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Abstract. Process-driven SOAs are using processes to orchestrate services. 
Designing a non-trivial process-driven SOA involves many difficult design and 
architectural decisions. Examples are: Different kinds of processes exist: long-
running, business-oriented and short-running, technical processes. How to best 
integrate them and how to map them to execution platforms? A SOA has many 
different stakeholders, such as business analysts, management, software 
designers, architects, and developers, as well as many different types of models 
these stakeholders need to work with. How to present each of them with the 
best view on the models they need for their work? A realistic process-driven 
SOA contains many systems that need to be integrated, such as various process 
engines, services, and backend systems, running on heterogeneous technologies 
and platforms. How to perform integration in a way that is maintainable and 
scalable? This article introduces a pattern language that deals with process 
modeling, execution, and integration. Its main goal is to help solution 
architects, as well as process and service designers, to master the challenges in 
designing a stable and evolvable process-driven SOA. 
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1   Introduction 

Service-oriented architectures (SOA) can be defined as an architectural concept or 
style in which all functions, or services, are defined using a description language and 
have invokable, platform-independent interfaces that are called to perform business 
processes [Channabasavaiah 2003 et al., Barry 2003]. Each service is the endpoint of 
a connection, which can be used to access the service, and each interaction is 
independent of each and every other interaction. Communication among services can 
involve simple invocations and data passing, or complex activities of two or more 
services. Though built on similar principles, SOA is not the same as Web services, 
which is a collection of technologies, such as SOAP and XML. SOA is more than a 
set of technologies and runs independent of any specific technologies. 

Even though this definition and scoping of SOA gives us a rough idea what SOA is 
about, many important aspects are still not well defined or even misleading. For 
instance, the definition is centered on SOAP-style services (so-called WS-* services) 
and seems to exclude other service technologies such as REST. More importantly, the 



definition does not explain the main purposes of SOAs in an organization such as 
supporting business agility or enterprise application integration, to name a few. To get 
a clearer picture on what SOA is about and which proven practices exist, we provide 
in this article a pattern language describing proven knowledge for an important part of 
many SOAs: the process execution and integration design in SOAs. 

A SOA is typically organized as a layered architecture (see Figure 1), both on 
client and server side [Zdun et al. 2006]. At the lowest layer, low-level 
communication issues are handled. On top of this layer, a Remoting layer is 
responsible for all aspects of sending and receiving of remote service invocations, 
including request creation, request transport, marshalling, request adaptation, request 
invocation, etc. Above this layer comes a layer of service client applications on the 
client side and a layer of service providers on server side. The top-level layer is the 
Service Composition Layer at which the service clients and providers from the layer 
beneath are used to implement higher-level tasks, such as service orchestration, 
coordination, federation, and business processes based on services. 

In this article we view the SOA concept from the perspective of a Service 
Composition Layer that is process-driven. That is, the Service Composition Layer 
introduces a process engine (or workflow engine) which invokes the SOA services to 
realize individual activities in the process (aka process steps, tasks in the process). 
The goal of decoupling processes and individual process activities, realized as 
services, is to introduce a higher level of flexibility into the SOA: Pre-defined 
services can flexibly be assembled in a process design tool. The technical processes 
should reflect and perhaps optimize the business processes of the organization. Thus 
the flexible assembly of services in processes enables developers to cope with 
required changes to the organizational processes, while still maintaining a stable 
overall architecture. 
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Fig. 1. SOA Layers. 



 
In a process-driven SOA the services describe the operations that can be performed 

in the system. The process flow orchestrates the services via different activities. The 
operations executed by activities in a process flow thus correspond to service 
invocations. The process flow is executed by the process engine. In SOAs different 
communication protocols and paradigms, such as synchronous RPC, asynchronous 
RPC, messaging, publish/subscribe, etc. can be used and are supported by SOA 
technologies, such as Web Service frameworks or Enterprise Service Bus 
implementations. For a process-driven SOA, it can generally be assumed, however, 
that mainly asynchronous communication protocols and paradigms are used. This is 
because it cannot generally be assumed that a business process blocks until a service 
invocation returns. In most cases, in the meantime other sensible activities can be 
performed by the process. In addition, there are many places in a process-driven SOA 
where invocations must be queued (e.g. legacy systems that run in batch mode). It is 
typically not tolerable that central architectural components of the process-driven 
SOA, such as a central dispatcher, block until an invocation returns. Hence, 
synchronous service invocations are only used in exceptional cases, where they make 
sense. 

This article is structured as follows. In Section 2 we give an overview of the 
pattern language presented in this article. Section 3 introduces the challenges in 
modeling and executing business-driven and technical processes. We present two 
conceptual and two architectural patterns in this context. Integration and adaptation 
issues in process-driven SOAs are introduced in Section 4, and four architectural 
patterns are presented. In Section 5 we provide a literature review and overview of 
related patterns. Finally, in Section 6 we conclude. 

2   Pattern Language Overview 

The pattern language presented in this article basically addresses conceptual and 
architectural design issues in the Service Composition Layer, when following a 
process-driven approach to services composition.  

The patterns and pattern relationships for designing a Service Composition Layer 
are shown in Figure 2. The MACRO-/MICROFLOW1 pattern conceptually structures 
process models in a way that makes clear which parts will be run on a process engine 
as long running business process flows (below called macroflows)  and which parts of 
the process will be run inside of higher-level business activities as rather short 
running, technical flows (below called microflows).  The DOMAIN-/TECHNICAL-VIEW 
pattern explains how to split models in a SOA into two views: A high-level, domain-
oriented view and a low-level, technical view. This pattern solves the problem that 
executable models sometimes must be designed so that both technical and non-
technical stakeholders can participate in model creation and evolution. This problem 
is especially in the context of long-running process flows. In this context, we require 
– at some point in the design – a link or translation between conceptual flows and 

                                                           
1 We use SMALLCAPS font to highlight pattern names. 



executable flows. The pattern can also be applied for other models in a process-driven 
SOA, such as business object models or component models. 

The PROCESS INTEGRATION ARCHITECTURE pattern describes how to design a 
MACRO-/MICROFLOW architecture in detail. It is based on a number of tiers. In 
particular, two kinds of process engines can be used in a PROCESS INTEGRATION 
ARCHITECTURE. With regard to the macroflows, you can delegate the business process 
execution to a dedicated MACROFLOW ENGINE that executes the business processes 
described in a business process modeling language. The engine allows developers to 
configure business processes by flexibly orchestrating execution of macroflow 
activities and the related business functions. With regard to microflows, you can 
delegate the execution to a dedicated MICROFLOW ENGINE that allows developers to 
configure microflows by flexibly orchestrating execution of microflow activities and 
the related services. 

 

 
Fig. 2. Pattern relationships overview. 

 
 
The INTEGRATION ADAPTER pattern explains how to connect the various parts of 

the SOA, such as process engines and backend systems, in a maintainable and 
evolvable fashion.  The INTEGRATION ADAPTER REPOSITORY pattern describes how to 
manage and maintain INTEGRATION ADAPTERS.  

The CONFIGURABLE DISPATCHER pattern explains how to connect client and target 
systems using a configurable dispatch algorithm. Hence, it enables us to postpone 
dispatch decisions until runtime. It uses configurable dispatching rules that can be 
updated at runtime. 



3 Modeling and Executing Business-Driven and Technical 
Processes 

In many business domains, there is a need to model the processes of the business. A 
process model defines the behavior of its process instances. The process model is the 
type of the process instances. That is, process instances are instantiations of the same 
kind of behavior. Process models are usually expressed in a process modeling 
language or notation. There are more high-level, domain-oriented languages and 
notations, such as BPMN, EPC, Adonis process flows, UML activity diagrams, and so 
on. These focus on expressing the behavior of a business or a domain. In addition, 
there are technical process modeling or workflow languages that define how a process 
behavior can be executed on a process or workflow engine. Examples are the 
Business Process Execution Language (BPEL), the jBPM Process Definition 
Language (JPDL), Windows Workflow Foundation models, or the XML Process 
Definition Language (XPDL)2. In both cases, the process modeling languages define 
which elements can be used in the process models. 

Consider the process model example in BPMN depicted in Figure 3. It shows a 
very simple order handling process in which first an order is received, then the credit 
card is verified, and only if it is valid, the process proceeds. Otherwise, the customer 
is informed of the invalid credit card. Next, in parallel, the order shipment and 
charging for the order happens. Finally, the order status is reported to the customer. 

 

 
Fig. 3. Example BPMN process. 

 
This process model can describe different things with regard to an organization, 

depending on the purpose of the business process modeling, such as: 
• The process model describes how order handling should be handled, as a 

guideline or documentation of the business. The people involved in the 
execution of the process instances can deviate from the predefined process, 
where it makes sense. For instance, in some exceptional cases, shipment 
might be postponed, but once the shipment date is fixed, the order status 
reply can already be sent. This makes for instance sense in a small business, 

                                                           
2 XPDL actually is not an execution language, but a process design format that can be used to 

store and exchange process diagrams. However, XPDL elements can have attributes which 
specify execution information. Some process engines, such as Enhydra Shark [Enhydra 
2008], use XPDL directly as their execution language. 



where people fulfill the order handling process and have an overview of the 
orders they handle. 

• The process model defines how exactly the process instances must behave. 
An automated process management system ensures that each process 
instance follows the process model. This makes for instance sense in an 
organization where a high volume of similar orders with only a few 
exceptions must be processed, and the activities in the process are mostly 
automated. People only handle exceptional cases. 

• The process model defines how the process instances should behave in the 
future. Process modeling is part of a business change initiative, for example 
with the goal to improve the business performance. This is one goal of many 
SOA initiatives. Such initiatives aim to make the business processes explicit, 
optimize them, and then support them through technology. 

• The process model has explanatory purposes, such as the following. It 
defines the rationale for what happens in an information system. It links to 
the requirements of the IT system. It defines the data of the process that can 
be used for reporting purposes. It enables management or other non-technical 
stakeholders to analyze and plan the IT system.  

Many combinations of these reasons for process modeling are possible and many 
other reasons exist. This section deals with the situation that you model your business 
processes and also want to implement them using IT support. 

The first issue that must be addressed is the semantic difference between a domain-
oriented business processes like the one depicted above and an executable process. 
Executable in this context means that the process contains all technical information 
that is needed to run it on a computer. The BPMN order handling example is not 
executable because many technical details are omitted. Some examples in the sample 
process are: 

• It is unclear how the activities of the process are realized. For instance, the 
credit card verification could be realized as a service, a sub-process, a piece 
of programming language code, a script, etc. For a service, for example, we 
need the endpoint information that is needed to access it, such as host and 
port, but this technical information is missing in the BPMN example process. 

• It is unclear how the data is passed from the incoming message to the 
process activities. For instance, which credit card information is provided 
and how is it used in the process?  

• It is unclear how the data is mapped to the interface of a component or 
service that performs activities, such as credit card verification? How are 
interface and data differences handled?  It is also unclear how the results are 
mapped into the process, so that the process’ control structures, such as the 
decision node following the credit card verification in the BPMN example 
process, can use it. 

All this information is provided in technical modeling languages, such as BPEL. 
Please note that some executable processes include human tasks. Others are machine-
executable, meaning that no human tasks are part of the process. In both cases, we 
need to add the technical details to the domain-oriented processes executable. 

For instance, below you see a very small excerpt from a simplistic BPEL process, 
implementing the BPMN process above. The example excerpt just shows the code 



needed to receive the initial message, copy some variables to an input type for the 
VerifyCreditCard service, and then invoke that service. 
 
<sequence> 
  <receive name="ReceiveOrder" createInstance="yes" 
    partnerLink="Customer"  
    operation="OrderHandlingOperation"  
    xmlns:tns= 
      "http://j2ee.netbeans.org/wsdl/OrderHandling"  
    portType="tns:OrderHandlingPortType"  
    variable="OrderHandlingOperationIn"/> 
  <assign name="AssignCreditCardInfo"> 
    <copy> 
      <from>$OrderHandlingOperationIn.      
        orderHandlingInputMessage/ns0:creditCardNumber 
      </from> 
      <to>$IsValidIn.parameters/number</to> 
    </copy> 
    <copy> 
      <from>$OrderHandlingOperationIn. 
        orderHandlingInputMessage/ns0:creditCardHolder 
      </from> 
      <to>$IsValidIn.parameters/holder</to> 
    </copy> 
    <copy> 
      <from>$OrderHandlingOperationIn. 
        orderHandlingInputMessage/ 
        ns0:creditCardSecurityCode 
      </from> 
      <to>$IsValidIn.parameters/securityNumber</to> 
    </copy> 
  </assign> 
  <invoke name="VerifyCreditCard"  
    partnerLink="VerifyCreditCard" 
    operation="isValid" xmlns:tns="http://orderHandling/"  
    portType="tns:VerifyCreditCard"  
    inputVariable="IsValidIn"  
    outputVariable="IsValidOut"/> 

 
In addition to the BPEL code, we require the WSDL files that describe the 

interfaces of the services and of this process, and the XML Schema definitions of the 
data types that are passed.  

All these technical specifications are even hard to understand and complex for 
technical experts. For that reason, many modeling tools exist. For example, the 
following Figure 4 shows a simplistic BPEL process implementation of our order 
handling process modeled in the BPEL modeler of the NetBeans IDE. In addition to 
modeling BPEL graphically, designer tools offer support for designing WSDL 
interfaces, XML Schema definitions, and data mappings. The typical tooling around 



process engines has been described in pattern form by Manolescu (see [Manolescu 
2004]). 

