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Abstract

Architectural patterns are a fundamental aspect of the architecting process and subsequently the architectural docu-

mentation. Unfortunately, there is only poor support for modeling architectural patterns for two reasons. First, patterns

describe recurring design solutions and hence do not directly match the elements in modeling languages. Second, they

support an inherent variability in the solution space that is hard to model using a single modeling solution. This pa-

per proposes to address this problem by finding and representing architectural primitives: fundamental, formalized

modeling elements in representing patterns. In particular, we examined architectural patterns from the components

and connectors architectural view, and we discovered recurring primitive abstractions among the patterns, that also

demonstrate a degree of variability for each pattern. We used UML 2 as the language for representing these primi-

tive abstractions as extensions of the standard UML elements. The contribution of this approach is that we provide a

generic and extensible concept for modeling architecturalpatterns by means of architectural primitives. Also, we can

demonstrate a first set of primitives that participate in several well-known architectural patterns.

1 Motivation

The software architecture of a system needs to be rigorouslydocumented in order to profit from the advantages of

architecture-centric development and evolution. One of the most significant aspects of documenting software archi-

tectures is the representation of architectural patterns (also known as architectural styles1). In general, a pattern is a

problem-solution pair in a given context. A pattern does notonly document ‘how’ a solution solves a problem but also

‘why’ it is solved, i.e., the rationale behind this particular solution. Architectural patterns help to document architectural

design decisions, facilitate communication between stakeholders through a common vocabulary, and assist in analyzing

1In this paper we do not distinguish between the terms ‘architectural pattern’ (used e.g. in [6, 39, 44]) and ‘architectural style’ (used e.g. in

[42]). For the sake of simplicity, we shall use only the term ‘architectural pattern’ for the rest of this paper. Their commonalities and differences

are elaborated in [2].
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the quality attributes of a software system.

There are three major approaches, that have been used so far for modeling architectural patterns:

1. Architecture Description Languages (ADLs), which aim atrepresenting software architectures in general [27];

2. the Unified Modeling Language which is a generic modeling language but can also be used to describe software

architectures [37, 26, 4];

3. some formal or semi-formal approaches for the formalization of pattern specifications [8, 29, 43, 25].

Unfortunately, none of these approaches succeeds in effectively modeling architectural patterns for the following rea-

sons:

• The approaches are too limited in the abstractions they propose to grasp the rich concepts found in patterns.

UML, to start with, falls short in offering certain standardconcepts of architectural patterns [1, 26, 20]. For

example in the ‘pipes and filters’ architectural pattern [42, 6], a pipe does not match the UML connector, since

the latter cannot have an associated state or even interfaces. Furthermore there are no elements in UML to model

architectural configurations such as a virtual machine [42], a blackboard [3], or a C2 topology [26]. In contrast,

many ADLs inherently support a few specific patterns such as C2 [26] or pipes and filters[42, 6], or can be

extended to represent patterns (e.g. using style repositories [30]). But except for these few patterns, ADLs do not

support the rest of the patterns. Similarly, the third aforementioned approach is basically concerned with just a

handful of design patterns from [11].

• The approaches do not deal with the inherent variability of architectural patterns. This is not restricted to ar-

chitectural patterns but it is a general problem of specifying patterns because each pattern covers not only one

(parametric) solution, but informally describes a whole solution space for a recurring design problem. It is ob-

vious in UML and ADLs, and even more so in the third aforementioned approach that deals with the formal

specification of design patterns [8, 29, 43, 25]: such methods are capable of specifying one particular solution

in the solution space of the pattern, but fail to specify the whole solution space covered by the informal pattern

description.

We propose to remedy the problem of modeling architectural patterns through identifying and representing a number

of ‘architectural primitives’ that can act as the participants in the solution that patterns convey. We use the term ‘primi-

tive’ because they are the fundamental modeling elements inrepresenting a pattern, and they are the smallest units that

makes sense at the architectural level of abstraction (e.g.specialized components, connectors, ports, interfaces).Our

approach relies on the assumption that architectural patterns contain a number of architectural primitives that are recur-

ring participants in several other patterns [28]. These primitives are common among the different patterns even if their

semantics demonstrate slight variations from pattern to pattern. We have ‘mined’ a number of architectural patterns

and discovered several architectural primitives that we believe are key concepts in modeling architectural patterns and

subsequently software architectures in general. We provide a modeling abstraction for each type of elicited architectural
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primitive, and then demonstrate that it is possible to modelarchitectural patterns explicitly, precisely, and intuitively,

through a case study. It is noted that the set of primitives identified in this paper is not exhaustive, but does contain

some of the most common primitives found in popular architectural patterns.

Our general approach to define architectural primitives cantake advantage of any modeling language, as long as it

can be extended to provide the syntax and semantics of the primitives. We have chosen the Unified Modeling Language

for this purpose, because it has become the ‘lingua franca’ of software design and is vastly supported by tools. We

have specified an extension of UML 2.0 metaclasses for each elicited primitive, using the standard UML extension

mechanisms: stereotypes, tag definitions, and constraints. We have also used the Object Constraint Language (OCL) to

formalize the constraints and provide more precise semantics of the primitives. The result is a UML profile that can be

imported in modeling tools; in our case we specified the profile in Eclipse/Octopus. We have also developed a model

validator as a prototype implementation for supporting model-driven development using our concepts.

