
Architecting as Decision Making with Patterns and
Primitives

Uwe Zdun
Information Systems Institute

Vienna University of Technology
Vienna, Austria

zdun@infosys.tuwien.ac.at

Paris Avgeriou
Department of Computer Science

University of Groningen
The Netherlands

paris@cs.rug.nl

Carsten Hentrich
Enterprise Content Management Solution

CSC Deutschland Solutions GmbH, Germany

chentrich@csc.com

Schahram Dustdar
Information Systems Institute

Vienna University of Technology
Vienna, Austria

dustdar@infosys.tuwien.ac.at

ABSTRACT
The application of patterns is used as a foundation for many cen-
tral design decisions in software architecture, but because of the
informal nature of patterns, these design decisions are usually not
precisely documented in the models. In our earlier work, we had
proposed pattern primitives as a solution to precisely model the pat-
terns in the corresponding architectural views. Building upon that
approach, this paper introduces a pattern-based architecting pro-
cess that aims at inexpensively documenting design decisions in the
architectural views alongside the natural flow of design. The deci-
sions that are made explicit, concern the selection of patterns, their
variants and the corresponding primitives, as well as the resolution
of inconsistencies between the architectural views. The approach
is demonstrated in the domain of process-driven SOA for two ar-
chitectural views: Component-and-Connector and Process Flow.

1. INTRODUCTION
Architectural Knowledge (AK) tends to evaporate as software

systems evolve, with grave consequences for software development
projects [16]. The effective and systematic documentationand sub-
sequent sharing of architecture knowledge is imperative for large
and/or distributed projects [2]. However, in practice, architectural
knowledge documentation is conceived as a resource-intensive pro-
cess without tangible (short-term) gains for the documenters them-
selves and is quite often skipped or performed inadequately[2].

One partial solution to this problem is to document the design
decisions when applying patterns in the architecture [10].Archi-
tectural patterns capture reusable architectural knowledge in the
form of well-proven solutions to recurring software designprob-
lems arising in particular contexts and domains [17]. Patterns con-
cern some of the most important architectural decisions, are easy

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SHARK’08,May 13, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-038-8/08/05 ...$5.00.

to use, and provide a rich set of information about rationale, con-
sequences, and related decisions; knowledge that must be docu-
mented. Documenting AK based on patterns fits within the “natu-
ral” course of architecting, without introducing extra efforts for the
software architects and developers. Patterns are thus an inexpensive
way of documenting some of the most significant AK entities.

Documenting the AK associated to the application of patterns
is therefore of paramount importance, but there are two problems.
Firstly, architectural patterns cannot be precisely specified or mod-
eled, e.g., by using a parameterizable, template-style description,
because they are described in an informal way [21]. This stems
from the notion of a pattern per se: it does not describe a sin-
gle solution but a solution space, variable enough to be applied in
diverse situations. In our previous work [21] we have proposed
a solution for the systematic modeling of patterns by introduc-
ing an intermediate abstraction, thepattern primitives: fundamen-
tal, precisely-specified modeling elements in representing a pattern.
Pattern primitives enable us to document the usage of patterns in-
side the corresponding architectural views and, at the sametime,
document some of the most important architectural decisions with
minimal effort.

Our original set of pattern primitives presented in [21] wastar-
geted at modeling architectural patterns, using basic architectural
abstractions like components, connectors, ports, and interfaces.
In [21] we presented 9 architectural primitives, which can be
used to model several of the most common architectural patterns
(such as those found in [4]), in theComponent-and-Connector
architectural view. Later we extended this approach to the domain
of process-driven, service-oriented architectures (SOA)[23].
A process-driven SOA provides a process engine (or workflow
engine) at its top-level layer [24], and the services realize indi-
vidual activities in the process. In [23] we introduced 13 pattern
primitives, which can be used to model a pattern language for
process-driven SOA, described in [12]. We use the primitives in
theProcess Flowarchitecture view, which mainly models the flow
within a process-driven SOA.

The second problem in documenting pattern-based design de-
cisions concerns the inconsistencies that occur in different archi-
tectural views. In current architecture documentation practice, the
application of a pattern is usually modeled in a single architectural
view [6]. Therefore different patterns and their consequent deci-

sions are modeled independently in different views. This may po-
tentially cause inconsistencies between the views, as the different
patterns sometimes entail conflicting structural or behavioral se-
mantics. The problem of inconsistencies across architectural views
is of course not specific to applying patterns but a general problem
in software architecture documentation [15], but so far this problem
has not been addressed in the context of pattern-based architecting.

In this paper we extend our existing approach by proposing an
architecting process based on patterns and their modeling through
primitives, that supports the explicit documentation of design de-
cisions. The process of architecting can be seen as a set of archi-
tecture design decisions [3], and our approach focuses on making
explicit the following decisions: selecting patterns and their vari-
ants to solve problems, and modeling them through primitives. If,
in the course of this architecting process, inconsistencies between
views occur, we propose to remedy this problem by combining the
pattern primitives in the different views in order to bridgethe se-
mantic gaps between the corresponding models.

