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ABSTRACT

The application of patterns is used as a foundation for many c
tral design decisions in software architecture, but bexzaishe
informal nature of patterns, these design decisions arallysuot
precisely documented in the models. In our earlier work, ae h
proposed pattern primitives as a solution to precisely rhbeéepat-
terns in the corresponding architectural views. Buildipgmu that
approach, this paper introduces a pattern-based aréhgeato-
cess that aims at inexpensively documenting design desigiche
architectural views alongside the natural flow of designe dhci-
sions that are made explicit, concern the selection of pett¢heir
variants and the corresponding primitives, as well as thelution
of inconsistencies between the architectural views. Tlpecageh

is demonstrated in the domain of process-driven SOA for two a

chitectural views: Component-and-Connector and Prociess F

1. INTRODUCTION

Architectural Knowledge (AK) tends to evaporate as sofevar

systems evolve, with grave consequences for softwareafaweint
projects [16]. The effective and systematic documentaimhsub-
sequent sharing of architecture knowledge is imperativdaige
and/or distributed projects [2]. However, in practice,hétectural
knowledge documentation is conceived as a resource-ineno-
cess without tangible (short-term) gains for the docunrertteem-
selves and is quite often skipped or performed inadequigly

One partial solution to this problem is to document the desig

decisions when applying patterns in the architecture [XJthi-

tectural patterns capture reusable architectural knayadd the
form of well-proven solutions to recurring software desjgob-
lems arising in particular contexts and domains [17]. Pasteon-
cern some of the most important architectural decisiores easy
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to use, and provide a rich set of information about rationede-
sequences, and related decisions; knowledge that mustdee do
mented. Documenting AK based on patterns fits within theunat
ral” course of architecting, without introducing extractt for the
software architects and developers. Patterns are thuggpensive
way of documenting some of the most significant AK entities.

Documenting the AK associated to the application of pastern
is therefore of paramount importance, but there are twolenag.
Firstly, architectural patterns cannot be precisely dpgtor mod-
eled, e.g., by using a parameterizable, template-stylerig¢ion,
because they are described in an informal way [21]. This stem
from the notion of a pattern per se: it does not describe a sin-
gle solution but a solution space, variable enough to beleppi
diverse situations. In our previous work [21] we have pr@gbs
a solution for the systematic modeling of patterns by iniod
ing an intermediate abstraction, thattern primitives fundamen-
tal, precisely-specified modeling elements in represgreipattern.
Pattern primitives enable us to document the usage of patter
side the corresponding architectural views and, at the same
document some of the most important architectural decisiath
minimal effort.

Our original set of pattern primitives presented in [21] ves
geted at modeling architectural patterns, using basidtarthbral
abstractions like components, connectors, ports, andfacss.

In [21] we presented 9 architectural primitives, which cam b
used to model several of the most common architectural rpatte
(such as those found in [4]), in théomponent-and-Connector
architectural view. Later we extended this approach to tmeain

of process-driven, service-oriented architectures (SQ23].

A process-driven SOA provides a process engine (or workflow
engine) at its top-level layer [24], and the services realimi-
vidual activities in the process. In [23] we introduced 13t@an
primitives, which can be used to model a pattern language for
process-driven SOA, described in [12]. We use the prinstive
the Process Flowarchitecture view, which mainly models the flow
within a process-driven SOA.

The second problem in documenting pattern-based design de-
cisions concerns the inconsistencies that occur in difteaechi-
tectural views. In current architecture documentatiorctica, the
application of a pattern is usually modeled in a single deciiral
view [6]. Therefore different patterns and their consedudsti-



sions are modeled independently in different views. Thig p&
tentially cause inconsistencies between the views, asitieeanht
patterns sometimes entail conflicting structural or betraise-
mantics. The problem of inconsistencies across architaotiews
is of course not specific to applying patterns but a genecdlpm
in software architecture documentation [15], but so fas gioblem
has not been addressed in the context of pattern-baseteatoig.

