing these processes, we observe
also more short-running and technical processes. For instance, the verification of the
credit card in the example above could consist of three steps, each calling an external
Web service. Or the shipping of an order could require to a few steps guiding a human
operator through a number of GUI dialogs for approving the automatically selected
inventory items, approving the sending of an invoice, and so on.

The distinction between long-running, business-oriented and short running,
technical processes is an important conceptual distinction that helps us to design
process activities at the right level of granularity. In addition, the technical properties
of the two kinds of processes are different. For instance, for long-running processes it
is typically not appropriate to use ACID (Atomicity, Consistency, Isolation,
Durability) transactions because it is infeasible to lock resources for the duration of
the whole process, while this might be perfectly feasible for more short running
processes of only a few service invocations.

The MACRO-/MICROFLOW pattern provides a clear guideline how to design process
models following these observations. In the pattern, we refer to the long-running
process using the term macroflow. We use the term microflow to refer to the short
running, technical processes. The pattern advises to refine macroflows in a strictly
hierarchical fashion – starting from high-level, strategic process to long-running,
executable processes. The activities of these executable macroflows can further be
refined by microflows. Microflow activities can be refined by other microflows. That
is, an activity of a higher-level process model is refined by a lower-level process
model in form of a sub-process.

The pattern is closely related to the DOMAIN-/TECHNICAL-VIEW pattern: The highest
level macroflows usually only have domain views. The lowest level microflows often
only have a technical view. But the models in between – in particular the executable
macroflows as in the example above – have both views as they are relevant to both
technical and non-technical stakeholders.

Refinements, as described in MACRO-/MICROFLOW and DOMAIN-/TECHNICAL-VIEW
patterns, can be performed in general following processes such as or similar to
Catalysis [D'Souza and Wills 1999]. Catalysis is a method for component-based
development that defined traceable refinements from business requirements through
component specifications and design, down to code.

 The MACRO-/MICROFLOW pattern advises to use a suitable technology for realizing
macroflows and microflows. Of course, it is possible to implement both macroflows
and microflows using ordinary programming language code. But often we can
provide better support. For instance, macroflows often should be support with process
persistence, model-based change and redeployment, process management and
monitoring, and so on. The MACROFLOW ENGINE pattern describes how to support a
macroflow using process or workflow technology. An example MACROFLOW ENGINE
that could be used in the example above is a BPEL process engine.

For microflows, supporting technology is more seldom used. However, if rapid
process change or reuse of existing functionality is needed, MICROFLOW ENGINES can
be very useful. We distinguish MICROFLOWS ENGINES for microflows containing
human interactions, such as pageflow engines, and MICROFLOWS ENGINES for
microflows supporting automatic activities, such as message brokers.

3.1 Pattern: DOMAIN-/TECHNICAL-VIEW

Context
Various stakeholders participate in the development, evolution, and use of a SOA.
Typical technical stakeholders are the developers, designers, architects, testers, and
system administrators. Typical non-technical stakeholders are the domain experts of
the domain for which the SOA is created, the management, and customers.

Problem
How should executable models be designed if both technical and non-technical
stakeholders need to participate in model creation and evolution?

Problem Details
Designing one model for a number of distinct stakeholders is challenging because the
different stakeholders require different information for their work with the model, as
well as different levels of detail and abstraction. A typical – often problematic – case
in this context is that a model depicts a concern from the domain for which the SOA
is created. So the model is, on the one hand, important for the communication with
and among the domain experts. But, on the other hand, in a SOA often such models
should be automatically processed and executed.

“Executable model” means that a model is interpreted by an execution engine, or
the model representation is compiled and then executed on an execution engine. Here
are some examples of executable models:

• A BPEL business process model that is executed on a BPEL engine.
• A role-based access control model that is interpreted by an access control

enforcement component.
• A UML or EMF model that is transformed by the generator of a model-

driven development (MDD) solution into executable code (see [Stahl and
Völter 2006]). In this case the model is interpreted at design time of the
SOA, but at runtime of the generator. An alternative is using an executable

model, such as Executable UML [Mellor and Balcer 2002] or the UML
virtual machine [Riehle et al. 2001].

In order to be executable, a model must contain all technical information needed
for execution. The original intent of modeling is often different, however: to serve as
a means of communication among stakeholders and for system understanding. The
information needed for execution is usually targeted only at one type of stakeholders:
the technical developers. This, in turn, makes the models hard to understand for the
domain experts and, in general, hard to use for tasks that require getting an overview
of the design. The reason is the executable models are simply overloaded with too
many technical details.

Just consider business processes as one example of SOA models. Domain experts
usually design with tools that use diagrams such as or similar to diagrams in BPMN,
EPC, Adonis process flows, UML activity diagrams, and so on. The diagrams usually
contain only the information relevant for the business. Often such models are hard to
automate because they miss important technical information, such as how data is
passed or transformed, or where a service to be invoked is located and with which
interface it is accessed. Technical process modeling languages such as BPEL, jPDL,
Windows Workflow Foundation models, or XPDL, in contrast, contain all this
information. This makes them useful for technical execution, but also complex and
hard to understand for domain-oriented tasks.

Solution
Provide each model that it is required both for domain-oriented tasks, such as getting
an overview of the design, and technical tasks, such as execution of the model, in two
views: a domain view and a technical view. All elements from the domain view are
either imported or mapped into the technical view. The technical view contains
additional elements that enrich the domain model elements with the technical details
necessary for execution and other technical tasks.

Solution Details
Figure 5 illustrates the solution of the DOMAIN-/TECHNICAL-VIEW pattern.

To realize the DOMAIN-/TECHNICAL-VIEW pattern, the elements from the domain
view must be imported or mapped into the technical view. This can be done in various
ways. Basically, the differences between these variants of the pattern are the
mechanisms used for the import and the mapping, and the degree of automation.

• The simplest variant of the pattern is to perform a manual translation to map
the domain model elements into the technical view. First of all, for each
domain model element, the most appropriate modeling construct for
representing the domain model element in the technical view is chosen, and
then the translation is performed. Next, the technical model is enriched with
all information needed for technical tasks such as execution and deployment.
This variant of the pattern has the benefit of flexibility: Any modeling
languages can be mapped in any suitable way. As a creative design step is
needed for the mapping, no formal link or mapping between the modeling
languages is required, but the translation can happen on a case by case basis.
This variant incurs the drawback that – for each change – manual effort is

required for performing the translation, and consistency between the models
must be ensured manually.

• Sometimes translation tools between a modeling language for domain
models and a modeling language for technical models exist, such as a BPMN
to BPEL mapping tool. In the mapping process, somehow the additional
technical information must be added. For instance, it can be given to the
translation tool using an additional configuration file. Using this additional
information and the domain view model, the translation tool generates a
technical view corresponding to the domain view. This variant of the pattern
can potentially reduce the manual mapping effort and ensure consistency
automatically. It can be realized for two distinct modeling languages.
However, not always an automatic mapping provides the best mapping.
Especially for two languages with highly different semantics, the automatic
mapping can cause problems. For instance, technical models can get hard to
understand and debug, if they are automatically generated from a domain
model with different semantics.

• If both models, technical view and domain view, are described based on a
common meta-model, ordinary model extension mechanisms, such as
package import, can be used. Extensions in the technical view are then
simply added using ordinary extension mechanisms for model elements,
such as inheritance or delegation. This variant makes it easy to maintain
consistency between the view models. Modeling tools can for instance allow
designers to start modeling in the domain view and enrich it with technical
details in property views. As an alternative, you can generate the domain
view from the technical view model. That is, you just strip the technical
information provided in the technical view.

Fig. 5. Illustration of DOMAIN-/TECHNICAL-VIEW.

If the domain view is not generated from the technical view, for all the imported

domain model elements, all changes should be performed in the domain view. They
should then be propagated to the technical view. This means for the three variants of
the pattern:

• If manual translation is used, translating the changes made to the domain
models is required. Change propagation is a main drawback of this variant: If
changes are made to one model and they are forgotten to be propagated or
incorrectly propagated, the models are getting inconsistent.

• If an automatic translation tool is used, the tool must be re-run, and it
regenerates the domain elements in the technical view. An alternative is a
round-trip translation: Changes to the technical view can be translated back
into the domain view. Round-trip translation is often not advisable, as tools
tend to generate hard to read source code and creating a well-working round-
trip tool set is a substantial amount of work.

• If integration based on a common meta-model and package imports are used,
changes to the domain model are reflect automatically in the technical view.
Hence, no efforts for change propagation are required in most cases. Only if
changes cause incompatibilities in dependent models, the models must be
adapted accordingly.

Example: Manual BPMN to BPEL translation
We have seen a simple example of a manual BPMN to BPEL translation in the
introduction of Section 3.

«DomainView»
DomainModel_1

D1

[true]

[false]

D2

D3

«TechnicalView»
TechModel_1

D1

[true]

[false]

D2 D3

Assign Vars
D1

Assign Vars
D3

Assign Vars
D2

D1 Properties

Type `CXF Service`
ServiceName `D1`
Method `executeD1`
Host `localhost`
Port `8080`

Assign Vars
Result 1

Assign Vars
Result 2

D2 Properties

Type `CXF Service`
ServiceName `D2`
Method `executeD2`
Host `localhost`
Port `8080`

D3 Properties

Type `Human Service`
Name `TaskList`
Function `addTask`
Host `localhost`
Port `8081`

import

import

import

Example and Known Use: View-based Modeling Framework
The View-based Modeling Framework (VbMF) [Tran et al. 2007] is a model-driven
infrastructure for process-driven SOAs. It uses the model-driven approach to compose
business processes, services, and other models that are relevant in a SOA. VbMF
abstracts each concern in its own view model. Each VbMF view model is a (semi)-
formalized representation of a particular SOA concern. The view model specifies the
entities and relationships that can appear in a view.

In particular, there is a Core view model from which each other view model is
derived. The main task of the Core view model is to provide integration points for the
various view models defined as part of VbMF, as well as extension points for
enabling the extension with views for other concerns.

The view models derived from Core are domain views. Example domain views are:
Collaboration, Information, Control-Flow, Long-Running Transactions, Data, and
Compliance Metadata. In addition, to these central concerns, many other concerns can
be defined. Each of these view models is either extending the core model or one of the
other view models. These view models contain no technology-specific information,
but information understandable to the domain expert.

In addition, VbMF defines also a second level of extensional view models, derived
from these domain views models – the technical views. For specific technologies
realizing the domain views, such as BPEL, WSDL, BPEL4People, WS-HumanTask,
Hibernate, Java services, HTML, or PDF, VbMF provides technical view models,
which add details to the general view models that are required to depict the specifics
of these technologies.

Figure 6 provides an overview of the VbMF view models and their relationships.

Fig. 6. VbMF view models.

Core View

Meta-Model

instance-of

Schematic
Recurring Code

BPEL/WSDL
Collaboration

View

extends

View Instance

generated from

M2

M1

M0

BPEL/WSDL
Information

View

BPEL/WSDL
Control-Flow

View

BPEL/WSDL
Transaction

View

BPEL4People/
WS-HumanTask

Human View

Hibernate/WSDL
Data View

HTML/PDF Doc
Compliance

Metadata View

Collaboration
View

Information
View

Control-Flow
View

Transaction
View

Human
View

Data
View

Compliance
Metadata

View

extends extends extends extends extends extends

extends extends
extendsextendsextends extends extends

instance-of instance-of instance-of instance-of instance-of instance-of instance-of

The integration of view elements is done using modeling abstractions, such as
inheritance and associations, as well as matching algorithms, such as name-based
matching. Integration is performed in the transformation templates of the code
generator.

The separation of view abstraction levels helps in enhancing the adaptability of the
process-driven SOA models to business changes. For instance, the business experts
analyze and modify the domain views to deal with change requirements at the level of
the business. The technical experts work with technical views to define necessary
configurations so that the generated code can be deployed into the corresponding
runtime (i.e., the process engines and Web service frameworks). This view-based
separation into two view layers, domain views and technical views, also helps to
better support the various stakeholders of the SOA: Each stakeholder views only the
information necessary for their work. Hence, the view-based approach supports
involving domain experts in the design of SOAs.

