
View-Based Reverse Engineering Approach for
Enhancing Model Interoperability and Reusability

in Process-Driven SOAs

Huy Tran and Uwe Zdun and Schahram Dustdar

Distributed Systems Group
Information Systems Institute

Vienna University of Technology, Austria
htran,zdun,dustdar@infosys.tuwien.ac.at

Abstract. In many companies, process-driven SOAs are introduced by
using technical process languages, such as BPEL, to orchestrate services.
However, the process models developed using this approach are often too
complex and hard to reuse because all process-related concerns are tan-
gled in only one type of model. To make the models more understand-
able for non-technical stakeholders, many companies additionally introduce
high-level process descriptions, e.g., specified in BPMN or EPCs, to offer a
non-technical view of the processes. This divergence of process languages,
however, often leads to inconsistencies after a few evolution steps. We pro-
pose in a novel approach based on the concept of architectural views that
not only offers models tailored to the various stakeholders’ concerns but
also provides an automated integration of models at different abstraction
levels. In particular, we propose an extensible reverse-engineering tool-chain
to automatically populate various view models with information from ex-
isting process descriptions, and generate executable code from these view
models via our view-based modeling framework.

1 Introduction

In a process-driven, service-oriented architecture (SOA), business functionality is
accomplished by executing business processes consisting of coordinated activities
that invoke various services. A typical business process includes a number of activ-
ities and a control flow. Each activity corresponds to a communication task (e.g.,
it invokes other services or processes) or a data processing task. The control flow
describes how these activities are orchestrated to achieve a certain goal. A process
is typically represented in either an executable language such as BPEL4WS [8], or
XPDL [26], etc., or a high-level modeling language such as BPMN [17], EPC [11,23],
or UML Activity Diagram extensions, [16].

Nowadays, business process developers have to deal with increasing needs for
change, for instance, concerning business requirement changes or IT technology
changes. Therefore, the process models should enable a quicker reaction on busi-
ness changes in the IT by manipulating business process models instead of code.
Unfortunately, to the best of our knowledge, most of the existing business processes
are developed and maintained by technical experts (aka the IT experts) in low-level,
executable languages. It is difficult for the business analysts to get involved in pro-
cess development and maintenance because for these tasks an understanding of

many technical details is required. Hence, technical experts are required for many
task in managing, developing, and maintaining the process models. For each change,
regarding both business and technology related concerns, the technical experts have
to investigate, analyze and modify a number of executable code fragments and/or
related process models, which is costly and error-prone. This issue occurs because
the process models integrate various tangled concerns. As a consequence, the pro-
cess models become too complex and the various process concerns are hard to
reuse. In addition, there is a lack of adaptation of process models to suit the needs
and focus of a particular stakeholder, for instance, a business analyst or technical
expert.

As a solution to these problems, some companies introduce high-level process
descriptions, for instance, specified in BPMN or EPCs, to offer a non-technical
view of the processes. However, this practice leads to yet another problem, namely,
the divergence of process representations. That is, various more and less abstract
descriptions of each business process are created. As there is no explicit (i.e., au-
tomated) trace link between the high-level process models and the implementation
code/executable models for the processes, both of them might quickly become out-
dated or inconsistent as changes occur. As a consequence, neither the information
in the high-level models is reused for defining the technical models, nor vice versa.

Extension

View
Extension

View

Core

meta-model

Meta-

meta-model

Control Flow

View

meta-model

Collaboration

View

meta-model

Information

View

meta-model

Transaction

View

meta-model

M3

New-Concern

View

meta-model

M2

Extension

View

meta-model

Extension

View

Extension

View
Extension

ViewView

M1

M0
Extension

View
Extension

View
Executable

Code

Extension

View
Configuration

files

View-level operations:

- design (view)

- integrate

- generate (code)

Meta-level operations:

- design (meta-model)

- extend

Code-level operations:

- deploy

- code

(a) View-based model-driven framework

ExtensibleElement
NamedElement

-name : String

NameSpace

-uri : String
-prefix : String

View

-ID : String

ServiceProcess

consumer

*

required

*

provider

*

provided

*

element

*

view

*

(b) The core meta-model

Fig. 1. The VbMF modeling framework and the Core meta-model

To the best of our knowledge, all aforementioned challenges have not been well
exploited or targeted in the context of process-driven SOAs yet. We present in this
paper a novel view-based reverse engineering approach for addressing these chal-
lenges. Our approach harnesses the concept of architectural view and the partial
interpreter pattern to adapt process models to suit the requirements of a par-
ticular stakeholder. Using the partial interpreter pattern, we devise a number of
interpreters to extract more and less abstract views from process descriptions. This
way, different kinds of process modeling languages can be analyzed to build up the
relevant representations (or views). The relationships between these process lan-

guages are maintained via the integration of the resulting views in our view-based
modeling framework (VbMF) [22]. Next, using mechanisms such as extension mech-
anism, view integration and code generation developed in VbMF, the views can be
manipulated to produce more appropriate representations according to stakehold-
ers’ requirements, or to re-generate code in executable languages. VbMF not only
supports the reuse of information in process models at different abstraction lev-
els and in different process concerns, but also the reuse of information in existing
process models, e.g. written in BPEL.