In cases where process execution is the main goal of the process modeling, it 
seems to make sense to model the processes directly in BPEL using such a modeling 
tool, instead of modeling in BPMN. However, it is rather seldom the case that process 
execution is the only goal that process modeling is needed for. Usually, the technical 
experts are not domain experts and hence need to discuss the processes with the 
domain experts to incorporate the domain knowledge in the right way. BPEL is 
usually not a good representation for tasks that involve domain experts because BPEL 
processes are overloaded with technical details. This is certainly valid for the BPEL 
code itself. But it is also the case for what is shown in BPEL modeling tools: While 
these technical process modeling tools are a very helpful aid for developers, the 
models they expose are still pretty technical and complex. It is awkward to use them 
for the discussion with domain experts and usually impossible to let domain experts 
themselves work with these tools. For the same reasons, they are also not the best 
solution for technical stakeholders, if their work requires only getting a quick 
overview of the existing processes. The technical process code or the technical 
process modeling tools should only be used for in-depth technical work. 

 



 
Fig. 4. Example BPEL Process. 

 
The DOMAIN-/TECHNICAL-VIEW pattern solves this problem by splitting the models 

into two views:  
• A high-level, domain-oriented view that represents the process in a 

technology-independent fashion leaving away all details not needed for the 
domain task. 

• A low-level, technical view that contains the elements of the domain view 
and also contains additional technical details. 



This pattern is not only applicable for process models, but also for all other kind of 
models that must be shown in two views. An example is a data model that has a 
logical data view and a technology-dependent view. Here, the technology-dependent 
view would model the mapping of the logical view to a database (access) technology. 
Another example is a class model that represents a high-level domain model and an 
implementation model showing how the domain model elements are realized using 
e.g. a component technology. 

So far, we did not distinguish different kinds of processes. However, in a typical 
SOA in the enterprise field we can observe different kinds of behaviour that could be 
modelled as process flows. For instance, there are strategic, very high-level business 
processes that are hard to automate or support through technology. These are often 
broken down – sometimes in a number of steps – into more specific business 
processes, such as the order handling example above. The result is long-running 
business processes, perhaps with human involvement, which can possibly be mapped 
to a supporting technology. Finally, when implementing these processes, we observe 
also more short-running and technical processes. For instance, the verification of the 
credit card in the example above could consist of three steps, each calling an external 
Web service. Or the shipping of an order could require to a few steps guiding a human 
operator through a number of GUI dialogs for approving the automatically selected 
inventory items, approving the sending of an invoice, and so on. 

The distinction between long-running, business-oriented and short running, 
technical processes is an important conceptual distinction that helps us to design 
process activities at the right level of granularity. In addition, the technical properties 
of the two kinds of processes are different. For instance, for long-running processes it 
is typically not appropriate to use ACID (Atomicity, Consistency, Isolation, 
Durability) transactions because it is infeasible to lock resources for the duration of 
the whole process, while this might be perfectly feasible for more short running 
processes of only a few service invocations.  

The MACRO-/MICROFLOW pattern provides a clear guideline how to design process 
models following these observations. In the pattern, we refer to the long-running 
process using the term macroflow. We use the term microflow to refer to the short 
running, technical processes. The pattern advises to refine macroflows in a strictly 
hierarchical fashion – starting from high-level, strategic process to long-running, 
executable processes. The activities of these executable macroflows can further be 
refined by microflows. Microflow activities can be refined by other microflows. That 
is, an activity of a higher-level process model is refined by a lower-level process 
model in form of a sub-process.  

The pattern is closely related to the DOMAIN-/TECHNICAL-VIEW pattern: The highest 
level macroflows usually only have domain views. The lowest level microflows often 
only have a technical view. But the models in between – in particular the executable 
macroflows as in the example above – have both views as they are relevant to both 
technical and non-technical stakeholders. 

Refinements, as described in MACRO-/MICROFLOW and DOMAIN-/TECHNICAL-VIEW 
patterns, can be performed in general following processes such as or similar to 
Catalysis [D'Souza and Wills 1999]. Catalysis is a method for component-based 
development that defined traceable refinements from business requirements through 
component specifications and design, down to code. 



 The MACRO-/MICROFLOW pattern advises to use a suitable technology for realizing 
macroflows and microflows. Of course, it is possible to implement both macroflows 
and microflows using ordinary programming language code. But often we can 
provide better support. For instance, macroflows often should be support with process 
persistence, model-based change and redeployment, process management and 
monitoring, and so on. The MACROFLOW ENGINE pattern describes how to support a 
macroflow using process or workflow technology. An example MACROFLOW ENGINE 
that could be used in the example above is a BPEL process engine.  

For microflows, supporting technology is more seldom used. However, if rapid 
process change or reuse of existing functionality is needed, MICROFLOW ENGINES can 
be very useful. We distinguish MICROFLOWS ENGINES for microflows containing 
human interactions, such as pageflow engines, and MICROFLOWS ENGINES for 
microflows supporting automatic activities, such as message brokers. 

3.1 Pattern: DOMAIN-/TECHNICAL-VIEW  

Context 
Various stakeholders participate in the development, evolution, and use of a SOA. 
Typical technical stakeholders are the developers, designers, architects, testers, and 
system administrators. Typical non-technical stakeholders are the domain experts of 
the domain for which the SOA is created, the management, and customers. 

Problem 
How should executable models be designed if both technical and non-technical 
stakeholders need to participate in model creation and evolution? 

Problem Details 
Designing one model for a number of distinct stakeholders is challenging because the 
different stakeholders require different information for their work with the model, as 
well as different levels of detail and abstraction. A typical – often problematic – case 
in this context is that a model depicts a concern from the domain for which the SOA 
is created. So the model is, on the one hand, important for the communication with 
and among the domain experts. But, on the other hand, in a SOA often such models 
should be automatically processed and executed.  

“Executable model” means that a model is interpreted by an execution engine, or 
the model representation is compiled and then executed on an execution engine. Here 
are some examples of executable models: 

• A BPEL business process model that is executed on a BPEL engine.  
• A role-based access control model that is interpreted by an access control 

enforcement component.  
• A UML or EMF model that is transformed by the generator of a model-

driven development (MDD) solution into executable code (see [Stahl and 
Völter 2006]). In this case the model is interpreted at design time of the 
SOA, but at runtime of the generator. An alternative is using an executable 



model, such as Executable UML [Mellor and Balcer 2002] or the UML 
virtual machine [Riehle et al. 2001]. 

In order to be executable, a model must contain all technical information needed 
for execution. The original intent of modeling is often different, however: to serve as 
a means of communication among stakeholders and for system understanding. The 
information needed for execution is usually targeted only at one type of stakeholders: 
the technical developers. This, in turn, makes the models hard to understand for the 
domain experts and, in general, hard to use for tasks that require getting an overview 
of the design. The reason is the executable models are simply overloaded with too 
many technical details. 

Just consider business processes as one example of SOA models. Domain experts 
usually design with tools that use diagrams such as or similar to diagrams in BPMN, 
EPC, Adonis process flows, UML activity diagrams, and so on. The diagrams usually 
contain only the information relevant for the business. Often such models are hard to 
automate because they miss important technical information, such as how data is 
passed or transformed, or where a service to be invoked is located and with which 
interface it is accessed. Technical process modeling languages such as BPEL, jPDL, 
Windows Workflow Foundation models, or XPDL, in contrast, contain all this 
information. This makes them useful for technical execution, but also complex and 
hard to understand for domain-oriented tasks. 

Solution 
Provide each model that it is required both for domain-oriented tasks, such as getting 
an overview of the design, and technical tasks, such as execution of the model, in two 
views: a domain view and a technical view. All elements from the domain view are 
either imported or mapped into the technical view. The technical view contains 
additional elements that enrich the domain model elements with the technical details 
necessary for execution and other technical tasks. 

Solution Details 
Figure 5 illustrates the solution of the DOMAIN-/TECHNICAL-VIEW pattern. 

To realize the DOMAIN-/TECHNICAL-VIEW pattern, the elements from the domain 
view must be imported or mapped into the technical view. This can be done in various 
ways. Basically, the differences between these variants of the pattern are the 
mechanisms used for the import and the mapping, and the degree of automation.  

• The simplest variant of the pattern is to perform a manual translation to map 
the domain model elements into the technical view. First of all, for each 
domain model element, the most appropriate modeling construct for 
representing the domain model element in the technical view is chosen, and 
then the translation is performed. Next, the technical model is enriched with 
all information needed for technical tasks such as execution and deployment. 
This variant of the pattern has the benefit of flexibility: Any modeling 
languages can be mapped in any suitable way. As a creative design step is 
needed for the mapping, no formal link or mapping between the modeling 
languages is required, but the translation can happen on a case by case basis. 
This variant incurs the drawback that – for each change – manual effort is 



required for performing the translation, and consistency between the models 
must be ensured manually.  

• Sometimes translation tools between a modeling language for domain 
models and a modeling language for technical models exist, such as a BPMN 
to BPEL mapping tool. In the mapping process, somehow the additional 
technical information must be added. For instance, it can be given to the 
translation tool using an additional configuration file. Using this additional 
information and the domain view model, the translation tool generates a 
technical view corresponding to the domain view. This variant of the pattern 
can potentially reduce the manual mapping effort and ensure consistency 
automatically. It can be realized for two distinct modeling languages. 
However, not always an automatic mapping provides the best mapping. 
Especially for two languages with highly different semantics, the automatic 
mapping can cause problems. For instance, technical models can get hard to 
understand and debug, if they are automatically generated from a domain 
model with different semantics. 

• If both models, technical view and domain view, are described based on a 
common meta-model, ordinary model extension mechanisms, such as 
package import, can be used. Extensions in the technical view are then 
simply added using ordinary extension mechanisms for model elements, 
such as inheritance or delegation. This variant makes it easy to maintain 
consistency between the view models. Modeling tools can for instance allow 
designers to start modeling in the domain view and enrich it with technical 
details in property views. As an alternative, you can generate the domain 
view from the technical view model. That is, you just strip the technical 
information provided in the technical view.  

 
 



 
Fig. 5. Illustration of DOMAIN-/TECHNICAL-VIEW. 

 
If the domain view is not generated from the technical view, for all the imported 

domain model elements, all changes should be performed in the domain view. They 
should then be propagated to the technical view. This means for the three variants of 
the pattern: 

• If manual translation is used, translating the changes made to the domain 
models is required. Change propagation is a main drawback of this variant: If 
changes are made to one model and they are forgotten to be propagated or 
incorrectly propagated, the models are getting inconsistent. 

• If an automatic translation tool is used, the tool must be re-run, and it 
regenerates the domain elements in the technical view. An alternative is a 
round-trip translation: Changes to the technical view can be translated back 
into the domain view. Round-trip translation is often not advisable, as tools 
tend to generate hard to read source code and creating a well-working round-
trip tool set is a substantial amount of work.  

• If integration based on a common meta-model and package imports are used, 
changes to the domain model are reflect automatically in the technical view. 
Hence, no efforts for change propagation are required in most cases. Only if 
changes cause incompatibilities in dependent models, the models must be 
adapted accordingly.   

Example: Manual BPMN to BPEL translation 
We have seen a simple example of a manual BPMN to BPEL translation in the 
introduction of Section 3. 

«DomainView»
DomainModel_1

D1

[true]

[false]

D2

D3

«TechnicalView»
TechModel_1

D1

[true]

[false]

D2 D3

Assign Vars 
D1

Assign Vars 
D3

Assign Vars 
D2

D1 Properties

Type `CXF Service`
ServiceName `D1`
Method `executeD1`
Host `localhost`
Port `8080`

Assign Vars 
Result 1

Assign Vars 
Result 2

D2 Properties

Type `CXF Service`
ServiceName `D2`
Method `executeD2`
Host `localhost`
Port `8080`

D3 Properties

Type `Human Service`
Name `TaskList`
Function `addTask`
Host `localhost`
Port `8081`

import

import

import



Example and Known Use: View-based Modeling Framework 
The View-based Modeling Framework (VbMF) [Tran et al. 2007] is a model-driven 
infrastructure for process-driven SOAs. It uses the model-driven approach to compose 
business processes, services, and other models that are relevant in a SOA. VbMF 
abstracts each concern in its own view model. Each VbMF view model is a (semi)-
formalized representation of a particular SOA concern. The view model specifies the 
entities and relationships that can appear in a view. 

In particular, there is a Core view model from which each other view model is 
derived. The main task of the Core view model is to provide integration points for the 
various view models defined as part of VbMF, as well as extension points for 
enabling the extension with views for other concerns.  

The view models derived from Core are domain views. Example domain views are: 
Collaboration, Information, Control-Flow, Long-Running Transactions, Data, and 
Compliance Metadata. In addition, to these central concerns, many other concerns can 
be defined. Each of these view models is either extending the core model or one of the 
other view models. These view models contain no technology-specific information, 
but information understandable to the domain expert. 

