
E6-1

Advanced Synchronization Patterns for
Process-Driven and Service-Oriented Architectures

Carsten Hentrich

CSC Deutschland Solutions GmbH
Abraham-Lincoln-Park 1

65189 Wiesbaden, Germany
e-Mail: chentrich@csc.com

Uwe Zdun

Distributed Systems Group
Information Systems Institute

Vienna University of Technology
Argentinierstrasse 8/184-1

A-1040 Vienna, Austria
e-Mail: zdun@acm.org

In a process-driven and service-oriented architecture, parallel and independently
running business processes might need to be synchronised according to dependencies of
complex business scenarios. In this paper we describe three software patterns that
address such rather advanced synchronisation issues between business processes running
in parallel. The patterns focus on coordinating the parallel and principally independent
business processes via architectural solutions allowing architects to model the flexible
synchronisation of the processes.

Introduction
Service-oriented architectures (SOA) are an architectural concept in which all functions, or
services, are defined using a description language and have invokable, platform-independent
interfaces [Channabasavaiah 2003 et al., Barry 2003]. In many cases services are called to perform
business processes. Each service is the endpoint of a connection, which can be used to access the
service, and each interaction is independent of each and every other interaction. Communication
among services can involve simple invocations and data passing, or complex activities of two or
more services. In a process-driven SOA the services describe the operations that can be performed
in the system. The process flow orchestrates the services via different activities. The operations
executed by activities in a process flow thus correspond to service invocations. The process flow
is executed by the process engine.

A process is a behavioural model expressed in a process modelling language, such as BPEL, that
is instantiated and managed by a process engine. On a process engine multiple process instances of one
or more processes are typically running in parallel. Processes usually work on business data that is
stored in business objects. Usually each process instance has its own private data space of business
objects it creates, in order to limited problems of concurrent data access, such as data
inconsistencies, deadlocks, or unnecessary locking overhead.

In this paper we describe three patterns that address advanced synchronisation issues of
parallel business processes. In this context synchronisation means that execution in terms of the
progression through the different activities of a process needs to be synchronised with other
business processes running in parallel. The synchronisation issues reflect requirements of
complex business scenarios, and the synchronisation dependencies cannot be modelled directly in
the business processes via static control flow dependencies. As a result, conflicting forces arise
due to the need for loosely coupling the synchronisation concerns with the business process
models. Besides technical forces, such as the problems of concurrent data access mentioned

E6-2

above, supporting business agility is central. Business processes are subject to constant change.
Hence, any suitable synchronization mechanism must be loosely coupled in order to support
changes in the connected business processes.

The three patterns presented are: the REGISTER FOR ACTION pattern describes how to
synchronise the execution of functionality of a target system with business processes running in
parallel. The BUNDLE PROCESS AGENT pattern describes how business objects being generated
by different parallel processes can be processed in a consolidated way. The PROCESS
CONDUCTOR pattern addresses how to allow to model dependencies between parallel business
processes by flexible orchestration rules.

Consider a simple example to illustrate the patterns: various business processes of a company
require contacting the customer via phone, but the company wants to avoid contacting the
customer too often in a specific period of time. Hence, the phone calls should be consolidated.
In such business scenarios that require synchronization of multiple process instances, the
patterns described in this paper can be applied. If only a specific action, like “put phone call into a
task list” needs to be performed after synchronization has taken place, the REGISTER FOR
ACTION pattern should be applied. However, the phone call might also require a business process
preparing the phone call and this business process then usually needs access the private business
objects of the synchronized processes. In this more complex scenario, the BUNDLE PROCESS
AGENT pattern can be applied. Finally, if the need for synchronizing occurs within the processes
and requires each of the processes to be stopped until the synchronizing action (which might be
yet another business process) has happened, then PROCESS CONDUCTOR is applicable. This
simple scenario should illustrate: which of the patterns is chosen depends on the design of the
business processes that need to be synchronized. In some scenarios, the patterns are mutual
alternatives, in others combining them makes sense.

There are a number of external patterns that play a role in the patterns introduced in this
paper. We present thumbnails for these patterns in an appendix at the end of the paper.

Table 1 gives an overview of the problem and solution statements of the patterns.

Pattern Problem Solution

REGISTER FOR ACTION

Sometimes the execution of an action is
depending on the states of multiple
business process instances running in
parallel. When this is the case, the action
can only be executed if those parallel
business process instances have reached a
certain state represented by a specific
process activity. Which mechanisms can
be used to synchronize multiple process
instances, each created dynamically and
running at its own pace, without
introducing a communication overhead
for synchronization? As business
processes are created and changed while
the system is running, it is not advisable to
define synchronization dependencies
statically in the models. How can the
synchronization dependencies be defined
and evaluated at runtime while still
allowing business process to change
independently?

Use a REGISTER FOR ACTION
component that offers registration and de-
registration services to be invoked from
business processes. The registration
informs the REGISTER FOR ACTION
component to wait with the desired action
to be initiated until a specific process
instance has de-registered itself. When all
registered processes have de-registered
themselves the action will be executed.

E6-3

Pattern Problem Solution

BUNDLE PROCESS
AGENT

Each business process instance creates
and manages its own set of business
objects in order to avoid data
inconsistencies, locking overheads,
deadlocks, and other problems created by
concurrent data access. Business scenarios,
such as consolidated sending of postal
mail in batches, require consolidating the
business objects being generated by many
different process instances and then
process them using a central but parallel
running business process. Hence, the
usual mechanisms of a process engine, in
which each process instance keeps its
business objects in a private data space,
are not sufficient to support such
scenarios. How to gather the business
objects from various business process
instances and process them in a
consolidated way without causing
unwanted effects of concurrent data
access?

Send the business objects to be processed
centrally to a BUNDLE PROCESS AGENT via
a dedicated service. BUNDLE PROCESS
AGENT creates an instance of a bundle
(consolidation) process, if no instance yet
exists and it makes sure that only one
instance of the consolidation process is
running at a time.