The rest of paper is organized as follows. We give a short introduction of our
view-based modeling framework in Section 2. Section 3 describes the view-based
reverse engineering approach we propose in this paper. In Section 4, we present
the details of using view-based interpreters to analyze existing business processes
and extract various architectural views from the processes. Section 5 discusses the
related work of our approach. Finally, Section 6 summarizes the main points of our
contributions.

2 The View-based Modeling Framework

2.1 Overview of the view-based modeling framework

The view-based modeling framework [22] is based on the concept of architectural
views. An architectural view is a representation of a system from the perspective
of a related set of concerns [9]. Each particular concern is (semi-)formalized by a
respective meta-model. A meta-model specifies entities and their relationships that
appear in the correspondent view. VbMF defines a number of meta-models that
conform to a common meta-meta-model (see Figure 1(a)). This way, VbMF sepa-
rates process concerns into a number of architectural views. Furthermore, VbMF
exploits the model-driven architecture approach [15, 24] to separate the platform-
neutral models from the platform-specific models. For this reason, VbMF also sep-
arates process models into different levels of abstraction. A meta-model at a lower
abstraction level is defined as an extension of the meta-models at higher levels.
VbMF’s meta-models are either directly or indirectly derived the Core meta-model
(shown Figure 1(b)) and therefore their relationships (aka trace links) are explicitly
maintained via the model-driven architecture. These relationships enable VbMF to
bridge the gaps between meta-models at different abstraction levels and to propa-
gate changes. VbMF is able to generate code in executable language that can be
deployed on existing process engines.

The Core meta-model defines basic, generic elements and appropriate relation-
ship between these elements. Other view meta-models in VbMF are essentially
defined in the same way: by extending the model elements provided as integration
and extension points in the Core meta-model. Using the meta-models, we develop
models that specify appropriate views. Example meta-models that we have derived
from the Core meta-model are used to define the following views: Control Flow,
Collaboration and Information View (see Figure 2(a), 2(b) and 2(c)), respectively.
This way, the more specific extension view meta-models can be specified as exten-
sions of elements in their correspondent root meta-models and elements in the Core
meta-model.

For particular technologies, for instance, BPEL/WSDL, the extension mecha-
nisms can be used to enrich existing abstract meta-models with additional details

Activity

Switch

-otherwise : Activity [0..1]

StructuredActivity

-link : Link [*]

Case

-condition : String
-activity : Activity [1]

View

(core)

ControlFlowView

Link

SimpleActivity

SequenceFlow

activity
1..*

activity
1

source 1

outgoing 1

target 1

incoming 1

cases1..*

(a) Control Flow Meta-model

PartnerLink

-name : String
-myRole : Role [0..1]
-partnerRole : Role [0..1]

CollaborationView

View

(core)

PartnerLinkType

Service

(core)

Interaction

OperationChannel

RoleInterface

Service

Message

interaction

*

message* role*

partnerLinkType

1
out

*

in

*

interaction *

partnerLink 1

interface

1

message1

channel* operation*

role 1..*

partnerLinkType*

service *

interface 1..*

service *

(b) Collaboration View Meta-model

ComplexBusinessObjectSimpleBusinessObject

BusinessObjectPool

ObjectReference

ObjectType

BusinessObject

DataHandling

Transformation

Element

(core)

Types

object *

pool

object

1reference

*target

1

source

1

type 1

transformation1..*

owner

types

*

element1..*

owner

(c) Information View Meta-model

Receive

-createInstance : Boolean

PropertyAlias

-messageType : String
-part : String
-query : String

AbstractInteraction
CorrelationSet

-properties : Property

BPELCollaboration
View

CollaborationView

(collaboration)

Correlation

-isInitiate : Boolean

CorrelationSets

Interaction

(collaboration)

Interface

(collaboration)

Property

-type : String

Variable

ReplyInvoke

variable

0..1

correlationSets0..1

correlationSet

1..*
correlation

*

propertyAlias
*

variable

*

correlation
0..1

variable

0..1

property

1

interface

1

in
0..1

out
0..1

property

*

correlationSet1..*

(d) BPEL extension of the Collaboration View

Fig. 2. Three basic concern meta-models and a BPEL extension meta-model example

required to represent the specifics of those technologies. To illustrate the exten-
sion mechanisms, we present a BPEL-specific collaboration view meta-model in
Figure 2(d), which is defined by extending the elements from Figures 1(b) and
2(b). Accordingly, we can use the distinction of the Core meta-model, generic view
meta-models, and extension meta-models to represent different abstraction levels,
such as business-level concerns and technical concerns.