In addition, VbMF defines also a second level of extensional view models, derived 
from these domain views models – the technical views. For specific technologies 
realizing the domain views, such as BPEL, WSDL, BPEL4People, WS-HumanTask, 
Hibernate, Java services, HTML, or PDF, VbMF provides technical view models, 
which add details to the general view models that are required to depict the specifics 
of these technologies.  

Figure 6 provides an overview of the VbMF view models and their relationships. 
 

 
Fig. 6. VbMF view models. 
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The integration of view elements is done using modeling abstractions, such as 
inheritance and associations, as well as matching algorithms, such as name-based 
matching. Integration is performed in the transformation templates of the code 
generator. 

The separation of view abstraction levels helps in enhancing the adaptability of the 
process-driven SOA models to business changes.  For instance, the business experts 
analyze and modify the domain views to deal with change requirements at the level of 
the business. The technical experts work with technical views to define necessary 
configurations so that the generated code can be deployed into the corresponding 
runtime (i.e., the process engines and Web service frameworks). This view-based 
separation into two view layers, domain views and technical views, also helps to 
better support the various stakeholders of the SOA: Each stakeholder views only the 
information necessary for their work. Hence, the view-based approach supports 
involving domain experts in the design of SOAs. 

Known Uses 
• The BPMN2BPEL tool [BPMN2BPEL 2008] is an Ecplise plugin for 

transforming BPMN processes, modeled in Eclipse, to BPEL. Like many 
other such tools, the tool can only translate the information that is present in 
BPMN, which might mean that technical details are not considered and 
semantic differences between BPEL and BPMN are not translated in the best 
way. 

• In [Dikmans 2008] it is discussed how to transform a BPMN model from the 
Oracle Business Process Analysis Suite to an executable BPEL process. The 
article also discusses the semantic differences between BPMN and BPEL. If 
processes are not translatable using the tool, the article advises to change the 
BPMN process by removing arbitrary cycles that are valid in BPMN, but not 
in BPEL. 

• Sculptor [Fornax 2008] is a cartridge for openArchitectureWare, a model-
driven software development infrastructure. Sculptor enables developers to 
focus on the business domain view, which is designed in a textual, domain-
specific language using concepts from Eric Evans’ book Domain-Driven 
Design [Evans 2004], such as Service, Module, Entity, Value Object, 
Repository, and so on. The code generator is used to generate Java code for 
well-known frameworks, such as Spring Framework, Spring Web Flow, JSF, 
Hibernate and Java EE. The technical view is added using configurations and 
manually written code. 

3.2 Pattern: MACRO-/MICROFLOW  

Context 
If your system is or should be described using process models, it makes sense to think 
about automating the processes using process technology. Usually, if an organization 
decides to use business processes to depict their business, high-level and mostly 
business-oriented models are created. 



Problem 
How can conceptual or business-oriented process models be implemented or realized? 

Problem Details 
One important aspect to consider when implementing or realizing business processes 
is the nature of the processes to be executed. For instance, many typical business 
processes are long running flows, involving human tasks. Such a business process can 
run for many hours, days, or even weeks before it is finished. In such cases, the 
process technology must support persisting the process instances, as the process states 
should not get lost if a machines crashes. The process instance should not occupy 
memory and other system resources, when it is not active. It should be possible to 
monitor and manage the process instance at runtime. Also, the processes should be 
interruptible via a process management interface. Such functionalities are supported 
by process or workflow engines. Process engines usually express processes in a 
process execution language, such as BPEL, jPDL, Windows Workflow Foundation 
models, or XPDL. 

In contrast to the long-running kind of flows, also short-running flows need to be 
considered. These often have a more technical nature and rather transactional or 
session-based semantics. One example is a process in which a number of steps are 
needed to perform a booking on a set of backend systems. Another example is guiding 
a human user through a pageflow of a few Web pages. In these examples, process 
instance persistence is not really needed and typical process execution languages 
make it rather awkward to express these flows. Hence, it makes sense to realize them 
using special-purpose modeling languages and technology. For instance, a message 
flow model and message broker technology or a pageflow model and pageflow engine 
technology could be used to realize the two examples. 

Please note that the named technologies are just examples: The distinction of short-
running and long-running flows is in first place a conceptual distinction. Any suitable 
technology can be chosen. For instance, it is also possible to implement both short-
running and long-running flows using ordinary programming language code (e.g., 
Java source code or code written in a scripting language) – maybe provided as a 
service. However, as in both cases some features, such as process persistence, wait 
states, concurrency handling, and so on, are needed over and over again, reusing 
existing technologies often makes sense. 

Finally, in some cases, it turns out that automating the process is not useful or 
feasible. Then an entirely manual process fulfilled by people with no automation 
whatsoever can be chosen as a realization of a process as well. Another example is 
high-level processes, such as strategic business processes of an organization, which 
would need concretization before they could be implemented. 

Unfortunately, in practice often long-running and short-running flows, as well as 
technical and non-technical concerns, are intermixed. Often concerns with different 
semantics are modeled in one model.  This practice often causes confusion as 
business analysts do not understand the level of technical detail, and technical 
modelers do not have the expertise to understand the business issues fully. Thus, these 
models tend to fail their primary purpose – to communicate and understand the 
processes and the overall system design.  



In addition, models are sometimes mapped to the wrong technology. For instance, 
a short-running transactional flow should not be realized using a process engine for 
long-running flows, and vice versa, as the different technologies exhibit significantly 
different technical characteristics.  

Solution 
Structure a process model into two kinds of processes, macroflow and microflow. 
Strictly separate the macroflow from the microflow, and use the microflow only for 
refinements of the macroflow activities. The macroflows represent the long-running, 
interruptible process flows which depict the business-oriented process perspective. 
The microflows represent the short-running, transactional flows which depict the IT-
oriented process perspective. 
 

Solution Details 
Figure 7 illustrates the solution of the MACRO-/MICROFLOW pattern. 

The MACRO-/MICROFLOW pattern provides a conceptual solution in which two 
kinds of flows are distinguished: 

• Macroflows represent the business-oriented, long-running processes. 
• Microflows represent the IT-oriented, short-running processes. 

 

 
Fig. 7. Illustration of MACRO-/MICROFLOW. 
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process activities will further be refined by microflows. Vice versa, if certain 
microflows already exist, the business process can be modeled accordingly, so that 
these IT processes fit in as business process activities at the macroflow level. 
However, this also incurs the drawback that the conceptual separation of the MACRO-
/MICROFLOW pattern must be understood and followed by modelers, which requires 
additional discipline.  

The refinement concepts of the MACRO-/MICROFLOW often require adjusting IT 
processes and business processes according to the concerns of both domains – 
business and IT – in order to bring them together. The modeling effort is higher than 
in usual business modeling, as more aspects need to be taken into consideration and, 
at all refinement levels, activities must be designed at the right level of granularity. 

A microflow model can be linked to one or many macroflow activities. The 
consequence is that the types of relationships between macroflow and microflow are 
well-defined. Microflows and macroflows both have a defined input and output, i.e., a 
well-defined functional interface. However, the functional interfaces between IT 
processes and business processes must be understood and considered by all 
stakeholder manipulating process models. 

Multiple levels of both macroflows and microflows can be modeled. That is, high-
level macroflows can be refined by lower-level macroflows. The same is possible for 
microflows. The refinement is strictly hierarchical: Always an activity in the high-
level process is refined by a low-level sub-process, realizing the activity. Never a 
microflow is refined by a macroflow. Figure 8 illustrates two levels of macroflow 
refinement and two levels of microflow refinement. 
 

 
Fig. 8. Illustration of MACRO-/MICROFLOW. 

 
The microflow can be directly invoked as a sub-process that runs automatically, or 

it can represent an activity flow that includes human interaction. As a result, two 
types of links between a macroflow activity and a microflow exist: 

• Link to a microflow for an automatic activity (transaction): A short-running, 
transactional IT process defines a detailed process model of an automatic 
activity in a higher-level business process. It represents an executed business 
function or transaction at the business process level. 

• Link to a microflow for human interaction: In case an activity of a business 
process is associated to a user interface, the IT process is a definition of the 



coherent process flow that depicts the human interaction. This process flow 
is initiated if a human user executes the business process activity.  

The microflow level and the macroflow level distinguish conceptual process levels. 
Ideally, both levels should be supported by suitable technology. An example for a 
macroflow technology is a process execution engine, such as a BPEL engine. An 
exemplary microflow technology for automatic activities is a message broker which 
provides a message flow modeling language. For short-running human interactions 
technologies such as pageflow engines can be used.  

Both types of microflows are often hard-coded using ordinary code written in a 
programming language. Sometimes an embedded scripting language is used to 
support flexible microflow definition in another language such as Java or C#. If this 
implementation option is chosen, a best practice is to provide the microflows as 
independent deployment units, e.g., one service per microflow, so that they can be 
flexibly changed and redeployed. Microflow implementations should be 
architecturally grouped together, e.g., in a SERVICE ABSTRACTION LAYER [Vogel 
2001], and not scattered across the code of one or more components, which also 
realize other tasks.  

In the ideal case, the modeling languages, techniques, and tools should support the 
conceptual separation of macroflows and microflows, as well as the definition of links 
between macroflow activities and microflows using the two types of links described 
above.  

This pattern is strongly related to the DOMAIN-/TECHNICAL-VIEW pattern because 
typically, at the point where the macroflows are mapped to technologies, we need 
both views. That is, the macroflows require in any case a domain view (e.g., modeled 
in BPMN, EPC, or Abstract BPEL), as macroflows need to be discussed with domain 
experts from the business. At the point where macroflows are mapped to 
technologies, we also need a technical view of the macroflow (e.g., modeled in BPEL, 
jPDL, Windows Workflow Foundation models, or XPDL). The same duality can be 
observed for microflows. Here, in any case, a technical view is needed, as all 
microflows are executable. Sometimes, an additional domain view is needed, for 
instance, if microflow models should be designed together with domain experts. Just 
consider a pageflow model: a domain view would just graphically show the pageflow, 
and a technical model adds the technology-dependent details.  

The most common solution for combining MACRO-/MICROFLOW and DOMAIN-
/TECHNICAL-VIEW is:  

1. High-level macroflows that depict strategic business processes and that are 
not implemented are designed only using a domain view (this step is 
optional).  

2. The high-level macroflows are refined by lower-level macroflows that get 
implemented and offer a domain view as well as a technical view.  

3. The macroflows invoke microflows which only have a technical view.  

Example: Structural model of macroflow and microflow 
Figure 9 shows an exemplary model for explicitly supporting the MACRO-
/MICROFLOW pattern. The model shows different kinds of macroflows and 
microflows, and the relationships between them. The MACRO-/MICROFLOW pattern 



generally provides a conceptual basis for the development of such models, which 
could for instance serve as a foundation for model-driven software development. 
 

 
Fig. 9. Structural model of macroflow and microflow. 

 

Known Uses 
• In IBM’s WebSphere technology [IBM 2008] the MACRO-/MICROFLOW 

pattern is reflected by different technologies and methodologies being used 
to design and implement process-aware information systems. Different kinds 
of technologies and techniques for both types of flows are offered. On the 
macroflow level, workflow technologies are used that support integration of 
people and automated functions on the business process level. An example is 
IBM’s WebSphere Process Choreographer, which is a workflow modeling 
component. The microflow level is rather represented by transactional 
message flow technologies that are often used in service-oriented 
approaches. Examples are the WebSphere Business Integration Message 
Broker and the WebSphere InterChange Server. At the macroflow level, a 
service is invoked that is designed and implemented in detail by a microflow 
that performs data transformation and routing to a backend application. 
Moreover, aggregated services are often implemented at the microflow level 
using these kinds of message flow technologies. 

• GFT’s BPM Suite GFT Inspire [GFT 2007] provides a modeler component 
that uses UML activity diagrams as a notation for modeling the macroflow. 
Microflows can be modeled in various ways. First, there are so-called step 
activities, which allow the technical modeler to model a number of 
sequential step actions that refine the business activity. In the step actions, 
the details of the connection to other systems can be specified in a special 
purpose dialog. This concept is especially used to invoke other GFT 
products, such as the document archive system or a form-based input. 
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Alternatively, the microflow can be implemented in Java snippets, which can 
be deployed to the server – together with the business process. Finally, 
services can be invoked that can integrate external microflow technologies, 
such as message brokers. 

• JBoss’ jBPM engine [JBoss 2007] follows a slightly different model, as the 
core component is a Java library and hence can be used in any Java 
environment. The jBPM library can also be packaged and exposed as a 
stateless session EJB. JBoss offers a graph-based designer for the macroflow 
process languages, and works with its own proprietary language, jPDL. A 
BPEL extension is also offered. The microflow is implemented through 
actions that are associated with events of the nodes and transitions in the 
process graph. The actions are hidden from the graphical representation, so 
that macroflow designers do not have to deal with them. The actions invoke 
Java code, which implements the microflow. The microflows need not be 
defined directly in Java, but can also be executed on external microflow 
technology, such as a message broker or a pageflow engine.  

• Novell’s exteNd Director [Novell 2008] is a framework for rapid Web site 
development. It provides a page flow engine implementing microflows for 
human interaction. A workflow engine realizes long-running macroflows. A 
pageflow activity in the workflows is used to trigger pageflows. This design 
follows the MACRO-/MICROFLOW pattern. 