PROCESS CONDUCTOR

When business processes are executed on
a process engine there are often points in
these processes where dependencies to
other processes need to be considered.
That means a process may only move to a
certain state, but can only move on if
other parallel processes have also reached
a certain state. Further execution of these
parallel running processes need to be
orchestrated at runtime, as it cannot be
decided at modelling time when these
states are reached or what these states are
due to the separate execution of the
processes and the fact that each process is
a component that may change individually
over time. In most cases, the rules for the
orchestration need to be flexibly
adaptable. How can the dependencies be
flexibly captured without tightly coupling
the processes?

Introduce a PROCESS CONDUCTOR
component that offers configurable
orchestration rules to conduct a number of
business process instances. The PROCESS
CONDUCTOR offers a service that is only
invoked synchronously by the business
process instances. Each process instance
provides its current state in terms of the
activity it currently performs as an input
parameter to this service. The service
returns a result to a specific process
instance only when the orchestration rules
allow the process to move to the next step.
This way the order of the process instances
to proceed is determined via the
orchestration rules of the PROCESS
CONDUCTOR.

Table 1: Problem/solution overview of the patterns

E6-4

Register for Action

Business processes are executed on process engines.

Sometimes the execution of an action is depending on the states of multiple business
process instances running in parallel. When this is the case, the action can only be
executed if those parallel business process instances have reached a certain state
represented by a specific process activity. Which mechanisms can be used to synchronize
multiple process instances, each created dynamically and running at its own pace,
without introducing a communication overhead for synchronization? As business
processes are created and changed while the system is running, it is not advisable to
define synchronization dependencies statically in the models. How can the
synchronization dependencies be defined and evaluated at runtime while still allowing
business process to change independently?

Business processes are dynamically instantiated on process engines and at different points in
time. For this reason, there are usually several instances of one or more business processes
running in parallel. Each of them has a different state of progression in terms of the process
activity they have reached so far during execution.

When a specific action, such as a business function, service, or another business process, has a
logical dependency to more than one of these business process instances, synchronization with all
the process instances can be difficult. First of all, the action might not know which business
process instances of the many possible parallel instances it is a dependent on. But even if it
knows the instances that it is dependent on, polling them for synchronizing would incur a
communication overhead. The same problem of a communication overhead for synchronization
would also occur, if the process instances would run a synchronization protocol, for instance
before triggering a callback that executes the action.

In addition, before the action can synchronize with the process instances, it needs to know
that it must wait for one or more instances. That is, a mechanism is required to communicate
that there is a new dependent process instance to wait for.

Business process can change over time and new processes are constantly created, while the
overall system is running. This includes that a state at which an action must be executed might
change, gets added to a process, or gets removed from the process. The actions that are
depending on business processes must be able to cope with such process changes. The effects of
these changes should be minimized and should not impact other components in order to be
manageable. A consequence is that the synchronization dependencies of the actions cannot be
statically modelled in the models of the business processes or the actions, but must be defined
and evaluated at runtime. In other words, a loose coupling between the action and the business
processes it is dependent on is required.

E6-5

Figure 1: How to synchronize an action with multiple possibly unknown business process instances?

Use a REGISTER FOR ACTION component that offers registration and de-registration
services to be invoked from business processes. The registration informs the REGISTER

FOR ACTION component to wait with the desired action to be initiated until a specific
process instance has de-registered itself. When all registered processes have de-registered
themselves the action will be executed.

The REGISTER FOR ACTION component offers two services:

- A registration service, where a process instance can register itself with its instance ID.

- A de-registration service that allows a process instance to de-register itself via its
instance ID.

Invocation of the de-registration service means that the process has reached the state that is
relevant for the action. The two services are invoked by process activities. Each registration
invocation must have one corresponding de-registration invocation in a business process. This
design has the consequence that the place of invocations can change as the business processes
change over time. In other words, the the REGISTER FOR ACTION component and the business
processes are loosely coupled.

The REGISTER FOR ACTION component waits until all registered business processes have de-
registered themselves. After the last de-registration, the action is executed by the REGISTER FOR
ACTION component.

An important detail of a REGISTER FOR ACTION design is to determine the point in time when
registration ends. As most scenarios of the pattern concern long running business processes, a
registration delay is a practical solution that works in many cases. The registration delay runs a
certain amount of time from the point in time when the first registration to the REGISTER FOR
ACTION instance happens. For instance, if a registration delay of one day is chosen, then all
registrations that accumulate throughout that day will be included. Of course, the length of the
delay can be adjusted based either on previous experiences and experimentation. An alternative
to a registration delay is introducing a specific registration type that ends the registration process
of one REGISTER FOR ACTION instance.

Figure 2 shows an example configuration of the REGISTER FOR ACTION pattern.

E6-6

Figure 2: Example configuration of the register for action pattern

Modelling the de-registration service invocation might be an issue for some business
processes: de-registration should often be invoked as early as possible in order not to produce
unnecessary delays for the action to be executed. If the business process contains complex
decision logic there may be various paths that may lead to a de-registration service invocation at
many different positions in the process. As the process execution may follow only one case
specific path, de-registration must be found on all possible paths if a registration has been
previously performed.

To place the de-registration service invocations at the right positions and to avoid multiple
invocations of the de-registration service in case of loops in the process is sometimes not trivial,
if the business process is of higher complexity. The easiest way might be to put de-registration
simply at the end of the business process and thus to avoid the possible complex logic that is
initiated by the different possible paths or loops. However, this is not always possible or optimal
if de-registration as early as possible is required.

The service invocations from the business processes might be realized as SYNCHRONOUS
SERVICE ACTIVITIES or FIRE AND FORGET SERVICE ACTIVITIES [Hentrich et al. 2008]. The
realization using SYNCHRONOUS SERVICE ACTIVITIES is usually better suited as it is important for
the business process to get informed whether the registration and de-registration was successful.
If the target action is related to a more complex business process, then this consolidation can be
achieved by using a BUNDLE PROCESS AGENT.

The ACTIVATOR pattern [Schmidt et al. 2000] has a similar structure as REGISTER FOR
ACTION. It, however, solves a different problem, the on-demand activation and deactivation of

E6-7

service execution contexts to run services accessed by many clients without consuming resources
unnecessarily. The patterns can be used together with REGISTER FOR ACTION using a shared
structure. That is, the registration and deregistration services could be used for on-demand
activation and deactivation.