In our implementation of these concepts, we exploit the model-driven software
development (MDSD) paradigm [24] to separate the platform-neutral views from
the platform-specific views so that the business experts – in their views – can get
rid of technical details. Platform-specific models or executable code, for instance,
Java, or BPEL and WSDL descriptions, can be generated from the views by using
model-to-code transformations. The separation of view abstraction levels helps in
enhancing the adaptability of the process-driven SOA models to business changes.
For instance, the business experts analyze and modify the abstract views to meet
the requirement of changes. Then, these modifications can be transformed into code
in executable languages. The technical experts work with platform-specific views
to define necessary configurations such that the generated code can be deployed
into the corresponding runtime (i.e., process engines and Web service frameworks).

Forward Engineering
Tool-chain

View
Development

Transform

Integrate

Design

Reverse Engineering
Tool-chain

Interpreters

Process description
(BPEL,WSDL,etc.)

Meta-level
Development

Extend

Framework
Meta-models

Architectural
View

Repository

Executable
Code

defines

Fig. 3. The extended VbMF including the view-based reverse-engineering

We have realized VbMF in openArchitectureWare framework (oAW) [18], a
model-driven software development tool, and all meta-models are defined using the
meta-meta-model of the Eclipse Modeling Framework [6]. The model-driven soft-
ware development tool generates outputs, such as executable code, e.g., in BPEL
and WSDL. The tools allow stakeholders of a process to only view a specific per-
spective, by examining a single view, or to analyze any combination of a number
of views (i.e., to produce an integrated view).

To demonstrate our approach, we have exemplified it using the technology
combination of BPEL4WS and WSDL, which are likely the most popular pro-
cess/service modeling descriptions used by numerous companies today. Neverthe-
less, in general, the same approach can be taken for any other process-driven SOA
technologies by defining respective meta-models.

2.2 View-based reverse engineering tool-chain

VbMF mainly consists of a top-down (aka forward engineering) tool-chain (see
Figure 3) in which the stakeholders can develop process-driven models in terms of
architectural views, can generate process code from these views, or can extend the
modeling framework into other process concerns by adding new meta-models or by
enhancing existing meta-models.

Companies today have built up a vast amount of legacy process representa-
tions, either high-level or low-level, but there is no existing proper integration of
these process descriptions, and no appropriate adaptation of process models to the
stakeholders’ needs and focus. In addition, typically off-the-shelf process modeling
tools, such as BPEEL or BPMN tools, are used, and hence it is required to inte-
grate them into VbMF. For these reasons, we extend VbMF with a bottom-up (aka

Framework

meta-models

High-level

Views

View-based

intepreters

Low-level

Views

Process descriptions

(BPEL,WSDL,etc.)

High-level

Languages

Low-level

Languages

de scrib e d in

defines

"virtual"

integration of

high-level and

low-level

representations

in various

languages

"virtu a lly" re fin e s

interpretes

produces

produces

conforms

conforms

corresponds to

corresponds to

described in

refines in to
Fig. 4. The view-based reverse engineering tool-chain

reverse-engineering) tool-chain used for adapting process models and integrating
various modeling representations. The outcome of the bottom-up tool-chain is a
number of tailored views that are relevant to stakeholders. These views can be put
into a common repository, and then can be re-used in other processes, or can be
manipulated to re-generate new executable code which corresponds to any change
of the corresponding views (see Figure 3).

3 View-based Reverse Engineering Approach

In the context of process-driven SOAs, many existing systems have built up an enor-
mous repository of existing process code in executable languages, such as BPEL
and WSDL. There are two important issues that have not been solved yet. Firstly,
such process code integrates many tangled concerns such as message exchanges,
data processing, service invocations, fault handling, transactions, and so forth.
Secondly, these languages are rather technology-specific and therefore the abstract
representations are not explicitly available at the code level. As a result, the process
models become too complex for stakeholders to understand and maintain, to inte-
grate, to cooperate with other processes, or to re-use process models from existing
modeling tools, etc.