3.3 Pattern: MACROFLOW ENGINE  

Context 
You have decided to model parts of your system using macroflows to represent long-
running business processes, for instance following the MACRO-/MICROFLOW pattern. 
The simplest way to implement and execute your macroflow process models is to 
manually translate them into programming language code. But, as many tasks and 
issues in a macroflow implementation are recurring, it would be useful to have some 
more support for macroflows.  

Problem 
How can macroflow execution be supported by technology? 

Problem Details 
One of the main reasons to model macroflows is to enable coping with business 
change. The reasoning behind this idea is that if you model your processes explicitly, 
you understand the implementation of your business better and can more quickly react 
to changes in the business. Changes to business are reflected by changes in the 
corresponding macroflows. Today a lot of IT systems support business processes, and 
the required changes often involve significant changes in IT systems with high costs 
and long development times. In a dynamic business environment, these costs and long 
development times are often not acceptable, as conditions might have already 
changed when old requirements are implemented. 



One of the major reasons for this problem is that business process logic is hard-
coded in the program code. The required changes thus imply to change program code 
in various systems. The result is a fragmentation (or structural gap) of business 
processes and IT systems that support them. 

Often a lot of different skills are required to achieve this, as the systems are 
implemented on varying platforms with different technology, programming 
paradigms, and languages. The heterogeneity of systems and concepts lead also 
problems for end-users, who have to roughly understand the adaptations of the 
changed systems. Often the desired business process, as it was originally designed, 
cannot be realized due to limitations of existing systems or because of the high efforts 
required to implement the changes.  

The complexity generated by this heterogeneity and the interdependencies between 
the systems let projects fail even before they have started, as the involved risks and 
the costs may be higher than the estimated benefit of the business process change. 
Thus incremental evolution cannot be achieved. As a result, IT has gained the 
reputation of just being a cost driver but not a business enabler. In many cases, this 
problem causes a situation in which no significant and innovative changes are made, 
and solving prevalent problems is postponed as long as possible. 

Hard-coding business processes also means that recurring functionality required 
for executing macroflows, such as process persistence, wait states, process 
management, or concurrency handling, need to be manually coded, too. That is, effort 
is required to develop and maintain these functionalities. 

Solution 
Use a dedicated MACROFLOW ENGINE that supports executing long-running business 
processes (macroflows) described in a business process modeling language. Integrate 
business functions as services (or modules) that are invoked by the macroflow 
activities. Changes of macroflows are supported by changing the macroflow models 
and deploying the new versions to the engine at runtime. 

Solution Details 
Figure 10 illustrates the solution of the MACROFLOW ENGINE pattern. 

 

 
Fig. 10. Illustration of MACROFLOW ENGINE. 



 
The MACROFLOW ENGINE pattern’s main participant is the engine component that 

allows developers to describe the business process logic by changing the business 
process definitions. Using a MACROFLOW ENGINE in an architecture means to decouple 
the business process logic from the IT systems. However, effort is needed to introduce 
a MACROFLOW ENGINE based architecture. The pattern has best effects if applied as a 
long term approach to architecture design and application development. Short term 
goals may not justify the efforts involved. 

Macroflow definitions are defined using a process modeling language. The engine 
executes the models, written in that modeling language. Changes occur by modifying 
the macroflow models and deploying the changed versions on the engine. Using this 
architecture, business process definitions can be flexibly changed, and the 
corresponding processes in IT systems can be adapted more easily than in hard-coded 
macroflow implementations in programming language code. 

The models executed by a MACROFLOW ENGINE represent a technical view of a 
macroflow, as described in the DOMAIN-/TECHNICAL-VIEW pattern, and are usually 
expressed in business process execution languages, such as BPEL, XPDL, Windows 
Workflow Foundation models, or jPDL. In many cases, a domain view of the models 
is defined as well, for instance in high-level process modeling languages, such as 
BPMN or EPC.  

Applications are understood as modules that offer business functions, e.g., as 
services. If the MACRO-/MICROFLOW pattern is applied, of course, a service can 
internally realize a microflow implementation. The MACROFLOW ENGINE does not see 
these internal details, however, but only the service-based interface. The business 
functions are orchestrated by the business process logic described in the MACROFLOW 
ENGINE’S modeling language. Business functions are either completely automatic or 
semi-automatic, representing a human interacting with a system. 

Business functions are represented in the macroflow as macroflow activities. They 
are one of a number of different activity types, supported by the engine. Other 
example activity types are control flow logic activities, data transformation activities, 
and exception handling activities. The MACROFLOW ENGINE concentrates on 
orchestration issues of macroflow activities but not on the implementation of these 
activities.  The actual implementation of macroflow activities is delegated to 
functionality of other systems that the engine communicates with. 

The MACROFLOW ENGINE offers an API to access the functionality of the engine, 
i.e., processing of automatic and semi-automatic tasks. It further offers functions for 
long-running macroflow execution, such as process persistence, wait states, and 
concurrency handling. It also offers an interface for managing and monitoring the 
processes and process instances at runtime. 

Various concepts exist for orchestration of macroflow activities in a MACROFLOW 
ENGINE. Two common examples are: 

• Strictly structured process flow, e.g., in terms of directed graphs with 
conditional paths (this is most common variant in commercially used 
products and tools) 

• Flexibly structured flow of activities, e.g., by defined pre- and post-
conditions of macroflow activities 



If business processes have already been hard-coded, developers must first extract 
the implemented business process logic from the systems and model them in the 
MACROFLOW ENGINE’S modeling language. Hence, in such cases, introducing the 
MACROFLOW ENGINE pattern has the drawback that efforts must be invested to extract 
the business process logic out of existing systems implementations and to modify the 
architecture.  

Example: Structural model of a MACROFLOW ENGINE 
Figure 11 shows a simple example model of a MACROFLOW ENGINE design that could 
be used as a starting point if one would realize a MACROFLOW ENGINE from scratch. 
The Macroflow Engine supports a simple management interface for 
Macroflows. These have a number of Macroflow Activities. A 
Macroflow Activity is assigned to a Resource, where a Resource can be 
some virtual actor like an IT system acting in a certain role, or a human actor who 
interacts with an IT system. As far as a human actor is concerned, constraints may be 
applied to make the macroflow activity only accessible to a defined set of users, e.g., 
by roles and rights that a user must have in order to be able to process a macroflow 
activity. The Macroflow Activities always invoke a Business 
Function, whether the Business Function is executed with support of a 
human being or whether it is completely automatic. Control data, such as process 
variables, is transformed during the execution of Macroflow Activities. 
 

 
Fig. 11. Structural model of a MACROFLOW ENGINE. 

 

Known Uses 
• IBM’s WebSphere Process Choreographer [IBM 2008] is the workflow 

modeling component of WebSphere Studio Application Developer Studio, 
Integration Edition, which provides a MACROFLOW ENGINE. The workflow 
model is specified in BPEL. 



• In the latest WebSphere product suite edition [IBM 2008], the two products 
WebSphere Process Choreographer and WebSphere InterChange Server 
have been integrated into one product which is called WebSphere Process 
Server. Consequently, this new version offers both, a MACROFLOW ENGINE 
and a MICROFLOW ENGINE.  

• GFT’s BPM Suite Inspire [GFT 2007] provides a designer for macroflows 
that is based on UML activity diagrams. The business processes can be 
deployed to an application server that implements the MACROFLOW ENGINE 
for running the business processes. The engine also offers an administrator 
interface for monitoring and management of the processes. 

• JBoss’ jBPM [JBoss 2007] is an open-source MACROFLOW ENGINE for graph-
based business process models that can be expressed either in jPDL or BPEL 
as modeling languages. jBPM offers a Web-based monitoring and 
management tool. 

• ActiveBPEL [Active Endpoints 2007] is an open-source BPEL engine that 
acts as a MACROFLOW ENGINE for business processes modeled in BPEL. 

• Novell’s exteNd Director [Novell 2008] is a framework for rapid Web site 
development. It provides a workflow engine realizing long-running 
macroflow. 

 

3.4 Pattern: MICROFLOW ENGINE  

Context 
You have realized that the business functions (services) that are orchestrated by 
macroflows in your system can be understood as short-running, technical processes. 
Following the MACRO-/MICROFLOW pattern, you introduce microflow models for 
representing these processes. In many cases, the “conceptual” notion of microflows is 
useful and sufficient, and microflows are implemented without supporting 
technology, for instance, using ordinary programming language code or scripts 
written in a scripting language.  

You can further support microflows in hard-coded solutions: A best practice for 
realizing hard-coded microflows is to place them in their own coding units that can be 
independently deployed, e.g., each microflow is implemented as its own service in a 
distinct microflow SERVICE ABSTRACTION LAYER [Vogel 2001]. Support of embedded 
scripting or dynamic languages for defining microflows can even more support the 
flexibility of microflow definition and deployment. For many cases, this solution is 
absolutely good enough. In some cases, however, you would like to get more support 
for microflow execution. 

Problem 
How can microflow execution be supported by technology to avoid hard-coded 
microflow solutions and offer benefits for microflows akin to workflow technologies? 



Problem Details 
It takes considerable time and effort to realize and change processes, if the technical 
microflow details are hard-coded in programming language code. Consider you 
implement a microflow for human interaction. If you realize a hard-coded 
implementation using a UI technology, you could write a thin client Web UI or a fat 
client GUI, hard-code certain microflows for human interactions in a layer on top of 
the UI, and provide a service-based interface to that microflow layer, so that the hard-
coded microflow implementations can be accessed from macroflows. Consider you 
want to perform simple changes to such a design, such as adding or deleting an 
activity in the microflow. Every change requires programming efforts. In a dynamic 
environment, where process changes are regular practice, this might not be 
acceptable.  

The design described in this example incurs another drawback: It requires 
discipline from the developers. Developers must place every microflow in the 
SERVICE ABSTRACTION LAYER for microflows. If developers do not strictly follow 
such as design guidelines, the consequence is that microflow code is scattered through 
one or many components, and hence changes are even more difficult and costly to 
implement.  

For these reasons, in highly dynamic business environments, a similar level of 
support for changing and redeploying microflows as provided for the macroflow 
models in a MACROFLOW ENGINE might be needed. 

Even though rapid changes and avoiding scattered microflow implementation are 
the main reasons for requiring a better support for microflows, some other 
requirements for technology support exist, such as: 

• In integrated tool suites, to provide a uniform user experience, tool vendors 
would like to provide a tooling that is similar to the macroflow tooling, 
including a modeling language for microflows.  

• Even though microflows are short running processes, in some cases it might 
be necessary to monitor and manage the microflows. To provide monitoring 
and management for hard-coded microflows usually requires a substantial 
amount of work. 

• Microflows also require recurring functionalities, such as realizing 
transaction semantics, accessing databases, or handling page flows. Hence, 
to reuse existing components providing these functionalities is useful. 

Solution 
Apply the business process paradigm directly to microflow design and 
implementation by using a MICROFLOW ENGINE that is able to execute the microflow 
models. The MICROFLOW ENGINE provides recurring tasks of the microflows as 
elements of the microflow modeling language. It supports change through changing 
of microflow models and redeployment to the engine. All microflows of a kind are 
handled by the same microflow engine. 

Solution Details 
Figure 12 illustrates the solution of the MICROFLOW ENGINE pattern. 

 



 
Fig. 12. Illustration of MICROFLOW ENGINE. 

 
If a MICROFLOW ENGINE is used, the microflow processes are defined in a 

microflow modeling language. Processes can be flexibly changed through microflow 
deployment. The microflow logic is architecturally decoupled from the business 
applications and centrally handled in one place. The MICROFLOW ENGINE concentrates 
on orchestration issues of microflow activities but not on implementation of these 
activities. The actual implementation of microflow activities is delegated to 
functionality of integrated systems the engine communicates with or to human users. 

There are two main kinds of MICROFLOW ENGINES corresponding to the two kinds 
of microflows: 

• MICROFLOW ENGINE for automatic activities: These engines support full-
automatic and transaction-safe integration processes. Hence, they offer 
functions for short-running transactional microflow execution. As integration 
processes usually must access other technologies or applications, many 
MICROFLOW ENGINES for automatic activities also support technology and 
application adapters, such as ODBC, JDBC, XML, Web service, SAP, or 
Siebel. 

• MICROFLOW ENGINE for human interactions: These engines support pageflow 
handling functionalities. A pageflow defines the control flow for a set of UI 
pages. The pages usually display information, and contain controls for user 
interaction. Many pageflow engines focus on form-based input. 

The microflow modeling language is a technical modeling language. In many 
cases, only a technical view of these models is exposed, but some tools also expose a 
high-level view of the integration processes. If this is the case, the DOMAIN-
/TECHNICAL-VIEW pattern is realized by the microflow models. The goal could for 
instance be to enable designers and architects to gain a quick overview of the 
microflows. That is, here the domain view depicts a technical domain: either the 
integration behavior of the systems or the human interactions. Hence, the domain 
experts are software designers and architects.  

Defining executable microflow models using a modeling language does not mean a 
MICROFLOW ENGINE must be used. An alternative is for instance to generate 
microflow execution code in a programming language using a model-driven code 
generator. Using a MICROFLOW ENGINE should be carefully considered, as it has some 



disadvantages as well. Usually, it is not possible to define a custom microflow 
modeling language for existing engines, and many existing languages are much more 
complex than needed for very simple microflow orchestrations. This means additional 
effort, as developers, designers, and architects must learn the microflow modeling 
language. The MICROFLOW ENGINE is an additional technology which must be 
maintained. The additional engine component adds complexity to the system 
architecture. 