In this paper we extend our existing approach by proposing an
architecting process based on patterns and their modehingugh
primitives that supports the explicit documentation of design de-
cisions. The process of architecting can be seen as a sathof ar
tecture design decisions [3], and our approach focuses &imgha
explicit the following decisions: selecting patterns ahdit vari-
ants to solve problems, and modeling them through prinstivé
in the course of this architecting process, inconsistanoetween
views occur, we propose to remedy this problem by combirtieg t
pattern primitives in the different views in order to bridde se-
mantic gaps between the corresponding models.

The advantage of this approach is that documenting the-afore

mentioned design decisions is performed at the same time as

designing without requiring extra effort; the results of kimg
these decisions are explicit in the architecture models.
demonstrate the applicability of our approach in the apgitbn
domain ofprocess-driven SQANMe have selected this domain as
we already have two sets of pattern primitives that are sigita
for two architectural views in this domain: the Process Fovd
Component-and-Connector views.

This paper is structured as follows: First, the procesgedri
SOA domain will be presented in Section 2 through a domain-
specific pattern language. Next, we describe in Section Brihe
itives for the Process Flow and Component-and-Connectwsyi
as the background of this work. Section 4 presents the peapos
architecting process and demonstrates it through a cadg Biu
the process-driven SOA domain. To aid the architects andldev
opers, we have implemented a model-driven tool chain talatei
the primitive models automatically, and to generate codmfthe
models. Section 5 briefly reports on this tool chain. In thalfiwo
sections, we compare this approach to related work and share
final conclusions.

We

2. PATTERN LANGUAGE FOR PROCESS-

DRIVEN SOA

Software patterns and pattern languages provide systemati
reuse strategies for design knowledge [17]. A pattern ezxod
proven practices for particular, recurring design proldemA
pattern language is a collection of patterns that solve thegtent
problems in a particular domain and context, and speciicall
focuses on the pattern relationships in this domain andegtint

In this section, we give an overview of the subset of our patte
language for process-oriented integration of servicesSisheeeded
for this paper (for details please refer to [12]). In the attlan-
guage, the pattetrMACRO-MICROFLOW sets the scene and lays
out the conceptual basis to the overall architecture. Titenwedi-
vides the flow models into so-calledacroflows which describe
the long-running business processes, amdroflows which de-
scribe the short-running technical processes. AR@CESSBASED
INTEGRATION ARCHITECTUREpattern describes how to design an
architecture based on a number of layers to compose seivices
flexible and scalable manner, following the\CRO-MICROFLOW
conceptual pattern.

'Note that we print the names of the patterns in capital ketier
differentiate them from components, layers, or other cpte

Figure 1 shows an exemplary (large-scale) configuration of
a PROCESSBASED INTEGRATION ARCHITECTURE with five
layers. Let us illustrate the pattern language using thisrgle.
Multiple MACROFLOW ENGINES execute the macroflows, i.e.,
the MACROFLOW ENGINES allow for flexible orchestration of
business processes. A typical example efACROFLOW ENGINE
is a BPEL process enginePROCESS INTEGRATION ADAPTERS
integrate the specific interface and technology of the m®ce
engine into a system. The macroflow integration layer is ueed
connect the macroflow engines to thROCESSBASED INTEGRA-
TION ARCHITECTURE Vvia service invocations of corresponding
PROCESS INTEGRATION ADAPTERS

A dispatching layer enables scalability by dispatching to a
number ofMICROFLOW ENGINES In this layer, aRULE-BASED
DISPATCHERdynamically decides based on (business) rules, where
and when a (macroflow) activity is executed. MACROFLOW
ENGINE allows for orchestrating service invocation through short
running technical flows. An example of microflow technologg a
message brokers.