Known Uses
• The BPMN2BPEL tool [BPMN2BPEL 2008] is an Ecplise plugin for

transforming BPMN processes, modeled in Eclipse, to BPEL. Like many
other such tools, the tool can only translate the information that is present in
BPMN, which might mean that technical details are not considered and
semantic differences between BPEL and BPMN are not translated in the best
way.

• In [Dikmans 2008] it is discussed how to transform a BPMN model from the
Oracle Business Process Analysis Suite to an executable BPEL process. The
article also discusses the semantic differences between BPMN and BPEL. If
processes are not translatable using the tool, the article advises to change the
BPMN process by removing arbitrary cycles that are valid in BPMN, but not
in BPEL.

• Sculptor [Fornax 2008] is a cartridge for openArchitectureWare, a model-
driven software development infrastructure. Sculptor enables developers to
focus on the business domain view, which is designed in a textual, domain-
specific language using concepts from Eric Evans’ book Domain-Driven
Design [Evans 2004], such as Service, Module, Entity, Value Object,
Repository, and so on. The code generator is used to generate Java code for
well-known frameworks, such as Spring Framework, Spring Web Flow, JSF,
Hibernate and Java EE. The technical view is added using configurations and
manually written code.

3.2 Pattern: MACRO-/MICROFLOW

Context
If your system is or should be described using process models, it makes sense to think
about automating the processes using process technology. Usually, if an organization
decides to use business processes to depict their business, high-level and mostly
business-oriented models are created.

Problem
How can conceptual or business-oriented process models be implemented or realized?

Problem Details
One important aspect to consider when implementing or realizing business processes
is the nature of the processes to be executed. For instance, many typical business
processes are long running flows, involving human tasks. Such a business process can
run for many hours, days, or even weeks before it is finished. In such cases, the
process technology must support persisting the process instances, as the process states
should not get lost if a machines crashes. The process instance should not occupy
memory and other system resources, when it is not active. It should be possible to
monitor and manage the process instance at runtime. Also, the processes should be
interruptible via a process management interface. Such functionalities are supported
by process or workflow engines. Process engines usually express processes in a
process execution language, such as BPEL, jPDL, Windows Workflow Foundation
models, or XPDL.

In contrast to the long-running kind of flows, also short-running flows need to be
considered. These often have a more technical nature and rather transactional or
session-based semantics. One example is a process in which a number of steps are
needed to perform a booking on a set of backend systems. Another example is guiding
a human user through a pageflow of a few Web pages. In these examples, process
instance persistence is not really needed and typical process execution languages
make it rather awkward to express these flows. Hence, it makes sense to realize them
using special-purpose modeling languages and technology. For instance, a message
flow model and message broker technology or a pageflow model and pageflow engine
technology could be used to realize the two examples.

Please note that the named technologies are just examples: The distinction of short-
running and long-running flows is in first place a conceptual distinction. Any suitable
technology can be chosen. For instance, it is also possible to implement both short-
running and long-running flows using ordinary programming language code (e.g.,
Java source code or code written in a scripting language) – maybe provided as a
service. However, as in both cases some features, such as process persistence, wait
states, concurrency handling, and so on, are needed over and over again, reusing
existing technologies often makes sense.

Finally, in some cases, it turns out that automating the process is not useful or
feasible. Then an entirely manual process fulfilled by people with no automation
whatsoever can be chosen as a realization of a process as well. Another example is
high-level processes, such as strategic business processes of an organization, which
would need concretization before they could be implemented.

Unfortunately, in practice often long-running and short-running flows, as well as
technical and non-technical concerns, are intermixed. Often concerns with different
semantics are modeled in one model. This practice often causes confusion as
business analysts do not understand the level of technical detail, and technical
modelers do not have the expertise to understand the business issues fully. Thus, these
models tend to fail their primary purpose – to communicate and understand the
processes and the overall system design.

In addition, models are sometimes mapped to the wrong technology. For instance,
a short-running transactional flow should not be realized using a process engine for
long-running flows, and vice versa, as the different technologies exhibit significantly
different technical characteristics.

Solution
Structure a process model into two kinds of processes, macroflow and microflow.
Strictly separate the macroflow from the microflow, and use the microflow only for
refinements of the macroflow activities. The macroflows represent the long-running,
interruptible process flows which depict the business-oriented process perspective.
The microflows represent the short-running, transactional flows which depict the IT-
oriented process perspective.

Solution Details
Figure 7 illustrates the solution of the MACRO-/MICROFLOW pattern.

The MACRO-/MICROFLOW pattern provides a conceptual solution in which two
kinds of flows are distinguished:

• Macroflows represent the business-oriented, long-running processes.
• Microflows represent the IT-oriented, short-running processes.

Fig. 7. Illustration of MACRO-/MICROFLOW.

The MACRO-/MICROFLOW pattern interprets a microflow as a refinement of a

macroflow activity. That is, a microflow represents a sub-process that runs within a
macroflow activity. This separation of macroflow and microflow has the benefit that
modeling can be performed in several steps of refinement. First the higher level
macroflow business process can be designed, considering already that business

Activity 1

Activity 2

Activity 3

Activity 4

Activity X

Activity Y

Activity A

Activity B

Microflow
(transaction)

Microflow
(human interaction)

Macroflow
(Business Process)

process activities will further be refined by microflows. Vice versa, if certain
microflows already exist, the business process can be modeled accordingly, so that
these IT processes fit in as business process activities at the macroflow level.
However, this also incurs the drawback that the conceptual separation of the MACRO-
/MICROFLOW pattern must be understood and followed by modelers, which requires
additional discipline.

The refinement concepts of the MACRO-/MICROFLOW often require adjusting IT
processes and business processes according to the concerns of both domains –
business and IT – in order to bring them together. The modeling effort is higher than
in usual business modeling, as more aspects need to be taken into consideration and,
at all refinement levels, activities must be designed at the right level of granularity.

A microflow model can be linked to one or many macroflow activities. The
consequence is that the types of relationships between macroflow and microflow are
well-defined. Microflows and macroflows both have a defined input and output, i.e., a
well-defined functional interface. However, the functional interfaces between IT
processes and business processes must be understood and considered by all
stakeholder manipulating process models.

Multiple levels of both macroflows and microflows can be modeled. That is, high-
level macroflows can be refined by lower-level macroflows. The same is possible for
microflows. The refinement is strictly hierarchical: Always an activity in the high-
level process is refined by a low-level sub-process, realizing the activity. Never a
microflow is refined by a macroflow. Figure 8 illustrates two levels of macroflow
refinement and two levels of microflow refinement.

Fig. 8. Illustration of MACRO-/MICROFLOW.

The microflow can be directly invoked as a sub-process that runs automatically, or

it can represent an activity flow that includes human interaction. As a result, two
types of links between a macroflow activity and a microflow exist:

• Link to a microflow for an automatic activity (transaction): A short-running,
transactional IT process defines a detailed process model of an automatic
activity in a higher-level business process. It represents an executed business
function or transaction at the business process level.

• Link to a microflow for human interaction: In case an activity of a business
process is associated to a user interface, the IT process is a definition of the

coherent process flow that depicts the human interaction. This process flow
is initiated if a human user executes the business process activity.

The microflow level and the macroflow level distinguish conceptual process levels.
Ideally, both levels should be supported by suitable technology. An example for a
macroflow technology is a process execution engine, such as a BPEL engine. An
exemplary microflow technology for automatic activities is a message broker which
provides a message flow modeling language. For short-running human interactions
technologies such as pageflow engines can be used.

Both types of microflows are often hard-coded using ordinary code written in a
programming language. Sometimes an embedded scripting language is used to
support flexible microflow definition in another language such as Java or C#. If this
implementation option is chosen, a best practice is to provide the microflows as
independent deployment units, e.g., one service per microflow, so that they can be
flexibly changed and redeployed. Microflow implementations should be
architecturally grouped together, e.g., in a SERVICE ABSTRACTION LAYER [Vogel
2001], and not scattered across the code of one or more components, which also
realize other tasks.

In the ideal case, the modeling languages, techniques, and tools should support the
conceptual separation of macroflows and microflows, as well as the definition of links
between macroflow activities and microflows using the two types of links described
above.

This pattern is strongly related to the DOMAIN-/TECHNICAL-VIEW pattern because
typically, at the point where the macroflows are mapped to technologies, we need
both views. That is, the macroflows require in any case a domain view (e.g., modeled
in BPMN, EPC, or Abstract BPEL), as macroflows need to be discussed with domain
experts from the business. At the point where macroflows are mapped to
technologies, we also need a technical view of the macroflow (e.g., modeled in BPEL,
jPDL, Windows Workflow Foundation models, or XPDL). The same duality can be
observed for microflows. Here, in any case, a technical view is needed, as all
microflows are executable. Sometimes, an additional domain view is needed, for
instance, if microflow models should be designed together with domain experts. Just
consider a pageflow model: a domain view would just graphically show the pageflow,
and a technical model adds the technology-dependent details.

The most common solution for combining MACRO-/MICROFLOW and DOMAIN-
/TECHNICAL-VIEW is:

1. High-level macroflows that depict strategic business processes and that are
not implemented are designed only using a domain view (this step is
optional).

2. The high-level macroflows are refined by lower-level macroflows that get
implemented and offer a domain view as well as a technical view.

3. The macroflows invoke microflows which only have a technical view.

Example: Structural model of macroflow and microflow
Figure 9 shows an exemplary model for explicitly supporting the MACRO-
/MICROFLOW pattern. The model shows different kinds of macroflows and
microflows, and the relationships between them. The MACRO-/MICROFLOW pattern

generally provides a conceptual basis for the development of such models, which
could for instance serve as a foundation for model-driven software development.

Fig. 9. Structural model of macroflow and microflow.

Known Uses
• In IBM’s WebSphere technology [IBM 2008] the MACRO-/MICROFLOW

pattern is reflected by different technologies and methodologies being used
to design and implement process-aware information systems. Different kinds
of technologies and techniques for both types of flows are offered. On the
macroflow level, workflow technologies are used that support integration of
people and automated functions on the business process level. An example is
IBM’s WebSphere Process Choreographer, which is a workflow modeling
component. The microflow level is rather represented by transactional
message flow technologies that are often used in service-oriented
approaches. Examples are the WebSphere Business Integration Message
Broker and the WebSphere InterChange Server. At the macroflow level, a
service is invoked that is designed and implemented in detail by a microflow
that performs data transformation and routing to a backend application.
Moreover, aggregated services are often implemented at the microflow level
using these kinds of message flow technologies.

• GFT’s BPM Suite GFT Inspire [GFT 2007] provides a modeler component
that uses UML activity diagrams as a notation for modeling the macroflow.
Microflows can be modeled in various ways. First, there are so-called step
activities, which allow the technical modeler to model a number of
sequential step actions that refine the business activity. In the step actions,
the details of the connection to other systems can be specified in a special
purpose dialog. This concept is especially used to invoke other GFT
products, such as the document archive system or a form-based input.

Process

Macroflow Microflow

Automatic Flow Human Interaction Flow

Macroflow Activity

1

0..*

+invokedSubFlow

Human Activity

1

0..1

1..*

0..*

+invokedSubFlow
0..*

+associatedSubFlow

+consistsOf

Invoked Macroflow Automatic Activity

<< Microflow Activity>>
Automatic Activity

Invoked Automatic FlowAtomic Automatic Activity

<< Microflow Activity >>
Human Interaction Activity

Atomic Human
Interaction Activity

Invoked Human
Interaction Flow

+consistsOf

1

1..*
0..1

+consistsOf

1

1..*

0..*

1

+invokedSubFlow

0..*

+invokedSubFlow

1

Alternatively, the microflow can be implemented in Java snippets, which can
be deployed to the server – together with the business process. Finally,
services can be invoked that can integrate external microflow technologies,
such as message brokers.

• JBoss’ jBPM engine [JBoss 2007] follows a slightly different model, as the
core component is a Java library and hence can be used in any Java
environment. The jBPM library can also be packaged and exposed as a
stateless session EJB. JBoss offers a graph-based designer for the macroflow
process languages, and works with its own proprietary language, jPDL. A
BPEL extension is also offered. The microflow is implemented through
actions that are associated with events of the nodes and transitions in the
process graph. The actions are hidden from the graphical representation, so
that macroflow designers do not have to deal with them. The actions invoke
Java code, which implements the microflow. The microflows need not be
defined directly in Java, but can also be executed on external microflow
technology, such as a message broker or a pageflow engine.