The MICROFLOW ENGINE has the advantage that the models are accessible at 
runtime, e.g., for reflection on the models, and can be manipulated by redeployment. 
Management and monitoring of running processes is possible – either through an API 
or a management and monitoring tool. A tool suite similar to the macroflow tools can 
be provided. Recurring functionalities can be supported by the MICROFLOW ENGINE 
and reused for all microflows.  

Example: Structural model of a MICROFLOW ENGINE  
Figure 13 shows a simple example model of a MICROFLOW ENGINE design that could 
be used as a starting point if one would realize a MICROFLOW ENGINE from scratch. 
The basic feature of this MICROFLOW ENGINE design is execution of defined 
microflow integration process logic by orchestrating Microflow Activities. 
Analogous to the similar MACROFLOW ENGINE example presented before, each 
activity transforms Control Data that is used to control the orchestrations of 
microflow activities and invokes a Function of an IT System.  The main 
difference to the previous example is: Here the functions are services exposed by IT 
Systems, not business-related functions (see the BUSINESS-DRIVEN SERVICE pattern for 
guidelines how to design the IT services). The invocations are performed 
automatically and in a transaction-safe way.  
 



 
Fig. 13. Structural model of a MICROFLOW ENGINE. 

Example: Java Page Flow Architecture 
The previous example mainly illustrates a schematic design of a MICROFLOW ENGINE 
for automatic activities. A similar design could also be used as a core for a 
MICROFLOW ENGINE for human interactions. But additionally, we must define how to 
integrate the MICROFLOW ENGINE component into the UI architecture. Many UIs 
follow the MODEL-VIEW-CONTROLLER pattern (MVC) [Buschmann et al. 1996].  

We want to illustrate one example design for the Java Page Flow Architecture 
which provides an implementation of a MICROFLOW ENGINE for human interactions. A 
Java Page Flow consists of two main components: controllers and forms. Controllers 
mainly contain a control flow, defined by so-called actions and forwards.  The forms 
associated to the actions and forwards are mainly JSP pages.  

In Figure 14, you see an example from [Mittal and Kanchanavally 2008], which 
shows a mapping of the Java Page Flow Architecture to MVC, as implemented in the 
Apache Beehive project.  The main engine component, executing the microflows, is 
used as the MVC controller. JSP and the NetUI tag libraries are used to display the 
information in the view. Any model layer can be used, it is not determined by the 
pageflow engine. In this example architecture, the Controls technology from the 
Apache Beehive project is used as a model layer technology.  



 
Fig. 14. Java Page Flow Architecture and MVC [Mittal and Kanchanavally 2008]. 

Known Uses 
• The WebSphere Business Integration Message Broker and the WebSphere 

InterChange Server [IBM 2008] are both realizing MICROFLOW ENGINES. 
Both middleware products can also be used in conjunction. The WebSphere 
Business Integration Message Broker is used for simpler functions, such as 
adapter-based integration or dispatching. The product offers support for off-
the-shelf adapters, message routing, and transformation. WebSphere 
InterChange Server offers transaction safe integration process execution. 
Process definition is done via a GUI, and the product also offers a very large 
set of INTEGRATION ADAPTERS for most common technologies and 
applications. 

• webMethods’ Integration Server (now integrated in the Fabric BPM suite) 
[webMethods 2007] provides a MICROFLOW ENGINE that supports various 
data transfer and Web services standards, including JSP, XML, XSLT, 
SOAP, and WSDL. Its offers a graphical modeler for microflows that models 
the microflow in a number of sequential steps (including loop steps and 
branching), as well as a data mapping modeler.  

• iWay’s Universal Adapter Suite [iWay 2007a] provides an Adapter Manager 
[iWay 2007b] for its intelligent, plug-and-play adapters. The Adapter 
Manager is a component that runs either stand-alone or in an EJB container 
and executes adapter flows. The basic adapter flow is: It transforms an 
application-specific request of a client into iWay’s proprietary XML format, 
invokes an agent that might invoke an adapter or perform other tasks, and 
transforms the XML-based response into the application specific response 
format. The Adapter Manager provides a graphical modeling tool for 
assembling the adapters, the Adapter Designer. It allows developers to 
specify special-purpose microflows for a number of adapter-specific tasks, 
such as various transformations, routing through so-called agents, 
encryption/decryption, decisions, etc. Multiple agents, transformations, and 



decisions can be combined in one flow. The Adapter Manager hence 
provides a special-purpose MICROFLOW ENGINE focusing on adapter 
assembly. 

• The Java Page Flow Architecture, explained before, is a technology defining 
MICROFLOW ENGINES for human interactions. Apache Beehive is a project 
that implements the Java Page Flow Architecture using Java metadata 
annotations. The implementation is based on Struts, a widely-used MVC 
framework. BEA WebLogic Workshop is another implementation of the 
Java Page Flow Architecture, which is provides a declarative pageflow 
language.  

• Novell’s exteNd Director [Novell 2008] is a framework for rapid Web site 
development. It provides a page flow engine that orchestrates pageflows 
consisting of XForm pages. 

4 Integration and Adaptation in Process-Driven SOAs 

In the previous section we mainly discussed how to realize various types of 
executable process flow, macroflows and microflows, and how to connect them to 
services that realize functions in the processes. In a real-world SOA, usually not all 
services are implemented by the SOA developers, but in most cases a number of 
existing (legacy) systems, such as custom business applications, databases, and off-
the-shelf business applications (such as SAP or Siebel), must be integrated. 

Consider a typical starting point: Your organization uses two primary business 
applications. The first step to build a SOA orchestrating functions provided by those 
legacy applications is to provide them with a service-oriented interface. This is 
usually an incremental and non-trivial task. But let’s assume we are able to find 
suitable business services to access these applications. In order to support 
orchestration through executable business processes, we will design high-level 
macroflows representing the business processes of the organization – from the 
business perspective. Following the MACRO-/MICROFLOW and DOMAIN-/TECHNICAL-
VIEW patterns, the high-level macroflows are step-by-step refined into executable 
macroflows. Next, we realize the executable macroflows in a macroflow engine and 
use the macroflow activities to invoke the services exposed by the business 
applications. The result is an architecture as shown in the sketch below in Figure 15. 

 



 
Fig. 15. Macroflow Engine and Business Applications. 

 
Unfortunately, often the interfaces provided by the legacy business applications are 

not identical to what is expected in the business processes. The business application 
services expose the – often rather technical – interfaces of the legacy business 
applications. The macroflow processes, in contrast, require interfaces that correspond 
to the business activities in the processes. Changing the macroflows to use the 
technical interfaces does not make sense because we want to keep the macroflows 
understandable for business stakeholders. In addition, hard-wiring process activities to 
the volatile interfaces of backends is not useful, because for each change in the 
backend the process designs would have to be changed.  

For these reasons, it makes sense to introduce INTEGRATION ADAPTERS for process 
integration, exposing the interfaces that the macroflows require (as shown in Figure 
16). The INTEGRATION ADAPTER pattern translates between the interfaces of two 
systems connected using asynchronous (or if needed synchronous) connectors. The 
pattern also enables maintenance of both the connected target system and the adapter, 
by being suspendable and stoppable. Macroflow engine technology often provides 
such INTEGRATION ADAPTERS for connecting the processes to backend services. These 
adapters perform interface adaptations and data transformations, as well as data 
mapping tools to design the transformations. 

 

 
Fig. 16. Introducing a Process Integration Adapter. 



 
In many cases, the abstraction of business application services through an adapter 

is not enough. Still, the macroflows contain technical issues that go beyond simple 
adaptations and data transformations, but rather deal with orchestration tasks. As 
explained in the MACRO-/MICROFLOW pattern, these technical flows should not be 
realized in a MACROFLOW ENGINE, but strictly distinguished from the macroflows – 
and realized as microflows. For such a small-scale architecture, it is usually enough to 
provide a few hard-coded services in a distinct microflow tier, as shown in Figure 17. 

 

 
Fig. 17. Introducing a Microflows as Services. 

 
In this architecture, the business applications are hard-wired in the service 

implementations. That means, if the applications need to be stopped for maintenance, 
the whole SOA must be stopped. If the application service interfaces need to be 
changed, all dependent services must be changed, too. This is ok for small SOAs with 
limited maintenance and availability requirements. But consider we require the SOA 
to continue to run, while new versions of the business applications are deployed. This 
can be resolved by applying the INTEGRATION ADAPTER pattern again: We provide 
INTEGRATION ADAPTERS for the business applications as illustrated in Figure 18. 

 



 
Fig. 18. Introducing Backend Integration Adapters. 

 
Now consider we run this SOA for a while and our organization merges with 

another organization. That means the information system of that other organization 
needs to access our SOA. If the other organization uses explicit business processes as 
well, it is likely that it runs its own MACROFLOW ENGINE. We can perform the 
integration of the two systems by providing that other MACROFLOW ENGINE with a 
process integration adapter that integrates the microflow services of our SOA with the 
business activity interfaces required by the other organization’s macroflows. The 
resulting architecture is sketched in Figure 19. 

 

 
Fig. 19. Introducing multiple Macroflow Engines. 

 
The macroflow tier is currently hard-wired to the technical tiers. If dynamic 

content-based routing to microflows and backends is needed or load balancing to 
multiple servers hosting the services should be provided, the introduction of a 



CONFIGURABLE DISPATCHER (as shown in Figure 20) between macroflows tier and 
technical tiers can be beneficial to provide more configurability and flexibility. The 
CONFIGURABLE DISPATCHER pattern connects client and target systems using a 
configurable dispatch algorithm. Hence, it enables us to postpone dispatch decisions 
till runtime. It uses configurable dispatching rules that can be updated at runtime. 

 

 
Fig. 20. Introducing a Macroflow Activity Dispatcher. 

 
Over time, we might realize that more and more microflows are needed and more 

and more recurring tasks are performed in the microflows. In addition, it might make 
sense to make the microflow orchestrations more configurable. Hence, as a last step, 
we replace the microflow service tier by two MICROFLOW ENGINES: a page flow 
engine to realize the human interaction microflows and a message broker to realize 
the automated microflows. This is illustrated in Figure 21. 

 

 
Fig. 21. Introducing Microflow Engines. 

 
In our SOA, we have applied multiple INTEGRATION ADAPTERS that must be 

maintained and managed. Consider further the organization develops other SOAs for 
other business units that use similar technologies and must operate on similar 
backends. Then it makes sense to introduce an INTEGRATION ADAPTER REPOSITORY 
for the backend adapters. The INTEGRATION ADAPTER REPOSITORY pattern provides a 
central repository and maintenance interface for INTEGRATION ADAPTERS that supports 
management, querying, and deployment of adapters. It hence facilitates reuse of 
adapters. 



The sketched, incrementally built architecture in this example follows the PROCESS 
INTEGRATION ARCHITECTURE pattern. This pattern is an architectural pattern that 
defines a specific configuration using a number of other patterns. It explains a specific 
architectural configuration of how the other patterns can be assembled to a flexible 
and scalable SOA.  

One of the primary advantages of following the PROCESS INTEGRATION 
ARCHITECTURE pattern is that is enable architects to build up a SOA incrementally – 
just as in this example walkthrough. A process-driven SOA initiative is usually a 
large-scale project in which multiple new technologies must be learned and 
integrated. Hence, step-by-step introduction of extensions, following an approach that 
is known to scale well to larger SOAs, is highly useful. 

4.1 Pattern: INTEGRATION ADAPTER  

Context 
In a SOA, various systems need to be connected to other systems. For instance, in a 
process-driven SOA, among others, the MACROFLOW ENGINES, MICROFLOW ENGINES, 
business services, and backend systems must be connected. The systems in a process-
driven SOA are heterogeneous systems, consisting of diverse technologies running on 
different platforms and communicating over various protocols. When different 
systems are interconnected and the individual systems evolve over time, the system 
internals and sometimes even the public interfaces of these systems change.  

Problem 
How can heterogeneous systems in a SOA be connected and the impacts of system 
and system interface changes kept in acceptable limits? 

Problem Details 
Connecting two systems in a SOA means that a client system must be aligned with a 
target system that captures the requests, takes over the task of execution, and 
generates a response. For instance, if a MACROFLOW ENGINE or MICROFLOW ENGINE is 
the client, it acts as a coordinator of activities. Some of these activities are tasks that 
need to be executed by some other system. But, in many cases, the target systems are 
different to what is expected in the process engine. For instance, different technology, 
different synchronization mechanisms, or different protocols are used. In addition, in 
case of asynchronous communication, we must provide a way to connect 
heterogeneous technologies in such a way that the client can correlate the response to 
the original request. 

One important consideration, when connecting systems in a SOA, is the change 
impact. Changes should not affect the client of a system, if possible. For instance, 
changes to integrated systems should not have effects on the processes that run in 
process engines.  

In many change scenarios, downtimes of the whole SOA for maintenance are not 
tolerable. That is, changing a system should not mean that the other systems of the 
SOA must be stopped, but they should be able to continue to work, as if the changed 



system would still be functioning. Apart from this issue, internal system changes can 
be tolerated in a SOA as long as the public interfaces exposed as services do not 
change. 