The rest of this paper is structured as follows: In Section 2 we give an overview of the proposed approach. Section 3

presents the UML extension mechanism of ‘Profiles’ and the subset of the UML 2.0 metamodel that was used for spec-

ifying our Profile. Section 4 elaborates on the results of theapproach by demonstrating several architectural primitives

that were mined from some of the most popular architectural patterns. Section 5 demonstrates the approach through

a case study, while Section 6 further presents a prototype tool that validates the proposed architectural primitives ina

model-driven development context. Finally, Section 8 discusses related work in this field, and Section 9 sums up with

conclusions and future work.

2 The proposed approach

The underlying idea behind our approach is that the various architectural patterns share some common architectural

‘primitives’. Thus we use the patterns as a foundation to elicit the recurring architectural primitives for a particular

architectural view. Specifically, we propose the followingapproach:

1. Analyze the architectural patterns of a given architectural view to discover common participants in their solutions.

These should be recurring and probably varying instances ofthe same architectural concept, e.g. a special-purpose

component or connector. Patterns (a) capture the variations of a solution and (b) describe the solution in a

realization-independent way. For instance, pattern descriptions contain pattern variants, implementation hints,

design alternatives, consequences, forces that govern a solution, and so forth. These are all sources for eliciting

the architectural primitives.

2. Model these architectural primitives as extensions of UML. First we find the UML metaclasses that are a close

semantic match to the primitives, e.g. components, connectors, interfaces etc. Then define the semantics of these

primitives more precisely with the help of OCL in order to facilitate the unambiguous and consistent modeling

of patterns.

3. Use the derived UML extensions of primitives to model pattern instances in real case studies and validate the

effectiveness of the primitive to unambiguously model architectural patterns (e.g. using tool support).
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It is noted that the pool of architectural patterns, we used to elicit primitives, includes some patterns that are described

as ‘design patterns’ in the literature. In general it is hardto draw the line between architectural patterns and design

patterns. In fact, it depends heavily on the viewpoint of thedesigner or architect whether a specific pattern is categorized

as an architectural pattern or a design pattern. Consider for instance, a classical design pattern, theINTERPRETER[11].

The description in [11] presents it as a concrete design guideline. Yet, instances of the pattern are often seen as a central

elements in the architecture of software systems, because an INTERPRETERis a central, externally visible component

– i.e. the pattern is treated like an architectural pattern (see [42]). Thus, in this paper, we refer to such design patterns

as architectural patterns, considering them at an architectural level of abstraction. However this has resulted in few

object-oriented concepts being used in the primitives, e.g. composition and aggregation cascade use object-oriented

inheritance.

3 Extending UML to represent the primitives

3.1 A UML profile

According to the UML standard there are two ways to extend thelanguage: thehard extensionproduces an extension

of the language meta-model, i.e., a new member of the UML family of languages is specified; thesoft extensionresults

in aprofile, which is a set of stereotypes, tag definitions, and constraints that are based on existing UML elements with

some extra semantics according to a specific domain. In orderto model the architectural primitives we chose thesoft

extension mechanism of UML, i.e., the definition of a profile for architectural primitives for the following reasons:

• A UML profile is good enough for this task since there are already existing UML metaclasses that are semantically

a close match to the architectural primitives. Therefore wecan simply extend the semantics of these metaclasses

rather than having to define completely new metaclasses.

• The users of this profile will feel comfortable by using stereotypes that are extensions of existing metaclasses

rather than using concepts they are not familiar with. The learning curve can thus be minimized.

• A profile is still valid, standard UML, so we can count on support from the existing UML tools, rather than offer

proprietary UML tools which are rarely used in practice.

We also use OCL to define the necessary constraints for the defined stereotypes to formalize their semantics. OCL

constraints are the primary mechanism for traversing UML models and specifying precise semantics on metaclasses

and stereotypes.

3.2 The UML 2 metamodel

This section briefly presents part of the existing UML 2.0 metamodel for architectural description, and in particular

those metaclasses that we have extended to model the architectural primitives. It is noted that, according to the software

architecture community, an architectural description is comprised of multiple views [7, 18, 19, 23]. In this paper we
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focus on the view that is considered to contain the most significant architectural information, which is thecomponent-

and-connectorview [7]. This view deals with the components, which are units of runtime computation or data-storage,

and the connectors which are the interaction mechanisms between components [34, 7]. We have focused on this view

because the patterns that we have mined concern mainly this view. However other architectural patterns from other

views, such as the ‘logical’ or ‘module’ view, can also be searched for primitives, as will be stated in Section 9.

The following UML 2.0 metaclasses are extended to model architectural primitives in the component and connector

view, mainly taken from the composite structures and components packages:

1. Componentsare specializations of classes and therefore have attributes and operations, but are also associated

with provided and required interfaces. Finally componentsinherit indirectly from EncapsulatedClassifier and

thus may own ports that formalize their interactions points.