The advantage of this approach is that documenting the afore-
mentioned design decisions is performed at the same time as
designing without requiring extra effort; the results of making
these decisions are explicit in the architecture models. We
demonstrate the applicability of our approach in the application
domain ofprocess-driven SOA. We have selected this domain as
we already have two sets of pattern primitives that are suitable
for two architectural views in this domain: the Process Flowand
Component-and-Connector views.

This paper is structured as follows: First, the process-driven
SOA domain will be presented in Section 2 through a domain-
specific pattern language. Next, we describe in Section 3 theprim-
itives for the Process Flow and Component-and-Connector views,
as the background of this work. Section 4 presents the proposed
architecting process and demonstrates it through a case study in
the process-driven SOA domain. To aid the architects and devel-
opers, we have implemented a model-driven tool chain to validate
the primitive models automatically, and to generate code from the
models. Section 5 briefly reports on this tool chain. In the final two
sections, we compare this approach to related work and sharesome
final conclusions.

2. PATTERN LANGUAGE FOR PROCESS-
DRIVEN SOA

Software patterns and pattern languages provide systematic
reuse strategies for design knowledge [17]. A pattern encodes
proven practices for particular, recurring design problems. A
pattern language is a collection of patterns that solve the prevalent
problems in a particular domain and context, and specifically
focuses on the pattern relationships in this domain and context.

In this section, we give an overview of the subset of our pattern
language for process-oriented integration of services that is needed
for this paper (for details please refer to [12]). In the pattern lan-
guage, the pattern1 MACRO-MICROFLOW sets the scene and lays
out the conceptual basis to the overall architecture. The pattern di-
vides the flow models into so-calledmacroflows, which describe
the long-running business processes, andmicroflows, which de-
scribe the short-running technical processes. ThePROCESS-BASED

INTEGRATION ARCHITECTUREpattern describes how to design an
architecture based on a number of layers to compose servicesin a
flexible and scalable manner, following theMACRO-MICROFLOW

conceptual pattern.

1Note that we print the names of the patterns in capital letters to
differentiate them from components, layers, or other concepts.

Figure 1 shows an exemplary (large-scale) configuration of
a PROCESS-BASED INTEGRATION ARCHITECTURE with five
layers. Let us illustrate the pattern language using this example.
Multiple MACROFLOW ENGINES execute the macroflows, i.e.,
the MACROFLOW ENGINES allow for flexible orchestration of
business processes. A typical example of aMACROFLOW ENGINE

is a BPEL process engine.PROCESS INTEGRATION ADAPTERS

integrate the specific interface and technology of the process
engine into a system. The macroflow integration layer is usedto
connect the macroflow engines to thePROCESS-BASED INTEGRA-
TION ARCHITECTURE via service invocations of corresponding
PROCESS INTEGRATION ADAPTERS.

A dispatching layer enables scalability by dispatching to a
number ofMICROFLOW ENGINES. In this layer, aRULE-BASED

DISPATCHERdynamically decides based on (business) rules, where
and when a (macroflow) activity is executed. AMICROFLOW

ENGINE allows for orchestrating service invocation through short-
running technical flows. An example of microflow technology are
message brokers.

In the example, services are executed that contain business
application adapters that connect to backends. These business
application adapters, just like thePROCESS INTEGRATION

ADAPTERS, follow the CONFIGURABLE ADAPTER pattern. A
CONFIGURABLE ADAPTER connects to another system in a way
that allows to easily maintain the connections, considering that
interfaces may change over time. They are typically managedin
CONFIGURABLE ADAPTER REPOSITORIES.

There are several architectural views that can address stakehold-
ers concerns specific to the domain of process-driven SOAs. Some
commonly used views are:

• Business process flow, a sub-view of the Process Flow view
(showing business processes in macroflows),

• Message flow, a sub-view of the Process Flow view (showing
technical processes in microflows),

• Business objects (showing business objects/artifacts),

• Business resources,

• Components and connectors (showing run-time entities and
their relations),

3. PATTERN PRIMITIVES
In this section, we briefly present our earlier work on pattern

primitives for modeling patterns in the Process Flow and the
Component-and-Connector views, hence making pattern-based de-
sign decisions an explicit part of the architectural documentation.
Pattern primitives are modeling elements with precisely-described
semantics, that are primitive in the sense that they represent basic
units of abstraction in the domain of the pattern. We model
pattern primitives using UML 2.0 extensions because the UML
has become the “lingua franca” of software design and is vastly
supported by tools. We specify an extension of a UML 2.0 meta-
class for each elicited primitive, using the standard UML extension
mechanisms: stereotypes, tag definitions, and constraints. We use
the Object Constraint Language (OCL) to specify the constraints
and provide precise semantics to the primitives.