Also, PUBLISH/SUBSCRIBE [Buschmann et al. 2000] has a similar structure, as it includes
registration/deregistration of publishers and subscribers. This pattern can also be combined with
REGISTER FOR ACTION using a shared structure. That is, the registration and deregistration
services could be used to subscribing and unsubscribing to events for the time of being
registered. This way, the REGISTER FOR ACTION component can communicate with its currently
registered processes.

Some known uses of the pattern are:

- The pattern has been used in projects to control batch processing of larger
transactions. Each business process generates transactions to be made but the actual
commit of the all gathered transactions needs to be done at a point in time when all
related transactions to be made are identified. That way transaction costs can be saved
by putting related transactions, addressed to the same account, in one larger
transaction.

- The pattern has also been used to control the point in time when consolidated
outbound communication to one concrete party needs to be performed in an order
management context.

- The above purposes of the pattern have been used in projects in the telecoms industry
in the context of order management, in the insurance industry in the context of claims
handling. The pattern has also been used in banking as far as the mentioned
transaction processing issues are concerned.

Example
In the context of business processes that create information that must be send by mail to
recipients, the pattern provides significant potential to save postal costs. If each business process
produces its own letters to be sent to recipients a lot of postal costs will be created. It would be
better to gather all the information created from the business processes and to wrap them in one
letter. The idea of sending fewer letters will save significant postal costs. However, the problem is
how to gather all the information and when is the point in time to pack all the gathered
information in one letter and send it out to a recipient.

Applying the REGISTER FOR ACTION pattern it is possible to control and coordinate sending
out letters to various recipients. The action associated in this context is sending a letter out to a
recipient. This can be coordinated by registering all business processes that will create
information to be packed in one letter for a specific recipient. Thus, the registration service can
be designed to capture an additional parameter to specify the recipient. That way it is possible to
pack all the information created for one recipient on one letter as the letter will be sent out when
all registered business processes have de-registered themselves for a recipient.

The logic associated to the registration service and the REGISTER FOR ACTION component
might be even more complex, e.g. to distinguish different priorities for the information to be sent
out quickly or to send it out later. As a result there may be more complex rules to control and
synchronize the business processes. However, the basic pattern represented by REGISTER FOR
ACTION will always be the same.

E6-8

Especially in a customer order or service management context the pattern is useful for these
kinds of purposes, as to control communication towards recipients. It is suitable not only for
postal communication but for various communication channels, e.g. fax, e-mail, or even
telephone. The general purpose of gathering relevant information first, before initiating the
communication, generally applies to all those channels.

Even as far as the telephone communication is concerned, it becomes clear that calling the
recipients only once to discuss a whole bunch of open questions that stem from different parallel
clearing business processes, for instance, will be better for customer satisfaction than contacting
the customer several times to clarify one single issue at a time, which might even be of minor
importance. The pattern provides flexible means to capture all these business scenarios and to
automate significant parts of the business logic.

E6-9

Bundle Process Agent

Business processes are executed on a process engine, and during their execution business objects
are created and manipulated by the business process instances.

Each business process instance creates and manages its own set of business objects in
order to avoid data inconsistencies, locking overheads, deadlocks, and other problems
created by concurrent data access. Business scenarios, such as consolidated sending of
postal mail in batches, require consolidating the business objects being generated by
many different process instances and then process them using a central but parallel
running business process. Hence, the usual mechanisms of a process engine, in which
each process instance keeps its business objects in a private data space, are not sufficient
to support such scenarios. How to gather the business objects from various business
process instances and process them in a consolidated way without causing unwanted
effects of concurrent data access?

Business process instances running on a process engine have their own data space and are
thus disjoint entities. When business objects are created during the execution of a business
process, only the business process instances creating the objects know about their existence. That
is, the business objects created by a business process instance are per default private to the
business process instance. This helps to avoid unwanted effects, such as data inconsistencies,
locking overheads, or deadlocks, when business process instances are running in parallel because
the actions of the business process instances control all accesses to these business objects.

This technical concept can be applied to implement most business scenarios. However, there
is a special case, where this technical solution does not work well alone: Consider that the
business objects created by many different parallel business process instances are input objects to
be processed by a central business process that logically gathers all these business objects and
then processes the consolidated set of business objects. A typical example is that the business
requires this business objects to be handled in a consolidated way, such as sending one letter per
postal mail for a number of parallel transactions with a customer, instead of sending multiple
letters. In this case, the parallel running consolidation process instance must gather the objects
and process them. Unfortunately, usually process engines do not directly support such scenarios.

It is necessary to only centrally process those business objects that actually should be
processed in a consolidated way. It might be that this is only a subset of business objects owned
by a process instance. A process instance should still have control what business objects should
be processed in a consolidated way and should thus be able to publish only those objects that it
considers to be relevant.

Each of the involved business processes can potentially change over time. Hence, the
consolidation architecture should not impose restrictions on the business process design that
would hinder rapid changeability.

E6-10

Process Instance 1

Process Instance 2

Process Instance 3

Consolidation
Process

How to gather the
business objects from

various business process
instances and process
them in a consolidated

way?

Figure 3: The problem of enabling consolidated processing of business objects

Send the business objects to be processed centrally to a BUNDLE PROCESS AGENT via a
dedicated service, specified in the model of the business process. The BUNDLE PROCESS

AGENT creates an instance of a bundle (consolidation) process, if no instance exists yet,
and for each bundle it makes sure that only one instance of the consolidation process is
running at a time. The business object bundle is gathered from different business
processes invoking that dedicated service for sending the business objects. When a
specified end criterion is reached, such as a deadline or a specified number of business
objects in the bundle, then the bundle is centrally processed by the bundle process.

Design an architectural component that serves as a BUNDLE PROCESS AGENT, which offers a
service to be invoked by business processes to send business objects that need to be processed
centrally. The BUNDLE PROCESS AGENT stores the business objects being sent to it in a container
that serves as a temporary repository. The container is not intended as the actual persistence
mechanism of the business objects—it is rather intended to capture only what objects need to be
processed centrally.

For this reason, this container might only keep BUSINESS OBJECT REFERENCES [Hentrich
2004] rather than the business objects themselves. However, it is also possible to send copies of
actual business objects and not just references. Often these objects then only contain a subset of
the business data of the original business objects, i.e. the subset of data that is relevant for
processing the business objects centrally. In this case, it is advisable to introduce special types of
business objects designed for these purposes.