In the example, services are executed that contain business
application adapters that connect to backends. Thesedassin
application adapters, just like th@ROCESS INTEGRATION
ADAPTERS, follow the CONFIGURABLE ADAPTER pattern. A
CONFIGURABLE ADAPTER connects to another system in a way
that allows to easily maintain the connections, considetimat
interfaces may change over time. They are typically managed
CONFIGURABLE ADAPTER REPOSITORIES

There are several architectural views that can addresstsiik
ers concerns specific to the domain of process-driven SOdeeS
commonly used views are:

e Business process flow, a sub-view of the Process Flow view
(showing business processes in macroflows),

Message flow, a sub-view of the Process Flow view (showing
technical processes in microflows),

Business objects (showing business objects/artifacts),

Business resources,

Components and connectors (showing run-time entities and
their relations),

3. PATTERN PRIMITIVES

In this section, we briefly present our earlier work on patter
primitives for modeling patterns in the Process Flow and the
Component-and-Connector views, hence making patteredude-
sign decisions an explicit part of the architectural docotaton.
Pattern primitives are modeling elements with preciselgetibed
semantics, that are primitive in the sense that they reptdmsesic
units of abstraction in the domain of the pattern. We model
pattern primitives using UML 2.0 extensions because the UML
has become the “lingua franca” of software design and idyast
supported by tools. We specify an extension of a UML 2.0 meta-
class for each elicited primitive, using the standard UMteasion
mechanisms: stereotypes, tag definitions, and constraiviisuse
the Object Constraint Language (OCL) to specify the coirgsa
and provide precise semantics to the primitives.

3.1 Process Flow Primitives

In our earlier work [23], we presented 13 pattern primititiest
we have mined from the pattern language presented in Section
2. These pattern primitives mainly deal with the ProcessvFlo
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Figure 1: Example Configuration of a Process-based Integréon Architecture

view, and hence the primitives extend UML's activity diagra
meta-model, which describes how to depict flow abstractions
UML. There are flow models for macroflows, micoflows, and their
activity steps. Even though these flow models have highfediht
semantic properties, they share the same basic flow atbistraet
and glue the other models used in a process-driven SOA.

To illustrate our concepts, we will concentrate on one eXxamp
primitive, the Macro-Microflow Refinement Primitive, andeth
present the other primitives as thumbnails. The Macro-dfiow
Refinement Primitive models the refinement of Macroflows into
Microflows. To model this primitive, we introduce UML2 stere
types to distinguish the different kinds of refinement atiég
in the UML2 models. In particular, we introduceMacr of | ow
stereotype and &l cr of | ow stereotype. These stereotypes have
a common superclass extending UMBst i vi t y metaclass. On
this superclass a tag valuef i nedNodes is introduced to denote
the refinement relationships between Activifies

We can then model the Macro-Microflow Refinement primitive
by constraining the stereotypes. In particular, iftleéi nedNodes
tag value of avl cr of I owis not empty, thev cr of | owis a refine-
ment of anotheM cr of | owor aMacr of | ow. If ref i nedNodes
of a Macrofl ow is not empty, it must be refined by another
Macr of | ow. This can be precisely modeled using OCL constraints
(see [23]) for details).

Each primitive describes a precise, parameterizable ibgild
block that can be used in the solution of the patterns. Ourainod
validator can check all these constraints automaticatigh,iadicate
whether any constraints of the primitives have been vidlate

Let us illustrate the use of the primitive in a specific exanpl
of modeling the application of th®IACRO-MICROFLOW pattern.
Specifically we want to model how the pattern structures a
process model into macroflows and microflows. In thecro-
MICROFLOW pattern at least one Macroflow Model and one
Microflow Model with a refinement relationship between them
must be present in a model. There are different specific kirfids
refinement possible, specified by the primitive constraistgh
as: macroflows can be refined by other macroflows, microflows
can be refined by other microflows, macroflows can be refined
by microflows, etc. The Macro-Microflow Refinement primitive
allows us to model a number of pattern variants of thecro-
MICROFLOW pattern. For instance, th®ACRO-MICROFLOW

2There are other kinds of flows than macroflows and microflows
derived from this class (see [23]), but as they are not useisn
paper, we omit them here to simplify the discussion.

structure may follow a refinement through a number of maanoflo
models (high-level to low-level) plus a low-level microflawodel
depicting the technical message flows. Figure 2 shows one
example, but many other variants of the patterns can be mddel
using the same primitive (see [23] for details).