Our view-based approach introduced in the previous section can potentially re-
solve these issues. However, for the budgetary reasons, developing the view models,
required in our approach, from scratch is a poor and costly option. The alterna-
tive is an (automated) re-engineering approach comprising two activities: reverse-
engineering for building more appropriate and relevant representations of the legacy
code and forward-engineering for manipulating the process models, and for re-
generating certain parts of the process code. During the reverse engineering process,
high-level, abstract and low-level, technology-specific views on the process models
are recovered from the existing code. This way, the reverse engineering approach
helps stakeholders to get involved in process re-development and maintenance at
different abstraction levels. An appropriate reverse engineering of business pro-
cesses should not only help to adapt process models to stakeholder needs but also

offer the ability to integrate various process models to enhance the interoperability
of process models. The view-based reverse engineering approach we propose in this
paper aims at achieving these goals. In the subsequent sections, we present this ap-
proach in terms of a tool-chain that fits into the View-based Modeling Framework
(VbMF).

3.1 The Reverse Engineering Tool-chain

The reverse engineering tool-chain (see Figure 4) consists of a number of view-
based interpreters, such as control flow interpreter, information view interpreter,
and collaboration view interpreter, and so forth. Every interpreter is responsible for
interpreting and extracting the corresponding view from the process descriptions.
In VbMF, a particular view conforms to its meta-model. Therefore, the interpreter
of a certain view must be defined based on the meta-model which that view con-
forms to. For instance, the control flow view consists of elements such as Activity,
Flow, Sequence, Switch, Case according to the control flow view meta-model (see
Figure 2(a)). In order to extract the control flow view from process descriptions,
the interpreter walks through the input descriptions to pick the above-mentioned
elements. Other elements are ignored.

3.2 General Approach For View Extraction

The process descriptions comprise the specification of business functionality in a
modeling language, for instance, as we exemplify in this paper, BPEL [8]. Moreover,
the process functionality also exposes service interfaces, for instance, expressed in
WSDL [25]. To extract appropriate views from process descriptions, i.e., BPEL and
WSDL specifications, we developed a number of view interpreters such as control
flow interpreter, collaboration view interpreter, information view interpreter, as well
as a BPEL-specific extension view interpreter.

Our general approach to define view interpreters is based on the Partial Inter-
preter pattern [27]. This pattern is typically applied when the relevant information
to be interpreted from a language is only a (small) sub-set of the source document’s
language, and thus, the complexity of the whole language should be avoided in the
subsequent interpretation. In particular, in the context of this paper, we concen-
trate on specific views. The approach based on Partial Interpreter enables us to
define modular, pluggable interpreters, and the framework to be easily extensible
with new views and view extraction interpreters. The solution is to provide a Partial
Interpreter for view extraction, which only understands the specific language ele-
ments required for one view. There is a generic parser that is responsible for parsing
the process descriptions. The parsing events generated by this generic parser are
interpreted by the Partial Interpreters, which only interpret the language elements
relevant to a particular view. Hence, the following steps are necessary for defining
view extraction interpreters:

1. Define a generic interpreter for parsing the content of the process modeling
language (and other relevant languages). In the case of BPEL and WSDL, this
is a generic XML parser and a parsing event model, which can be interpreted
by the Partial Interpreters.

2. For each view: Define a mapping specification between the elements in the
process modeling language elements and the view meta-model elements. That
is, the mapping specification contains all elements of a particular view meta-
model, and describes how they map to a sub-set of the elements in the process
modeling language (and other relevant languages).

3. For each view: Define a view-specific interpretation specification that interprets
only the relevant elements for a particular view from the process modeling
language. That is, the Partial Interpreter specification explains how a view
model can be filled with the information from the process modeling language
(and other relevant languages).

The Partial Interpreter’s mapping specification and view-specific interpretation
specification are both defined generically on basis of the meta-models. Hence, they
can be reused for many concrete view models. In the subsequent sections, we present
the details of the realization of the mapping specifications for basic process con-
cerns, i.e., control flow interpreter, information view interpreter and collaboration
view interpreter to illustrate our general approach. Other view interpreters can be
implemented following the same approach.

4 Details of the view-based reverse engineering approach:
Four empirical analyses

In this section, we empirically analyze the capabilities of the view-based reverse
engineering approach, such as the adaptation of process models to stakeholders’
needs and the integration of models in different levels of abstraction, by inves-
tigating four typical cases in which the view-based reverse engineering approach
can get applied. In doing so, we also introduce the details of our approach for
applying it to an exemplary process-driven SOA technology: BPEL and WSDL.
BPEL/WSDL is used for exemplification because these are likely the most popular
process and service descriptions, which are widely adopted in research and industry
today. Nevertheless, our approach is not limited to BPEL and WSDL technologies
but is generally applicable for other process-driven SOA technologies by defining
respective meta-models and Partial Interpreter specifications.