The BUNDLE PROCESS AGENT waits until a specified end criterion is reached. For instance,
this can be a deadline or specified maximum amount of business objects that can be bundled in
one bundle. When the end of bundling is reached, the BUNDLE PROCESS AGENT instantiates a
bundle process that processes the business objects centrally. The container with the business objects
is cleared after the processing has been initiated to be ready to store new objects for the next
iteration. Only one instance of the bundle process is running at a time for each bundle, i.e. the
processing of a set of business objects must be finished before the next instance of a bundle
process can be started. Of course, different bundles can be assembled in parallel. Consider for
instance, business objects for postal mail communication with customers are bundled, to send
them together. Then there is one bundle per customer.

During the execution of the bundle process new business objects are sent to the BUNDLE
PROCESS AGENT by business processes running in parallel for the next iteration. These objects
are again stored in the container. This way, only business objects relevant for the next iteration
are kept in the container, as the container is emptied when a new iteration, i.e. a new instance of
the bundle process, has been started. The BUNDLE PROCESS AGENT repeats this process in a
loop.

E6-11

Figure 4: The BUNDLE PROCESS AGENT pattern

The BUNDLE PROCESS AGENT is implemented as a COMPONENT CONFIGURATOR [Schmidt et
al. 2000] to allow controlled configuration of the agent at runtime. When it is initialised it
performs the following functions:

1. It is checked whether there are new business objects in the container to be processed
by a bundle process

2. If there are new objects it checks whether an instance of the bundle process is still
running. Only if there is no instance running, a new instance is created that processes
the new objects in the container. The container is cleared to be empty for new objects
after the process instance has been started. If an existing instance is still running then
no action is performed, i.e. no new bundle process is created nor is the business object
container being emptied.

3. The agent loops back to step 1 until the loop is aborted by some event to finalise the
execution or to suspend the execution.

There is one concurrency issue involved in this algorithm. The service that allows business
processes to send new business objects to the container might conflict with the clearing action of
the container that is initiated by the algorithm described above. That means a new instance of the
bundle process might be created with the given objects in the container at that point in time.
After the instance is created, the algorithm prescribes to clear the container. If there are new
objects added to the container while the creation of the new instance is still in progress, then
these objects will be deleted from the container with the clearing action without being processed
by the bundle process. In order to avoid such a situation the container must provide locking and
unlocking functions that are used for the time a new instance of a bundle process is created.

Figure 5 provides an overview of the conceptual structure how the BUNDLE PROCESS AGENT
might look like including the service that provides the functionality to add business objects to the
container. The structure also resolves the described concurrency issues by providing locking
functionality of the container.

E6-12

Bundle Process Agent ArchitectureBusiness Processes

-process : Bundle Process
Bundle Process Agent

Activity

Send Bundle Object
Activity

Activity

invoke(bo : Business Object)

+add(in bo : Business Object)
+isEmpty() : Boolean
+getAll() : Business Object List
+clear()
+lock() : Boolean
+unlock()
+isLocked() : Boolean

-objects : Business Object List = null
-synchronized locked : Boolean

Business Object Container

-container1

1

+run()

-instanceID : InstanceID
-processID

Bundle Process

+init()
+finalize()
+suspend()
+info()

«interface»
Configurable Component

-container

11

-process

1

1

bo : Business Object

+execute(in inputData, in processID) : InstanceID
+exists(in id : InstanceID) : Boolean

Process Engine

-engine

1 1

v

void run() {
 if(NOT engine.exists(instanceID) AND
 NOT container.isEmpty()) {
 //lock container to avoid adding new objects
 while(NOT container.lock());
 Business Object List bol = container.getAll();
 container.clear();
 //unlock to enable adding new objects
 container.unlock();
 instanceID = engine.execute(bol, processID);
 }
}

+invoke(in bo : Business Object)

Send Bundle Object Service

void invoke(in bo : Business Object)
{
 //wait while container is locked
 while(NOT container.lock());
 container.add(bo);
 container.unlock();
}

process = new Bundle Process;
while(NOT finalize AND NOT suspend) {
 process.run();
 //delay until next iteration necessary
 sleep();
}

Figure 5: Example conceptual structure of a BUNDLE PROCESS AGENT

Figure 5 shows business processes that invoke a special Send Bundle Object Service to send
business objects. The processes may run in parallel and the services might be invoked at different
points in time in the processes, i.e. the service invocation might be modelled several times in one
process and might be used in various process models. The service simply adds the objects to the
container. To resolve the concurrency issue, explained above, it uses locking and unlocking
mechanisms. The class Bundle Process Agent implements the COMPONENT CONFIGURATOR
[Schmidt et al. 2000] and invokes the run method of class Bundle Process in a loop. The run method
of class Bundle Process retrieves the business objects from the container and creates a new bundle
process if no instance is running and the container is not empty. It also uses the locking and
unlocking mechanisms to prevent the concurrency issue.

E6-13

The class Process Engine provides an interface to the API of the process engine being used to
implement the business processes—in this case especially the bundle process. The execute method
instantiates a bundle process with the given input data, which are the business objects from the
container in this case. The exists method allows to check whether an instance of the bundle
process, identified by a unique ID, is still running in the engine.

The BUNDLE PROCESS AGENT pattern thus resolves issues according to complex bundling of
business objects that need to be centrally processed and offers a general architectural solution
that is both flexible and extensible. Different bundle processes can be used for different
purposes, though this will increase the complexity of the architecture. However, there might be
larger effort involved to design a BUNDLE PROCESS AGENT component. For this reason, the
pattern may only be suitable in projects and programmes that have a larger strategic perspective.

The pattern can be combined with the REGISTER FOR ACTION pattern in order to dynamically
identify what business processes need to be considered by the bundling. As far as the service
invocation from business processes is concerned the SYNCHRONOUS SERVICE ACTIVITY pattern
or the variation of the FIRE AND FORGET SERVICE ACTIVITY including acknowledgement
[Hentrich et al. 2008] is usually recommended to achieve some level of security that the business
objects being sent have arrived at the initiated target. According to the MACRO-MICROFLOW
pattern [Hentrich et al. 2007] the bundle process can be implemented as a macroflow or
microflow.