3.1 Process Flow Primitives
In our earlier work [23], we presented 13 pattern primitivesthat

we have mined from the pattern language presented in Section
2. These pattern primitives mainly deal with the Process Flow

Process -Based Integration Architecture

Process Integration
Adapter Repository

Rule-Based
Dispatcher

Microflow Execution Business Application
Adapter Repository

Process
Integration
Adapter A

Process
Integration
Adapter B

Process
Integration
Adapter C

Microflow Engine A
Business

Application
Adapter A

Business
Application
Adapter B

Business Application A

Business Application B

Macroflow Engine A

Macroflow Engine B

Macroflow Engine C

Microflow Engine B

S
er

vi
ce

 1

S
er

vi
ce

 2

S
er

vi
ce

 3

S
er

vi
ce

 4

S
er

vi
ce

 1

S
er

vi
ce

 2

S
er

vi
ce

 3

S
er

vi
ce

 4

S
er

vi
ce

 1

S
er

vi
ce

 2

S
er

vi
ce

 3

S
er

vi
ce

 1

S
er

vi
ce

 2

S
er

vi
ce

 3

Macroflow Composition
Layer

Macroflow Integration
Layer

Dispatching
Layer

Microflow Execution
Layer

Business Application Services Layer

Figure 1: Example Configuration of a Process-based Integration Architecture

view, and hence the primitives extend UML’s activity diagram
meta-model, which describes how to depict flow abstractionsin
UML. There are flow models for macroflows, micoflows, and their
activity steps. Even though these flow models have highly different
semantic properties, they share the same basic flow abstractions –
and glue the other models used in a process-driven SOA.

To illustrate our concepts, we will concentrate on one example
primitive, the Macro-Microflow Refinement Primitive, and then
present the other primitives as thumbnails. The Macro-Microflow
Refinement Primitive models the refinement of Macroflows into
Microflows. To model this primitive, we introduce UML2 stereo-
types to distinguish the different kinds of refinement activities
in the UML2 models. In particular, we introduce aMacroflow
stereotype and aMicroflow stereotype. These stereotypes have
a common superclass extending UML’sActivity metaclass. On
this superclass a tag valuerefinedNodes is introduced to denote
the refinement relationships between Activities2.

We can then model the Macro-Microflow Refinement primitive
by constraining the stereotypes. In particular, if therefinedNodes
tag value of aMicroflow is not empty, theMicroflow is a refine-
ment of anotherMicroflow or aMacroflow. If refinedNodes
of a Macroflow is not empty, it must be refined by another
Macroflow. This can be precisely modeled using OCL constraints
(see [23]) for details).

Each primitive describes a precise, parameterizable building
block that can be used in the solution of the patterns. Our model
validator can check all these constraints automatically, and indicate
whether any constraints of the primitives have been violated.

Let us illustrate the use of the primitive in a specific example
of modeling the application of theMACRO-MICROFLOW pattern.
Specifically we want to model how the pattern structures a
process model into macroflows and microflows. In theMACRO-
MICROFLOW pattern at least one Macroflow Model and one
Microflow Model with a refinement relationship between them
must be present in a model. There are different specific kindsof
refinement possible, specified by the primitive constraints, such
as: macroflows can be refined by other macroflows, microflows
can be refined by other microflows, macroflows can be refined
by microflows, etc. The Macro-Microflow Refinement primitive
allows us to model a number of pattern variants of theMACRO-
MICROFLOW pattern. For instance, theMACRO-MICROFLOW

2There are other kinds of flows than macroflows and microflows
derived from this class (see [23]), but as they are not used inthis
paper, we omit them here to simplify the discussion.

structure may follow a refinement through a number of macroflow
models (high-level to low-level) plus a low-level microflowmodel
depicting the technical message flows. Figure 2 shows one
example, but many other variants of the patterns can be modeled
using the same primitive (see [23] for details).

The detailed specification of this and the other 12 primitives can
be found in [23]. The thumbnails of these primitives are presented
here as an overview:

• Process Flow Refinement: A macroflow or microflow is re-
fined using another process flow.

• Process Flow Steps: A macroflow or microflow is refined by
a number of sequential steps.

• Macroflow Model: A macroflow can be refined by other
macroflows or macroflow steps.

• Microflow Model: A microflow can be refined by other mi-
croflows or microflow steps.

• Automated Macroflow Steps: Macroflow Steps are designed
to run automatically by restricting them to three kinds: pro-
cess function invocation, process control data access, and
process resource access.

• Automated Microflow Steps: Microflow Steps are designed to
run automatically by restricting them to two kinds: process
function invocations and process control data access.

• Synchronous Service Invocation: A service is invoked syn-
chronously.

• Asynchronous Service InvocationA service is invoked asyn-
chronously.

• Fire and Forget Invocation: A service is invoked asyn-
chronously with fire and forget semantics, i.e. no result or
acknowledgment is written for this service.

• One Reply Asynchronous Invocation: A service is invoked
asynchronously, and exactly one result is coming back.

• Multiple Reply Asynchronous Invocation: A service is in-
voked asynchronously, and multiple results are coming back.

• Process Control Data Driven Invocation: A service is in-
voked using only data from the process control data.