• Novell’s exteNd Director [Novell 2008] is a framework for rapid Web site
development. It provides a page flow engine implementing microflows for
human interaction. A workflow engine realizes long-running macroflows. A
pageflow activity in the workflows is used to trigger pageflows. This design
follows the MACRO-/MICROFLOW pattern.

3.3 Pattern: MACROFLOW ENGINE

Context
You have decided to model parts of your system using macroflows to represent long-
running business processes, for instance following the MACRO-/MICROFLOW pattern.
The simplest way to implement and execute your macroflow process models is to
manually translate them into programming language code. But, as many tasks and
issues in a macroflow implementation are recurring, it would be useful to have some
more support for macroflows.

Problem
How can macroflow execution be supported by technology?

Problem Details
One of the main reasons to model macroflows is to enable coping with business
change. The reasoning behind this idea is that if you model your processes explicitly,
you understand the implementation of your business better and can more quickly react
to changes in the business. Changes to business are reflected by changes in the
corresponding macroflows. Today a lot of IT systems support business processes, and
the required changes often involve significant changes in IT systems with high costs
and long development times. In a dynamic business environment, these costs and long
development times are often not acceptable, as conditions might have already
changed when old requirements are implemented.

One of the major reasons for this problem is that business process logic is hard-
coded in the program code. The required changes thus imply to change program code
in various systems. The result is a fragmentation (or structural gap) of business
processes and IT systems that support them.

Often a lot of different skills are required to achieve this, as the systems are
implemented on varying platforms with different technology, programming
paradigms, and languages. The heterogeneity of systems and concepts lead also
problems for end-users, who have to roughly understand the adaptations of the
changed systems. Often the desired business process, as it was originally designed,
cannot be realized due to limitations of existing systems or because of the high efforts
required to implement the changes.

The complexity generated by this heterogeneity and the interdependencies between
the systems let projects fail even before they have started, as the involved risks and
the costs may be higher than the estimated benefit of the business process change.
Thus incremental evolution cannot be achieved. As a result, IT has gained the
reputation of just being a cost driver but not a business enabler. In many cases, this
problem causes a situation in which no significant and innovative changes are made,
and solving prevalent problems is postponed as long as possible.

Hard-coding business processes also means that recurring functionality required
for executing macroflows, such as process persistence, wait states, process
management, or concurrency handling, need to be manually coded, too. That is, effort
is required to develop and maintain these functionalities.

Solution
Use a dedicated MACROFLOW ENGINE that supports executing long-running business
processes (macroflows) described in a business process modeling language. Integrate
business functions as services (or modules) that are invoked by the macroflow
activities. Changes of macroflows are supported by changing the macroflow models
and deploying the new versions to the engine at runtime.

Solution Details
Figure 10 illustrates the solution of the MACROFLOW ENGINE pattern.

Fig. 10. Illustration of MACROFLOW ENGINE.

The MACROFLOW ENGINE pattern’s main participant is the engine component that

allows developers to describe the business process logic by changing the business
process definitions. Using a MACROFLOW ENGINE in an architecture means to decouple
the business process logic from the IT systems. However, effort is needed to introduce
a MACROFLOW ENGINE based architecture. The pattern has best effects if applied as a
long term approach to architecture design and application development. Short term
goals may not justify the efforts involved.

Macroflow definitions are defined using a process modeling language. The engine
executes the models, written in that modeling language. Changes occur by modifying
the macroflow models and deploying the changed versions on the engine. Using this
architecture, business process definitions can be flexibly changed, and the
corresponding processes in IT systems can be adapted more easily than in hard-coded
macroflow implementations in programming language code.

The models executed by a MACROFLOW ENGINE represent a technical view of a
macroflow, as described in the DOMAIN-/TECHNICAL-VIEW pattern, and are usually
expressed in business process execution languages, such as BPEL, XPDL, Windows
Workflow Foundation models, or jPDL. In many cases, a domain view of the models
is defined as well, for instance in high-level process modeling languages, such as
BPMN or EPC.

Applications are understood as modules that offer business functions, e.g., as
services. If the MACRO-/MICROFLOW pattern is applied, of course, a service can
internally realize a microflow implementation. The MACROFLOW ENGINE does not see
these internal details, however, but only the service-based interface. The business
functions are orchestrated by the business process logic described in the MACROFLOW
ENGINE’S modeling language. Business functions are either completely automatic or
semi-automatic, representing a human interacting with a system.

Business functions are represented in the macroflow as macroflow activities. They
are one of a number of different activity types, supported by the engine. Other
example activity types are control flow logic activities, data transformation activities,
and exception handling activities. The MACROFLOW ENGINE concentrates on
orchestration issues of macroflow activities but not on the implementation of these
activities. The actual implementation of macroflow activities is delegated to
functionality of other systems that the engine communicates with.

The MACROFLOW ENGINE offers an API to access the functionality of the engine,
i.e., processing of automatic and semi-automatic tasks. It further offers functions for
long-running macroflow execution, such as process persistence, wait states, and
concurrency handling. It also offers an interface for managing and monitoring the
processes and process instances at runtime.

Various concepts exist for orchestration of macroflow activities in a MACROFLOW
ENGINE. Two common examples are:

• Strictly structured process flow, e.g., in terms of directed graphs with
conditional paths (this is most common variant in commercially used
products and tools)

• Flexibly structured flow of activities, e.g., by defined pre- and post-
conditions of macroflow activities

If business processes have already been hard-coded, developers must first extract
the implemented business process logic from the systems and model them in the
MACROFLOW ENGINE’S modeling language. Hence, in such cases, introducing the
MACROFLOW ENGINE pattern has the drawback that efforts must be invested to extract
the business process logic out of existing systems implementations and to modify the
architecture.

Example: Structural model of a MACROFLOW ENGINE
Figure 11 shows a simple example model of a MACROFLOW ENGINE design that could
be used as a starting point if one would realize a MACROFLOW ENGINE from scratch.
The Macroflow Engine supports a simple management interface for
Macroflows. These have a number of Macroflow Activities. A
Macroflow Activity is assigned to a Resource, where a Resource can be
some virtual actor like an IT system acting in a certain role, or a human actor who
interacts with an IT system. As far as a human actor is concerned, constraints may be
applied to make the macroflow activity only accessible to a defined set of users, e.g.,
by roles and rights that a user must have in order to be able to process a macroflow
activity. The Macroflow Activities always invoke a Business
Function, whether the Business Function is executed with support of a
human being or whether it is completely automatic. Control data, such as process
variables, is transformed during the execution of Macroflow Activities.

Fig. 11. Structural model of a MACROFLOW ENGINE.

Known Uses
• IBM’s WebSphere Process Choreographer [IBM 2008] is the workflow

modeling component of WebSphere Studio Application Developer Studio,
Integration Edition, which provides a MACROFLOW ENGINE. The workflow
model is specified in BPEL.

• In the latest WebSphere product suite edition [IBM 2008], the two products
WebSphere Process Choreographer and WebSphere InterChange Server
have been integrated into one product which is called WebSphere Process
Server. Consequently, this new version offers both, a MACROFLOW ENGINE
and a MICROFLOW ENGINE.

• GFT’s BPM Suite Inspire [GFT 2007] provides a designer for macroflows
that is based on UML activity diagrams. The business processes can be
deployed to an application server that implements the MACROFLOW ENGINE
for running the business processes. The engine also offers an administrator
interface for monitoring and management of the processes.

• JBoss’ jBPM [JBoss 2007] is an open-source MACROFLOW ENGINE for graph-
based business process models that can be expressed either in jPDL or BPEL
as modeling languages. jBPM offers a Web-based monitoring and
management tool.

• ActiveBPEL [Active Endpoints 2007] is an open-source BPEL engine that
acts as a MACROFLOW ENGINE for business processes modeled in BPEL.

• Novell’s exteNd Director [Novell 2008] is a framework for rapid Web site
development. It provides a workflow engine realizing long-running
macroflow.

3.4 Pattern: MICROFLOW ENGINE

Context
You have realized that the business functions (services) that are orchestrated by
macroflows in your system can be understood as short-running, technical processes.
Following the MACRO-/MICROFLOW pattern, you introduce microflow models for
representing these processes. In many cases, the “conceptual” notion of microflows is
useful and sufficient, and microflows are implemented without supporting
technology, for instance, using ordinary programming language code or scripts
written in a scripting language.

You can further support microflows in hard-coded solutions: A best practice for
realizing hard-coded microflows is to place them in their own coding units that can be
independently deployed, e.g., each microflow is implemented as its own service in a
distinct microflow SERVICE ABSTRACTION LAYER [Vogel 2001]. Support of embedded
scripting or dynamic languages for defining microflows can even more support the
flexibility of microflow definition and deployment. For many cases, this solution is
absolutely good enough. In some cases, however, you would like to get more support
for microflow execution.

Problem
How can microflow execution be supported by technology to avoid hard-coded
microflow solutions and offer benefits for microflows akin to workflow technologies?

Problem Details
It takes considerable time and effort to realize and change processes, if the technical
microflow details are hard-coded in programming language code. Consider you
implement a microflow for human interaction. If you realize a hard-coded
implementation using a UI technology, you could write a thin client Web UI or a fat
client GUI, hard-code certain microflows for human interactions in a layer on top of
the UI, and provide a service-based interface to that microflow layer, so that the hard-
coded microflow implementations can be accessed from macroflows. Consider you
want to perform simple changes to such a design, such as adding or deleting an
activity in the microflow. Every change requires programming efforts. In a dynamic
environment, where process changes are regular practice, this might not be
acceptable.

The design described in this example incurs another drawback: It requires
discipline from the developers. Developers must place every microflow in the
SERVICE ABSTRACTION LAYER for microflows. If developers do not strictly follow
such as design guidelines, the consequence is that microflow code is scattered through
one or many components, and hence changes are even more difficult and costly to
implement.

For these reasons, in highly dynamic business environments, a similar level of
support for changing and redeploying microflows as provided for the macroflow
models in a MACROFLOW ENGINE might be needed.

Even though rapid changes and avoiding scattered microflow implementation are
the main reasons for requiring a better support for microflows, some other
requirements for technology support exist, such as:

• In integrated tool suites, to provide a uniform user experience, tool vendors
would like to provide a tooling that is similar to the macroflow tooling,
including a modeling language for microflows.

• Even though microflows are short running processes, in some cases it might
be necessary to monitor and manage the microflows. To provide monitoring
and management for hard-coded microflows usually requires a substantial
amount of work.

• Microflows also require recurring functionalities, such as realizing
transaction semantics, accessing databases, or handling page flows. Hence,
to reuse existing components providing these functionalities is useful.

Solution
Apply the business process paradigm directly to microflow design and
implementation by using a MICROFLOW ENGINE that is able to execute the microflow
models. The MICROFLOW ENGINE provides recurring tasks of the microflows as
elements of the microflow modeling language. It supports change through changing
of microflow models and redeployment to the engine. All microflows of a kind are
handled by the same microflow engine.

Solution Details
Figure 12 illustrates the solution of the MICROFLOW ENGINE pattern.

Fig. 12. Illustration of MICROFLOW ENGINE.

If a MICROFLOW ENGINE is used, the microflow processes are defined in a

microflow modeling language. Processes can be flexibly changed through microflow
deployment. The microflow logic is architecturally decoupled from the business
applications and centrally handled in one place. The MICROFLOW ENGINE concentrates
on orchestration issues of microflow activities but not on implementation of these
activities. The actual implementation of microflow activities is delegated to
functionality of integrated systems the engine communicates with or to human users.

There are two main kinds of MICROFLOW ENGINES corresponding to the two kinds
of microflows:

• MICROFLOW ENGINE for automatic activities: These engines support full-
automatic and transaction-safe integration processes. Hence, they offer
functions for short-running transactional microflow execution. As integration
processes usually must access other technologies or applications, many
MICROFLOW ENGINES for automatic activities also support technology and
application adapters, such as ODBC, JDBC, XML, Web service, SAP, or
Siebel.