Some known uses of the pattern are:

- The pattern has been used in several projects for the purpose of consolidating
outbound communication to the same party in order to save costs by putting the
communication content resulting from various business processes running in parallel.
in one bundled communication. The bundle process controls the actual generation of
the communication including format and media, i.e. letter, e-mail, fax, or even
telephone, and the procedure to control the outcome of the communication. The
purpose in the context was also to improve customer satisfaction via the consolidation
of the communication via reducing the number of interactions and applying preferred
communication mechanisms.

- The pattern has also been used to gather issues to be clarified with customers that
result from various business processes running in parallel associated to a complex
order. The issues are collected first and are then clarified with the customer rather
than discussing each issue separately with the customer. That way issues could be
clarified in relation to each other. The bundle process controls the clarification
procedure in terms of a dedicated business process.

- The above two purposes of the pattern have been used in the context of order
management in the telecoms industry and in the context of claims handling in the
insurance industry. The pattern has served in this context as an architectural solution
to the consolidation issues mentioned in larger strategic architecture projects.

Example

The following example shows how two distinct strategic goals (mentioned in the known uses)
have been realized using the pattern. In one larger project in the telecoms industry two important
issues occurred in the context of processing complex orders from larger customers. Complex
orders consist of a number of sub-orders that are processed in parallel business processes by
different organisational units in the telecoms company. These sub-orders are independent to a

E6-14

certain degree from an internal perspective of the company. For this reason, the business
processes for these sub-orders run in parallel to speed-up the completion of the overall order.
However, in order to improve customer satisfaction and to reduce costs, issues that occur during
the processing of sub-orders need to be clarified with the customer, whose perspective is on the
overall order.

If each business process is implemented with its own issue resolution process the customer
needs to be contacted for each single issue that might occur in a sub-order, or issue resolution
might only be structured according to sub-orders. As a result, each process needs to implement
its own issue resolution procedure in some way. To reduce the number of customer interactions
and to save communication costs, the issue clarification process needs to be consolidated and
treated as an own concern. That way, different processes can use the same clarification procedure
and changes to these business processes associated to processing of sub-orders can remain
independent.

Moreover, each customer has its own communication preferences, i.e. some want to be
contacted by letter, others prefer e-mail or fax, and other customers rather prefer direct
telephone communication. Additionally, some serious issues required written communication.
Consequently, it was required to treat issue resolution as an own concern and to centralize the
rules around the communication preferences. A concept for classification of occurring issues and
a central processing of those occurring issues was required. The actual issue clarification process
needed to be implemented as a rather complex business process itself that gathers all the
occurring issues from those various parallel running sub-order processes. The rather complex
rules for communication needed to be implemented by the issue clarification process.

The BUNDLE PROCESS AGENT pattern has been applied to deal with these requirements. A
classification scheme for possible occurring issues has been designed in a business object model.
The parallel running sub-order processes have just sent a type of issue that occurred during the
process to the BUNDLE PROCESS AGENT. The agent created an issue clarification process that
processed the issues centrally according to communication preferences. For instance, a list of
issues that resulted from various sub-orders could thus be clarified in a single telephone call with
the customer, or have been communication in a single letter. Direct communication via
telephone of a consolidated list of issues has thus speeded-up the clarification process or has
saved mailing costs, as a number of relevant issues have been gathered in a single letter.

The overall clarification process could be implemented in a controlled way considering the
customer view and preferences of the overall order, while still having the ability to process the
sub-orders according to different specialised internal departments. A special team to improve the
clarification process as a separate concern could thus be implemented without affecting actual
order processes. In that way, it has been possible to design the business process models
according to different levels of expertise and to assign dedicated resources with expertise on issue
resolution.

The issue classification scheme via the special business object model and the service for
sending occurring issues via a service provided a clear interface that allowed new or improved
sub-order processes to use it in a flexible way. The service has provided a defined interface for
handing issues for clarification in a universal way. Customer satisfaction has been improved by
classification of the issues and reducing the number of necessary interactions with the customers.

E6-15

Process Conductor

Interdependent processes are in execution on a process engine. The interdependency implies that
execution of the processes needs to be synchronized at runtime.

When business processes are executed on a process engine there are often points in these
processes where dependencies to other processes need to be considered. That means a
process may only move to a certain state, but can only move on if other parallel processes
have also reached a certain state. Further execution of these parallel running processes
need to be orchestrated at runtime, as it cannot be decided at modelling time when these
states are reached or what these states are due to the separate execution of the processes
and the fact that each process is a component that may change individually over time. In
most cases, the rules for the orchestration need to be flexibly adaptable. How can the
dependencies be flexibly captured without tightly coupling the processes?

At some point in a process it might be necessary that the process is only allowed to move on
if other processes have also reached a certain state. However, each individual process does not
know what these states of other processes are and when they are actually reached, as each process
runs at its own speed within its own data space. Moreover, each business process needs to be
treated as a separate component and may change individually over time. Thus, processes need to
be very loosely coupled as far as this aspect is concerned.

The reason for this is that it is very hard to specify in a single process model what states of
other processes are relevant from an individual process’s point of view and when these states are
reached, nor what the relevant dependent processes are. If this is statically modelled in a process
somehow the implementation will be very inflexible and changes to orchestration rules usually
impact all involved processes. That means, the actual orchestration appears to be a complex
concern of its own and the rules for orchestration cannot be defined attached to an individual
process model. Consequently, the orchestration rules should not be captured as some types of
static relationships of a process to other processes. The dependencies that will be generated if
each process should know the rules for orchestration will be very hard to manage. If the rules
change then each individual process needs to be changed as well. For this reason a tight coupling
of the rules to each individual process is an inappropriate approach.

As a result, each process needs to be treated as an encapsulated component that does not
know anything about the orchestration rules or the processes that it has dependencies to. Each
process must only know its own points in the process where the dependency occurs but not what
this dependency is about. New processes might be created over time, which create new
dependencies and this must not affect existing process models to make the changes manageable.
Each process model itself may also change, e.g. new steps are added without affecting the actual
rules for orchestration as they need to be treated as a separate concern. The very problem is thus
that the processes are standing in dependency but must actually not know very much about each
other, as the dependency needs to be separated out of the process to treat it as a separate concern
and to make the processes and the complexity generated by these dependencies manageable.