«Macroflow»
MainBusinessProcessI

A

[true]

[false]

C

«Macroflow»
SubprocessB
{refinedNodes=B}

Y

B

X

«Macroflow»
BusinessProcessActivityZ
{refinedNodes=Z}

[false]

[true]

K

L

«MicroflowModel»
ActivityL
{refinedNodes=L}

E

Z

F

Figure 2: Macro-Microflow modeling example

3.2 Component and Connector Primitives
Similarly to primitives for process flows, we have proposed a

set of primitives for modeling common architecture patterns in the
Component-and-Connector architectural view [21]. These primi-
tives extend basic architectural abstractions, such as components,
connectors, ports, and interfaces. Hence, the composite structures
and components meta-models of UML are extended here. We can
use these primitives to model the structural aspects of the patterns
in a process-driven SOA. Let us consider thePROCESS-BASED IN-
TEGRATION ARCHITECTUREpattern, introduced earlier, and the
Callback primitive as an example.

The Callback primitive [21] can be used to model asynchronous
interaction: A callback denotes an invocation to a component B

that is stored as an invocation reference in a componentA. The
callback invocation is executed later, upon a specified set of run-
time events. Between two componentsA and B, a set of call-
backs can be defined. To capture the semantics of callbacks prop-
erly in UML, we proposed five stereotypes to denote interfaces
of events (IEvent) and callbacks (ICallback), ports of events
(EventPort) and callbacks (CallbackPort), and aCallback
stereotype that extends theConnector metaclass and specifies the
semantics of a callback connector using the other 4 stereotype spec-
ifications. Again, we have precisely specified the constraints using
OCL.

In the PROCESS-BASED INTEGRATION ARCHITECTURE

pattern, different kinds of components are connected. Figure
1 shows an exemplary larger configuration, in which multiple
macro-/microflow engines and a dispatcher are used. This pattern
mandates the flexible assembly of the different components by
following asynchronous messaging patterns from [13]. The use
of the callback primitive is therefore the appropriate modeling
abstraction to capture the asynchronous interaction within the
PROCESS-BASED INTEGRATION ARCHITECTURE pattern. The
event ports of each layer are listening to events from the higher-
level layer, and when an event arrives, the components call into the
lower-level layer. Once a result is received, it is propagated back
into the higher-level layer using a Callback. Figure 3 showsan
example UML2 model that applies the Callback primitive to the
configuration from Figure 1 (components in higher-level layers are
depicted on the left hand side of the callback connectors).

The other 8 primitives besides Callback introduced in [21] are:

• Indirection: One or more related “proxy” components re-
ceive a message on behalf of one or more “target” compo-
nents and forward the message to these “targets”.

• Grouping: A number of components belong semantically to-
gether, but the whole is made up only from the parts, and
there is no notion of a component that explicitly represents

the whole.

• Layering: Layered structures are ubiquitous in software ar-
chitectures, where groups of components are ordered and in-
vocations between the different groups need to respect cer-
tain rules.

• Aggregation Cascade: A part-whole hierarchy where the
composite objects have (recursive) constraints of the form:
“A compositeA can only aggregate components of typeB,
B only C, etc”.

• Composition Casade: Like Aggregation Cascade, but it fur-
ther enforces that a component may not be part of more than
one composite at any time.

• Shield: One or more components act as ‘shields’ for a set
of components that form a subsystem, and no external client
should be allowed to access members of the subsystem di-
rectly.

• Typing: Introduces the notions of a supertype connector and
a type connector, which can be used to define custom typing
models using associations.

• Virtual Connector: Explicitly models communication among
components that have no direct relationship, but still com-
municate virtually using other components and connectors
in between.

4. THE PROPOSED APPROACH

4.1 An Architecting Process
The general process of architecting as decision making, based on

patterns and primitives, is shown in Figure 4. Design decisions are
made in the course of architecting, when selecting patterns, pattern
variants and primitives in four successive phases:

1. Phase 1: At first patterns from specific pattern languages are
selected that are a good match to our problem space. Each
pattern solves a design problem and might lead to a another
problem that is solved by another pattern (in the same pattern
language).

2. Phase 2: A pattern represents not a single solution but an
entire solution space. Hence, the pattern’s solution must be
applied in the context of the design problem at hand. That
is, a pattern variant must be selected to tailor the generic in-
structions described in the pattern description to the concrete
design situation.

:Macroflow
Engine

:PI_Adapter

:Dispatcher

:Microflow
Engine

:Microflow
Engine

:BA_Adapter

:BA_Adapter

:BA_Adapter

«Callback»

«CallbackPort»

«EventPort»

:Macroflow
Engine :PI_Adapter

«Callback»

«Callback
Port»

«Event
Port»

:Macroflow
Engine

:PI_Adapter

«Callback»

«CallbackPort»

«EventPort»

«CallbackPort»

«Callback
Port»

«Event
Port»

«CallbackPort»

«Callback»

«Callback
Port»

«Callback»

«EventPort»

«EventPort»

«EventPort»

«Event
Port»

«EventPort»

«Callback
Port»

«Callback
Port»

«Callback»

«Callback»

«Callback»

«Callback»

Figure 3: UML2 Model for the Example Configuration

3. Phase 3: Each pattern (or more precisely: each pattern vari-
ant) is modeled in an architectural view independently of the
other patterns, by selecting the appropriate primitives. Usu-
ally, this should be possible with the existing primitives cat-
alog. In seldom cases, mining and documenting new primi-
tives might be required.