• MICROFLOW ENGINE for human interactions: These engines support pageflow
handling functionalities. A pageflow defines the control flow for a set of UI
pages. The pages usually display information, and contain controls for user
interaction. Many pageflow engines focus on form-based input.

The microflow modeling language is a technical modeling language. In many
cases, only a technical view of these models is exposed, but some tools also expose a
high-level view of the integration processes. If this is the case, the DOMAIN-
/TECHNICAL-VIEW pattern is realized by the microflow models. The goal could for
instance be to enable designers and architects to gain a quick overview of the
microflows. That is, here the domain view depicts a technical domain: either the
integration behavior of the systems or the human interactions. Hence, the domain
experts are software designers and architects.

Defining executable microflow models using a modeling language does not mean a
MICROFLOW ENGINE must be used. An alternative is for instance to generate
microflow execution code in a programming language using a model-driven code
generator. Using a MICROFLOW ENGINE should be carefully considered, as it has some

disadvantages as well. Usually, it is not possible to define a custom microflow
modeling language for existing engines, and many existing languages are much more
complex than needed for very simple microflow orchestrations. This means additional
effort, as developers, designers, and architects must learn the microflow modeling
language. The MICROFLOW ENGINE is an additional technology which must be
maintained. The additional engine component adds complexity to the system
architecture.

The MICROFLOW ENGINE has the advantage that the models are accessible at
runtime, e.g., for reflection on the models, and can be manipulated by redeployment.
Management and monitoring of running processes is possible – either through an API
or a management and monitoring tool. A tool suite similar to the macroflow tools can
be provided. Recurring functionalities can be supported by the MICROFLOW ENGINE
and reused for all microflows.

Example: Structural model of a MICROFLOW ENGINE
Figure 13 shows a simple example model of a MICROFLOW ENGINE design that could
be used as a starting point if one would realize a MICROFLOW ENGINE from scratch.
The basic feature of this MICROFLOW ENGINE design is execution of defined
microflow integration process logic by orchestrating Microflow Activities.
Analogous to the similar MACROFLOW ENGINE example presented before, each
activity transforms Control Data that is used to control the orchestrations of
microflow activities and invokes a Function of an IT System. The main
difference to the previous example is: Here the functions are services exposed by IT
Systems, not business-related functions (see the BUSINESS-DRIVEN SERVICE pattern for
guidelines how to design the IT services). The invocations are performed
automatically and in a transaction-safe way.

Fig. 13. Structural model of a MICROFLOW ENGINE.

Example: Java Page Flow Architecture
The previous example mainly illustrates a schematic design of a MICROFLOW ENGINE
for automatic activities. A similar design could also be used as a core for a
MICROFLOW ENGINE for human interactions. But additionally, we must define how to
integrate the MICROFLOW ENGINE component into the UI architecture. Many UIs
follow the MODEL-VIEW-CONTROLLER pattern (MVC) [Buschmann et al. 1996].

We want to illustrate one example design for the Java Page Flow Architecture
which provides an implementation of a MICROFLOW ENGINE for human interactions. A
Java Page Flow consists of two main components: controllers and forms. Controllers
mainly contain a control flow, defined by so-called actions and forwards. The forms
associated to the actions and forwards are mainly JSP pages.

In Figure 14, you see an example from [Mittal and Kanchanavally 2008], which
shows a mapping of the Java Page Flow Architecture to MVC, as implemented in the
Apache Beehive project. The main engine component, executing the microflows, is
used as the MVC controller. JSP and the NetUI tag libraries are used to display the
information in the view. Any model layer can be used, it is not determined by the
pageflow engine. In this example architecture, the Controls technology from the
Apache Beehive project is used as a model layer technology.

Fig. 14. Java Page Flow Architecture and MVC [Mittal and Kanchanavally 2008].

Known Uses
• The WebSphere Business Integration Message Broker and the WebSphere

InterChange Server [IBM 2008] are both realizing MICROFLOW ENGINES.
Both middleware products can also be used in conjunction. The WebSphere
Business Integration Message Broker is used for simpler functions, such as
adapter-based integration or dispatching. The product offers support for off-
the-shelf adapters, message routing, and transformation. WebSphere
InterChange Server offers transaction safe integration process execution.
Process definition is done via a GUI, and the product also offers a very large
set of INTEGRATION ADAPTERS for most common technologies and
applications.

• webMethods’ Integration Server (now integrated in the Fabric BPM suite)
[webMethods 2007] provides a MICROFLOW ENGINE that supports various
data transfer and Web services standards, including JSP, XML, XSLT,
SOAP, and WSDL. Its offers a graphical modeler for microflows that models
the microflow in a number of sequential steps (including loop steps and
branching), as well as a data mapping modeler.

• iWay’s Universal Adapter Suite [iWay 2007a] provides an Adapter Manager
[iWay 2007b] for its intelligent, plug-and-play adapters. The Adapter
Manager is a component that runs either stand-alone or in an EJB container
and executes adapter flows. The basic adapter flow is: It transforms an
application-specific request of a client into iWay’s proprietary XML format,
invokes an agent that might invoke an adapter or perform other tasks, and
transforms the XML-based response into the application specific response
format. The Adapter Manager provides a graphical modeling tool for
assembling the adapters, the Adapter Designer. It allows developers to
specify special-purpose microflows for a number of adapter-specific tasks,
such as various transformations, routing through so-called agents,
encryption/decryption, decisions, etc. Multiple agents, transformations, and

decisions can be combined in one flow. The Adapter Manager hence
provides a special-purpose MICROFLOW ENGINE focusing on adapter
assembly.

• The Java Page Flow Architecture, explained before, is a technology defining
MICROFLOW ENGINES for human interactions. Apache Beehive is a project
that implements the Java Page Flow Architecture using Java metadata
annotations. The implementation is based on Struts, a widely-used MVC
framework. BEA WebLogic Workshop is another implementation of the
Java Page Flow Architecture, which is provides a declarative pageflow
language.

• Novell’s exteNd Director [Novell 2008] is a framework for rapid Web site
development. It provides a page flow engine that orchestrates pageflows
consisting of XForm pages.

4 Integration and Adaptation in Process-Driven SOAs

In the previous section we mainly discussed how to realize various types of
executable process flow, macroflows and microflows, and how to connect them to
services that realize functions in the processes. In a real-world SOA, usually not all
services are implemented by the SOA developers, but in most cases a number of
existing (legacy) systems, such as custom business applications, databases, and off-
the-shelf business applications (such as SAP or Siebel), must be integrated.

Consider a typical starting point: Your organization uses two primary business
applications. The first step to build a SOA orchestrating functions provided by those
legacy applications is to provide them with a service-oriented interface. This is
usually an incremental and non-trivial task. But let’s assume we are able to find
suitable business services to access these applications. In order to support
orchestration through executable business processes, we will design high-level
macroflows representing the business processes of the organization – from the
business perspective. Following the MACRO-/MICROFLOW and DOMAIN-/TECHNICAL-
VIEW patterns, the high-level macroflows are step-by-step refined into executable
macroflows. Next, we realize the executable macroflows in a macroflow engine and
use the macroflow activities to invoke the services exposed by the business
applications. The result is an architecture as shown in the sketch below in Figure 15.

Fig. 15. Macroflow Engine and Business Applications.

Unfortunately, often the interfaces provided by the legacy business applications are

not identical to what is expected in the business processes. The business application
services expose the – often rather technical – interfaces of the legacy business
applications. The macroflow processes, in contrast, require interfaces that correspond
to the business activities in the processes. Changing the macroflows to use the
technical interfaces does not make sense because we want to keep the macroflows
understandable for business stakeholders. In addition, hard-wiring process activities to
the volatile interfaces of backends is not useful, because for each change in the
backend the process designs would have to be changed.

For these reasons, it makes sense to introduce INTEGRATION ADAPTERS for process
integration, exposing the interfaces that the macroflows require (as shown in Figure
16). The INTEGRATION ADAPTER pattern translates between the interfaces of two
systems connected using asynchronous (or if needed synchronous) connectors. The
pattern also enables maintenance of both the connected target system and the adapter,
by being suspendable and stoppable. Macroflow engine technology often provides
such INTEGRATION ADAPTERS for connecting the processes to backend services. These
adapters perform interface adaptations and data transformations, as well as data
mapping tools to design the transformations.

Fig. 16. Introducing a Process Integration Adapter.

In many cases, the abstraction of business application services through an adapter

is not enough. Still, the macroflows contain technical issues that go beyond simple
adaptations and data transformations, but rather deal with orchestration tasks. As
explained in the MACRO-/MICROFLOW pattern, these technical flows should not be
realized in a MACROFLOW ENGINE, but strictly distinguished from the macroflows –
and realized as microflows. For such a small-scale architecture, it is usually enough to
provide a few hard-coded services in a distinct microflow tier, as shown in Figure 17.

Fig. 17. Introducing a Microflows as Services.

In this architecture, the business applications are hard-wired in the service

implementations. That means, if the applications need to be stopped for maintenance,
the whole SOA must be stopped. If the application service interfaces need to be
changed, all dependent services must be changed, too. This is ok for small SOAs with
limited maintenance and availability requirements. But consider we require the SOA
to continue to run, while new versions of the business applications are deployed. This
can be resolved by applying the INTEGRATION ADAPTER pattern again: We provide
INTEGRATION ADAPTERS for the business applications as illustrated in Figure 18.

Fig. 18. Introducing Backend Integration Adapters.

Now consider we run this SOA for a while and our organization merges with

another organization. That means the information system of that other organization
needs to access our SOA. If the other organization uses explicit business processes as
well, it is likely that it runs its own MACROFLOW ENGINE. We can perform the
integration of the two systems by providing that other MACROFLOW ENGINE with a
process integration adapter that integrates the microflow services of our SOA with the
business activity interfaces required by the other organization’s macroflows. The
resulting architecture is sketched in Figure 19.

Fig. 19. Introducing multiple Macroflow Engines.

The macroflow tier is currently hard-wired to the technical tiers. If dynamic

content-based routing to microflows and backends is needed or load balancing to
multiple servers hosting the services should be provided, the introduction of a

CONFIGURABLE DISPATCHER (as shown in Figure 20) between macroflows tier and
technical tiers can be beneficial to provide more configurability and flexibility. The
CONFIGURABLE DISPATCHER pattern connects client and target systems using a
configurable dispatch algorithm. Hence, it enables us to postpone dispatch decisions
till runtime. It uses configurable dispatching rules that can be updated at runtime.

Fig. 20. Introducing a Macroflow Activity Dispatcher.

Over time, we might realize that more and more microflows are needed and more

and more recurring tasks are performed in the microflows. In addition, it might make
sense to make the microflow orchestrations more configurable. Hence, as a last step,
we replace the microflow service tier by two MICROFLOW ENGINES: a page flow
engine to realize the human interaction microflows and a message broker to realize
the automated microflows. This is illustrated in Figure 21.

Fig. 21. Introducing Microflow Engines.

In our SOA, we have applied multiple INTEGRATION ADAPTERS that must be

maintained and managed. Consider further the organization develops other SOAs for
other business units that use similar technologies and must operate on similar
backends. Then it makes sense to introduce an INTEGRATION ADAPTER REPOSITORY
for the backend adapters. The INTEGRATION ADAPTER REPOSITORY pattern provides a
central repository and maintenance interface for INTEGRATION ADAPTERS that supports
management, querying, and deployment of adapters. It hence facilitates reuse of
adapters.

The sketched, incrementally built architecture in this example follows the PROCESS
INTEGRATION ARCHITECTURE pattern. This pattern is an architectural pattern that
defines a specific configuration using a number of other patterns. It explains a specific
architectural configuration of how the other patterns can be assembled to a flexible
and scalable SOA.

One of the primary advantages of following the PROCESS INTEGRATION
ARCHITECTURE pattern is that is enable architects to build up a SOA incrementally –
just as in this example walkthrough. A process-driven SOA initiative is usually a
large-scale project in which multiple new technologies must be learned and
integrated. Hence, step-by-step introduction of extensions, following an approach that
is known to scale well to larger SOAs, is highly useful.