However, many changes include interface change. Often the public interface of a 
system changes with each new release of the system. In this context of ongoing 
change and maintenance, the costs and efforts of changes should be kept at a 
minimum level. The impact of changes and the related testing efforts must also be 
kept within acceptable limits.  

If your organization is in control of the system that must be changed, sometimes it 
is possible to circumvent these problems by avoiding changes that influence other 
systems. However, in a SOA usually many systems by external vendors or open 
source projects are used. Examples are backend systems, such as databases, SAP, or 
Siebel, as well as SOA components, such as MACROFLOW ENGINES and MICROFLOW 
ENGINES. Changes cannot be avoided for these systems. Migration to a new release is 
often forced as old releases are not supported anymore, or the new functionality is 
simply required by the business. 

Apart from migration to a new version, the problem also occurs if a system shall be 
replaced by a completely different system. In such cases, the technology and 
functional interfaces of the new system are often highly different, causing a 
significant change impact. 

Solution 
If two systems must be connected in a SOA and keeping the change impacts in 
acceptable limits is a goal for this connection, provide an INTEGRATION ADAPTER for 
the system interconnection. The adapter contains two connectors: One for the client 
system’s import interface and one for the target system’s export interface. Use the 
adapter to translate between the connected systems, such as interfaces, protocols, 
technologies, and synchronization mechanisms, and use CORRELATION IDENTIFIERS to 
relate asynchronous requests and responses. Make the adapter configurable, by using 
asynchronous communication protocols and following the COMPONENT 
CONFIGURATOR pattern [Schmidt et al. 2000], so that the adapter can be modified at 
runtime without impacting the systems sending requests to the adapter. 

Solution Details 
Figure 22 illustrates the solution of the INTEGRATION ADAPTER pattern. 

The core of the solution of the INTEGRATION ADAPTER pattern is the same as in the 
classical, object-oriented ADAPTER pattern [Gamma et al. 1994]: An adapter connects 
the interfaces of a client and a target, and translates between the two interfaces. For 
instance, if the client is a process engine, it acts as a sender in terms of sending out 
requests for activity execution, which are received by the adapter and transformed 
into a request understood by the target system. The INTEGRATION ADAPTER pattern 
adds to the solution of the ADAPTER pattern by supporting integration at the 
architectural level of connecting distributed and heterogeneous systems. 

In the ADAPTER pattern, invocations are mainly synchronous, object-oriented 
message calls in the local scope. An INTEGRATION ADAPTER must consider in first 
place distributed requests and responses, which can be send either synchronously or 



asynchronously. Receiving a request or response can work via push or pull 
mechanisms. The request contains an identifier for the function to be executed and 
input parameters. The INTEGRATION ADAPTER transforms the request into a format 
that can be understood by the target system’s interface and technology. The request 
will be forwarded to the target system after the transformation is performed. After the 
adapter has received a response of the target system, the response is transformed back 
into the format and technology used by the interface of the client.  

 

 
Fig. 22. Illustration of INTEGRATION ADAPTER. 

 
To make the INTEGRATION ADAPTER maintainable at runtime, the COMPONENT 

CONFIGURATOR pattern [Schmidt et al. 2000] should be applied. That is, the adapter 
offers a configuration interface, which supports stopping and suspending the adapter. 
The adapter is stopped, when new versions of the adapter must be deployed. The 
adapter is suspended, when new versions of the target system are deployed or the 
adapter is configured at runtime. Later on, after maintenance activities are finished, 
the adapter can resume its work and process all requests that have arrived in the 
meantime. The INTEGRATION ADAPTER can also offer a finalization function such that 
it finishes all ongoing activities properly and then terminates itself. 

To realize an adapter with a COMPONENT CONFIGURATOR interface, the adapter 
must be loosely coupled to other systems, which is achieved by using connectors to 
client and target systems, as well as asynchronous communication protocols. As 
requests must be accepted at any time, no matter whether an adapter is at work or 
temporally suspended, an asynchronous connector should be used to receive the 
requests and to send the responses. That is, the connector must be decoupled from the 
adapter to still accept requests in case the adapter is not active.  

Basically, asynchronous communication is only required on client side, i.e., for 
systems that access the adapter. The target system does not necessarily need to be 
connected asynchronously. For instance, a connected system might only offer a 
synchronous interface, or the system is a database which is connected via 
synchronous SQL. That also means, the connector may accept requests and queue 
them until they are processed by the adapter.  

In case of asynchronous communication, requests and responses are related by 
applying the CORRELATION IDENTIFIER pattern [Hohpe et al. 2003]. That is, the client 
sends a CORRELATION IDENTIFIER with the request. The adapter is responsible for 
putting the same CORRELATION IDENTIFIER into the respective response, so that the 
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client can relate the response to its original request. For instance, if the client is a 
process engine, the CORRELATION IDENTIFIER identifies the activity instance that has 
sent the request.  

If supported by the target system, the CORRELATION IDENTIFIER will also be used 
on the target system’s side to relate the response of the target system back to the 
original request. Consequently, the target system will have to send the CORRELATION 
IDENTIFIER back in its own response so that the adapter can re-capture it. The response 
will also contain the result of the execution. If CORRELATION IDENTIFIERS cannot be 
used with the target system, for instance, because it is a legacy system that we cannot 
change, the INTEGRATION ADAPTER must implement its own mechanism to align 
requests and results.  

The transformations performed by the adapter are often hard-coded in the adapter 
implementation. In some cases, they need to be configurable. To achieve this, the 
adapter can implement transformation rules for mapping a request including all its 
data to the interface and request format of the target system. Transformation rules can 
also be used for the response transformations. Data mapping tools can be provided to 
model such transformation rules. 

An INTEGRATION ADAPTER is very useful for flexible integration of business 
applications from external vendors. It also gets more popular to provide 
interconnectivity by supporting generic adapters for common standards, such as XML 
and Web Services. That is the reason why many vendors deliver such adapters off-
the-shelf and provide open access to their APIs. As standard adapters can be provided 
for most common standards or products, solutions following the INTEGRATION 
ADAPTER pattern are usually reusable.  

One drawback of INTEGRATION ADAPTERS is that potentially many adapters need to 
be managed, if many systems exist where adapters for different purposes, systems, or 
technologies are required. Hence, maintenance and deployment of adapters might 
become problematic and must be done in a controlled way. The INTEGRATION 
ADAPTER REPOSITORY offers a way to manage adapters in a centralized and controlled 
way. 

If an adapter is suspended for a long time or if the amount of requests sent to a 
suspended adapter is very high, then the request queue may contain large amounts of 
requests that take a long time to be processed or the requests may even have timed 
out. The workload of requests and the amount of requests that an adapter can process 
must be in balance. Middleware is required to queue the requests. 

Example: Simple example structure of an INTEGRATION ADAPTER 
Figure 23 shows an exemplary model for the internal design of INTEGRATION 
ADAPTER. This adapter receives asynchronous requests from a client system and 
translates them into synchronous requests for a target system. While waiting for the 
response, the adapter stores the CORRELATION IDENTIFIER sent by the client and adds 
it to the respective response message that is sent back to the client. The INTEGRATION 
ADAPTER offers an API for adapter configuration:  

• The adapter can be initialized with init. 
• The adapter can be stopped with finalize. 



• The connected target system can be maintained. Then the adapter must be 
suspended using the suspend operation, and after the maintenance it can 
resume. 

• The adaptation status can be queried with info.  
 

 
Fig. 23. Example structure of an INTEGRATION ADAPTER 

 

Example: Process Integration Adapter 
Let us consider now a slightly more complex example of an INTEGRATION ADAPTER: 
An adapter that connects a process engine (i.e., a MACROFLOW ENGINE or MICROFLOW 
ENGINE) to a target system. Using INTEGRATION ADAPTERS for process integration has 
the benefit of a clear model for the communication between a process engine and the 
connected target systems. 

 

 
Fig. 24. Example structure of a process integration adapter 

 



In this example, both connectors are asynchronous. The adapter must translate 
between the two CORRELATION IDENTIFIERS. The adapter uses the same interface for 
configuration, as in the previous example. It follows a predefined protocol of a few 
operations to perform the adaptation.  

Both request and response message are transformed using transformation rules. 
Many process engines offer data mapping tools for graphical design of the 
transformation rules. Figure 24 illustrates the structure of the process integration 
adapter. 

The process integration adapter has a straightforward adaptation behavior, as 
shown in the following sequence diagram in Figure 25. 

Known Uses 
• WebSphere InterChange Server [IBM 2008] offers a very large set of 

INTEGRATION ADAPTERS for most common technologies and applications. 
Users can extend the set of adapters with self-defined adapters. 

• The transport providers of the Mule ESB [Mule 2007] provide INTEGRATION 
ADAPTERS for transport protocols, repositories, messaging, services, and 
other technologies in form of their connectors. A connector provides the 
implementation for connecting to an external system. The connector sends 
requests to an external receiver and manages listeners to receive responses 
from the external system. There are pre-defined connectors for HTTP, 
POP3/SMTP, IMAP, Apache Axis Web Services, JDBC, JMS, RMI, and 
many other technologies. Components can implement a common component 
lifecycle with the following lifecycle interfaces: Initialisable, Startable, 
Callable, Stoppable, and Disposable. The pre-defined connectors implement 
only the Disposable and Initialisable interfaces. 

• iWay’s Universal Adapter Suite [iWay 2007a] provides so-called intelligent, 
plug-and-play adapters for over 250 information sources and broad 
connectivity to multiple computing platforms and transport protocols. It 
provides a repository of adapters, a special-purpose MICROFLOW ENGINE for 
assembling adapters called the Adapter Manager, a graphical modeling tool 
for adapter assembly, and integration with the MACROFLOW ENGINE and EAI 
frameworks of most big vendors. 

• WebSphere MQ Workflow [IBM 2008] offers a technical concept called a 
User-Defined Program Execution Server (UPES), which implements this 
pattern for process integration. The UPES concept is a mechanism for 
invoking services via XML-based message adapters. Basis of the UPES 
concept is the MQ Workflow XML messaging interface. The UPES concept 
is all about communicating with external services via asynchronous XML 
messages. Consequently, the UPES mechanism invokes a service that a 
process activity requires, receives the result after the service execution has 
been completed, and further relates the asynchronously incoming result back 
to the process activity instance that originally requested execution of the 
service (as there may be hundreds or thousands of instances of the same 
process activity). 



• CSC offers within their e4 reference meta-architecture the concept of 
INTEGRATION ADAPTERS for process integration. For an insurance customer 
in the UK the e4 adapter concept has been used to integrate FileNet P8 
Business Process Manager with an enterprise service bus based on 
WebSphere Business Integration Message broker. 

• Within the Service Component Architecture (SCA) concept of IBM’s 
WebSphere Integration Developer various INTEGRATION ADAPTERS are 
offered off-the-shelf, e.g., for WebSphere MQ, Web services, or JMS. 

 

 
Fig. 25. Behavior of a process integration adapter 
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4.2 Pattern: INTEGRATION ADAPTER REPOSITORY  

Context 
Various systems shall be connected via INTEGRATION ADAPTERS. That means, a large 
number of adapters is used or can potentially be used in a SOA.  

Problem  
How can a large number of INTEGRATION ADAPTERS be maintained and managed? 

Problem Details 
INTEGRATION ADAPTERS are important to connect systems that have incompatible 
interfaces and to minimize the change impact, when multiple systems are integrated.  
But with each system integrated into a SOA, the number of adapters to be maintained 
grows. In addition, when the adapters evolve, new adapter versions need to be 
supported as well, meaning that actually multiple versions of each adapter need to be 
maintained and managed. 

Not always the organization running the SOA also provides the adapters. 
Especially for standard software, vendors offer INTEGRATION ADAPTERS. The result is 
often a large set of reusable standard adapters. Reusable adapter sets can also be built 
inside an organization, for instance, if the organization builds multiple SOAs and 
wants to reuse the adapters from previous projects. To facilitate reuse of adapters, it 
should be possible to search and query for an adapter or an adapter version in such a 
larger adapter set. 

Managing multiple INTEGRATION ADAPTERS also introduces a deployment issue: 
Usually connected systems should not be stopped for deploying a new adapter or 
adapter versions. Instead it should get “seamlessly” deployed at runtime. That means, 
tools should support seamless deployment. 

The problem of INTEGRATION ADAPTER maintenance and management especially 
occurs in larger architectural contexts, where different systems have to communicate 
and larger sets of adapters exist. The problem does not have such a great impact 
within the boundaries of one closed component or application, as the whole 
component or application needs to be redeployed if changes are made. 

Solution 
Use a central repository to manage the INTEGRATION ADAPTERS as components. The 
INTEGRATION ADAPTER REPOSITORY provides functions for storing, retrieving, and 
querying of adapters, as well as adapter versioning. It also provides functions for 
automatic deployment or supports automatic deployment tools. The automatic 
deployment functions use the COMPONENT CONFIGURATOR interface of the 
INTEGRATION ADAPTERS to suspend or stop adapters for maintenance.  The functions 
of the repository are offered via a central administration interface. 

Solution Details 
Figure 26 illustrates the solution of the INTEGRATION ADAPTER REPOSITORY pattern. 

 



 
Fig. 26. Illustration of INTEGRATION ADAPTER REPOSITORY. 