4. Phase 4: If there are inconsistencies between views, the ap-
proach varies depending on whether they can be resolved
with the existing primitives. If this is the case, then additional
primitives from the existing sets of primitives are selected
to provide for the missing semantics. Also, additional con-
straints may need to be applied in some of the primitives, in
order to align their semantics to those of the primitives used
in the other views. Otherwise additional primitives need to
be introduced to resolve the remaining inconsistencies. The
new primitives are not limited to a single view but cut across
different views: their constraints refer to model elementsin
at least two architectural views, in order to simultaneously
satisfy the semantics of the different patterns.

The result of this process is a number of architectural models in
views that explicitly contain patterns through their primitives. All
decisions about the selection of the patterns, their variants and the
primitives are visible and formally defined in those models.

4.2 Case study
In the remainder of this section, we illustrate our architecting

process using an extension of the example from the previous sec-
tions, in the process-driven SOA domain. Even though we apply
the solution only for the process flow and the component & connec-
tor views, the general approach can be used for other architectural
views and domains as well.

As illustrated in Figure 5, the first set of design decisions
we make concerns the selection of a number of patterns. First,
we select thePROCESS-BASED INTEGRATION ARCHITECTURE

pattern (DD1), and specifically a variant of that pattern following
the MACRO-MICROFLOW pattern (DD2). The latter is in turn
realized using other patterns: explicitMACROFLOW ENGINESand
MICROFLOW ENGINES (DD3), as in the example configuration
in Figure 1. Furthermore we decide to useCONFIGURABLE

ADAPTERS as well as aRULE-BASED DISPATCHER (DD4) as
part of thePROCESS-BASED INTEGRATION ARCHITECTURE. To
complete the realization of thePROCESS-BASED INTEGRATION

ARCHITECTUREwe also select its variant, where the interactions
between the components are asynchronous (DD5).

Next we select primitives to model the selected patterns. Inorder
to model theMACRO-MICROFLOWpattern in the process flow view,
we select the Macro-Microflow Refinement primitive (DD7), asil-
lustrated in Figure 2. Furthermore, to model thePROCESS-BASED

Select primitive(s) and architectural
view(s) to model pattern(variant)

Primitives sufficient for
modeling each pattern?Introduce and

document new
primitives

no

yes

Select and if necessary
extend existing

primitives

Introduce new primitives that cut
across views to resolve

inconsistencies

All inconsistencies resolved ?

no

yes

Are there inconsistencies
between views?

yes

no

Select more
patterns (from

pattern language)?

no

yes

Select pattern (from pattern
language) to solve design

problems

Select pattern variant
fitting to the current

design problem

Can the inconsistencies
be resolved with existing
primitives?no

yes

Figure 4: Overview of the Architecting Process

Pattern Variant Selection:
Macro-MicroflowPattern Selection:

Process-Based Integration Architecture

Pattern Selection:
Macroflow-Microflow

Pattern Selection:
Macroflow Engine

Pattern Selection:
Microflow Engine

Pattern Selection:
Configurable Adapter

Pattern Selection:
Rule-Based Dispatcher

Pattern Variant Selection:
Asynchronous Interactions

Pattern Primitive Selection:
Callback

Pattern Primitive Selection:
Macroflow-Microflow Refinement

Inconsistency Resolved:
Layering

Pattern Selection:
Correlation Identifier

Inconsistency Resolved:
Correlation Flow

Pattern Primitive Selection:
Correlation Group

(3)

(3)

(2)(5)

(5)

(6) (7)

(8) (8)

(9)

(9)

(10)

(11)

(11)

(4)

(1)

Figure 5: Sequence of Design Decisions in the case study

«Layer»
Business

application
services

{layerNumber=1}

BA_Adapter

«Layer»
Microflow
execution

{layerNumber=2}

Microflow
Engine

«Layer»
Activity

dispatching
layer

{layerNumber=3}

Dispatcher

«Layer»
Macroflow

integration layer
{layerNumber=4}

PI_Adapter

«Layer»
Macroflow

Engine
{layerNumber=5}

Macroflow
Engine

Figure 6: Extending the Example Configuration with Layering

INTEGRATION ARCHITECTUREwith asynchronous interactions in
the component & connector view, we select the Callback primitive
(DD6), as illustrated in Figure 3. There are more primitivesthat
need to be selected in order to model all the selected patterns, but
we omit them here to keep the size and scope relatively small.

After using the primitives to model all the patterns, we exam-
ine the two views searching for potential inconsistencies.Indeed
we discover one inconsistency between them: The use ofMACRO-
MICROFLOW inside thePROCESS-BASED INTEGRATION ARCHI-
TECTURE introduces certain constraints, e.g. components that rep-
resent the microflow should not invoke macroflow functionality,
macroflow adapters should not be used at the microflow level and
vice versa, the dispatcher should only invoke short runningmi-
croflows, etc. These constraints have not yet been modeled inthe
component & connector view.