2. Interfacesserve as contracts that components must comply with. An interface is either aprovided interface

that describes a set of functionalities offered by a component, or a required interfacethat describes a set of

functionalities that a component expects from its environment.

3. Ports specify a distinct interaction point between the componentthat owns the port and its environment, or

between the component and its internal parts (properties).Ports may specify required and provided interfaces of

the component that owns them.

4. Connectorsare eitherassembly connectorsthat connect the required interface of one component to the provided

interface of a second, ordelegation connectorsthat link the ports of a component to its internal parts.

5. Packagesare mechanisms for grouping model elements either by owningthem or importing them. They also

provide a namespace for uniquely identifying the elements by their name.

We have also used the following UML metaclasses in order to express the OCL constraints while traversing the

UML metamodel: AggregationKind, Association, Classifier,ConnectableElement, ConnectorEnd, EncapsulatedClas-

sifier, Feature, RedefinableElement, Namespace, NamedElement, PackageableElement, Property, RedefinableElement,

VisibilityKind.

It is noted that UML 2.0 provides the means to describe designpatterns through the Collaboration metaclass, as an

interaction between instances of components and connectors. However we do not use this metaclass since it is also

bounded by the limitations for modeling patterns discussedin Section 1.

The specification of the primitives was implemented with thehelp of the Octopus plug-in (http://www.klasse.nl/) in

the Eclipse environment (http://www.eclipse.org/). We chose this tool for specifying the primitives because Eclipseis

open-source and widely used, and also because the Octopus plug-in can statically check OCL 2.0 constraints. For all

OCL constraints we assume the standard UML 2.0 role names forthe extensions: “base$X”, where $X is the extended

metaclass, and “extension$Y”, where $Y is the stereotype name. Additionally, we have also implemented our own

model validator tool to support model-driven development using our concepts (see Section 6 for details).
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Figure 1 illustrates the part of the existing UML metamodel that contains the aforementioned metaclasses and shows

their relationships, especially for traversing OCL constraints. The figure has been adapted from the UML 2 standard

[32] and, for simplicity, some details have been omitted.
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Figure 1. Part of the UML 2.0 metamodel that was used for the st ereotype definition

4 Modeling Architectural Primitives

In this section, we provide more details about our approach,demonstrating the elicitation of architectural primitives

from general purpose architectural patterns, and modelingthem with a UML 2.0 profile. We first show the template for

documenting the architectural primitives and continue with an elaborate presentation of nine primitives.

4.1 Template for architectural primitive documentation

We propose a simple template for documenting the elicited architectural primitives, consisting of four elements:

• Introduction: A brief textual description and discussion of the architectural primitive.

• Known uses in patterns: A short description of the patterns in which the architectural primitive participates.
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• Modeling issues: An explanation why this primitive cannot be modeled with standard UML and thus needs to be

supported with a UML extension.

• Modeling solution: A description of UML 2.0 extensions, containing stereotypes, possibly with tag definitions,

and constraints.

4.2 Callback

Introduction:

‘Callback’ is described as follows:

A callback denotes an invocation to a componentB that is stored as an invocation reference in a component

A. The callback invocation is executed later, upon a specifiedset of runtime events, usually implemented as

methods. Between two componentsA andB, a set of callbacks can be defined, also usually implemented

as methods. Note that in this descriptionA might be equal toB. In essence, the callbacks between two

componentsA andB are a set of tuples. Each tuple consists of one methodmethodAx ∈ MethodsA that

represents a trigger event and a methodmethodBx ∈ MethodsB that is a callback, like:

CallbacksAB = {(methodA2,methodB1),

(methodA1,methodB2),

(methodA2,methodB3),

. . .}

There are two main variants of callbacks:

• The runtime events are ordinary method invocations, field accesses, or other events in the program flow. (Note

that these are also called ‘joinpoints’ in aspect-orientedprogramming [22]).

• The runtime events are ‘real events’ in an event-based programming system, triggered by some event loop.

With regard to modeling the callback, the two variants make no difference: Structurally, both kinds of callbacks are

realized in the same way. Sometimes a callback has only one associated runtime event (e.g. a set with only one tuple),

sometimes it is raised by a number of different runtime events.

Known uses in patterns:

• In theOBSERVERpattern [11] an observer component is notified by one or more subjects about state changes and

other events. Usually the notification is realized as a callback.

• MODEL-VIEW-CONTROLLER [6] uses callbacks to inform views about changes in the model, much like the logic

behind theOBSERVERpattern.
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• A REACTOR [39] is a special kind ofOBSERVERthat is informed about network events using callbacks.

• In the EVENT SYSTEM pattern [42] components may broadcast a number of events. Another component may

register an interest in an event by associating a callback with the event. When an event occurs, theEVENT

SYSTEM dispatches all the callbacks associated with the event.