In particular, in this section, we investigate the following cases: Because existing
business processes often integrate various concerns, it is costly to deal with the ex-
isting process code/models by translating them manually into view models. There-
fore, the reverse engineering tool chain extracts relevant concerns of the process
in term of architectural views using view interpreters. The resulting views can be
further integrated to adapt to specific needs and focus of a particular stakeholder.
Besides, the tool-chain is able to produce high-level views for business analysts
and technology-specific views for technical experts from the same existing process
code base. The abstract parts extracted from the process code are integrated into
VbMF using the higher-level views, whereas the technology-specific parts are inte-
grated using the lower-level views. Additionally, the views obtained from the reverse
engineering tool chain, in turn, can be manipulated using view integration mecha-
nisms [22] to produce richer views which fit better to stakeholders’ requirements, or
produce a thorough view of the whole process. Moreover, any change on the views
can be propagated by means of model transformations, or code generation [22].

Fig. 5. Mapping the BPEL description onto the Control Flow View

These empirical analyses have been carried on an industrial case study, namely,
customer care, billing and provisioning systems of an Austrian Internet Service
Provider (see [7] for more details). In the following, we use the Billing Renewal
process as an example. The billing platform includes a wide variety of services
provided by various partners such as financial services, domain services, physical
hosting services, retail/wholesale services, and so on. These services are exposed in
WSDL interfaces and integrated by using BPEL processes.

4.1 Extracting Relevant Views

The basic analysis, we performed, was to deal with the extraction of the control
flow view from BPEL code. The control flow interpreter, which is based on the
Control Flow View meta-model, walks through the process description in BPEL
and collects the information of atomic and structured activities. Then, it creates
the elements in the Control Flow View and assigns their attributes with relevant
values as specified in Figure 5. We demonstrate the mapping of Billing Renewal
specification in BPEL onto the Control Flow View in Figure 6.

4.2 Extracting Views at Different Abstraction Levels

To illustrate the ability of adapting views at different levels of abstraction, we
devise two interpreters to extract the Collaboration View and the BPEL-specific
extension of the Collaboration view. These interpreters are realized using the same
approach as used for the control flow interpreter. However, these views comprise
not only elements from the BPEL descriptions but also elements of the process in-
terfaces specified in WSDL files. So, first of all, the interpreters collect information
from WSDL descriptions and create relevant elements on the views using the spec-
ifications in Figure 7. Then, the interpreters walk through the BPEL specifications
to the extract relevant elements in a similar manner as used for in the control flow
interpreter. For instance, the Invoke, Receive, Reply activities that are responsible
for service invocations will appear on the Collaboration View with the same name
as used in the Control Flow View. However, these activities have attributes that are
specific for collaboration as depicted in Figure 9. Figure 6 and Figure 8 illustrate
the extraction of the Collaboration View from BPEL descriptions of the Billing
Renewal process.

<process name="BillingRenewal">
 <partnerLinks>
 <partnerLink name="CRMPartnerPL"
 partnerLinkType="CRMPartnerPLT" partnerRole="CRMPartner"/>
 <partnerLink name="PostalPartnerPL"
 partnerLinkType="PostalPartnerPLT" partnerRole="PostalPartner"/>
 <partnerLink myRole="BillingRenewal" name="BillingRenewalPL"/>
 <partnerLink name="BankingPartnerPL"
 partnerLinkType="BankingPartnerPLT" partnerRole="BankingPartner"/>
 </partnerLinks>
 <variables>
 <variable messageType="ProfileRequest" name="profile_request"/>
 <variable messageType="ProfileResponse" name="profile_response"/>
 <variable messageType="billingservice:RenewBillingRequest" name="renew_request"/>
 </variables>
 <sequence>
 <receive createInstance="true" name="RequestBillingRenewal"
 operation="renewBilling" partnerLink="BillingRenewalPL"
 portType="BillingRenewal" variable="renew_request"/>
 <invoke inputVariable="profile_request" name="GetCustomerProfile"
 operation="retrieveProfile" outputVariable="profile_response"
 partnerLink="CRMPartnerPL" portType="CustomerManagement"/>
 <invoke inputVariable="invoicesend_request" name="SendFistInvoice"
 operation="sendPostal" outputVariable="invoicesend_response"
 partnerLink="PostalPartnerPL" portType="PostalDeliver"/>
 <switch>
 <case condition="customer_paid=true">
 <sequence>
 <invoke inputVariable="extend_request" name="ExtendDomain"
 operation="extendDomain" outputVariable="extend_response"
 partnerLink="DomainPartnerPL" portType="DomainManagement"/>
 <invoke inputVariable="confirmation_request"
 name="SendConfirmationLetter" operation="sendPostal"
 outputVariable="confirmation_response"
 partnerLink="PostalPartnerPL" portType="postalDeliver"/>
 </sequence>
 </case>
 </switch>
 </sequence>
</process>

Fig. 6. Mapping the Billing Renewal process (left-hand side) onto the VbMF’s views
including the Collaboration View (top-right) and the Control Flow View (bottom-right)

The Collaboration View is a high-level representation compared to the BPEL
extension of the Collaboration View, which is at a lower level of abstraction. There-
fore, the BPEL extension view consists of additional elements and some of these
elements have extra properties compared to those of the Collaboration View. This
way, other process-driven modeling languages, either high-level or low-level, can be
handled and integrated by using the view-based reverse engineering tool-chain and
VbMF.