We first try to resolve this inconsistency in the two views by
looking for existing primitives to express the semantics not mod-
eled so far in the component & connector view. Indeed, we can
use an architectural primitive from [21] in the component & con-
nector view to express the missing constraints: Layering. Layering
describes groups of components and entails that group members
from layerX may call into layerX − 1 and components outside
the layers, but not into layerX − 2 and below. Figure 6 shows a
UML2 model that extends the model from Figure 3 using the Lay-
ering primitive. That is, theLayer stereotype which is an extension
of the Package metaclass is used here. This decision (DD8) works
only in the component and connector view, but it does achieveto
solve the inconsistency between the two views.

There are no more inconsistencies so far, so we go back to the
start of our process, and check whether more patterns need tobe
selected in order to solve our design problems. Indeed, the com-
ponents in thePROCESS-BASED INTEGRATION ARCHITECTURE

communicate asynchronously via service invocations, but it has
not yet been decided how to correlate the messages in the asyn-
chronous interactions. This leads to selecting another pattern: To
correlate the events and callbacks between components thatinter-
act using asynchronous interactions,CORRELATION IDENTIFIERS

[13] (DD9) are passed between the components.
Next, we must find primitives to modelCORRELATION IDEN-

TIFIER in the component & connector view, showing which com-
ponents need to use it. This is essential because in aPROCESS-
BASED INTEGRATION ARCHITECTUREthat uses multiple differ-
ent components, as in the selected variant of the pattern, multiple
CORRELATION IDENTIFIERScan be used3. There are no exist-
ing primitives that can help us to model this pattern, so we need
to introduce a new primitive: the Correlation architectural prim-
itive (DD10). The Correlation primitive introduces two stereo-

3Note that there are many other issues that need to be modeled in
order to deal with correlations, but as an illustrative example of
patterns that affect two views, we only want to focus on this aspect
of correlation here.

typesCorrelationIdentifier, extending the ‘Class’ metaclass,
andCorrelationGroup, extending the ‘Package’ metaclass. Fi-
nally the following constraints are defined (in OCL): A correlation
group package, used in the tag valuecorrelationGroup, must be
stereotyped asCorrelationGroup. Each correlation group must
have aCorrelationIdentifierwith acorrelationGroup tag
value that points to it.

Using this primitive we can model CORRELATION IDENTIFIER

by putting together certain components into a correlation group and
use a specific class (or component) as correlation identifier. For in-
stance, the component model in Figure 7 expresses that the compo-
nents MacroflowEngine, PIAdapter, and Dispatcher form a corre-
lation group using the correlation identifier type CID.

Modeling CORRELATION IDENTIFIERS solely in the compo-
nents & connectors view of thePROCESS-BASED INTEGRATION

ARCHITECTUREcreates one more inconsistency with the Process
Flow view. In particular, the macroflow and microflow models
should pass a validCORRELATION IDENTIFIER type to all asyn-
chronous invocations. However, there are problems when trying to
check this constraint in the process flow. Consider as an example
the process flow model shown in the lower part of Figure 7, where
C ID is used in a process flow of theMACROFLOW ENGINE that is
part of the correlation group, which is valid. Nevertheless, there
is no way of checking whether this type of correlation identifier
is used in activities of process engines that do not belong tothe
correlation group.

Existing primitives are not suficcient to resolve this incon-
sistency, hence we introduce a new primitive: Correlation Flow
(DD11) for modeling the patternsMACROFLOW ENGINE and
MICROFLOW ENGINE, which are part of thePROCESS-BASED

INTEGRATION ARCHITECTURE. The goal is to be able to
model which macroflow and microflow models are executed
on which MACROFLOW ENGINE and MICROFLOW ENGINE

respectively. The primitive defines three new stereotypes:
ProcessEngine, extending the ‘Component’ metaclass, as well
as MacroflowEngine and MicroflowEngine, two subclasses
of ProcessEngine. Furthermore we define constraints (in OCL)
that specify that aMacroflowEngine can only haveactivities
that are stereotyped either as Macroflow or MacroflowSteps. A
MicroflowEngine can only haveactivities that are stereo-
typed either as Microflow or MicroflowSteps. These constraints
define precise relations between the component and flow models.
Finally, we need to specify a concern regarding the correlation:
If a particular process engine is part of a correlation group, then
all AsyncServiceInvocation activity nodes of activities that
belong to this engine must have an incoming Object Node that is
of theCorrelationIdentifier type of the engine’s correlation
group.

5. TOOL SUPPORT
To validate our concepts, we have developed a model-driven tool

«MacroflowSteps»
MFSteps
{refinedActivity=....
 refinedActivityNode=...}

C_ID
«ReadServiceData»

ReadData

DispatcherPI_Adapter«MacroflowEngine»
Macroflow Engine

{activities = MFSteps, ...}

«CorrelationIdentifier»
C_ID

{correlationGroup =
MacroflowCorrelationGroup}

«CorrelationGroup»
MacroflowCorrelationGroup

«AsyncServiceInvocation»
Invoke

Figure 7: Correlation Identifier Group

chain (see [23, 22, 18] for details), which supports modeling and
model validation for the concepts presented in this paper. In our
tool chain, we mainly use UML2 models that are extended with
UML2 profiles for modeling the pattern primitives as inputs.These
UML2 models can either be developed with UML tools (with XMI
export) or in domain-specific languages (DSL). If a UML tool is
used, the XMI export is transformed into the textual DSL syntax.
Internally all inputs are transformed into the same DSL syntax.