• There are various patterns describing interception architectures, such asINTERCEPTOR[39], MESSAGE INTER-

CEPTOR[45], andINVOCATION INTERCEPTOR[44]. Interceptors are invoked as extensions to some other invo-

cation; thus they must be invoked, when this other invocation takes place. Usually, the interceptors are triggered

by callback events like ‘invocation arrived’ or ‘invocation finished’.

• VISITORS [11] are used to define an interpretation mechanism apart from the structure to be interpreted. They are

usually called back, by the elements to be visited.

Modeling issues:

A major problem in modeling these patterns in UML is that, even though the callback-structure is a key participant in

the patterns, it cannot be explicitly modeled and made visible in UML diagrams, such as component diagrams, class

diagrams, or sequence diagrams. There are only some ‘hints’that might imply the presence of a callback but there is

much ambiguity that could lead to false detections of callbacks. Consider the following examples of such ‘hints’:

• A structural indicator for a callback that we could include in UML’s structural diagrams is to have a class or a

componentA store a reference to a method ofB. Using this indicator, however, is problematic because there

is no unambiguous indication whether the method reference is intended for being used as a callback or not. To

make matters worse, invocation references are not necessarily realized by using a reference to a method. Many

programming languages don’t require a reference to the callback operation at all. For instance, in Java it is

sufficient to have the operation name stored in a string to be able to look-up the operation using reflection. When

the patternCOMMAND [11] is used, the callback can be encapsulated in theCOMMAND. In both cases, the

intended use of these structures as callbacks is not directly visible in a UML model.

• Another structural hint for callbacks is their return type.In event-driven applications, the return type of a callback

is usuallyvoid, because the callback is raised by an event, and thus the callback cannot return anything. However,

this is not always the case: For instance, an interceptor often returns an error state to indicate to the interceptor

architecture, whether the interceptor invocation was successful or not. Also, in non-event-driven applications, for

instance, in theVISITOR andOBSERVERpatterns, this rule-of-thumb does not hold: Here, the callback may well

be used with a return value.

• In some cases, where the callback can be modeled as simple recursive invocations (as in theVISITOR pattern),

we can get around this problem by using an accompanying sequence diagram that shows the recursive callback

(e.g. classA callsB and thenB callsA back). However, there are two basic problems with this approach:
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– No semantic annotation:Even though the sequence diagram has a callback-like structure, the same kind of

sequence diagram might be used for a ‘normal’ invocation going back and forth, which is not a callback.

– Temporal decoupling:Callbacks are usually stored until an event happens, often much later in time, and

then they are invoked upon that event. This cannot be easily depicted with a sequence diagram because

of the many invocations that happen between performing the callback and the event that caused it to be

invoked.

In summary, UML elements can be used as an indicator that a callback is used, but the callback structure cannot

be identified unambiguously in UML’s structural and interaction diagrams. Thus, the runtime behavior and interaction

semantics of the callback-structure cannot be properly modeled in standard UML.

«stereotype»

IEvent

«stereotype»
ICallback

«metaclass»
Interface

«stereotype»
CallbackPort

«stereotype»
EventPort

«metaclass»
Port

«stereotype»

Callback

«metaclass»
Connector

required provided

Figure 2. Stereotypes for modeling Callback

Modeling solution:

To capture the semantics of callbacks properly in UML and tackle the above problems, we propose five new stereotypes:

• ≪IEvent≫: A stereotype that extends the ‘Interface’ metaclass and contains a number of methods that are exclu-

sively trigger events for a callback.

• ≪ICallback≫: A stereotype that extends the ‘Interface’ metaclass and contains a number of methods that serve

exclusively as callback methods.

• ≪EventPort≫: A stereotype that extends the ‘Port’ metaclass and is typedby two interfaces: IEvent as aprovided

interface and ICallback as arequiredinterface. This can be formalized using two OCL constraintsfor EventPort:

-- An event port is typed by IEvent as a
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-- provided interface

inv: self.basePort.required->size()=1

and self.basePort.required->forAll(

i:Core::Interface|

ICallback.baseInterface->exists(j|j=i))

-- And: An event port is typed by ICallback

-- as a required interface.

inv: self.basePort.provided->size()=1

and self.basePort.provided->forAll(

i:Core::Interface|

IEvent.baseInterface->exists(j|j=i))

• ≪CallbackPort≫: A stereotype that extends the ‘Port’ metaclass and is typedby two interfaces: ICallback as

a providedinterface and IEvent as arequired interface. This can be formalized using two OCL constraintsfor

CallbackPort:

-- A callback port is typed by ICallback as a

-- provided interface

inv: self.basePort.required->size()=1

and self.basePort.required->forAll(

i:Core::Interface|

IEvent.baseInterface->exists(j|j=i))

-- And: A callback port is typed by IEvent

-- as a required interface.

inv: self.basePort.required->size()=1

and self.basePort.required->forAll(

i:Core::Interface|

ICallback.baseInterface->exists(j|j=i))

• ≪Callback≫: A stereotype that extends the ‘Connector’ metaclass and specifies the semantics of a callback

connector, which connects an EventPort of a component to a matching CallbackPort of another component. This

can be formalized using two OCL constraints:

-- A Callback connector has only two ends.