The detailed specification of this and the other 12 primgtivan
be found in [23]. The thumbnails of these primitives are pnésd
here as an overview:

e Process Flow Refinemenf macroflow or microflow is re-
fined using another process flow.

e Process Flow Step#\ macroflow or microflow is refined by
a number of sequential steps.

e Macroflow Model A macroflow can be refined by other
macroflows or macroflow steps.

e Microflow Model A microflow can be refined by other mi-
croflows or microflow steps.

e Automated Macroflow StepMacroflow Steps are designed
to run automatically by restricting them to three kinds:-pro
cess function invocation, process control data access, and
process resource access.

e Automated Microflow StepMicroflow Steps are designed to
run automatically by restricting them to two kinds: process
function invocations and process control data access.

e Synchronous Service InvocatioA service is invoked syn-
chronously.

e Asynchronous Service Invocatidnservice is invoked asyn-
chronously.

e Fire and Forget Invocation A service is invoked asyn-
chronously with fire and forget semantics, i.e. no result or
acknowledgment is written for this service.

e One Reply Asynchronous InvocatioA service is invoked
asynchronously, and exactly one result is coming back.

e Multiple Reply Asynchronous InvocatiorA service is in-
voked asynchronously, and multiple results are coming back

e Process Control Data Driven InvocationA service is in-
voked using only data from the process control data.
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Figure 2: Macro-Microflow modeling example

3.2 Component and Connector Primitives

Similarly to primitives for process flows, we have proposed a

set of primitives for modeling common architecture pattemthe
Component-and-Connector architectural view [21]. Thesmip
tives extend basic architectural abstractions, such apcoents,
connectors, ports, and interfaces. Hence, the compositetistes

and components meta-models of UML are extended here. We can

use these primitives to model the structural aspects of dtieqms
in a process-driven SOA. Let us consider HROCESSBASED IN-

TEGRATION ARCHITECTUREpattern, introduced earlier, and the

Callback primitive as an example.

The Callback primitive [21] can be used to model asynchrenou

interaction: A callback denotes an invocation to a compbrign
that is stored as an invocation reference in a compordenthe
callback invocation is executed later, upon a specified saire
time events. Between two componemsand B, a set of call-

backs can be defined. To capture the semantics of callbaoks pr
erly in UML, we proposed five stereotypes to denote intedace

of events (Event ) and callbacksi(Cal | back), ports of events
(Event Port) and callbacks Gal | backPort), and acCal | back

stereotype that extends thennect or metaclass and specifies the

semantics of a callback connector using the other 4 stgreatyec-
ifications. Again, we have precisely specified the constsaising
OCL.

In the PROCESSBASED INTEGRATION ARCHITECTURE
pattern, different kinds of components are connected.

macro-/microflow engines and a dispatcher are used. Thisrpat

mandates the flexible assembly of the different components b
following asynchronous messaging patterns from [13]. The u

of the callback primitive is therefore the appropriate mivde
abstraction to capture the asynchronous interaction mithie
PROCESSBASED INTEGRATION ARCHITECTUREpattern. The
event ports of each layer are listening to events from thédrig
level layer, and when an event arrives, the componentsntaltie
lower-level layer. Once a result is received, it is propadatack
into the higher-level layer using a Callback. Figure 3 shams

example UML2 model that applies the Callback primitive te th

configuration from Figure 1 (components in higher-leveklayare
depicted on the left hand side of the callback connectors).
The other 8 primitives besides Callback introduced in [2&] a

e Indirection One or more related “proxy” components re-
ceive a message on behalf of one or more “target” compo-

nents and forward the message to these “targets”.

reigu
1 shows an exemplary larger configuration, in which multiple

e Grouping A number of components belong semantically to-
gether, but the whole is made up only from the parts, and
there is no notion of a component that explicitly represents

the whole.

e Layering Layered structures are ubiquitous in software ar-

4.
4.1

chitectures, where groups of components are ordered and in-
vocations between the different groups need to respect cer-
tain rules.