In the tool chain, a model validator gets all input models and
validates the conformance of the application models to the meta-
models. It also checks all OCL constraints, specified in the pat-
tern primitive definitions. After the model is validated it is trans-
formed into an EMF (Eclipse Modeling Framework) model, which
is understood by the code generator. We then generate code inex-
ecutable languages, such as Java and BPEL, using the code gener-
ator.

6. RELATED WORK
Zimmermann et al. present a generic modeling approach for

SOA projects [25]. Similarly to our approach, they base their work
on project experiences and distill proven practices from practical
cases. They also integrate multiple architectural views for a SOA:
object-oriented analysis and design, enterprise architecture, and
business processes. Even though there are many similarities to
our approach, there is the difference that the authors use rather
informal models to illustrate their approach and do not provide
a concept for explaining the conceptual building blocks of the
architecture (like the patterns in our approach).

Some approaches use the Semantic Web to model the integra-
tion of (Web) services and process. OWL-S [7] includes a process
model for Web services and it uses semantic annotations to enable
dynamic composition. Cardoso and Sheth [5] use Semantic Web
ontologies to facilitate the interoperability of heterogeneous Web
services in the context of workflows. This is a different – though
not contradictory – approach to model the integration of services
and processes than the process flow paradigm used in our approach.
Architectural abstractions are not integrated in these approaches.

Business process management tools, such as Adonis [1] or
Aris [14], describe a holistic model of business process manage-
ment, ranging from strategic decisions to the design of business
processes. They also provide mappings (imports/exports) to the
realization and execution of processes. They are integrated with
standard model types and extensible with new model types. Such
tools are related to our approach at a high level because they
represent important prior art in the field of model integration.

But they do not – such as our approach – concentrate on models
based on proven practices. They also do not specifically focus on
the field of process-driven SOAs; they are more focused on the
business processes. However, an extensible tool suite likeAdonis
can be used for providing input models for our approach.

In Chapter 13 of the book Software Factories [9] it is briefly dis-
cussed how typical MDSD concepts can be used to support SOA
modeling, but only with a focus on Web Services technology. Es-
sentially, the process description, e.g. in BPEL, is seen asa plat-
form for implementing abstractions in a product line, and the ser-
vices are seen as product line assets for systematic reuse. It is
advised that patterns are used as proven practices, but there is no
guidance how to map them to formal modeling constructs, likethe
pattern primitives in our approach.

There are a number of UML profiles for various SOA aspects.
Wada et al. [20] propose an UML profile to model non-functional
aspects of SOAs and present an MDSD tool for generating skeleton
code from these models. Heckel et al. [11] propose a UML profile
for dynamic service discovery in a SOA by providing stereotypes
that specify the relationships among service implementations, ser-
vice interfaces, and requirements. Gardner et al. [8] definea UML
profile to specify service orchestration with the goal to mapthe
specification to BPEL code. Vokac and Glattetre [19] use – as in
our examples – UML profiles to define DSLs. The proposed UML
profile supports data integration issues. In contrast to ourapproach,
these approaches focus on a single type of model, not on model
integration or on extensibility with other model types. Themod-
eling constructs are not systematically derived from proven prac-
tices. Hence, the approaches are very specific for the application
area they focus on.

7. CONCLUSION
Modeling architectural patterns is an inexpensive and non-

intrusive way to model major design decisions in the architecture.
This paper presented an architecting process that extends our
pattern primitives approach for modeling patterns, by focusing on
the straightforward documentation of the corresponding design
decisions. The decisions that concern the selection of patterns
and their variants, as well as the selection of the primitives to
model them are explicitly specified in the architecture models.
Furthermore inconsistencies between multiple architectural views
can be resolved, ensuring the consistent documentation of the
pattern-based design decisions. We demonstrated the approach for
two architectural views, Component-and-Connector and Process
Flow, in the context of the process-driven SOA domain, but our
approach is not limited to these architectural views or thisdomain.
To validate our approach, we have implemented a model-driven
software development tool chain, in which the primitive con-
straints get automatically validated by a model validator and the
consistency to code is ensured.

As a pure extension to our previous work on primitives, this ap-
proach just requires architects or developers to create their models
in the individual views containing the primitives. Only if the prim-
itive that is needed has not yet been mined, additional effort for
documenting the primitive is necessary. However this extraeffort
is a rather small investment, compared to the benefits of document-
ing the pattern-based design decisions, during the normal flow of
architecting. The only substantial work that needs to be done in ad-
vance is the creation of the primitives repositories for other pattern
languages, similarly to the two repositories presented in this paper.
But this effort is required only once, and as the primitives are based
on patterns – which represent a limited set of proven practices, it
is expected that the specification of new primitives is rather seldom

compared to the use of primitives in models. As future work, we
plan to investigate what happens during the evolution of thearchi-
tecture, when the design decisions have to be changed.