inv: self.baseConnector.end->size()=2

-- A Callback connector connects an EventPort

-- of a component to a matching CallbackPort of

-- another component. An EventPort matches a

-- CallbackPort if the provided IEvent interface

-- of the former matches the required IEvent
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-- interface of the latter, and the required

-- ICallback interface of the former matches

-- the provided ICallback interface of the latter:

inv: self.baseConnector.end->forAll(

e1,e2:Core::ConnectorEnd|e1<>e2 implies(

(e1.role->notEmpty() and

e2.role->notEmpty()) and

(if EventPort.basePort->exists(p|

p.oclAsType(Core::ConnectableElement)=

e1.role)

then

(CallbackPort.basePort->exists(p|

p.oclAsType(Core::ConnectableElement)=

e2.role)

and

e1.role.oclAsType(Core::Port).required=

e2.role.oclAsType(Core::Port).provided

and

e1.role.oclAsType(Core::Port).provided=

e2.role.oclAsType(Core::Port).required)

else

CallbackPort.basePort->exists(p|

p.oclAsType(Core::ConnectableElement)=

e1.role)

endif)))

Figure 2 illustrates these stereotypes according to the UML2.0 Profiles package, while Figure 3 depicts the notation

used for the stereotypes. All stereotypes use the notation of the metaclass they extend adorned by the name of the

stereotype in guillemets.

A

«IEvent»
ObserveEvent

«EventPort»
e

«ICallback»
update

B

«ICallback»
update

«CallbackPort»
c

«IEvent»
ObserveEvent

A B
«EventPort»

e
«CallbackPort»

c

«Callback»

Figure 3. The notation of the stereotypes in Callback modeli ng
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4.3 Indirection

Introduction:

Indirection happens when one or more related “proxy” components receive a message on behalf of one or more “target”

components and forward the message to these “targets”, perhaps after some computation has taken place. Afterward

the result is sent back, again through the “proxy” components.

Indirection can take place at small scale, with only one client, one proxy, and one target component. It can also

involve multiple components playing the role of any of theseparticipants. For instance, a whole layer or sub-system,

consisting of multiple components and connectors, might indirect invocations to other components.

Known uses in patterns:

• An INDIRECTION LAYER [45] is a general pattern describing aLAYER [6] that redirects all invocations from one

system context into another.

• OrdinaryLAYERS [6] redirect invocations from layer X to the layer beneath, X-1.

• A VIRTUAL MACHINE [42] redirects invocations from a byte-code layer into an implementation layer for the

commands of the byte-code.

• An INTERPRETER [42, 11] redirects invocations from a script (interpreted code) layer into an implementation

layer for the commands of the script (interpreted code).

• An ADAPTER [11] redirects invocations from one interface to another.

• FACADE [11] shields a subsystem and redirects invocations into that subsystem.

• A PROXY [11] is a placeholder of another object and redirects invocations to that object.

• A CLIENT PROXY [44] is a specialPROXY in the distributed system context.

• A COMPONENT WRAPPER[47] wraps a component and redirects invocations to that component.

• WRAPPER FACADE[39] wraps a procedural library, and redirects invocationsto that library.

• A MESSAGE REDIRECTOR[45] is a component whose task it is to redirect (dispatch) invocations for a subsystem.

Modeling issues:

The indirection structure is not explicit in structural or behavioral UML diagrams. The causes for this problem are

similar to those explained for the Callback primitive because again two consecutive invocations cannot be semantically

aligned. That is, the semantics are missing: is it an ordinary collaboration or an indirection?

There are similar structural and behavioral indicators as in Callback, that cause similar problems. We do not repeat

these here in full detail but we provide a brief description:
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• In an Indirection, clients store invocation references to proxies, which store references to targets. However, this

is a vague hint because an Indirection’s invocation references cannot be distinguished from ordinary references.

That is, it cannot be detected from the structure that invocations are passed along the references.

• In some Indirections a standardized return type is used or one of the passed parameters is a context object for the

Indirection. However, these are both occasionally used, and it is hard to detect them automatically.

• As in callback, sequence diagrams may help, but are ambiguous because again there is no semantic annotation

and it is difficult to cope with temporal decoupling as well.

«stereotype»

IIndirector

«stereotype»
ITarget

«metaclass»

Interface

«stereotype»
IndirectionTargetPort

«stereotype»
IndirectionPort

«metaclass»
Port

«stereotype»

Indirection

«metaclass»
Connector

required provided

Figure 4. Stereotypes for modeling Indirection

Modeling solution:

To capture the semantics of indirections properly in UML andtackle the above problems, we propose the following

new stereotypes and constraints:

• ≪IIndirector ≫: A stereotype that extends the Interface metaclass and designates the proxy component’s interface

to the Indirection client.

• ≪ITarget≫: A stereotype that extends the Interface metaclass and designates the proxy component’s interface to

the Indirection target.