 
The INTEGRATION ADAPTERS are stored in a central repository that offers 

operations to add, retrieve, and remove adapters in multiple versions. Optionally, the 
repository can provide functions to search for adapters and adapter versions by given 
attributes.  

In the simple case, the INTEGRATION ADAPTER REPOSITORY just identifies the 
adapter by adapter ID (name) and version. More sophisticated variants support 
metadata about the adapters as well.  

The INTEGRATION ADAPTER REPOSITORY can be used to support adapter 
deployment. In the simplest form it fulfills tasks for external deployment tools, such 
as delivering the right adapter in the right version. But it can also provide the 
deployment functions itself.  

The automatic deployment functions use the COMPONENT CONFIGURATOR interface 
of the INTEGRATION ADAPTERS. That is, maintenance or deployment tasks are 
supported because each single adapter can be stopped and restarted, new adapters or 
adapter versions can be deployed, and old adapters can be removed via a centralized 
administration interface.  

It is important that requests sent to adapters are processed asynchronously (see 
INTEGRATION ADAPTER pattern) to bridge maintenance times when the adapters are 
modified. The requests are queued while the adapter is suspended. The pending 
requests can be processed when the adapter restarts work after maintenance, or after 
an adapter is replaced by a new adapter. The deployment functions must trigger this 
behavior of the adapters. 

The INTEGRATION ADAPTER REPOSITORY can pattern addresses the flexible 
management of adapters at runtime. Following the pattern, changes to adapters can be 
deployed rather quickly and easily.  

However, the pattern requires changing the adapters because a configuration 
interface is necessary for maintaining the adapters. As all adapters must implement 
the interface needed by the repository, putting third-party adapters with a different 
interface into the repository is not trivial. In some cases, it is impossible to add the 
required configuration functions to the third-party adapter; in other cases, writing a 
wrapper for the third-party adapter’s interface is required. 

Example: Simple integration adapter repository design 
Figure 27 shows the simplest INTEGRATION ADAPTER REPOSITORY design. In this 
design the INTEGRATION ADAPTERS are just managed and retrieved using the adapter 
ID.  



This design can easily be extend with more sophisticated search and query options. 
For instance, we could add metadata about the adapters. Using simple versioning we 
could further improve this repository design.  

At the moment the provided administration interface only supports deployment by 
delivering the adapter using get. More sophisticated deployment functionality could 
be added that can stop a running adapter, deploy a new adapter, and initialize that 
adapter then. 

 

 
Fig. 27. Illustration of INTEGRATION ADAPTER REPOSITORY. 

Known Uses 
• WebSphere InterChange Server [IBM 2008] offers an INTEGRATION 

ADAPTER REPOSITORY in which a pre-defined large set of INTEGRATION 
ADAPTERS is provided. Self-defined adapters can also be added.  

• The connectors of transport providers of the Mule ESB [Mule 2007] are, like 
all other components in Mule, managed either by the Mule container or an 
external container like Pico or Spring. The container manages the lifecycle 
of the connectors using the component lifecycle interfaces, which the 
components can optionally implement. Thus the container acts as an 
INTEGRATION ADAPTER REPOSITORY for the connectors. 

• iWay’s Universal Adapter Suite [iWay 2007a] provides a repository of 
adapters in the Adapter Manager [iWay 2007b]. The graphical modeler of 
iWay, the Adapter Designer, is used to define document flows for adapters. 
The Adapter Designer can be used to maintain and publish flows stored in 
any Adapter Manager repository. The adapters in the repository can be 
deployed to the Adapter Manager, which is the MICROFLOW ENGINE used for 
executing the Adapter flows. 



4.3 Pattern: CONFIGURABLE DISPATCHER  

Context 
In a SOA, multiple systems need to be integrated. Not always you can decide at 
design time or deployment time, which service or system must execute a request.  

Problem 
How to decide at runtime which service or system has to execute a request? 

Problem Details 
There are numerous issues that require a decision about request execution at runtime. 
Some examples are: 

• As system architectures usually change over time, it is necessary to add, 
replace, or change systems in the backend for executing process activities. In 
many process-driven systems, this must be possible at runtime. That is, it 
must be dynamically decided at runtime which component has to execute a 
request, e.g., sent by a macroflow activity. If the architecture does not 
consider these dynamics, then modifications to the backend structures will be 
difficult to implement at runtime.  

• Scalability can be achieved through load balancing, meaning that multiple 
services on different machines are provided for serving the same type of 
requests. Depending on the load, it must be dynamically decided using a load 
balancing scheme or algorithm which service is invoked. 

• Sometimes for the same functionality, multiple systems are present in an 
organization. For instance, if two or more organizations have merged and the 
information systems have not yet been integrated, then it is necessary to 
decide based on the content of a request to which system the request must be 
routed. For instance, if multiple order handling systems are present, orders 
can be routed based on the product IDs/categories.   

• If some functionality is replicated, for instance to support a hot stand-by 
server, requests must be sent to all replicas. 

All these issues actually point to well known issues in distributed architectures and 
can be conceptually classified as dimensions of transparency [Emmerich 2000]: 
access transparency, location transparency, migration transparency, replication 
transparency, concurrency transparency, scalability transparency, performance 
transparency, and failure transparency. The core problem is thus how to consider 
those dimensions of transparency appropriately. 

One important aspect of handling dynamic request execution decisions properly is 
that the rules for these decisions can also change at runtime. For instance, consider we 
change the system architecture, add more servers for load balancing, require different 
content-based routing rules, or add additional replicas. In all these cases, the rules for 
routing the requests change.  



 

Solution 
Use a CONFIGURABLE DISPATCHER that picks up the incoming requests and 
dynamically decides on basis of configurable dispatching rules, where and when the 
request should be executed. After making the decision, the CONFIGURABLE 
DISPATCHER forwards the requests to the corresponding target system that handles the 
request execution. New or updated dispatching rules can be deployed at runtime. 

Solution Details 
Figure 28 illustrates the solution of the CONFIGURABLE DISPATCHER pattern. 

 

 
Fig. 28. Illustration of CONFIGURABLE DISPATCHER. 

 
The dispatcher decides based on dispatching rules. The term “rule” is not very 

strictly defined, however. Any directive that can decide – based on an incoming 
request – how to handle the request can be used. For instance, the rules can be 
implemented as event-condition-action rules and a rule engine can be used to interpret 
the rules. Another implementation variant is to embed a scripting language interpreter 
and execute scripts that perform the decision. 

In any case, the rules must be triggered upon dispatching events (mainly incoming 
requests). They must be able to evaluate conditions. That is, the rule engine or 
interpreter must be able to access the relevant information needed for evaluating the 
conditions. For instance, if content-based routing should be supported, the content of 
the request must be accessible in the rule implementation. If a round-robin load 
balancing should be implemented, the accessible target systems as well as a state of 
the round-robin protocol need to be accessed. Finally, functionality to realize the 



decision is needed, such as a command that tells the dispatcher to which target system 
it should dispatch the request. 

The CONFIGURABLE DISPATCHER pattern supports the flexible dispatch of requests 
based on configurable rules. These dispatching rules can be changed at runtime. 
Dynamic scripting languages or rule engines enable developers to update dispatching 
rules on the fly. If this is not possible, the dispatcher can apply the COMPONENT 
CONFIGURATOR pattern [Schmidt et al. 2000] to suspend dispatching, while the rules 
are updated. In any case, the dispatcher should provide a dynamic rule maintenance 
interface. 

The dispatcher also has the task to pick up the request result from the component 
and send it back to the adapter. It is optionally possible to apply dispatching rules for 
the results as well. If asynchronous communication is used, a CORRELATION 
IDENTIFIER [Hohpe et al. 2003] is used to correlate the requests and responses. 

The CONFIGURABLE DISPATCHER pattern can be used to make the workload in a 
SOA manageable by scaling the architecture in terms of adding instances of 
services/systems to execute the requests. However, a central component like a 
CONFIGURABLE DISPATCHER is a single-point-of-failure. It might be a bottleneck and 
hence have a negative influence on the performance of the whole system. 

Example: Simple asynchronous CONFIGURABLE DISPATCHER  
Figure 29 shows an exemplary model for an asynchronous CONFIGURABLE 
DISPATCHER.  The dispatching rules are simply stored in aggregated objects. The 
dispatcher design uses a CONFIGURABLE COMPONENT interface to suspend the 
dispatcher while the dispatch rules are updated. The dispatcher follows a simple linear 
algorithm to forward requests and responses (of course, this algorithm can also be 
parallelized). The CORRELATION IDENTIFIER pattern is used to correlate asynchronous 
requests and responses. 
 

 
Fig. 29. Simple asynchronous CONFIGURABLE DISPATCHER. 

 



Known Uses 
• Using IBM’s WebSphere Business Integration Message Broker [IBM 2008] 

a CONFIGURABLE DISPATCHER can be implemented with a message flow 
definition that represents the dispatching logic. The dispatching rules are 
stored in a database and are accessed via a database access node in the flow. 

• The Service Container of the Mule Enterprise Service Bus [Mule 2007] 
offers support for content-based and rule-based routing. Inbound and 
outbound message events, as well as responses, can be routed according to 
declarative rules that can be dynamically specified. A number of predefined 
routers are available (based on the patterns in [Hohpe et al. 2003]). Pre-
defined (or user-defined) filters, like a payload type filter or an XPath filter, 
can be used to express the rules that control how routers behave. 

• Apache ServiceMix [ServiceMix 2007] is an open source Enterprise Service 
Bus (ESB) and SOA toolkit. It uses the rule-language Drools to provide rule-
based routing inside the ESB. The architecture is rather simple: A Drools 
component is exposed at some service, interface, or operation endpoint in 
ServiceMix and it will be fired, when the endpoint is invoked. The rule base 
is then in complete control over message dispatching. 

4.4 Pattern: PROCESS INTEGRATION ARCHITECTURE  

Context 
Process technology is used and the basic design follows the MACRO-/MICROFLOW 
pattern. Process technology is used at the macroflow level, and backend systems need 
to be integrated in the process flow. The connection between the macroflow level and 
the backend systems needs to be flexible so that different process technologies can 
(re-)use the connection to the backend systems. The architecture must be able to cope 
with increased workload conditions, i.e., it must be scalable. Finally, the architecture 
must be changeable and maintainable to be able to cope with both changes in the 
processes and changes in the backends. All those challenges cannot be mastered 
without a clear concept for the whole SOA. 

Problem 
How to assemble a process-driven SOA in way that is flexible, scalable, changeable, 
and maintainable? 

Problem Details 
To properly consider the qualities attributes flexibility, scalability, changeability, and 
maintainability a number of issues must be addressed. First, there are technology 
specifics of the process technology being used at the macroflow level. In principle, 
implementations of macroflow activities represent reusable functions that are not 
restricted to one specific process technology but which can rather be used with 
different types and implementations of process engines. If the process technology is 
tightly coupled to implementations of activities, changes in the process technology 



may potentially have larger impact on the corresponding activity implementations 
which means a loss of flexibility. 

Activities at the macroflow level are usually refined as microflows following the 
MACRO-/MICROFLOW pattern. Thus, one has to consider where and how these 
microflows are executed. Aspects of scalability must be considered to cope with 
increasing workload. As requests for activity execution are permanently initiated and 
business will usually go on day and night, we additionally have to deal with the 
question: What further mechanisms are necessary to maintain the whole architecture 
at runtime? 

 Changes to the microflow and macroflow should be easy and of low effort. Actual 
backend system functionality will be invoked at the microflow level, and it is 
obviously an issue how this can be achieved, as those backend systems are in 
principle independent and are subject to individual changes themselves. The impact of 
these changes must be kept within acceptable limits, in a way that those changes can 
be managed. 

Solution 
Provide a multi-tier PROCESS INTEGRATION ARCHITECTURE to connect macroflows and 
the backend systems that need to be used in those macroflows. The macroflows run in 
dedicated macroflow engines that are connected to the SOA via INTEGRATION 
ADAPTERS for the connected services. Microflows are realized in a distinct microflow 
tier, and they either run in dedicated MICROFLOW ENGINES or are implemented as 
microflow services. The backend systems are connected to the SOA using 
INTEGRATION ADAPTERS, too. To cope with multiple backends, multiple microflow 
engines, as well as for replication and load balancing, CONFIGURABLE DISPATCHERS 
are used. 

Solution Details 
Figure 30 illustrates the solution of the PROCESS INTEGRATION ARCHITECTURE pattern. 

The PROCESS INTEGRATION ARCHITECTURE pattern assumes service-based 
communication. That is, the systems connected in PROCESS INTEGRATION 
ARCHITECTURE are exposed using service-oriented interfaces and use services 
provided by other systems in the PROCESS INTEGRATION ARCHITECTURE to fulfill their 
tasks. In many cases, asynchronous communication is used, to facilitate loosely 
coupling. Then usually CORRELATION IDENTIFIERS are used to correlate the requests 
and results. Sometimes it makes sense to use synchronous communication, too, for 
instance because blocking on a results is actually required or a backend in batch mode 
can only work with synchronous invocations.  