E6-16

Figure 6: The problem of treating dependencies as a separate concern

Introduce a PROCESS CONDUCTOR component that offers configurable orchestration rules
to conduct a number of business process instances. The PROCESS CONDUCTOR offers a
service that is only invoked synchronously by the business process instances. Each
process instance provides its current state in terms of the activity it currently performs as
an input parameter to this service. The service returns a result to a specific process
instance only when the orchestration rules allow the process to move to the next step.
This way the order of the process instances to proceed is determined via the
orchestration rules of the PROCESS CONDUCTOR.

A central aspect of the PROCESS CONDUCTOR pattern is that the central conductor is only
invoked synchronously. That is, when a business process reaches a critical state where it may only
move on if certain other dependent processes have also reached a certain state, then a
SYNCHRONOUS SERVICE ACTIVITY [Hentrich et al. 2008] is modelled at this point in the process
that invokes a service. At this point, the process to be conducted blocks on the synchronous
invocation until the conductor returns a result. The PROCESS CONDUCTOR service reports the
state of a process instance and the ID of the instance to the PROCESS CONDUCTOR component.
The states and corresponding process IDs are stored in a container. The PROCESS CONDUCTOR
component applies orchestration rules which are configurable to determine the order of events
that need to be fired to initiate dedicated process instances to move on.

The PROCESS CONDUCTOR applies its orchestration rules to the states and corresponding
process IDs in the container. The orchestration rules simply define an order of the process states,
i.e. an order of terminating the corresponding process activities. The conductor then fires events
to the process instances identified by their IDs in the order that is determined by the
orchestration rules. Hence, the service implementation to report the state and the process ID can
be implemented as an EVENT-BASED ACTIVITY [Köllmann et al. 2007]. The process engine
receives the events and terminates the activities in the order directed by the conductor. As a
consequence the processes move on to the next step in the right order. The conductor repeats
this process in a loop, as new processes may have registered for the next iteration.

The triggers to start one iteration of this procedure to apply the orchestration rules and to fire
events to the processes can be twofold. It can happen repeatedly in defined time intervals or it
can be initiated by other dedicated event triggers, e.g. a master process has invoked the service of
the PROCESS CONDUCTOR to register an initiation state that triggers the orchestration rules.

Figure 7 shows an example of the general architectural concept of the solution using the
OBSERVER pattern [Gamma et al. 1994] to notify the EVENT-BASED ACTIVITY of a process that
waits for a terminate event to occur. The very order of sending these terminate events, i.e. the
order of invoking the notify method of the observer class, is defined by the orchestration rules of
the conductor. The orchestration rules just order a list of states associated to process instances
and deliver those process instances that need to be informed in the next iteration. In the example
in Figure 7 this logic is hidden in the runOrchestrationRules method. That method takes a list of

E6-17

states associated to process instance IDs, runs the rules over them and delivers the list of process
instances that apply to the rules for the next iteration. Those process instances are removed from
the list given as an input parameter. The Process Conductor class itself is implemented using the
COMPONENT CONFIGURATOR [Schmidt et al. 2000] pattern. In Figure 7 class Process Conductor is
the observable that is observed by a Report State Service. This service is invoked by activities from
business processes as a SYNCHRONOUS SERVICE ACTIVITY [Hentrich et al. 2008]. The service
notifies the process engine about terminating an activity when it receives a corresponding
TerminateEvent from the conductor. Read and write operations on the container are synchronized
using locking and unlocking mechanisms.

Process Conductor ArchitectureBusiness Processes

Activity

Wait for Terminate Event
Activity

Activity

+sendRequest(in state : State, in id : ID)
-sendServiceResult(in te : TerminateEvent)

Report State Service

sendRequest(state, id)

+add(in state : State, in id : ID)
+remove(in state : State, in id : ID)
+getAll() : StateAndIDsList
+lock() : Boolean
+unlock()

-registry : StateAndIDsList
Registered States Container

+notify(in te : TerminateEvent)

«interface»
Observer

-container1

1

+run()
+runOrchestrationRules(in list : StateAndIDsList) : StateAndIDsList

Process Conductor

+register(in o : Observer)

«interface»
Observable

+init()
+finalize()
+suspend()
+info()

«interface»
Configurable Component

-container 1

1

-service

1

1

Orchestration Rule

-rules 1
1..*

void init() {
 register(service);
 run();
}

void run() {
 while(NOT finalize AND NOT suspend) {
 while(NOT container.lock());
 //Get list of next notifications and clear those
 //elements from the container
 StatesAndIDsList list =
 runOrchestrationRules(container.getAll());
 while(list.hasNext()) {
 StateAndID s = list.getNext();
 TerminateEvent te =
 new TerminateEvent(s.state, s.id);
 service.notify(te);
 container.remove(s.state, s.id);
 }
 container.unlock();
 }
}

te: TerminateEvent

void sendRequest(in state: State, in id: ID) {
 while(NOT container.lock());
 container.add(state, id);
 container.unlock();
}

void notify(in te: TerminateEvent) {
 sendServiceResult(te);
}

Figure 7: Example architecture solution of a PROCESS-CONDUCTOR

E6-18

The registration of the state and process ID and the waiting position for the actual
termination event to occur can also be designed as an ASYNCHRONOUS RESULT SERVICE
[Hentrich et al. 2008]. In this case the business process needs to model two activities: one that
places the request and a second one that gets the result, i.e. waits for the termination event. The
Report State Service then offers two corresponding methods. The combination of state and ID may
serve as a CORRELATION IDENTIFIER [Hohpe et al. 2003] for the second method invocation. The
architectural concept then needs to change slightly according to the description of the
ASYNCHRONOUS RESULT SERVICE pattern. Using this design principle the terminate event is
rather captured by a pull mechanism from the perspective of the process conductor. The pull
mechanism is represented by the second service invocation from the business process that
actively asks for a result and the termination event might thus not be immediately reported to the
process engine, i.e. in case the second method is invoked after the event has actually occurred.