Aggregation CascadeA part-whole hierarchy where the
composite objects have (recursive) constraints of the form
“A composite A can only aggregate components of tyBe

B only C, etc”.

Composition Casaded.ike Aggregation Cascade, but it fur-
ther enforces that a component may not be part of more than
one composite at any time.

Shield One or more components act as ‘shields’ for a set
of components that form a subsystem, and no external client
should be allowed to access members of the subsystem di-
rectly.

Typing Introduces the notions of a supertype connector and
a type connector, which can be used to define custom typing
models using associations.

Virtual Connector Explicitly models communication among
components that have no direct relationship, but still com-
municate virtually using other components and connectors
in between.

THE PROPOSED APPROACH

An Architecting Process

The general process of architecting as decision makingcoas
patterns and primitives, is shown in Figure 4. Design denisiare
made in the course of architecting, when selecting pattpattern
variants and primitives in four successive phases:

1.

2.

Phase 1: At first patterns from specific pattern languages a
selected that are a good match to our problem space. Each
pattern solves a design problem and might lead to a another
problem that is solved by another pattern (in the same patter
language).

Phase 2: A pattern represents not a single solution but an
entire solution space. Hence, the pattern’s solution mest b
applied in the context of the design problem at hand. That
is, a pattern variant must be selected to tailor the genevic i
structions described in the pattern description to the rac
design situation.
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Figure 3: UML2 Model for the Example Configuration

3. Phase 3: Each pattern (or more precisely: each patteirn var
ant) is modeled in an architectural view independently ef th o
other patterns, by selecting the appropriate primitivesu-U Select pattern (rom pattern
ally, this should be possible with the existing primitivesd-c language) o Solve design P no>©

patterns (from
pattern language)?

alog. In seldom cases, mining and documenting new primi-
tives might be required.

Select patternvariant
fitting to the current
design problem

4. Phase 4: If there are inconsistencies between viewspthe a
proach varies depending on whether they can be resolved
with the existing primitives. If this is the case, then auddfiail
primitives from the existing sets of primitives are selecte
to provide for the missing semantics. Also, additional con-
straints may need to be applied in some of the primitives, in
order to align their semantics to those of the primitivesduse
in the other views. Otherwise additional primitives need to
be introduced to resolve the remaining inconsistencieg Th
new primitives are not limited to a single view but cut across
different views: their constraints refer to model elemeénts
at least two architectural views, in order to simultanepusl
satisfy the semantics of the different patterns.

Select primitive(s) and architectural
view(s) to model pattern(variant)

Primitives sufficient for
modeling each pattern?

Introduce and
documentnew
primitives

£>e

Are there inconsistencies
between views?

<

Select and if necessary
extend existing
primitives

yes Can the inconsistencies
be resolved with existing
ng primitives?

Introduce new pnmmves that cut
across views to resolve

inconsistencies

The result of this process is a number of architectural nsoitel
views that explicitly contain patterns through their ptiirgs. All
decisions about the selection of the patterns, their veriand the
primitives are visible and formally defined in those models.

4.2 Case study

In the remainder of this section, we illustrate our architer
process using an extension of the example from the previets s
tions, in the process-driven SOA domain. Even though weyappl
the solution only for the process flow and the component & ecnn

tor views, the general approach can be used for other actinige pattern Selectior Pattern Selection
VleWS and domalnS as We” Configurable Adapter Rule-Based Dispatcher

As illustrated in Figure 5, the first set of design decisions [ paten Slction } P et orotion =

we make concerns the selection of a number of patterns. , First ProcessB
we select thePROCESSBASED INTEGRATION ARCHITECTURE {Mzi‘,;iqg;ﬂfg;gzgw }e{iﬁf;;j;‘;ggf:;
@

Allinconsistencies resolved ?
n

J

Figure 4: Overview of the Architecting Process

pattern (DD1), and specifically a variant of that patterrofeing

the MACRO-MICROFLOW pattern (DD2). The latter is in turn
realized using other patterns: explisihkCROFLOW ENGINESand
MICROFLOW ENGINES (DD3), as in the example configuration
in Figure 1. Furthermore we decide t0 US®NFIGURABLE
ADAPTERS as well as aRULE-BASED DISPATCHER (DD4) as
part of thePROCESSBASED INTEGRATION ARCHITECTURE ToO
complete the realization of theROCESSBASED INTEGRATION
ARCHITECTUREWe also select its variant, where the interactions
between the components are asynchronous (DD5).