• ≪IndirectionTargetPort≫: A stereotype that extends the Port metaclass. The≪IndirectionTargetPort≫ is at-

tached to the target component, and provides an≪ITarget≫ interface, in order to accept requests from the proxy

component. This can be formalized as follows:
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-- An IndirectionTargetPort provides an ITarget interface

inv: self.basePort.provided->size()=1 and

self.basePort.provided->forAll(

i:Core::Interface|

ITarget.baseInterface->exists(j|j=i))

• ≪IndirectionPort≫: A stereotype that extends the Port metaclass. The≪IndirectionPort≫ is attached to a proxy

component, requires an≪ITarget≫ interface and provides an≪IIndirector ≫ interface. The client of the target

component can connect via the≪IIndirector ≫ interface to the proxy component, which forwards the request

to the target component through its≪ITarget≫ interface. This can be expressed in OCL with the following

constraints:

-- The IndirectionPort requires an ITarget interface

inv: self.basePort.required->size()=1 and

self.basePort.required->forAll(

i:Core::Interface|

ITarget.baseInterface->exists(j|j=i))

-- The IndirectionPort provides an IIndirector interface

inv: self.basePort.provided->size()=1 and

self.basePort.provided->forAll(

i:Core::Interface|

IIndirector.baseInterface->exists(j|j=i))

• ≪Indirection≫: A stereotype that extends the Connector metaclass. It is used to connect two ports which are

stereotyped as IndirectionPort and IndirectionTargetPort. The connector is constrained as follows:

-- An Indirection connector has only two ends

inv: self.baseConnector.end->size()=2

-- An Indirection connector connects an

-- IndirectionPort of a proxy component to a

-- matching IndirectionTargetPort of the target

-- component. An IndirectionPort matches an

-- IndirectionTargetPort if the provided ITarget

-- interface of the latter matches the required

-- ITarget interface of the former.

inv: self.baseConnector.end->forAll(

e1,e2:Core::ConnectorEnd|e1<>e2 implies(

(e1.role->notEmpty() and e2.role->notEmpty())

and

(if IndirectionPort.basePort->exists(p|

p.oclAsType(Core::ConnectableElement)=e1.role)

then

(IndirectionTargetPort.basePort->exists(p|
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p.oclAsType(Core::ConnectableElement)=e2.role)

and

e1.role.oclAsType(Core::Port).required=

e2.role.oclAsType(Core::Port).provided

and

e1.role.oclAsType(Core::Port).provided=

e2.role.oclAsType(Core::Port).required)

else

IndirectionTargetPort.basePort->exists(p|

p.oclAsType(Core::ConnectableElement)=e1.role)

endif)))

BA
«IndirectionPort»

ip
«IndirectionTargetPort»

itp

«Indirection»

A

«IIndirector»
IndirectedOp

«IndirectionPort»
ip

«ITarget»
targetOp

B

«ITarget»
targetOp

«IndirectionTargetPort»
itp

Client

«IIndirector»

IndirectedOp

Figure 5. The notation of the stereotypes in Indirection mod eling

Figure 4 illustrates these stereotypes according to the UML2.0 Profiles package, while Figure 5 depicts the notation

used for the stereotypes.

4.4 Grouping

Introduction:

In several design situations, a number of components belongsemantically together, for instance because they fulfill a

collective task. In some of these situations, designers want to model this concern explicitly using the object-oriented

“part-of” (or aggregation) relationship like the ones offered by UML. In such aggregation relationships, there is one (or

more) components that is (are) a “whole” which has (have) a few other components as “parts”.

However, there are also other situations in which the whole is made up only from the parts, and there is no notion of

a component that explicitly represents the whole. The Grouping primitive deals with such situations: A group member
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is part of a whole, and the whole is virtual. That is, there is no component in the software architecture for representing

the group as a whole, but it is made only of its parts.

Known uses in patterns:

• The subsystem shielded by aFACADE [11] is a group of those components belonging to the subsystem.

• TheLAYERS pattern [6] divides the system into logical layers, each of them is a ‘virtual’ group of components.

• The components of aBROKER [6] architecture are a group of components working on the same task.

• An INDIRECTION LAYER [45] redirects invocations from one group of components into another.

• A VIRTUAL MACHINE [42] redirects invocations into a group of implementation layer components.

• An INTERPRETER[42, 11] redirects script invocations into a group of implementation components.

• A MESSAGE REDIRECTOR[45] dispatches invocations into a group of components thatform a sub-system.

• A BLACKBOARD [6, 42] is accessed and modified by a group of Knowledge Sources.

• A MICROKERNEL [6] offers services by groups of internals and external servers.

• TheREFLECTION pattern [6] allows a group of application-logic componentsto query a group of meta-objects in

order for the former to abstract their structural and behavioral aspects.

• A PEER-TO-PEER [7] system groups peer components and relates different groups with each other.

• ThePUBLISH-SUBSCRIBEpattern [6, 7] offers asynchronous notification to a group ofindependent subscribers.

Modeling issues:

UML’s aggregation (shared aggregation) or composition (composite aggregation) relationships can be used to model

part-whole relationships. According to [32] these relationships have the following semantics: Composite aggregation is

a strong form of aggregation that requires a part instance beincluded in at most one composite at a time. If a composite

is deleted, all of its parts are normally deleted with it. Precise semantics of shared aggregation varies by application

area and modeler. In both cases, a component is used in the relationship as an explicit whole.