4.1 Pattern: INTEGRATION ADAPTER

Context
In a SOA, various systems need to be connected to other systems. For instance, in a
process-driven SOA, among others, the MACROFLOW ENGINES, MICROFLOW ENGINES,
business services, and backend systems must be connected. The systems in a process-
driven SOA are heterogeneous systems, consisting of diverse technologies running on
different platforms and communicating over various protocols. When different
systems are interconnected and the individual systems evolve over time, the system
internals and sometimes even the public interfaces of these systems change.

Problem
How can heterogeneous systems in a SOA be connected and the impacts of system
and system interface changes kept in acceptable limits?

Problem Details
Connecting two systems in a SOA means that a client system must be aligned with a
target system that captures the requests, takes over the task of execution, and
generates a response. For instance, if a MACROFLOW ENGINE or MICROFLOW ENGINE is
the client, it acts as a coordinator of activities. Some of these activities are tasks that
need to be executed by some other system. But, in many cases, the target systems are
different to what is expected in the process engine. For instance, different technology,
different synchronization mechanisms, or different protocols are used. In addition, in
case of asynchronous communication, we must provide a way to connect
heterogeneous technologies in such a way that the client can correlate the response to
the original request.

One important consideration, when connecting systems in a SOA, is the change
impact. Changes should not affect the client of a system, if possible. For instance,
changes to integrated systems should not have effects on the processes that run in
process engines.

In many change scenarios, downtimes of the whole SOA for maintenance are not
tolerable. That is, changing a system should not mean that the other systems of the
SOA must be stopped, but they should be able to continue to work, as if the changed

system would still be functioning. Apart from this issue, internal system changes can
be tolerated in a SOA as long as the public interfaces exposed as services do not
change.

However, many changes include interface change. Often the public interface of a
system changes with each new release of the system. In this context of ongoing
change and maintenance, the costs and efforts of changes should be kept at a
minimum level. The impact of changes and the related testing efforts must also be
kept within acceptable limits.

If your organization is in control of the system that must be changed, sometimes it
is possible to circumvent these problems by avoiding changes that influence other
systems. However, in a SOA usually many systems by external vendors or open
source projects are used. Examples are backend systems, such as databases, SAP, or
Siebel, as well as SOA components, such as MACROFLOW ENGINES and MICROFLOW
ENGINES. Changes cannot be avoided for these systems. Migration to a new release is
often forced as old releases are not supported anymore, or the new functionality is
simply required by the business.

Apart from migration to a new version, the problem also occurs if a system shall be
replaced by a completely different system. In such cases, the technology and
functional interfaces of the new system are often highly different, causing a
significant change impact.

Solution
If two systems must be connected in a SOA and keeping the change impacts in
acceptable limits is a goal for this connection, provide an INTEGRATION ADAPTER for
the system interconnection. The adapter contains two connectors: One for the client
system’s import interface and one for the target system’s export interface. Use the
adapter to translate between the connected systems, such as interfaces, protocols,
technologies, and synchronization mechanisms, and use CORRELATION IDENTIFIERS to
relate asynchronous requests and responses. Make the adapter configurable, by using
asynchronous communication protocols and following the COMPONENT
CONFIGURATOR pattern [Schmidt et al. 2000], so that the adapter can be modified at
runtime without impacting the systems sending requests to the adapter.

Solution Details
Figure 22 illustrates the solution of the INTEGRATION ADAPTER pattern.

The core of the solution of the INTEGRATION ADAPTER pattern is the same as in the
classical, object-oriented ADAPTER pattern [Gamma et al. 1994]: An adapter connects
the interfaces of a client and a target, and translates between the two interfaces. For
instance, if the client is a process engine, it acts as a sender in terms of sending out
requests for activity execution, which are received by the adapter and transformed
into a request understood by the target system. The INTEGRATION ADAPTER pattern
adds to the solution of the ADAPTER pattern by supporting integration at the
architectural level of connecting distributed and heterogeneous systems.

In the ADAPTER pattern, invocations are mainly synchronous, object-oriented
message calls in the local scope. An INTEGRATION ADAPTER must consider in first
place distributed requests and responses, which can be send either synchronously or

asynchronously. Receiving a request or response can work via push or pull
mechanisms. The request contains an identifier for the function to be executed and
input parameters. The INTEGRATION ADAPTER transforms the request into a format
that can be understood by the target system’s interface and technology. The request
will be forwarded to the target system after the transformation is performed. After the
adapter has received a response of the target system, the response is transformed back
into the format and technology used by the interface of the client.

Fig. 22. Illustration of INTEGRATION ADAPTER.

To make the INTEGRATION ADAPTER maintainable at runtime, the COMPONENT

CONFIGURATOR pattern [Schmidt et al. 2000] should be applied. That is, the adapter
offers a configuration interface, which supports stopping and suspending the adapter.
The adapter is stopped, when new versions of the adapter must be deployed. The
adapter is suspended, when new versions of the target system are deployed or the
adapter is configured at runtime. Later on, after maintenance activities are finished,
the adapter can resume its work and process all requests that have arrived in the
meantime. The INTEGRATION ADAPTER can also offer a finalization function such that
it finishes all ongoing activities properly and then terminates itself.

To realize an adapter with a COMPONENT CONFIGURATOR interface, the adapter
must be loosely coupled to other systems, which is achieved by using connectors to
client and target systems, as well as asynchronous communication protocols. As
requests must be accepted at any time, no matter whether an adapter is at work or
temporally suspended, an asynchronous connector should be used to receive the
requests and to send the responses. That is, the connector must be decoupled from the
adapter to still accept requests in case the adapter is not active.

Basically, asynchronous communication is only required on client side, i.e., for
systems that access the adapter. The target system does not necessarily need to be
connected asynchronously. For instance, a connected system might only offer a
synchronous interface, or the system is a database which is connected via
synchronous SQL. That also means, the connector may accept requests and queue
them until they are processed by the adapter.

In case of asynchronous communication, requests and responses are related by
applying the CORRELATION IDENTIFIER pattern [Hohpe et al. 2003]. That is, the client
sends a CORRELATION IDENTIFIER with the request. The adapter is responsible for
putting the same CORRELATION IDENTIFIER into the respective response, so that the

Client Integration
Adapter Target System

Client Request
Interface

Target System
Interface

client can relate the response to its original request. For instance, if the client is a
process engine, the CORRELATION IDENTIFIER identifies the activity instance that has
sent the request.

If supported by the target system, the CORRELATION IDENTIFIER will also be used
on the target system’s side to relate the response of the target system back to the
original request. Consequently, the target system will have to send the CORRELATION
IDENTIFIER back in its own response so that the adapter can re-capture it. The response
will also contain the result of the execution. If CORRELATION IDENTIFIERS cannot be
used with the target system, for instance, because it is a legacy system that we cannot
change, the INTEGRATION ADAPTER must implement its own mechanism to align
requests and results.

The transformations performed by the adapter are often hard-coded in the adapter
implementation. In some cases, they need to be configurable. To achieve this, the
adapter can implement transformation rules for mapping a request including all its
data to the interface and request format of the target system. Transformation rules can
also be used for the response transformations. Data mapping tools can be provided to
model such transformation rules.

An INTEGRATION ADAPTER is very useful for flexible integration of business
applications from external vendors. It also gets more popular to provide
interconnectivity by supporting generic adapters for common standards, such as XML
and Web Services. That is the reason why many vendors deliver such adapters off-
the-shelf and provide open access to their APIs. As standard adapters can be provided
for most common standards or products, solutions following the INTEGRATION
ADAPTER pattern are usually reusable.

One drawback of INTEGRATION ADAPTERS is that potentially many adapters need to
be managed, if many systems exist where adapters for different purposes, systems, or
technologies are required. Hence, maintenance and deployment of adapters might
become problematic and must be done in a controlled way. The INTEGRATION
ADAPTER REPOSITORY offers a way to manage adapters in a centralized and controlled
way.

If an adapter is suspended for a long time or if the amount of requests sent to a
suspended adapter is very high, then the request queue may contain large amounts of
requests that take a long time to be processed or the requests may even have timed
out. The workload of requests and the amount of requests that an adapter can process
must be in balance. Middleware is required to queue the requests.

Example: Simple example structure of an INTEGRATION ADAPTER
Figure 23 shows an exemplary model for the internal design of INTEGRATION
ADAPTER. This adapter receives asynchronous requests from a client system and
translates them into synchronous requests for a target system. While waiting for the
response, the adapter stores the CORRELATION IDENTIFIER sent by the client and adds
it to the respective response message that is sent back to the client. The INTEGRATION
ADAPTER offers an API for adapter configuration:

• The adapter can be initialized with init.
• The adapter can be stopped with finalize.

• The connected target system can be maintained. Then the adapter must be
suspended using the suspend operation, and after the maintenance it can
resume.

• The adaptation status can be queried with info.

Fig. 23. Example structure of an INTEGRATION ADAPTER

Example: Process Integration Adapter
Let us consider now a slightly more complex example of an INTEGRATION ADAPTER:
An adapter that connects a process engine (i.e., a MACROFLOW ENGINE or MICROFLOW
ENGINE) to a target system. Using INTEGRATION ADAPTERS for process integration has
the benefit of a clear model for the communication between a process engine and the
connected target systems.

Fig. 24. Example structure of a process integration adapter

In this example, both connectors are asynchronous. The adapter must translate
between the two CORRELATION IDENTIFIERS. The adapter uses the same interface for
configuration, as in the previous example. It follows a predefined protocol of a few
operations to perform the adaptation.

Both request and response message are transformed using transformation rules.
Many process engines offer data mapping tools for graphical design of the
transformation rules. Figure 24 illustrates the structure of the process integration
adapter.

The process integration adapter has a straightforward adaptation behavior, as
shown in the following sequence diagram in Figure 25.

Known Uses
• WebSphere InterChange Server [IBM 2008] offers a very large set of

INTEGRATION ADAPTERS for most common technologies and applications.
Users can extend the set of adapters with self-defined adapters.

• The transport providers of the Mule ESB [Mule 2007] provide INTEGRATION
ADAPTERS for transport protocols, repositories, messaging, services, and
other technologies in form of their connectors. A connector provides the
implementation for connecting to an external system. The connector sends
requests to an external receiver and manages listeners to receive responses
from the external system. There are pre-defined connectors for HTTP,
POP3/SMTP, IMAP, Apache Axis Web Services, JDBC, JMS, RMI, and
many other technologies. Components can implement a common component
lifecycle with the following lifecycle interfaces: Initialisable, Startable,
Callable, Stoppable, and Disposable. The pre-defined connectors implement
only the Disposable and Initialisable interfaces.

• iWay’s Universal Adapter Suite [iWay 2007a] provides so-called intelligent,
plug-and-play adapters for over 250 information sources and broad
connectivity to multiple computing platforms and transport protocols. It
provides a repository of adapters, a special-purpose MICROFLOW ENGINE for
assembling adapters called the Adapter Manager, a graphical modeling tool
for adapter assembly, and integration with the MACROFLOW ENGINE and EAI
frameworks of most big vendors.

• WebSphere MQ Workflow [IBM 2008] offers a technical concept called a
User-Defined Program Execution Server (UPES), which implements this
pattern for process integration. The UPES concept is a mechanism for
invoking services via XML-based message adapters. Basis of the UPES
concept is the MQ Workflow XML messaging interface. The UPES concept
is all about communicating with external services via asynchronous XML
messages. Consequently, the UPES mechanism invokes a service that a
process activity requires, receives the result after the service execution has
been completed, and further relates the asynchronously incoming result back
to the process activity instance that originally requested execution of the
service (as there may be hundreds or thousands of instances of the same
process activity).

• CSC offers within their e4 reference meta-architecture the concept of
INTEGRATION ADAPTERS for process integration. For an insurance customer
in the UK the e4 adapter concept has been used to integrate FileNet P8
Business Process Manager with an enterprise service bus based on
WebSphere Business Integration Message broker.

• Within the Service Component Architecture (SCA) concept of IBM’s
WebSphere Integration Developer various INTEGRATION ADAPTERS are
offered off-the-shelf, e.g., for WebSphere MQ, Web services, or JMS.

Fig. 25. Behavior of a process integration adapter

:: Process Engine :: Process Integration Adapter :: Target System

sendRequest()

getProcessEngineRequest()

transformRequest()

sendTargetRequest()

getRequest()

sendResponse()

The communication can
be established via
message oriented
middleware, for instance.