4.3 Enhancing the Adaptability of the Process Models

The adaptability of process models to the requirements of a certain stakeholder can
be enhanced using two methods developed in VbMF: extension mechanisms and
view integration. View extension mechanisms [22] allow us to enrich existing meta-
models with additional elements and/or extra attributes for the existing elements of
the original meta-models. This way, the abstract views can be gradually refined into
less abstract views by increasing their granularity with added technology-specific
features until the resulting views are relevant to a particular stakeholder’s needs.
Next, we define respective interpreters for these views and use the interpreters to
extract the corresponding views from the existing process code. An example of view

Fig. 7. Mapping the WSDL description onto the Collaboration View and the BPEL ex-
tension of the Collaboration View

extension is the BPEL-specific extension of the Collaboration View shown in the
previous analysis.

View integration [22] is another method to produce new richer views by merging
existing views. For instance, in [22], we have developed a simple named-matching
algorithm and presented an example of integrating the control flow view and the
collaboration view. The matching algorithm searches the input views for integration
points, which are, in this case, the conformable elements with the same name [22].
Afterward, the two views are merged together at these integration points. The
resulting view inherits the control flow that defines the execution order of activities.
In addition, the activities in the resulting view that are responsible for invoking
services inherit a number of attributes from the corresponding activities defined in
the collaboration view. These attributes are necessary to perform service or process
invocations.

4.4 Change Propagation

In the previous analyses, the view-based reverse engineering tool chain is used to
build views of process models, relevant for particular stakeholders, from existing
process code. However, to make this usable in practice, changes on the views must
lead to corresponding changes on process code. The propagation of change is per-
formed in VbMF using model-to-code transformations (aka code generations). The
code generation [22] is realized using the template+meta-model technique [24]. In
Figure 10, we present an excerpt of the template for generating BPEL code of the
Assign activities. This way, any change in the BPEL extension of the information
view or any other view is automatically reflected in the process code.

5 Related Work

Our work presented in this paper focuses on a reverse engineering approach [4]
based on the concept of architectural views. The whole VbMF tool-chain provides
support for reengineering [1, 19] as well. That is, in addition to the reverse engi-
neering parts of the tool chain, means for re-structuring, modification, or forward

<definitions>
 <types>
 <portType name="BillingRenewal">
 <operation name="renewBilling">
 <input message="RenewBillingRequest" />
 <output message="RenewBillingResponse" />
 </operation>
 </portType>
 <partnerLinkType name="CRMPartnerPLT">
 <role name="CRMPartner">
 <portType name="crm:CustomerManagement"/>
 </role>
 </partnerLinkType>
 <partnerLinkType name="PostalPartnerPLT">
 <role name="PostalPartner">
 <portType name="PostalDeliver"/>
 </role>
 </partnerLinkType>
 <partnerLinkType name="BillingRenewalPLT">
 <role name="BillingRenewal">
 <portType name="BillingRenewal"/>
 </role>
 </partnerLinkType>
 <partnerLinkType name="BankingPartnerPLT">
 <role name="BankingPartner">
 <portType name="CreditCardManagement"/>
 </role>
 </partnerLinkType>
</definitions>

Fig. 8. Mapping the Billing Renewal process (left-hand side) onto the Collaboration View
(right-hand side)

engineering are provided in order to yield new system structures, or new function-
ality to meet certain requirement.

In [22], the VbMF approach has been analyzed and compared to other related
view-based work on modeling business processes. In the context of reverse engi-
neering, view-based approaches are an emerging area of interest. For instance, the
approaches reported in [3, 5, 21] focus on inter-organizational processes (in term
of cross-organizational workflows) and use views to separate the abstract process
representations (aka public processes) from the internal processes (aka private pro-
cesses). Bobrik et al. [2] present an approach to process visualization using per-
sonalized views and a number of operations to customize the views. Zou et al. [29]
propose an approach for extracting business logic, also in term of workflows, from
existing e-commerce applications.

All these approaches aim at providing perspectives on business processes at a
high level of abstraction and maintaining the relationships among different abstrac-
tion levels in order to quickly re-act to changes in business requirements. However,
these approaches have in common that only the control flow of process activi-
ties (aka the workflows) is considered. Other process concerns, as for instance ser-
vice/process interaction, data processing, etc., have only been partially exploited, or
even not targeted. In addition, these approaches do not support enhancing process
views or propagating changes as provided in our approach, for instance, through
view integration, view extension and code generation.