On the contrary the original solution in Figure 7 seems rather to use a push-mechanism while
following the EVENT-BASED ACTIVITY pattern, as the event is fired and reported to the process
engine as soon as it occurs. However, from the viewpoint of the business process both scenarios
follow a pull-mechanism, as all services are actively invoked and represent blocking calls. In the
second scenario it is just two method invocations instead of just one. The second method to get
the result represents the EVENT-BASED ACTIVITY in this second scenario.

The second variation of the solution can be used when sending the request needs to be
decoupled from capturing the termination event. For instance, in case other process steps can be
undertaken in the meantime but the conductor needs to be informed early. Doing it that way
creates more time for the conductor to calculate the order of the terminate events, e.g. in case
complex time consuming rules need to be applied and/or it is not necessary to report the
termination event to the process engine as soon as possible.

Figure 8: Variation of the pattern using ASYNCHRONOUS REPLY SERVICE

E6-19

The EVENT-BASED PROCESS INSTANCE [Hentrich 2004] pattern can also be used in
conjunction with a PROCESS CONDUCTOR in case it might take a long time until the termination
event occurs and it makes sense to split-up the process in two parts. That means if the
termination event occurs the second part of the process will be instantiated rather than modelling
a waiting position.

One must note that the pattern generally assumes that the process engine processes the
terminate events in the sequence that they are fired. This implies that the activities will terminate
in the intended order, i.e. the order the terminate events have been fired, and the processes will
correspondingly move on in the right order. If this cannot be assumed then it might be that the
activities of the processes do not terminate in the right order and consequently the processes do
not move on in the right order as well. To resolve this issue the implementation can be extended
by an additional service that is invoked from a business process. This additional service confirms
that the activity has terminated. This is modelled as a second SYNCHRONOUS SERVICE ACTIVITY
right after the first one. The next process, according to the rules, is only notified after the
confirmation from the preceding business process has been received.

This may only be necessary if the order of termination is important within one iteration of
notification. In many cases this is not important as it is rather the whole iteration that represents
the order, i.e. all processes of one iteration may literally move on at the same time and slight
differences do not matter. This also depends on the underlying rules and what these rules are
further based on. According to the MACRO-MICROFLOW [Hentrich et al. 2007] pattern this may
also depend on whether we are at microflow or macroflow level. Transactional microflows
usually run in much shorter time (sometimes milliseconds) and even slight time differences might
matter while these slight time differences might not matter at all at the macroflow level.

The pattern provides a flexible solution to determine the order of process steps that need to
be synchronized by configurable rules. New processes and rules can be added without changing
the architecture. Existing rules can also be modified without changing the implementation of
running business processes. However, this flexible concept requires additional design and
implementation effort. The design might be quite complex depending on the requirements
regarding the complexity of the synchronization. For this reason, the pattern is most suitable in
larger projects where architecture evolution and business agility is required.

The PROCESS CONDUCTOR pattern is a central bottleneck and it also incurs the risk of
deadlocks in case the PROCESS CONDUCTOR’S orchestration rules are misconfigured or a business
process fails to signal its state. In such cases, usually manual intervention is required. It makes
sense to monitor the PROCESS CONDUCTOR component for such events.

Some known uses of the pattern are:

- The pattern has been used in projects in the telecoms industry to control technical
activation of dependent products in larger orders. Each product can be processed
in parallel to improve efficiency up to a certain point. Further technical activation
of the products is then controlled by product rules, as certain products are
dependent on each other, e.g. an internet account can only be activated if the
physical DSL connection has been established.

- The pattern has been used to design synchronization points in parallel claims
handling processes in the insurance industry. That is, a set of parallel sub-claims
processes that belong to an overall claim is triggered off and can only move to a
certain point. At this point the parallel processes need to be synchronized, i.e. the
first process that reaches the point must wait until all others have reached their

E6-20

synchronization point too. What processes need to be synchronized is defined by
configurable rules.

- In logistic processes in the transportation industry the pattern has been used to
flexibly coordinate the transportation of goods delivered by different suppliers and
parties. Orchestration rules have been used to allow flexible packaging and to
coordinate between different types of transportation, e.g. trucks, planes, ships, and
trains. That way it is possible to rather easily configure modified types of packaging
and transportation due to changed conditions or different transportation criteria,
e.g. security, delivery speed, and costs, which apply to different types of goods.

Example

In a just-in-time (JIT) production scenario in the automotive industry the order of a car needs to
be processed. The order arrives with given ordering details of the car model that needs to be
manufactured in a JIT process. The parts for the car are delivered by different suppliers and the
order details related to the parts delivered by a certain supplier are forwarded to each of the
suppliers via a service interface. The manufacturing process in terms of the internal ordering,
delivery, and assembly of the parts from those different suppliers needs to be coordinated. To
coordinate the processes a MACROFLOW ENGINE [Hentrich et al. 2007] is used. The selected tool
to implement the MACROFLOW ENGINE is WebSphere MQ Workflow.

The processes for ordering, delivering and assembling the parts need to be coordinated, as a
parallel process instance is created for each supplier. Appropriate coordination of the process is
crucial to optimise the manufacturing costs, e.g. reducing stock costs by agreeing service levels
with suppliers in terms of delivery times and to place the order to the suppliers at the right point
in time. In order to allow coordination of the processes and to allow optimisation the PROCESS
CONDUCTOR pattern has been applied. The timely coordination of orders to suppliers, parts
delivery and assembly can thus be implemented using flexible orchestration rules. The rules can
be modified according to improved service level agreements and to optimise the overall
manufacturing process over time. The rules have been implemented and flexibly configured using
the ILOG JRules [ILOG 2008] rules engine. The rules have been accessed by the PROCESS
CONDUCTOR via a Java interface.

E6-21

Conclusion

In this paper we have presented three patterns for synchronization of parallel and independently
running business processes in a process-driven and service-oriented architecture. These patterns
focus on coordinating the parallel and principally independent business processes via
architectural solutions allowing architects to model the flexible synchronisation of the processes.
The patterns are part of an ongoing effort to mine and document a pattern language for process-
driven and service-oriented architecture. Previous parts of this pattern language have been
published in [Hentrich 2004, Hentrich et al. 2007, Köllmann et al. 2006, Hentrich et al. 2008].