The communication can
be established via
message oriented
middleware, for instance.

Here, the requested
function is executed.

getTargetResponse()

transformResponse()

sendProcessEngineResponse()

getResponse()

request with correlation-ID

response with correlation-ID

request with correlation-ID

response with correlation-ID

4.2 Pattern: INTEGRATION ADAPTER REPOSITORY

Context
Various systems shall be connected via INTEGRATION ADAPTERS. That means, a large
number of adapters is used or can potentially be used in a SOA.

Problem
How can a large number of INTEGRATION ADAPTERS be maintained and managed?

Problem Details
INTEGRATION ADAPTERS are important to connect systems that have incompatible
interfaces and to minimize the change impact, when multiple systems are integrated.
But with each system integrated into a SOA, the number of adapters to be maintained
grows. In addition, when the adapters evolve, new adapter versions need to be
supported as well, meaning that actually multiple versions of each adapter need to be
maintained and managed.

Not always the organization running the SOA also provides the adapters.
Especially for standard software, vendors offer INTEGRATION ADAPTERS. The result is
often a large set of reusable standard adapters. Reusable adapter sets can also be built
inside an organization, for instance, if the organization builds multiple SOAs and
wants to reuse the adapters from previous projects. To facilitate reuse of adapters, it
should be possible to search and query for an adapter or an adapter version in such a
larger adapter set.

Managing multiple INTEGRATION ADAPTERS also introduces a deployment issue:
Usually connected systems should not be stopped for deploying a new adapter or
adapter versions. Instead it should get “seamlessly” deployed at runtime. That means,
tools should support seamless deployment.

The problem of INTEGRATION ADAPTER maintenance and management especially
occurs in larger architectural contexts, where different systems have to communicate
and larger sets of adapters exist. The problem does not have such a great impact
within the boundaries of one closed component or application, as the whole
component or application needs to be redeployed if changes are made.

Solution
Use a central repository to manage the INTEGRATION ADAPTERS as components. The
INTEGRATION ADAPTER REPOSITORY provides functions for storing, retrieving, and
querying of adapters, as well as adapter versioning. It also provides functions for
automatic deployment or supports automatic deployment tools. The automatic
deployment functions use the COMPONENT CONFIGURATOR interface of the
INTEGRATION ADAPTERS to suspend or stop adapters for maintenance. The functions
of the repository are offered via a central administration interface.

Solution Details
Figure 26 illustrates the solution of the INTEGRATION ADAPTER REPOSITORY pattern.

Fig. 26. Illustration of INTEGRATION ADAPTER REPOSITORY.

The INTEGRATION ADAPTERS are stored in a central repository that offers

operations to add, retrieve, and remove adapters in multiple versions. Optionally, the
repository can provide functions to search for adapters and adapter versions by given
attributes.

In the simple case, the INTEGRATION ADAPTER REPOSITORY just identifies the
adapter by adapter ID (name) and version. More sophisticated variants support
metadata about the adapters as well.

The INTEGRATION ADAPTER REPOSITORY can be used to support adapter
deployment. In the simplest form it fulfills tasks for external deployment tools, such
as delivering the right adapter in the right version. But it can also provide the
deployment functions itself.

The automatic deployment functions use the COMPONENT CONFIGURATOR interface
of the INTEGRATION ADAPTERS. That is, maintenance or deployment tasks are
supported because each single adapter can be stopped and restarted, new adapters or
adapter versions can be deployed, and old adapters can be removed via a centralized
administration interface.

It is important that requests sent to adapters are processed asynchronously (see
INTEGRATION ADAPTER pattern) to bridge maintenance times when the adapters are
modified. The requests are queued while the adapter is suspended. The pending
requests can be processed when the adapter restarts work after maintenance, or after
an adapter is replaced by a new adapter. The deployment functions must trigger this
behavior of the adapters.

The INTEGRATION ADAPTER REPOSITORY can pattern addresses the flexible
management of adapters at runtime. Following the pattern, changes to adapters can be
deployed rather quickly and easily.

However, the pattern requires changing the adapters because a configuration
interface is necessary for maintaining the adapters. As all adapters must implement
the interface needed by the repository, putting third-party adapters with a different
interface into the repository is not trivial. In some cases, it is impossible to add the
required configuration functions to the third-party adapter; in other cases, writing a
wrapper for the third-party adapter’s interface is required.

Example: Simple integration adapter repository design
Figure 27 shows the simplest INTEGRATION ADAPTER REPOSITORY design. In this
design the INTEGRATION ADAPTERS are just managed and retrieved using the adapter
ID.

This design can easily be extend with more sophisticated search and query options.
For instance, we could add metadata about the adapters. Using simple versioning we
could further improve this repository design.

At the moment the provided administration interface only supports deployment by
delivering the adapter using get. More sophisticated deployment functionality could
be added that can stop a running adapter, deploy a new adapter, and initialize that
adapter then.

Fig. 27. Illustration of INTEGRATION ADAPTER REPOSITORY.

Known Uses
• WebSphere InterChange Server [IBM 2008] offers an INTEGRATION

ADAPTER REPOSITORY in which a pre-defined large set of INTEGRATION
ADAPTERS is provided. Self-defined adapters can also be added.

• The connectors of transport providers of the Mule ESB [Mule 2007] are, like
all other components in Mule, managed either by the Mule container or an
external container like Pico or Spring. The container manages the lifecycle
of the connectors using the component lifecycle interfaces, which the
components can optionally implement. Thus the container acts as an
INTEGRATION ADAPTER REPOSITORY for the connectors.

• iWay’s Universal Adapter Suite [iWay 2007a] provides a repository of
adapters in the Adapter Manager [iWay 2007b]. The graphical modeler of
iWay, the Adapter Designer, is used to define document flows for adapters.
The Adapter Designer can be used to maintain and publish flows stored in
any Adapter Manager repository. The adapters in the repository can be
deployed to the Adapter Manager, which is the MICROFLOW ENGINE used for
executing the Adapter flows.

4.3 Pattern: CONFIGURABLE DISPATCHER

Context
In a SOA, multiple systems need to be integrated. Not always you can decide at
design time or deployment time, which service or system must execute a request.

Problem
How to decide at runtime which service or system has to execute a request?

Problem Details
There are numerous issues that require a decision about request execution at runtime.
Some examples are:

• As system architectures usually change over time, it is necessary to add,
replace, or change systems in the backend for executing process activities. In
many process-driven systems, this must be possible at runtime. That is, it
must be dynamically decided at runtime which component has to execute a
request, e.g., sent by a macroflow activity. If the architecture does not
consider these dynamics, then modifications to the backend structures will be
difficult to implement at runtime.

• Scalability can be achieved through load balancing, meaning that multiple
services on different machines are provided for serving the same type of
requests. Depending on the load, it must be dynamically decided using a load
balancing scheme or algorithm which service is invoked.

• Sometimes for the same functionality, multiple systems are present in an
organization. For instance, if two or more organizations have merged and the
information systems have not yet been integrated, then it is necessary to
decide based on the content of a request to which system the request must be
routed. For instance, if multiple order handling systems are present, orders
can be routed based on the product IDs/categories.

• If some functionality is replicated, for instance to support a hot stand-by
server, requests must be sent to all replicas.

All these issues actually point to well known issues in distributed architectures and
can be conceptually classified as dimensions of transparency [Emmerich 2000]:
access transparency, location transparency, migration transparency, replication
transparency, concurrency transparency, scalability transparency, performance
transparency, and failure transparency. The core problem is thus how to consider
those dimensions of transparency appropriately.

One important aspect of handling dynamic request execution decisions properly is
that the rules for these decisions can also change at runtime. For instance, consider we
change the system architecture, add more servers for load balancing, require different
content-based routing rules, or add additional replicas. In all these cases, the rules for
routing the requests change.

Solution
Use a CONFIGURABLE DISPATCHER that picks up the incoming requests and
dynamically decides on basis of configurable dispatching rules, where and when the
request should be executed. After making the decision, the CONFIGURABLE
DISPATCHER forwards the requests to the corresponding target system that handles the
request execution. New or updated dispatching rules can be deployed at runtime.

Solution Details
Figure 28 illustrates the solution of the CONFIGURABLE DISPATCHER pattern.

Fig. 28. Illustration of CONFIGURABLE DISPATCHER.

The dispatcher decides based on dispatching rules. The term “rule” is not very

strictly defined, however. Any directive that can decide – based on an incoming
request – how to handle the request can be used. For instance, the rules can be
implemented as event-condition-action rules and a rule engine can be used to interpret
the rules. Another implementation variant is to embed a scripting language interpreter
and execute scripts that perform the decision.

In any case, the rules must be triggered upon dispatching events (mainly incoming
requests). They must be able to evaluate conditions. That is, the rule engine or
interpreter must be able to access the relevant information needed for evaluating the
conditions. For instance, if content-based routing should be supported, the content of
the request must be accessible in the rule implementation. If a round-robin load
balancing should be implemented, the accessible target systems as well as a state of
the round-robin protocol need to be accessed. Finally, functionality to realize the

decision is needed, such as a command that tells the dispatcher to which target system
it should dispatch the request.

The CONFIGURABLE DISPATCHER pattern supports the flexible dispatch of requests
based on configurable rules. These dispatching rules can be changed at runtime.
Dynamic scripting languages or rule engines enable developers to update dispatching
rules on the fly. If this is not possible, the dispatcher can apply the COMPONENT
CONFIGURATOR pattern [Schmidt et al. 2000] to suspend dispatching, while the rules
are updated. In any case, the dispatcher should provide a dynamic rule maintenance
interface.

The dispatcher also has the task to pick up the request result from the component
and send it back to the adapter. It is optionally possible to apply dispatching rules for
the results as well. If asynchronous communication is used, a CORRELATION
IDENTIFIER [Hohpe et al. 2003] is used to correlate the requests and responses.

The CONFIGURABLE DISPATCHER pattern can be used to make the workload in a
SOA manageable by scaling the architecture in terms of adding instances of
services/systems to execute the requests. However, a central component like a
CONFIGURABLE DISPATCHER is a single-point-of-failure. It might be a bottleneck and
hence have a negative influence on the performance of the whole system.

Example: Simple asynchronous CONFIGURABLE DISPATCHER
Figure 29 shows an exemplary model for an asynchronous CONFIGURABLE
DISPATCHER. The dispatching rules are simply stored in aggregated objects. The
dispatcher design uses a CONFIGURABLE COMPONENT interface to suspend the
dispatcher while the dispatch rules are updated. The dispatcher follows a simple linear
algorithm to forward requests and responses (of course, this algorithm can also be
parallelized). The CORRELATION IDENTIFIER pattern is used to correlate asynchronous
requests and responses.

Fig. 29. Simple asynchronous CONFIGURABLE DISPATCHER.

Known Uses
• Using IBM’s WebSphere Business Integration Message Broker [IBM 2008]

a CONFIGURABLE DISPATCHER can be implemented with a message flow
definition that represents the dispatching logic. The dispatching rules are
stored in a database and are accessed via a database access node in the flow.

• The Service Container of the Mule Enterprise Service Bus [Mule 2007]
offers support for content-based and rule-based routing. Inbound and
outbound message events, as well as responses, can be routed according to
declarative rules that can be dynamically specified. A number of predefined
routers are available (based on the patterns in [Hohpe et al. 2003]). Pre-
defined (or user-defined) filters, like a payload type filter or an XPath filter,
can be used to express the rules that control how routers behave.

• Apache ServiceMix [ServiceMix 2007] is an open source Enterprise Service
Bus (ESB) and SOA toolkit. It uses the rule-language Drools to provide rule-
based routing inside the ESB. The architecture is rather simple: A Drools
component is exposed at some service, interface, or operation endpoint in
ServiceMix and it will be fired, when the endpoint is invoked. The rule base
is then in complete control over message dispatching.

4.4 Pattern: PROCESS INTEGRATION ARCHITECTURE

Context
Process technology is used and the basic design follows the MACRO-/MICROFLOW
pattern. Process technology is used at the macroflow level, and backend systems need
to be integrated in the process flow. The connection between the macroflow level and
the backend systems needs to be flexible so that different process technologies can
(re-)use the connection to the backend systems. The architecture must be able to cope
with increased workload conditions, i.e., it must be scalable. Finally, the architecture
must be changeable and maintainable to be able to cope with both changes in the
processes and changes in the backends. All those challenges cannot be mastered
without a clear concept for the whole SOA.