Kazman et al. [10] describe the Dali workbench, an approach for understanding
and analysis the system architecture. The extraction process begins with extracting

Fig. 9. Mapping the BPEL description onto the Collaboration View and the BPEL ex-
tension of the Collaboration View

views from source code using some kinds of lexical analyzers, parsers or profilers.
Next, the relationships among views are established by view fusion to improve the
quality and the correctness of views. However, because of the complexity of typical
process models, this approach is hardly applicable to capture the whole process
description in a unique view.

In the context of process-driven modeling, there are a number of standard lan-
guages in which some provide high-level descriptions, for instance, BPMN [17],
EPC [11, 23] and Abstract BPEL in WS-BPEL 2.0 [14]. EPC and BPMN provide
high-level diagrams that consist of graphical notations for visualizing representa-
tions of processes. These diagrams are relevant to the business analysts. However,
there is no explicit link between these languages and the executable languages.

Executable

Code

defines

c
o
n
fo

rm
s

Meta-models

View
Templates

Code

Generator

Fig. 10. Code generation as a mean of change propagation

This has led to a number of recent research approaches. For instance, Mendling
et al. [13] discuss the transformation of BPEL to EPCs. Ziemann et al. [28] present
an approach to model BPEL processes using EPC-based models. Recker et al. [20]
translate between BPMN and BPEL. Mendling et al. [12] report on efforts in X-
to-BPEL and BPEL-to-Y transformations. These transformation-based approaches
mostly focus on one concern of the process models, namely, the control flow, which
describes the execution order of process activities. They offer no support for ex-
tension of process models or integrating other concerns of process models, such as
service interactions, data processing, transaction handling, etc. Hence, during the
transformation from process code to abstract representations, necessary informa-
tion required to re-generate executable code gets lost.

WS-BPEL 2.0, the newly revised standard, provides the concept of an Abstract
BPEL process, which is represented by the same structures as an Executable BPEL
process. Developers can explicitly hide some syntactic constructs in an Abstract
BPEL process using predefined opaque tokens as explicit placeholders for the omit-
ted details. An abstract process is often associated with a profile which specifies
the semantics of the opaque tokens. Hence, one could use an approach akin to our
approach where the high-level view is the abstract process profile, and low-level rep-
resentations are respective profiles. Then our reverse engineering tool-chain could
be used to extract the relevant views.

All the above-mentioned approaches and standards have difficulties in handling
the complexity of process models: Because the business process integrates numer-
ous concerns, the complexity of process model increases as the number of process
elements, such as message exchanges, service invocations, data processing tasks,
etc. grows. Hence, these approaches are less efficient than our approach in deal-

ing with pretty huge existing process repositories, developed in other languages or
dialects, or integrating arbitrary process modeling tools.

6 Conclusion

The view-based reverse engineering approach, presented in this paper, can help the
various stakeholders of a process-driven SOA to overcome two important issues.
Firstly, it exploits the concept of architectural view to deal with the complexity of
existing process repositories and to adapt the process representations to the stake-
holders’ needs and focus. Secondly, it provides the ability of integrating diverse
process models and offers explicit relationships for understanding and maintaining
process models and for propagating changes. Hence, process models at different ab-
straction levels and different process concerns can be reused to populate the other.
This has been achieved by developing a novel concept for a reverse engineering tool
chain, based on partial interpreters and view models, and by seamlessly integrating
this reverse engineering tool chain into our view-based modeling framework, which
also supports means for forward engineering, such as view integration, view exten-
sion and code generation. The reverse engineering tool chain enables the reuse of
existing process code, e.g. written in BPEL/WSDL, in the view-based modeling
framework.

Our work in this paper also introduces some open issues that need be addressed
in further research. For instance, other concerns such as event and fault handling,
transaction, and so forth, should be examined and integrated into the reverse engi-
neering tool-chain. The tool-chain should be enhanced to cover a broader spectrum
of input descriptions in other process-driven languages and technologies.

References

1. H. Bär, M. Bauer, O. Ciupke, S. Demeyer, S. Ducasse, M. Lanza, R. Marinescu,
R. Nebbe, O. Nierstrasz, M. Przybilski, T. Richner, M. Rieger, C. Riva, A.-M. Sassen,
B. Schulz, P. Steyaert, S. Tichelaar, and J. Weisbrod. The FAMOOS Object-Oriented
Reengineering Handbook. SCG FAMOOS, oct 1999.

2. R. Bobrik, M. Reichert, and T. Bauer. View-based process visualization. In BPM,
volume 4714/2007, pages 88–95. Springer, 2007.

3. I. Chebbi, S. Dustdar, and S. Tata. The view-based approach to dynamic inter-
organizational workflow cooperation. Data Knowl. Eng., 56(2):139–173, 2006.