Next we select primitives to model the selected patternerder
to model themACRO-MICROFLOWpattern in the process flow view,
we select the Macro-Microflow Refinement primitive (DD7),ilas
lustrated in Figure 2. Furthermore, to model HROCESSBASED

Figure 5: Sequence of Design Decisions in the case study



{layerNumber=5}

{layerNumber=4}

layer
{layerNumber=3}

{layerNumber=2}

«Layer» «Layer» ZLC?%/vei:» «Layer» B«uL:% eer:s
Macroflow Macroflow dispatch%ng Microflow application
Engine integration layer execution

services
{layerNumber=1}

I

I

I

I

I

Macroflow{|
Engine

PI_Adapter

Dispatcher

Micrv:)flow{|
Engine

BA_Adapter

Figure 6: Extending the Example Configuration with Layering

INTEGRATION ARCHITECTUREWIth asynchronous interactions in
the component & connector view, we select the Callback pisimi
(DD6), as illustrated in Figure 3. There are more primititieat
need to be selected in order to model all the selected patteuh
we omit them here to keep the size and scope relatively small.
After using the primitives to model all the patterns, we exam
ine the two views searching for potential inconsistenciesleed
we discover one inconsistency between them: The useaaRo-
MICROFLOW inside thePROCESSBASED INTEGRATION ARCHI-

TECTUREIntroduces certain constraints, e.g. components that rep-

resent the microflow should not invoke macroflow functiotyali
macroflow adapters should not be used at the microflow lewel an
vice versa, the dispatcher should only invoke short runmitig
croflows, etc. These constraints have not yet been modeletin
component & connector view.

We first try to resolve this inconsistency in the two views by
looking for existing primitives to express the semantics mod-
eled so far in the component & connector view. Indeed, we can
use an architectural primitive from [21] in the component @ne
nector view to express the missing constraints: Layerirayeking
describes groups of components and entails that group membe
from layer X may call into layerX — 1 and components outside
the layers, but not into layek — 2 and below. Figure 6 shows a
UML2 model that extends the model from Figure 3 using the Lay-
ering primitive. Thatis, theayer stereotype which is an extension
of the Package metaclass is used here. This decision (DD&swo
only in the component and connector view, but it does achieve
solve the inconsistency between the two views.

typesCorrel ati onl denti fi er, extending the ‘Class’ metaclass,
andCorrel ati onG oup, extending the ‘Package’ metaclass. Fi-
nally the following constraints are defined (in OCL): A cdat@n
group package, used in the tag vatwe r el at i onGr oup, must be
stereotyped aSorr el ati onG oup. Each correlation group must
have Correl ati onl dentifier withacorrel ati onG oup tag
value that points to it.

Using this primitive we can model @RRELATION IDENTIFIER
by putting together certain components into a correlatimug and
use a specific class (or component) as correlation identi@rin-
stance, the component model in Figure 7 expresses thattigoso
nents MacroflowEngine, PAdapter, and Dispatcher form a corre-
lation group using the correlation identifier typelD.

Modeling CORRELATION IDENTIFIERS solely in the compo-
nents & connectors view of theROCESSBASED INTEGRATION
ARCHITECTURECreates one more inconsistency with the Process
Flow view. In particular, the macroflow and microflow models
should pass a validORRELATION IDENTIFIER type to all asyn-
chronous invocations. However, there are problems whémgtitp
check this constraint in the process flow. Consider as an gheam
the process flow model shown in the lower part of Figure 7, eher
C.I Dis used in a process flow of theaACROFLOW ENGINEthat is
part of the correlation group, which is valid. Neverthe)ebgre
is no way of checking whether this type of correlation idfeiti
is used in activities of process engines that do not belontpeo
correlation group.