Problem
How to assemble a process-driven SOA in way that is flexible, scalable, changeable,
and maintainable?

Problem Details
To properly consider the qualities attributes flexibility, scalability, changeability, and
maintainability a number of issues must be addressed. First, there are technology
specifics of the process technology being used at the macroflow level. In principle,
implementations of macroflow activities represent reusable functions that are not
restricted to one specific process technology but which can rather be used with
different types and implementations of process engines. If the process technology is
tightly coupled to implementations of activities, changes in the process technology

may potentially have larger impact on the corresponding activity implementations
which means a loss of flexibility.

Activities at the macroflow level are usually refined as microflows following the
MACRO-/MICROFLOW pattern. Thus, one has to consider where and how these
microflows are executed. Aspects of scalability must be considered to cope with
increasing workload. As requests for activity execution are permanently initiated and
business will usually go on day and night, we additionally have to deal with the
question: What further mechanisms are necessary to maintain the whole architecture
at runtime?

 Changes to the microflow and macroflow should be easy and of low effort. Actual
backend system functionality will be invoked at the microflow level, and it is
obviously an issue how this can be achieved, as those backend systems are in
principle independent and are subject to individual changes themselves. The impact of
these changes must be kept within acceptable limits, in a way that those changes can
be managed.

Solution
Provide a multi-tier PROCESS INTEGRATION ARCHITECTURE to connect macroflows and
the backend systems that need to be used in those macroflows. The macroflows run in
dedicated macroflow engines that are connected to the SOA via INTEGRATION
ADAPTERS for the connected services. Microflows are realized in a distinct microflow
tier, and they either run in dedicated MICROFLOW ENGINES or are implemented as
microflow services. The backend systems are connected to the SOA using
INTEGRATION ADAPTERS, too. To cope with multiple backends, multiple microflow
engines, as well as for replication and load balancing, CONFIGURABLE DISPATCHERS
are used.

Solution Details
Figure 30 illustrates the solution of the PROCESS INTEGRATION ARCHITECTURE pattern.

The PROCESS INTEGRATION ARCHITECTURE pattern assumes service-based
communication. That is, the systems connected in PROCESS INTEGRATION
ARCHITECTURE are exposed using service-oriented interfaces and use services
provided by other systems in the PROCESS INTEGRATION ARCHITECTURE to fulfill their
tasks. In many cases, asynchronous communication is used, to facilitate loosely
coupling. Then usually CORRELATION IDENTIFIERS are used to correlate the requests
and results. Sometimes it makes sense to use synchronous communication, too, for
instance because blocking on a results is actually required or a backend in batch mode
can only work with synchronous invocations.

The PROCESS INTEGRATION ARCHITECTURE provides a flexible and scalable
approach to service-oriented and process-driven architectural design. The main
architectural task of a PROCESS INTEGRATION ARCHITECTURE is to connect the
macroflows, representing the executable business processes, to the backend systems
and services providing the functions needed to implement these processes. In a naïve
approach to architectural design, we would simply invoke the services (of the backend
systems) from the macroflow activities running in the MACROFLOW ENGINE. But this
only works well for small examples and very small-scale architectures. The benefit of

the PROCESS INTEGRATION ARCHITECTURE is that we can start from this very simple
architecture and step-by-step enhance it, as new requirements emerge. The
enhancements are described by the other patterns of this pattern language.

Fig. 30. Illustration of PROCESS INTEGRATION ARCHITECTURE.

The process integration architecture introduces multiple tiers:
• The Macroflow Tier hosts the implementations of the executable

macroflows. Usually MACROFLOW ENGINES are used to execute the
macroflows.

• The Macroflow Integration Tier is a common extension to the Macroflow
Tier. It introduces one INTEGRATION ADAPTER for the processes per
MACROFLOW ENGINE. This adapter integrates the process activities with the
technical functions provided by the SOA. That is, it connects the business-
oriented perspective of the business activities in the macroflows to the
technical perspective of the services and microflows.

• The Dispatching Tier is an optional tier that can be added to the PROCESS
INTEGRATION ARCHITECTURE if content-based routing, load balancing, or
other dispatching tasks are needed for connecting the macroflow requests to
the microflow or service execution.

• The Microflow Tier is a common tier, if the PROCESS INTEGRATION
ARCHITECTURE design follows the MACRO-/MICROFLOW pattern. This makes
sense, if short-running, technical orchestrations of services are needed. In the
simplest version, a number of hard-coded services can be provided for
microflow execution. A more sophisticated realization introduces
MICROFLOW ENGINES.

• The Backend Integration Tier is an optional tier which is used to provide
backends with an interface that is needed by the SOA. As this tier uses
INTEGRATION ADAPTERS it to enable independent maintenance of backend

Process Integration Architecture
Backend Integration
Adapter Repository

Macroflow
Tier

Macroflow Integration
Tier Dispatching Tier Microflow Tier Backend Integration

Tier

Process Integration
Adapter Repository

Macroflow Engine 1

Backend 2

Backend 1

Process
Integration

Adapter Backend
Integration

Adapter

Backend
Integration

Adapter

Macroflow Engine 2 Process
Integration

Adapter

Macroflow
Activity

Dispatcher

Microflow Engine:
Page Flow Engine

Microflow Engine:
Message Broker

Macroflow Engine 3 Process
Integration

Adapter

Backend Tier

systems, it is highly recommended for SOAs that need to continue operating
when connected systems are maintained.

• The Backend Tier contains the systems that are connected to the SOA and
perform the functions required to execute the business processes. Typical
backend systems are custom or off-the-shelf business applications (such as
SAP or Siebel), custom business applications, databases, services, and so on.
The backend systems are usually connected to the SOA via service-based
interfaces that expose the API of the backend system without great
modifications. For providing a specific interface to the SOA, INTEGRATION
ADAPTERS in the Backend Integration Tier should be used.

The PROCESS INTEGRATION ARCHITECTURE pattern provides a systematic way to
scale up a process-driven SOA. It can be applied for a single macroflow engine, and
multiple engines can be added later one. Similarly, only one a few services or
business applications can be initially provided, and later on more services or business
applications can be added. In both cases, the INTEGRATION ADAPTER pattern provides
a clear guideline how to perform the connection in a maintainable fashion. The
INTEGRATION ADAPTER REPOSITORY pattern should be used, if a larger number of
adapters must be maintained.

The various systems connected in the PROCESS INTEGRATION ARCHITECTURE are
treated as exchangeable black-boxes. The business applications, macroflows, and
microflows can be maintained as independent systems as long as the service
interfaces do not change. Load balancing and prioritized or rule-based processing of
requests can be supported, for instance via the CONFIGURABLE DISPATCHER. Many
existing off-the-shelf engines can be used in a PROCESS INTEGRATION ARCHITECTURE,
which might reduce the necessary in-house development effort.

The pattern has the drawback that greater design effort might be necessary
compared to simpler alternatives, because of the multi-tier model with corresponding
loosely coupled interfaces. To buy (and customize) different off-the-shelf engines or
system can be costly, just like inhouse-development of these engines or systems.
Hence, for small, simple process-driven SOAs, it should be considered to start-off
with a single process engine and follow the MACRO-/MICROFLOW pattern only
conceptually. A more sophisticated PROCESS INTEGRATION ARCHITECTURE can then
still be introduced later in time, when requirements for higher flexibility, scalability,
changeability, and maintainability arise.

Even though the PROCESS INTEGRATION ARCHITECTURE pattern concerns the design
of the services used as backends, it does not solve problems of service design.

In various parts of the PROCESS INTEGRATION ARCHITECTURE pattern business
objects (or business data) must be accessed. The business objects relevant to
microflows and macroflows essentially form a CANONICAL DATA MODEL [Hohpe et al.
2003] for storing process relevant business data. The BUSINESS OBJECT REFERENCE
[Hentrich 2004] pattern is used to keep the references to the business objects in the
process flows (macroflows and microflows) and services.

Example: Step-by-step design of a PROCESS INTEGRATION ARCHITECTURE

A schematic example for a step-by-step design of a PROCESS INTEGRATION
ARCHITECTURE has been given in the introduction of this chapter.

Known Uses
• In a supply chain management solution for a big automotive customer in

Germany this architectural pattern has been applied. WebSphere MQ
Workflow has been used as the MACROFLOW ENGINE. The integration
adapters, the dispatching layer, and the microflow execution level have been
implemented in Java. The application services are implemented using MQ
messaging technology. In this realization of the pattern, a Java architecture
has been implemented to represent the CONFIGURABLE DISPATCHER, a
MICROFLOW ENGINE, and the application adapters. No off-the-shelf
middleware has been used.

• For a telecommunications customer in Germany, the pattern has been used in
a larger scale variant. The MICROFLOW ENGINE has been implemented by an
enterprise service bus based on WebSphere Business Integration Message
Broker. WebSphere MQ Workflow has been used as the process engine at
the macroflow layer. The off-the-shelf MQ Workflow adapters provided by
the message broker served as the process integration adapters. The
architecture has been laid out initially as to support different instances of
MQ Workflow engines to cope with growing workload using a dispatcher
represented as a routing flow that routes the messages received by the
adapter to another message broker instance. New message broker instances
have been created according to the growing workload.

• A simple variant of the pattern is implemented in IBM’s WebSphere
Integration Developer [IBM 2008], which includes WebSphere Process
Server, a process engine that represents both the micro- and macroflow
levels. It further offers an architectural concept called Service Component
Architecture (SCA) to wire up services, including the corresponding
adapters.

5 Literature Review and Overview of Related Patterns

A lot of related work taking process perspectives in conjunction with patterns can be
found in the workflow and process domains. Many languages have been proposed for
the design and specification of workflow processes. Similarly, languages and tools
have been proposed for business process modeling (e.g., the extended EPCs in ARIS
and the various stereotypes in UML). Also in other domains such as ERP, CRM,
PDM, and Web Services, languages have been proposed to model processes and other
perspectives such as the organization and data perspective. Some of these languages
are based on well-known modeling techniques such as Petri Nets and UML. Other
languages are system specific.

To the best of our knowledge the work on workflow patterns conducted by van der
Aalst et al. was the first attempt to collect a structured set of patterns at the level of
process-aware information systems (summarized in [Workflow Patterns 2008, van der

Aalst et al. 2003]). Several authors have used these workflow patterns to evaluate
existing workflow management systems or newly designed workflow languages. The
work has also been augment with other pattern collections, such as service interaction
patterns [Barros at al. 2005]. These works on patterns strongly focuses on the
workflow perspective and does not take an overall architectural perspective. The
workflow patterns rather address finer grained structural elements of workflows than
software patterns in their actual sense of emergent design solutions.

Other authors have coined the term workflow patterns but addressed different
issues. In [Weigand et al. 2000] a set of workflow patterns inspired by
Language/Action theory and specifically aiming at virtual communities is introduced.
Patterns at the level of workflow architectures rather than control-flow are given in
[Meszaros and Brown 1997]. Collaboration patterns involving the use of data and
resources are described in [Lonchamp 1998].

Patterns for exception handling in process execution languages are introduced in
[Russel et al. 2006b]. [Schümmer and Lukosch 2007] provide patterns for human-
computer interaction, and some of them include process or service perspectives.
[Buschmann et al. 2007] describe a summary of the most successful emerging
software architecture patterns and integrate patterns from different sources in a
consistent manner, as to provide a comprehensive summary on architecture patterns.
However, these architecture patterns do not address SOAs specifically.

The POSA 1 book introduces a number of general architectural patterns
[Buschmann et al. 1996]. These are implicitly used in our pattern language. For
instance, it is assumed in a SOA that a BROKER architecture is used. The
CONFIGURABLE DISPATCHER pattern resembles the general solution of
CLIENT/DISPATCHER/SERVER. The INTEGRATION ADAPTER pattern implicitly resembles
the general solution of FORWARDER/RECEIVER.

Enterprise integration patterns [Hohpe et al. 2003] are also related to this work, as
they mainly describe asynchronous messaging solutions. This communication
paradigm is often used in process driven SOAs.