4. E. J. Chikofsky and J. H. I. Cross. Reverse engineering and design recovery: A
taxonomy. IEEE Software, 7(1):13–17, 1990.

5. D. K. W. Chiu, S. C. Cheung, S. Till, K. Karlapalem, Q. Li, and E. Kafeza. Workflow
view driven cross-organizational interoperability in a web service environment. Inf.
Tech. and Management, 5(3-4):221–250, 2004.

6. Eclipse. Eclipse Modeling Framework. http://www.eclipse.org/emf/, 2006.
7. M. Evenson and B. Schreder. D4.1 Use Case Definition and Functional Requirements

Analysis. SemBiz Deliverable, August 2007.
8. IBM, B. Systems, Microsoft, SAP AG, and Siebel Sys-

tems. Business process execution language for web services.
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf, May 2003.

9. IEEE. Recommended Practice for Architectural Description of Software Intensive
Systems. Technical Report IEEE-std-1471-2000, IEEE, 2000.

10. R. Kazman and S. J. Carriere. View Extraction and View Fusion in Architectural
Understanding. In ICSR ’98: Proc. of the 5th Int. Conference on Software Reuse,
page 290, Washington, DC, USA, 1998. IEEE Computer Society.

11. E. Kindler. On the semantics of EPCs: A framework for resolving the vicious circle.
In Business Process Management, pages 82–97, 2004.

12. J. Mendling, K. B. Lassen, and U. Zdun. Transformation strategies between block-
oriented and graph-oriented process modelling languages. Technical Report JM-
200510 -10, WU Vienna, 2005.

13. J. Mendling and J. Ziemann. Transformation of BPEL processes to EPCs. In Proc.
of the 4th GI Workshop on Event-Driven Process Chains (EPK 2005), volume 167,
pages 41–53, Dec 2005.

14. OASIS. Business Process Execution Language (WSBPEL) 2.0. http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf, May 2007.

15. OMG. Model-driven Architecture. http://www.omg.org/mda, 2002.
16. OMG. Unified Modelling Language 2.0 (UML). http://www.uml.org, 2004.
17. OMG. Business Process Modeling Notation. http://www.bpmn.org/Documents/OMG-

02-01.pdf, Feb 2006.
18. openArchitectureWare.org. http://www.openarchitectureware.org, Aug 2002.
19. P. Antonini, G. Canfora, and A. Cimitile. Reengineering legacy systems to meet qual-

ity requirements: An experience report. In ICSM ’94: Proceedings of the International
Conference on Software Maintenance, pages 146–153, Washington, DC, USA, 1994.
IEEE Computer Society.

20. J. Recker and J. Mendling. On the translation between BPMN and BPEL: Concep-
tual mismatch between process modeling languages. In Eleventh Int. Workshop on
Exploring Modeling Methods in Systems Analysis and Design (EMMSAD’06), pages
521–532, Jun 2006.

21. K. A. Schulz and M. E. Orlowska. Facilitating cross-organisational workflows with a
workflow view approach. Data Knowl. Eng., 51(1):109–147, 2004.

22. H. Tran, U. Zdun, and S. Dustdar. View-based and Model-driven Approach for
Reducing the Development Complexity in Process-Driven SOA. In Intl. Working
Conf. on Business Process and Services Computing (BPSC’07), volume 116 of Lecture
Notes in Informatics, pages 105–124, sep 2007.

23. W. van der Aalst. On the verification of interorganizational workflows. Computing
Science Reports 97/16, Eindhoven University of Technology, 1997.

24. M. Völter and T. Stahl. Model-Driven Software Development: Technology, Engineer-
ing, Management. Wiley, 2006.

25. W3C. Web Services Description Language 1.1. http://www.w3.org/TR/wsdl, Mar
2001.

26. WfMC. XML Process Definition Language (XPDL).
http://www.wfmc.org/standards/XPDL.htm, Apr 2005.

27. U. Zdun. Patterns of tracing software structures and dependencies. In Proc. of 8th
European Conference on Pattern Languages of Programs (EuroPLoP 2003), pages
581–616, Irsee, Germany, jun 2003.

28. J. Ziemann and J. Mendling. EPC-based modelling of BPEL processes: a pragmatic
transformation approach. In Proc. of the 7th Int. Conference “Modern Information
Technology in the Innovation Processes of the Industrial Enterprises” (MITIP 2005),
2005.

29. Y. Zou and M. Hung. An approach for extracting workflows from e-commerce appli-
cations. In ICPC ’06: Proc. of the 14th IEEE Int. Conf. on Program Comprehension
(ICPC’06), pages 127–136, Washington, DC, USA, 2006. IEEE Computer Society.