Existing primitives are not suficcient to resolve this incon
sistency, hence we introduce a new primitive: Correlatitowr

There are no more inconsistencies so far, so we go back to the(DD11) for modeling the patternACROFLOW ENGINE and

start of our process, and check whether more patterns neleel to
selected in order to solve our design problems. Indeed, dhe ¢
ponents in thePROCESSBASED INTEGRATION ARCHITECTURE
communicate asynchronously via service invocations, bbas

not yet been decided how to correlate the messages in the asynrespectively.

chronous interactions. This leads to selecting anothdenpatTo
correlate the events and callbacks between componentmtaat
act using asynchronous interactio®§RRELATION IDENTIFIERS
[13] (DD9) are passed between the components.

Next, we must find primitives to modelORRELATION IDEN-
TIFIER in the component & connector view, showing which com-
ponents need to use it. This is essential becausePRGCESS
BASED INTEGRATION ARCHITECTUREthat uses multiple differ-
ent components, as in the selected variant of the patterhipheu
CORRELATION IDENTIFIERSCan be usedl There are no exist-
ing primitives that can help us to model this pattern, so wedne
to introduce a new primitive: the Correlation architectyyem-
itive (DD10). The Correlation primitive introduces two rde-

3Note that there are many other issues that need to be moaeled i
order to deal with correlations, but as an illustrative egharof
patterns that affect two views, we only want to focus on tkjsest

of correlation here.

MICROFLOW ENGINE, which are part of thePROCESSBASED
INTEGRATION ARCHITECTURE The goal is to be able to
model which macroflow and microflow models are executed
on which MACROFLOW ENGINE and MICROFLOW ENGINE
The primitive defines three new stereotypes:
Pr ocessEngi ne, extending the ‘Component’ metaclass, as well
as Macr of | owEngi ne and M cr of | owEngi ne, two subclasses

of ProcessEngi ne. Furthermore we define constraints (in OCL)
that specify that &acr of | owEngi ne can only haveacti vi ti es

that are stereotyped either as Macroflow or MacroflowSteps. A
M cr of | owEngi ne can only haveacti vi ti es that are stereo-
typed either as Microflow or MicroflowSteps. These constgin
define precise relations between the component and flow sodel
Finally, we need to specify a concern regarding the coioglat

If a particular process engine is part of a correlation grabpn

all AsyncServi cel nvocati on activity nodes of activities that
belong to this engine must have an incoming Object Node ¢hat i
of theCorrel ati onl denti fi er type of the engine’s correlation

group.

5. TOOL SUPPORT

To validate our concepts, we have developed a model-dro@n t
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chain (see [23, 22, 18] for details), which supports modetnd
model validation for the concepts presented in this paperour
tool chain, we mainly use UML2 models that are extended with
UML2 profiles for modeling the pattern primitives as inpulfiese
UML2 models can either be developed with UML tools (with XMI
export) or in domain-specific languages (DSL). If a UML tosl i
used, the XMI export is transformed into the textual DSL aynt
Internally all inputs are transformed into the same DSL aynt

In the tool chain, a model validator gets all input models and
validates the conformance of the application models to teeam
models. It also checks all OCL constraints, specified in the p
tern primitive definitions. After the model is validated gt trans-
formed into an EMF (Eclipse Modeling Framework) model, vhic
is understood by the code generator. We then generate cede in
ecutable languages, such as Java and BPEL, using the cogle gen
ator.

6. RELATED WORK

Zimmermann et al. present a generic modeling approach for

SOA projects [25]. Similarly to our approach, they baserttveirk

on project experiences and distill proven practices froacfcal
cases. They also integrate multiple architectural viewsaf8OA:
object-oriented analysis and design, enterprise ar¢hitecand
business processes. Even though there are many simgatitie
our approach, there is the difference that the authors uberra
informal models to illustrate their approach and do not ev

a concept for explaining the conceptual building blocks fué t
architecture (like the patterns in our approach).