Specific architectural guidance for SOA construction is given in [Josuttis 2007].
However, this book does neither focus on process-driven SOAs nor patterns in
specific, and hence can be seen as complementary to our pattern language.

In his work on micro-workflows [Manolescu 2000, 2002], Manolescu provides a
workflow approach that is used to realize mainly workflows for object-oriented
compositions. The work is also based on patterns. Please note that the term micro-
workflows in Manolsecu’s work has a different meaning than microflow in our work.
Micro-workflows can be microflows but could also exhibit macroflow characteristics.
We chose to use the macroflow/microflow terminology despite the overlap in
terminology because this terminology has already been established and proven to be
intuitive to pattern language users in our experience.

Evans identified that it is not just design patterns but also many different types of
patterns that are influential when developing systems in a certain domain [Evans
2004]. This work does not yet combine aspects of organizational flexibility with a
SOA and pattern-based approach.

The typical tooling around process engines has been described in pattern form by
Manolescu (see [Manolescu 2004]). These patterns can be used to link our rather

architectural patterns on process engines, MACROFLOW ENGINE and MICROFLOW
ENGINE to the tooling provided by concrete technologies.

Some patterns are directly related and referenced in the patterns in this work. These
patterns and their sources are summarized in Table 1.

Pattern Problem Solution

GENERIC PROCESS
CONTROL
STRUCTURE
[Hentrich 2004]

How can data inconsistencies be
avoided in long running process
instances in the context of
dynamic sub-process
instantiation?

Use a generic process control data
structure that is only subject to
semantic change but not structural
change.

BUSINESS OBJECT
REFERENCE
[Hentrich 2004]

How can the management of
business objects be achieved in a
business process, as far as
concurrent access and changes
to these business objects is
concerned?

Only store references to business
objects in the process control data
structure and keep the actual business
objects in an external container.

ENTERPRISE
SERVICE BUS
[Zdun et al. 2006]

How is it possible in a large
business architecture to integrate
various applications and
backends in a comprehensive,
flexible, and consistent way?

Unify the access to applications and
backends using services and service
adapters, and use message-oriented,
event-driven communication between
these services to enable flexible
integration.

CORRELATION
IDENTIFIER
[Hohpe et al.
2003]

How does a requestor that has
received a response know to
which original request the
response is referring?

Each response message should
contain a CORRELATION IDENTIFIER, a
unique identifier that indicates which
request message this response is for.

CANONICAL DATA
MODEL
[Hohpe et al.
2003]

How to minimize dependencies
when integrating applications
that use different data formats?

Design a CANONICAL DATA MODEL that
is independent from any specific
application. Require each application
to produce and consume messages in
this common format.

COMPONENT
CONFIGURATOR
[Schmidt et al.
2000]

How to allow an application to
link and unlink its component
implementations at runtime
without having to modify,
recompile, or relink the
application statically?

Use COMPONENT CONFIGURATORS as
central components for reifying the
runtime dependencies of configurable
components. These configurable
components offer an interface to
change their configuration at runtime.

SERVICE
ABSTRACTION
LAYER [Vogel
2001]

How do you develop a system
which can fulfill requests from
different clients communicating
over different channels without
having to modify your business
logic each time a new channel
has to be supported or a new
service is added?

Provide a SERVICE ABSTRACTION
LAYER as an extra layer to the business
tier containing all the necessary logic
to receive and delegate requests.
Incoming requests are forwarded to
service providers which are able to
satisfy requests.

Table. 1. Related Patterns Overview.

6 Conclusion

In this article we have documented the fundamental patterns needed for an
architecture that composes and orchestrates services at the process level. The patterns
explain two important kinds of design and architectural decisions in this area:

• Modeling and executing business-driven and technical processes
• Integration and adaptation in process-driven SOAs

The individual patterns can be used on their own to address certain concerns in a
process-driven SOA design, but the general architecture following the PROCESS-
INTEGRATION ARCHITECTURE pattern – in first place – aims at larger architectures. The
pattern language as a whole focuses on separating business concerns cleanly from
technical concerns, in macroflows and microflows. All integration concerns are
handled via services, and macroflows and microflows are used for flexible
composition and orchestration of the services.

Acknowledgements

We like to thank Andy Longshaw, our EuroPLoP 2006 shepherd, for his useful
comments. We also like to thank the participants of the EuroPLoP 2006 writers’
workshop for their valuable feedback. Finally, we could like to thank the anonymous
reviewers of the Transactions on Pattern Languages of Programming journal for their
in-depth comments that helped us to improve this article.

References

[van der Aalst et al. 2003] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, Bartek
Kiepuszewski, Alistair P. Barros: Workflow Patterns. Distributed and Parallel Databases
14(1): 5-51, 2003.

[Active Endpoints 2007] Active Endpoints. ActiveBPEL Open Source Engine.
ttp://www.active-endpoints.com/active-bpel-engine-overview.htm, 2007.

[Barros at al. 2005] Alistair P. Barros, Marlon Dumas, Arthur H. M. ter Hofstede: Service
Interaction Patterns. Business Process Management, 3rd International Conference, BPM
2005, Nancy, France, September 5-8, 2005.

 [Barry 2003] D. K. Barry. Web Services and Service-oriented Architectures, Morgan
Kaufmann Publishers, 2003.

 [BPMN2BPEL 2008] bpmn2bpel. A tool for translating BPMN models into BPEL processes.
http://code.google.com/p/bpmn2bpel/, 2008.

[Buschmann et al. 1996] F. Buschmann, R. Meunier, H. Rohnert, P.Sommerlad, M. Stal.
Pattern-Oriented Software Architecture - A System of Patterns, John Wiley and Sons Ltd,
Chichester, UK, 1996.

[Channabasavaiah 2003 et al.] K. Channabasavaiah, K. Holley, and E.M. Tuggle. Migrating to
Service-oriented architecture – part 1, http://www-
106.ibm.com/developerworks/webservices/library/ws-migratesoa/, IBM developerWorks,
2003.

[Dikmans 2008] L. Dikmans. Transforming BPMN into BPEL: Why and How.
http://www.oracle.com/technology/pub/articles/dikmans-bpm.html, 2008.

[D'Souza and Wills 1999] Desmond D'Souza, Alan Wills. Objects, Components and
Frameworks with UML: The Catalysis Approach. Addison-Wesley, 1999.

[Emmerich 2000] W. Emmerich. Engineering Distributed Objects. Wiley & Sons, 2000.
[Enhydra 2008] Enhydra. Enhydra Shark. http://www.enhydra.org/workflow/shark/index.html,

2008.
[Evans 2004] Eric Evans. Domain-Driven Design, Addison-Wesley, 2004.
[Fornax 2008] Fornax Project. Sculptor. http://www.fornax-

platform.org/cp/display/fornax/Sculptor+(CSC), 2008.
[Gamma et al. 1994] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.
[GFT 2007] GFT. GFT Inspire Business Process Management.

http://www.gft.com/gft_international/en/gft_international/Leistungen_Produkte/Software/Bu
siness_Process_Managementsoftware.html, 2007.

[Hentrich 2004] C. Hentrich. Six patterns for process-driven architectures. In Proceedings of
the 9th Conference on Pattern Languages of Programs (EuroPLoP 2004), 2004.

[Hohpe et al. 2003] G. Hohpe and B. Woolf. Enterprise Integration Patterns. Addison-Wesley,
2003.

[IBM 2008] IBM, WebSphere Software. http://www-01.ibm.com/software/websphere/, 2008.
[iWay 2007a] iWay Software. iWay Adapter Technologies.

http://www.iwaysoftware.jp/products/integrationsolution/adapter_manager.html, 2007.
[iWay 2007b] iWay Software. iWay Adapter Manager Technology Brief. http://
www.iwaysoftware.jp/products/integrationsolution/adapter_manager.html, 2007.
[JBoss 2007] JBoss. JBoss jBPM. http://www.jboss.com/products/jbpm, 2007.
[Josuttis 2007] Nicolai M. Josuttis. SOA in Practice - The Art of Distributed System

Design, O'Reilly, 2007.
[Lonchamp 1998] Lonchamp, J. Process model patterns for collaborative work. In Proceedings

of the 15th IFIP World Computer Congress. Telecooperation Conference. Telecoop. Vienna,
Austria, 1998.

[Meszaros and Brown 1997] Meszaros, G. and Brown, K. A pattern language for workflow
systems. In Proceedings of the 4th Pattern Languages of Programming Conference.
Washington University Technical Report 97-34 (WUCS-97-34), 1997.

 [Manolescu 2004] D. A. Manolescu. Patterns for Orchestration Environments. The 11th
Conference on Pattern Languages of Programs (PLoP2004), September 8 - 12, 2004,
Allterton Park, Monticello, Illinois, 2004.

[Manolescu 2002] Dragos A. Manolescu. Workflow enactment with continuation and future
objects, ACM SIGPLAN Notices, v.37 n.11, November 2002.

 [Manolescu 2000] Dragos A. Manolescu. Micro-Workflow: A Workflow Architecture
Supporting Compositional Object-Oriented Software Development. Ph.D. Thesis and
Computer Science Technical Report UIUCDCS-R-2000-2186, University of Illinois at
Urbana-Champaign, October 2000, Urbana, Illinois.

[Mellor and Balcer 2002] Stephen J. Mellor, Marc J. Balcer. Executable UML: A Foundation
for Model Driven Architecture. Addison-Wesley, 2002.

[Mittal and Kanchanavally 2008] K. Mittal and S. Kanchanavally. Introducing Java Page
Flow Architecture. http://www.developer.com/open/article.php/10930_3531246_1, 2008.

[Mule 2007] Mule Project. Mule open source ESB (Enterprise Service Bus) and integration
platform. http://mule.mulesource.org/, 2007.

[Novell 2008] Novell. Novell exteNd Director 5.2,
http://www.novell.com/documentation/extend52/Docs/Start_Director_Help.html, 2008.

[Riehle et al. 2001] Dirk Riehle, Steven Fraleigh, Dirk Bucka-Lassen, and Nosa Omorogbe.
"The Architecture of a UML Virtual Machine." In Proceedings of the 2001 Conference on

Object-Oriented Programming Systems, Languages, and Applications (OOPSLA '01). ACM
Press, 2001. Page 327-341.

[Russel et al. 2006] Russell, N. and van der Aalst, W.M.P. and ter Hofstede, A.H.M. Exception
handling patterns in process-aware information systems. BPM Center Report BPM-06-04 ,
BPMcenter.org, 2006.

[ServiceMix 2007] Apache ServiceMix Project. Apache ServiceMix.
http://www.servicemix.org/, 2007.

[Schmidt et al. 2000] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Patterns for
Concurrent and Distributed Objects. Pattern-Oriented Software Architecture. J.Wiley and
Sons Ltd., 2000.

[Schümmer and Lukosch 2007] Schümmer, T. and Lukosch, S. Patterns for computer-mediated
interaction. Wiley & Sons., 2007

[Stahl and Völter 2006] T. Stahl and M. V¨olter. Model-Driven Software Development. John
Wiley & Sons, 2006.

[Tran et al. 2007] H. Tran, U. Zdun, and S. Dustdar. View-based and Model-driven Approach
for Reducing the Development Complexity in Process-Driven SOA. In Proceedings of
International Conference on Business Processes and Services Computing, Leipzig,
Germany, Sep, 2007.

[Vogel 2001] O. Vogel. Service abstraction layer. In Proceedings of EuroPlop 2001, Irsee,
Germany, July 2001.

[webMethods 2007] webMethods. webMethods Fabric 7.
http://www.webmethods.com/products/fabric, 2007.

[Weigand et al. 2000] Weigand, H. and de Moor, A. and van den Heuvel, W.J. Supporting the
evolution of workflow patterns for virtual communities. Electronic Markets, 10(4):264.,
2000.

[Workflow Patterns 2008] Workflow Patterns home page,
http://www.workflowpatterns.com/, 2008.

[Zdun et al. 2006] U. Zdun, C. Hentrich, and W.M.P. van der Aalst. A Survey of Patterns for
Service-Oriented Architectures. International Journal of Internet Protocol Technology, vol.
1, no. 3, pages 132-143, Inderscience, 2006.