But in Grouping, the whole does not really exist as a component, it is only the sum of its parts. For instance, a

subsystem contains subsystem elements, but usually there is no explicit component for representing the subsystem as a

whole. Hence, both UML’s aggregation or composition, modela slightly different situation, which expresses different

semantics than Grouping.

Alternatively, a UML package can be used to depict such a group, but a package may own the elements, which means

that a destruction of the package would also destroy the elements. On the contrary we need a more loose relationship

between the group and its members.
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The aggregation relationships and packages alike can contain elements other than components. Hence, it is not

possible to ensure in UML that only a virtual group of components is modeled. Modelers can add other types of UML

elements to the group.

«metaclass»
Component

«stereotype»
Group

«metaclass»
Package

«metaclass»

Packageable

Element

«metaclass»
Namespace

importedMember

Indirect inheritance, since
Component is a Class, who is a

Classifier, who is a Type, who is a
PackageableElement

Figure 6. Stereotypes for modeling Grouping

Modeling solution:

We add a simple extension to the UML meta-model for modeling groups: a stereotype≪Group≫, extending the Package

metaclass, is used to model a group, providing a namespace for the different group member components. We constrain

the Group stereotype, so that only components can be its members, and these components are only imported and not

owned by the group.

We formalize grouping in OCL using the following constraints:

-- A Group does not own any members

inv: self.basePackage.ownedMember->size()=0

-- All the imported members of a group are Components

inv: self.basePackage.importedMember->forAll(

oclIsTypeOf(Core::Component))

Figure 6 illustrates these stereotypes according to the UML2.0 Profiles package, while Figure 7 depicts the notation

used for the stereotypes.

4.5 Layering

Introduction:

Layered structures are ubiquitous in software architectures, where groups of components are ordered and invocations

between the different groups need to respect certain rules.For instance, the most common rule is that an intermediate

layer cannot be bypassed during an invocation from a higher layer to a lower layer. As in the Grouping primitive, a
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«Group»
Group1

«Group»
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Figure 7. The notation of the stereotypes in Grouping modeli ng

layered component structure should only contain components (and not other UML elements). Also, a layer is typically

a virtual entity, i.e., in many cases it only exists to indicate a conceptual abstraction in the system.

Hence, Layering builds upon the Grouping primitive and further constrains it. Specifically, it entails that group

members from layerX may call into layerX − 1 and components outside the layers, but not into layerX − 2 and

below.

Known uses in patterns:

• TheLAYERS [6] andLAYERED SYSTEM [42] patterns described layered structures.

• An OBJECT SYSTEM LAYER[47] introduces a layer hosting a object system as an extension of the language in

which theOBJECT SYSTEM LAYERis implemented.

• INDIRECTION LAYER [45] describesLAYERS [6] that redirects all invocations in one system context into another.

• A MICROKERNEL [6] is structured in three layers: external servers, the microkernel, and internal servers.

• The PRESENTATION-ABSTRACTION-CONTROL pattern also enforces layers: a top layer with one agent, several

intermediate layers with numerous agents, and one bottom layer which contains the ‘leaves’ agents of the tree-like

hierarchy.

Modeling issues:

The problems in modeling Layering are similar to Grouping. Hence, for the same reasons as in Grouping, the UML

aggregation and composition relationships, as well as ordinary UML package structures, are not suitable to model all

concerns of Layering. Additionally, we need to ensure that calls between components residing in different layers do not

violate the aforementioned constraints. In contrast to groups, one layer member cannot be part of multiple layers.
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«metaclass»
Package

Figure 8. Stereotypes for modeling Layering

Modeling solution:

We introduce the≪Layer≫ stereotype, which specializes the≪Group≫ stereotype introduced above (which itself is an

extension of the Package metaclass). We also impose the following constraints:

• A component can only be member of one layer and not multiple layers.

• Components who are members of layerX may call their fellow components in layerX, as well as components

in layerX − 1 but not in other layers (e.g.X − 2 and below).

It is noted that there is no constraint about calling components in layerX + 1 or above, since this is a specific issue to

the pattern realization. Also, we introduce the tag definition layerNumber for Layers which represents the number of

the layer in the ordered structure of layers. The constraints are formalized as follows:

-- A Layer member can only be part of one

-- layer and not multiple layers

inv: self.basePackage->forAll(p1,p2:Core::Package|

p1<>p2 implies

p1.importedMember->

intersection(p2.importedMember)->isEmpty())

-- Components in Layer X may only call

-- components in the same Layer and Layer X-1

-- but not other Layers.

inv: self->forAll(l1,l2:Layer|l1<>l2 implies

if ((l1.layerNumber-l2.layerNumber).abs()>1)

then

not l1.basePackage.ownedMember->forAll(

c:Core::Component|

l2.basePackage.ownedMember->exists(connects(c)))
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else

true

endif)

To realize theconnects definition used above, the Component metaclass of UML is extended as follows:

-- Check whether a Component is connected

-- directly or indirectly to another component

-- through connectors

def: connects(target: Component) : Boolean =

if self.ownedPort.opposite.class->includes(target)

then

true

else

if self.ownedPort.opposite.class->

exists(connects(target))

then

true

else

false

endif

endif

A B C D

«Layer»

Application-
specific

{layerNumber=1}

«Layer»

Application-
general

{layerNumber=2}

Figure 9. The notation of the stereotypes in Layering modeli ng

Figure 8 illustrates these stereotypes according to the UML2.0 Profiles package, while Figure 9 depicts the notation

used for the stereotypes.