8. REFERENCES
[1] BOC Europe. Adonis. http://www.boc-eu.com/, 2006.
[2] P. Avgeriou, P. Kruchten, P. Lago, P. Grisham, and D. Perry.

Sharig and reusing architectural knowledge–architecture,
rationale, and design intent. InICSE COMPANION ’07:
Companion to the proceedings of the 29th International
Conference on Software Engineering, pages 109–110,
Washington, DC, USA, 2007. IEEE Computer Society.

[3] J. Bosch. Software architecture: the next step. InFirst
European Workshop on Software Architecture (EWSA).
Springer, 2004.

[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal.Pattern-oriented Software Architecture - A System of
Patterns. J. Wiley and Sons Ltd., 1996.

[5] J. Cardoso and A. Sheth. Semantic e-workflow composition.
J. Intell. Inf. Syst., 21(3):191–225, 2003.

[6] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers,
R. Little, R. Nord, and J. Stafford.Documenting Software
Architectures: Views and Beyond. Addison-Wesley, 2002.

[7] DAML Services. OWL-S 1.1 Release.
http://www.daml.org/services/owl-s/1.1/, 2004.

[8] T. Gardner. Uml modeling of automated business processes
with a mapping to bpel4ws. InECOOP Workshop on Object
Orientation and Web Services, Darmstadt, Germany, July
2003.

[9] J. Greenfield and K. Short.Software Factories: Assembling
Applications with Patterns, Frameworks, Models & Tools. J.
Wiley and Sons Ltd., 2004.

[10] N. B. Harrison, P. Avgeriou, and U. Zdun. Using patternsto
capture architectural decisions.IEEE SOFTWARE, July -
August 2007.

[11] R. Heckel, M. Lohmann, and S. Thoene. Towards a uml
profile for service-oriented architectures. InWorkshop on
Model Driven Architecture: Foundations and Applications
(MDAFA) 2003, CTIT Technical Report TR-CTIT-03-27,
University of Twente, Enschede, The Netherlands, June 2003.

[12] C. Hentrich and U. Zdun. Patterns for process-oriented
integration in service-oriented architectures. InProceedings
of 11th European Conference on Pattern Languages of
Programs (EuroPlop 2006), Irsee, Germany, July 2006.

[13] G. Hohpe and B. Woolf.Enterprise Integration Patterns.
Addison-Wesley, 2003.

[14] IDS Scheer. Aris Platform.
http://www.idsscheer.de/germany/products/53956, 2006.

[15] IEEE. Recommended Practice for Architectural Description
of Software Intensive Systems. Technical Report
IEEE-std-1471-2000, IEEE, 2000.

[16] A. G. J. Jansen, J. van der Ven, P. Avgeriou, and D. K.
Hammer. Tool support for architectural decisions. In6th
IEEE/IFIP Working Conference on Software Architecture
(WICSA), Mumbai, India, January 2007.

[17] D. Schmidt and F. Buschmann. Patterns, frameworks, and
middleware: Their synergistic relationships. In25th
International Conference on Software Engineering, pages
694–704, May 2003.

[18] H. Tran, U. Zdun, and S. Dustdar. View-based and
model-driven approach for reducing the development

complexity in process-driven soa. InProceedings of
International Conference on Business Processes and
Services Computing, Leipzig, Germany, Sep 2007.

[19] M. Vokac and J. M. Glattetre. Using a domain-specific
language and custom tools to model a multi-tier
service-oriented application - experiences and challenges. In
Proc. of Model Driven Engineering Languages and Systems,
8th International Conference, MoDELS 2005, pages
492–506, Montego Bay, Jamaica, October 2005.

[20] H. Wada, J. Suzuki, and K. Oba. Modeling non-functional
aspects in service oriented architecture. InProc. of the 2006
IEEE International Conference on Service Computing,
Chicago, IL, September 2006.

[21] U. Zdun and P. Avgeriou. Modeling architectural patterns
using architectural primitives. InProceedings of the 20th
ACM Conference on Object-Oriented Programming,
Systems, Languages & Applications (OOPSLA 2005), pages
133–146, San Diego, CA, USA, October 2005. ACM Press.

[22] U. Zdun and S. Dustdar. Model-driven integration of
process-driven soa models.Accepted for publication in
Invited to the International Journal of Business Process
Integration and Management (IJBPIM), 2007.

[23] U. Zdun, C. Hentrich, and S. Dustdar. Modeling
process-driven and service-oriented architectures using
patterns and pattern primitives.Accepted for publication in
ACM Transactions on the Web (TWEB), 2007.

[24] U. Zdun, C. Hentrich, and W. van der Aalst. A survey of
patterns for service-oriented architectures.International
Journal of Internet Protocol Technology, 1(3):132–143,
2006.

[25] O. Zimmermann, P. Krogdahl, and C. Gee. Elements of
Service-Oriented Analysis and Design: An interdisciplinary
modeling approach for SOA projects.
http://www-128.ibm.com/developerworks/webservices/
library/ws-soad1/, Jun 2004.