The PROCESS INTEGRATION ARCHITECTURE provides a flexible and scalable 
approach to service-oriented and process-driven architectural design. The main 
architectural task of a PROCESS INTEGRATION ARCHITECTURE is to connect the 
macroflows, representing the executable business processes, to the backend systems 
and services providing the functions needed to implement these processes. In a naïve 
approach to architectural design, we would simply invoke the services (of the backend 
systems) from the macroflow activities running in the MACROFLOW ENGINE. But this 
only works well for small examples and very small-scale architectures. The benefit of 



the PROCESS INTEGRATION ARCHITECTURE is that we can start from this very simple 
architecture and step-by-step enhance it, as new requirements emerge. The 
enhancements are described by the other patterns of this pattern language.  

 

 
Fig. 30. Illustration of PROCESS INTEGRATION ARCHITECTURE. 

 
The process integration architecture introduces multiple tiers: 
• The Macroflow Tier hosts the implementations of the executable 

macroflows. Usually MACROFLOW ENGINES are used to execute the 
macroflows. 

• The Macroflow Integration Tier is a common extension to the Macroflow 
Tier. It introduces one INTEGRATION ADAPTER for the processes per 
MACROFLOW ENGINE. This adapter integrates the process activities with the 
technical functions provided by the SOA. That is, it connects the business-
oriented perspective of the business activities in the macroflows to the 
technical perspective of the services and microflows. 

• The Dispatching Tier is an optional tier that can be added to the PROCESS 
INTEGRATION ARCHITECTURE if content-based routing, load balancing, or 
other dispatching tasks are needed for connecting the macroflow requests to 
the microflow or service execution. 

• The Microflow Tier is a common tier, if the PROCESS INTEGRATION 
ARCHITECTURE design follows the MACRO-/MICROFLOW pattern. This makes 
sense, if short-running, technical orchestrations of services are needed. In the 
simplest version, a number of hard-coded services can be provided for 
microflow execution. A more sophisticated realization introduces 
MICROFLOW ENGINES.  

• The Backend Integration Tier is an optional tier which is used to provide 
backends with an interface that is needed by the SOA. As this tier uses 
INTEGRATION ADAPTERS it to enable independent maintenance of backend 
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systems, it is highly recommended for SOAs that need to continue operating 
when connected systems are maintained. 

• The Backend Tier contains the systems that are connected to the SOA and 
perform the functions required to execute the business processes. Typical 
backend systems are custom or off-the-shelf business applications (such as 
SAP or Siebel), custom business applications, databases, services, and so on. 
The backend systems are usually connected to the SOA via service-based 
interfaces that expose the API of the backend system without great 
modifications. For providing a specific interface to the SOA, INTEGRATION 
ADAPTERS in the Backend Integration Tier should be used. 

The PROCESS INTEGRATION ARCHITECTURE pattern provides a systematic way to 
scale up a process-driven SOA. It can be applied for a single macroflow engine, and 
multiple engines can be added later one. Similarly, only one a few services or 
business applications can be initially provided, and later on more services or business 
applications can be added. In both cases, the INTEGRATION ADAPTER pattern provides 
a clear guideline how to perform the connection in a maintainable fashion. The 
INTEGRATION ADAPTER REPOSITORY pattern should be used, if a larger number of 
adapters must be maintained. 

The various systems connected in the PROCESS INTEGRATION ARCHITECTURE are 
treated as exchangeable black-boxes. The business applications, macroflows, and 
microflows can be maintained as independent systems as long as the service 
interfaces do not change. Load balancing and prioritized or rule-based processing of 
requests can be supported, for instance via the CONFIGURABLE DISPATCHER. Many 
existing off-the-shelf engines can be used in a PROCESS INTEGRATION ARCHITECTURE, 
which might reduce the necessary in-house development effort. 

The pattern has the drawback that greater design effort might be necessary 
compared to simpler alternatives, because of the multi-tier model with corresponding 
loosely coupled interfaces. To buy (and customize) different off-the-shelf engines or 
system can be costly, just like inhouse-development of these engines or systems. 
Hence, for small, simple process-driven SOAs, it should be considered to start-off 
with a single process engine and follow the MACRO-/MICROFLOW pattern only 
conceptually. A more sophisticated PROCESS INTEGRATION ARCHITECTURE can then 
still be introduced later in time, when requirements for higher flexibility, scalability, 
changeability, and maintainability arise. 

Even though the PROCESS INTEGRATION ARCHITECTURE pattern concerns the design 
of the services used as backends, it does not solve problems of service design. 

In various parts of the PROCESS INTEGRATION ARCHITECTURE pattern business 
objects (or business data) must be accessed. The business objects relevant to 
microflows and macroflows essentially form a CANONICAL DATA MODEL [Hohpe et al. 
2003] for storing process relevant business data. The BUSINESS OBJECT REFERENCE 
[Hentrich 2004] pattern is used to keep the references to the business objects in the 
process flows (macroflows and microflows) and services. 

Example: Step-by-step design of a PROCESS INTEGRATION ARCHITECTURE 

 



A schematic example for a step-by-step design of a PROCESS INTEGRATION 
ARCHITECTURE has been given in the introduction of this chapter. 

Known Uses 
• In a supply chain management solution for a big automotive customer in 

Germany this architectural pattern has been applied. WebSphere MQ 
Workflow has been used as the MACROFLOW ENGINE.  The integration 
adapters, the dispatching layer, and the microflow execution level have been 
implemented in Java. The application services are implemented using MQ 
messaging technology. In this realization of the pattern, a Java architecture 
has been implemented to represent the CONFIGURABLE DISPATCHER, a 
MICROFLOW ENGINE, and the application adapters. No off-the-shelf 
middleware has been used. 

• For a telecommunications customer in Germany, the pattern has been used in 
a larger scale variant. The MICROFLOW ENGINE has been implemented by an 
enterprise service bus based on WebSphere Business Integration Message 
Broker. WebSphere MQ Workflow has been used as the process engine at 
the macroflow layer. The off-the-shelf MQ Workflow adapters provided by 
the message broker served as the process integration adapters. The 
architecture has been laid out initially as to support different instances of 
MQ Workflow engines to cope with growing workload using a dispatcher 
represented as a routing flow that routes the messages received by the 
adapter to another message broker instance. New message broker instances 
have been created according to the growing workload. 

• A simple variant of the pattern is implemented in IBM’s WebSphere 
Integration Developer [IBM 2008], which includes WebSphere Process 
Server, a process engine that represents both the micro- and macroflow 
levels. It further offers an architectural concept called Service Component 
Architecture (SCA) to wire up services, including the corresponding 
adapters. 

5   Literature Review and Overview of Related Patterns 

A lot of related work taking process perspectives in conjunction with patterns can be 
found in the workflow and process domains. Many languages have been proposed for 
the design and specification of workflow processes. Similarly, languages and tools 
have been proposed for business process modeling (e.g., the extended EPCs in ARIS 
and the various stereotypes in UML). Also in other domains such as ERP, CRM, 
PDM, and Web Services, languages have been proposed to model processes and other 
perspectives such as the organization and data perspective. Some of these languages 
are based on well-known modeling techniques such as Petri Nets and UML. Other 
languages are system specific. 

To the best of our knowledge the work on workflow patterns conducted by van der 
Aalst et al. was the first attempt to collect a structured set of patterns at the level of 
process-aware information systems (summarized in [Workflow Patterns 2008, van der 



Aalst et al. 2003]). Several authors have used these workflow patterns to evaluate 
existing workflow management systems or newly designed workflow languages. The 
work has also been augment with other pattern collections, such as service interaction 
patterns [Barros at al. 2005]. These works on patterns strongly focuses on the 
workflow perspective and does not take an overall architectural perspective. The 
workflow patterns rather address finer grained structural elements of workflows than 
software patterns in their actual sense of emergent design solutions. 

Other authors have coined the term workflow patterns but addressed different 
issues. In [Weigand et al. 2000] a set of workflow patterns inspired by 
Language/Action theory and specifically aiming at virtual communities is introduced. 
Patterns at the level of workflow architectures rather than control-flow are given in 
[Meszaros and Brown 1997]. Collaboration patterns involving the use of data and 
resources are described in [Lonchamp 1998].  

Patterns for exception handling in process execution languages are introduced in 
[Russel et al. 2006b]. [Schümmer and Lukosch 2007] provide patterns for human-
computer interaction, and some of them include process or service perspectives. 
[Buschmann et al. 2007] describe a summary of the most successful emerging 
software architecture patterns and integrate patterns from different sources in a 
consistent manner, as to provide a comprehensive summary on architecture patterns. 
However, these architecture patterns do not address SOAs specifically.  

The POSA 1 book introduces a number of general architectural patterns 
[Buschmann et al. 1996]. These are implicitly used in our pattern language. For 
instance, it is assumed in a SOA that a BROKER architecture is used. The 
CONFIGURABLE DISPATCHER pattern resembles the general solution of 
CLIENT/DISPATCHER/SERVER. The INTEGRATION ADAPTER pattern implicitly resembles 
the general solution of FORWARDER/RECEIVER. 

Enterprise integration patterns [Hohpe et al. 2003] are also related to this work, as 
they mainly describe asynchronous messaging solutions. This communication 
paradigm is often used in process driven SOAs. 

Specific architectural guidance for SOA construction is given in [Josuttis 2007]. 
However, this book does neither focus on process-driven SOAs nor patterns in 
specific, and hence can be seen as complementary to our pattern language. 

In his work on micro-workflows [Manolescu 2000, 2002], Manolescu provides a 
workflow approach that is used to realize mainly workflows for object-oriented 
compositions. The work is also based on patterns.  Please note that the term micro-
workflows in Manolsecu’s work has a different meaning than microflow in our work. 
Micro-workflows can be microflows but could also exhibit macroflow characteristics. 
We chose to use the macroflow/microflow terminology despite the overlap in 
terminology because this terminology has already been established and proven to be 
intuitive to pattern language users in our experience. 

Evans identified that it is not just design patterns but also many different types of 
patterns that are influential when developing systems in a certain domain [Evans 
2004]. This work does not yet combine aspects of organizational flexibility with a 
SOA and pattern-based approach. 

The typical tooling around process engines has been described in pattern form by 
Manolescu (see [Manolescu 2004]). These patterns can be used to link our rather 



architectural patterns on process engines, MACROFLOW ENGINE and MICROFLOW 
ENGINE to the tooling provided by concrete technologies. 

Some patterns are directly related and referenced in the patterns in this work. These 
patterns and their sources are summarized in Table 1. 

 
 

Pattern Problem Solution 

GENERIC PROCESS 
CONTROL 
STRUCTURE 
[Hentrich 2004] 

How can data inconsistencies be 
avoided in long running process 
instances in the context of 
dynamic sub-process 
instantiation? 

Use a generic process control data 
structure that is only subject to 
semantic change but not structural 
change. 

BUSINESS OBJECT 
REFERENCE 
[Hentrich 2004] 

How can the management of 
business objects be achieved in a 
business process, as far as 
concurrent access and changes 
to these business objects is 
concerned? 

Only store references to business 
objects in the process control data 
structure and keep the actual business 
objects in an external container. 

ENTERPRISE 
SERVICE BUS 
[Zdun et al. 2006] 

How is it possible in a large 
business architecture to integrate 
various applications and 
backends in a comprehensive, 
flexible, and consistent way? 

Unify the access to applications and 
backends using services and service 
adapters, and use message-oriented, 
event-driven communication between 
these services to enable flexible 
integration. 

CORRELATION 
IDENTIFIER 
[Hohpe et al. 
2003] 

How does a requestor that has 
received a response know to 
which original request the 
response is referring? 

Each response message should 
contain a CORRELATION IDENTIFIER, a 
unique identifier that indicates which 
request message this response is for. 

CANONICAL DATA 
MODEL 
[Hohpe et al. 
2003] 

How to minimize dependencies 
when integrating applications 
that use different data formats? 

Design a CANONICAL DATA MODEL that 
is independent from any specific 
application. Require each application 
to produce and consume messages in 
this common format. 

COMPONENT 
CONFIGURATOR 
[Schmidt et al. 
2000] 

How to allow an application to 
link and unlink its component 
implementations at runtime 
without having to modify, 
recompile, or relink the 
application statically? 

Use COMPONENT CONFIGURATORS as 
central components for reifying the 
runtime dependencies of configurable 
components. These configurable 
components offer an interface to 
change their configuration at runtime. 

SERVICE 
ABSTRACTION 
LAYER [Vogel 
2001] 

How do you develop a system 
which can fulfill requests from 
different clients communicating 
over different channels without 
having to modify your business 
logic each time a new channel 
has to be supported or a new 
service is added? 

Provide a SERVICE ABSTRACTION 
LAYER as an extra layer to the business 
tier containing all the necessary logic 
to receive and delegate requests. 
Incoming requests are forwarded to 
service providers which are able to 
satisfy requests. 

Table. 1. Related Patterns Overview. 



6 Conclusion 

In this article we have documented the fundamental patterns needed for an 
architecture that composes and orchestrates services at the process level. The patterns 
explain two important kinds of design and architectural decisions in this area: 

• Modeling and executing business-driven and technical processes 
• Integration and adaptation in process-driven SOAs 

The individual patterns can be used on their own to address certain concerns in a 
process-driven SOA design, but the general architecture following the PROCESS- 
INTEGRATION ARCHITECTURE pattern – in first place – aims at larger architectures. The 
pattern language as a whole focuses on separating business concerns cleanly from 
technical concerns, in macroflows and microflows. All integration concerns are 
handled via services, and macroflows and microflows are used for flexible 
composition and orchestration of the services. 
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