But they do not — such as our approach — concentrate on models
based on proven practices. They also do not specificallysfocu

the field of process-driven SOAs; they are more focused on the
business processes. However, an extensible tool suitétkais

can be used for providing input models for our approach.

In Chapter 13 of the book Software Factories [9] it is briefl-d
cussed how typical MDSD concepts can be used to support SOA
modeling, but only with a focus on Web Services technology: E
sentially, the process description, e.g. in BPEL, is seea plat-
form for implementing abstractions in a product line, ane sler-
vices are seen as product line assets for systematic retiss. |
advised that patterns are used as proven practices, betitheo
guidance how to map them to formal modeling constructs,tlike
pattern primitives in our approach.

There are a number of UML profiles for various SOA aspects.
Wada et al. [20] propose an UML profile to model non-functiona
aspects of SOAs and present an MDSD tool for generatingtskele
code from these models. Heckel et al. [11] propose a UML grofil
for dynamic service discovery in a SOA by providing sterpety
that specify the relationships among service implemeoratiser-
vice interfaces, and requirements. Gardner et al. [8] defid&L
profile to specify service orchestration with the goal to ntlag
specification to BPEL code. Vokac and Glattetre [19] use -has i
our examples — UML profiles to define DSLs. The proposed UML
profile supports data integration issues. In contrast t@pproach,
these approaches focus on a single type of model, not on model
integration or on extensibility with other model types. Thed-
eling constructs are not systematically derived from pnopeac-
tices. Hence, the approaches are very specific for the apiplic
area they focus on.

7. CONCLUSION

Modeling architectural patterns is an inexpensive and non-
intrusive way to model major design decisions in the archite.
This paper presented an architecting process that extemds o
pattern primitives approach for modeling patterns, by §iog on
the straightforward documentation of the correspondingigie
decisions. The decisions that concern the selection oerpestt
and their variants, as well as the selection of the prinstite
model them are explicitly specified in the architecture nde
Furthermore inconsistencies between multiple architatttiews
can be resolved, ensuring the consistent documentatiomeof t
pattern-based design decisions. We demonstrated thezabypfar
two architectural views, Component-and-Connector andtéa®
Flow, in the context of the process-driven SOA domain, but ou
approach is not limited to these architectural views or daisiain.

Some approaches use the Semantic Web to model the integra-To validate our approach, we have implemented a model+trive

tion of (Web) services and process. OWL-S [7] includes agssc
model for Web services and it uses semantic annotationsatolen

software development tool chain, in which the primitive con
straints get automatically validated by a model validated ¢he

dynamic composition. Cardoso and Sheth [5] use Semantic Web consistency to code is ensured.

ontologies to facilitate the interoperability of heterageus Web
services in the context of workflows. This is a different —ugb
not contradictory — approach to model the integration o¥ises
and processes than the process flow paradigm used in ourappro
Architectural abstractions are not integrated in theseagghes.

As a pure extension to our previous work on primitives, tigis a
proach just requires architects or developers to creatertfrelels
in the individual views containing the primitives. Only & prim-
itive that is needed has not yet been mined, additional teféor
documenting the primitive is necessary. However this estfart

Business process management tools, such as Adonis [1] oris a rather small investment, compared to the benefits ofrdent+

Aris [14], describe a holistic model of business processagaen
ment, ranging from strategic decisions to the design ofrnass
processes. They also provide mappings (imports/expartthe
realization and execution of processes. They are intedjnatith
standard model types and extensible with new model typesh Su

ing the pattern-based design decisions, during the normal df

architecting. The only substantial work that needs to beedomd-
vance is the creation of the primitives repositories foreotbattern
languages, similarly to the two repositories presentedisgaper.
But this effort is required only once, and as the primitivestzased

tools are related to our approach at a high level because theyon patterns — which represent a limited set of proven prestiit

represent important prior art in the field of model integrati

is expected that the specification of new primitives is raieédom
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