Acknowledgments

The authors would like to thank the shepherd Stephan Lukosch for his valuable comments.

References

[Barry 2003] D. K. Barry. Web Services and Service-oriented Architectures, Morgan Kaufmann

Publishers, 2003.

[Buschmann et al. 2000] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal: Pattern-Oriented
Software Architecture – A System of Patterns, John Wiley & Sons, 1996.

[Channabasavaiah 2003 et al.] K. Channabasavaiah, K. Holley, and E.M. Tuggle. Migrating to Service-oriented
architecture – part 1, http://www-106.ibm.com/developerworks/webservices/
library/ws-migratesoa/, IBM developerWorks, 2003.

[Gamma et al. 1994] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1994.

[Hentrich 2004] C. Hentrich. Six patterns for process-driven architectures. In Proceedings of the 9th
Conference on Pattern Languages of Programs (EuroPLoP 2004), 2004.

[Hentrich et al. 2007] C. Hentrich, U. Zdun. Patterns for Process-Oriented Integration in Service-Oriented
Architectures, In Proceedings of the 11th Conference on Pattern Languages of
Programs, (EuroPLoP 2006), 2006.

[Hentrich et al. 2008] C. Hentrich, U. Zdun. Patterns for Invoking Services from Business Processes. In
Proceedings of European Conference on Pattern Languages of Programs (EuroPloP)
2007, Universiätsverlag Konstanz, 2008.

[Hohpe et al. 2003] G. Hohpe and B. Woolf. Enterprise Integration Patterns. Addison-Wesley, 2003.

[ILOG 2008] http://www.ilog.com/products/jrules/index.cfm

[Köllmann et al. 2007] T. Köllmann, C. Hentrich. Synchronization Patterns for Process-Driven and Service-
Oriented Architectures, In Proceedings of the 11th Conference on Pattern Languages
of Programs, (EuroPLoP 2006), 2007.

[Schmidt et al. 2000] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Patterns for Concurrent and
Distributed Objects. Pattern-Oriented Software Architecture. J.Wiley and Sons Ltd.,
2000.

[Völter et al. 2004] M. Voelter, M. Kircher, and U. Zdun. Remoting Patterns - Foundations of
Enterprise, Internet, and Realtime Distributed Object Middleware, Wiley Series in
Software Design Patterns, J. Wiley & Sons, October, 2004.

E6-22

Appendix: Overview of Referenced Related Patterns

There are several important related patterns referenced in this paper, which are described in other
papers, as indicated by the corresponding references in the text. Table 2 gives an overview of
thumbnails of these patterns in order to provide a brief introduction to them for the reader. For
detailed descriptions of these patterns please refer to the referenced articles.

Pattern Problem Solution

ASYNCHRONOUS RESULT
SERVICE

[Hentrich et al. 2008]

A communication between a service and a
process flow needs to be modelled that is
not a synchronous communication, but
rather just places the service request and
picks up the service result later on in the
process flow, analogous to the well-
known callback principle.

Split the request for service execution and
the request for the corresponding result in
two SYNCHRONOUS SERVICE ACTIVITIES
and relate the two activities by a
CORRELATION IDENTIFIER [Hohpe et al.
2003] that is kept in a control data object.

BUSINESS OBJECT
REFERENCE

[Hentrich 2004]

How can management of business objects
be achieved in a business process, as far as
concurrent access and changes to these
business objects is concerned?

Only store references to business objects
in the process control data structure and
keep the actual business objects in an
external container.

COMPONENT
CONFIGURATOR

[Schmidt et al. 2000]

How to allow an application to link and
unlink its component implementations at
runtime without having to modify,
recompile, or relink the application
statically?

Use COMPONENT CONFIGURATORS as
central components for reifying the
runtime dependencies of configurable
components. These configurable
components offer an interface to change
their configuration at runtime.

CORRELATION
IDENTIFIER

[Hohpe et al. 2003]

How does a requestor that has received a
response know to which original request
the response is referring?

Each response message should contain a
CORRELATION IDENTIFIER, a unique
identifier that indicates which request
message this response is for.

EVENT BASED PROCESS
INSTANCE

[Hentrich 2004]

How can a process instance be
automatically created in case an event
based activity occurs in a business process
that implies automatic process
instantiation, e.g. a customer placing an
order?

Externalise event based activities to an
external event handler component and
split the process model in several parts.

EVENT-BASED ACTIVITY

[Köllmann et al. 2006]

How can events that occur outside the
space of a process instance be handled in
the process flow?

Model an event-based activity that waits
for events to occur and that terminates if
they do so.

FIRE AND FORGET
SERVICE ACTIVITY

[Hentrich et al. 2008]

A communication between a service and a
process flow needs to be modelled that is
not a synchronous communication, but
rather just placing the service request
without waiting for any result to be
returned from the service.

Model a FIRE AND FORGET SERVICE
ACTIVITY that decouples the request for
execution of a service from the actual
execution of the service.

MACROFLOW ENGINE

[Hentrich et al. 2007]

How is it possible to flexibly configure
macroflows in a dynamic environment
where business process changes are
regular practice, in order to reduce
implementation time and effort of these
business process changes, as far as the
related IT issues are concerned that are
involved in these changes?

Delegate the macroflow aspects of the
business process definition and execution
to a dedicated MACROFLOW ENGINE that
allows developers to configure business
processes by flexibly orchestrating
execution of macroflow activities and the
related business functions.

E6-23

Pattern Problem Solution

MACRO-MICROFLOW

[Hentrich et al. 2007]

How is it possible to conceptually
structure process models in a way that
makes clear which parts will be depicted
on a process engine as long running
business process flows and which parts of
the process will be depicted inside of
higher-level business activities as rather
short running technical flows?

Structure a process model into macroflow
and microflow.

SYNCHRONOUS SERVICE
ACTIVITY

[Hentrich et al. 2008]

A synchronous communication between a
service and a process flow needs to be
modelled such that the process is able to
consider the functional interface of the
service and may react on the possible
results of the service.

Model a SYNCHRONOUS SERVICE
ACTIVITY that depicts the functional input
parameters of the associated service in its
input data objects and the functional
output parameters of the service in its
output data objects.

Table 2: Thumbnails of referenced patterns