4.6 Aggregation Cascade

Introduction:

A COMPOSITE[11] describes part-whole hierarchies where a composite object is composed of numerous subparts. Both

composite and leaf components inherit from the same class, and are treated uniformly by clients. For example a GUI
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widget can call its parts to paint themselves, and they call their parts and so on. A cascade [9] is aCOMPOSITEstructure

with (recursive) constraints of the form: “A compositeA can only aggregate components of typeB, B only C, etc”.

Such interconnected or recursiveCOMPOSITE structures of components are in fact a common concern in object-

oriented systems. An Aggregation Cascade models this situation, but it does not define the precise semantics of the

aggregation relationships between theCOMPOSITEstructures. Instead, these are to be defined by the application domain

and the architect.

Known uses in patterns:

• The COMPOSITE[11] pattern describes general composite structures. Our primitive concerns especially design

situations with multiple composite structures that are interconnected or recursive (and may have additional con-

straints).

• A CASCADE [9] is a COMPOSITEstructure with (recursive) constraints of the form: “A compositeA can only

aggregate components of typeB, B only C, etc”.

• ORGANIZATION HIERARCHY [10] is an analysis pattern that requires both composite constraints and (recursive)

constraints of the form: “A compositeA can only aggregate components of typeB, B only C, etc”. Such analysis

patterns are frequently realized by component architectures.

Modeling issues:

For this primitive, we could consider the UML Aggregation, which is a special form of the UML Association. Because it

depicts a part/whole relationship, but the precise semantics of shared aggregation varies by application area and modeler

(see [32]), it is the UML modeling element that matches the Aggregation Cascade primitive concerns the closest.

Through Aggregation, a whole aggregates parts, and a part cannot contain its whole, but it is possible for a part to be

aggregated in multiple wholes. That is, links between hierarchies are possible, but not circular links. In our primitive, the

composites call their parts recursively, and there are recursive composition constraints. UML’s aggregation, however,

cannot perform such recursive calls or ‘cascading’ constraints.

Modeling solution:

We constrain all components of the hierarchy, composites and leafs, to inherit from the same component type. Fur-

thermore we define a stereotype≪AggregationCascade≫ as an extension of the stereotype≪Indirection≫, which itself

extends the Connector metaclass. An Aggregation Cascade connects a composite to its parts. It extends Indirection

since it forwards the recursive operations to clients. Since it specializes Indirection all the constraints from Indirection

are also valid here.

The Association that types the Connector is an Aggregation,to enforce that this is really a connector between a

composite and its parts. Since we introduce the aggregationbetween two specific, connected components, and not
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Figure 10. Stereotypes for modeling Aggregation and Compos ition Cascades

between a Composite and a generic interface (as in theCOMPOSITEpattern), these aggregations are constrained so that

“A compositeA can only aggregate components of typeB, B only C, etc”.

These constraints can be formalized as follows:

-- There is always an association that types

-- the AggregationCascade and that association

-- is an Aggregation. Note that the association

-- being an aggregation implies that it is also

-- binary (only binary associations can be

-- aggregations)

inv: self.baseConnector.type->size()=1 and

self.baseConnector.type.memberEnd->

exists(aggregation=

Core::AggregationKind::shared)

-- The association is navigable both ways

-- (so the classes own the association ends)

inv: self.baseConnector.type.ownedEnd->isEmpty()

-- Component A can only aggregate components

-- of the same type B

inv: let componentA:Core::Class =

self.baseConnector.type.memberEnd->

select(aggregation=

Core::AggregationKind::shared).

class->any(true) in

componentA.ownedAttribute.opposite.class->

forAll(c1,c2:Core::Class|

c1<>c2 implies c1.name=c2.name)
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-- All components of the hierarchy inherit

-- from the same type

inv: self.baseConnector.type.memberEnd.class->

forAll(c1,c2:Core::Class|c1<>c2 implies

c1.parents()->intersection(c2.parents())->

notEmpty())

Region

Division

«AggregationCascade»

Operating Unit

Department

«AggregationCascade»

Sales Office

«AggregationCascade»

Figure 11. Example of an aggregation cascade

Figure 10 illustrates these stereotypes according to the UML 2.0 Profiles package, while Figure 11 depicts the

notation used for the stereotype using an example: a model according to theORGANIZATION HIERARCHY [10] analysis

pattern.

4.7 Composition Cascade

Introduction:

A Composition Cascade builds upon Aggregation Cascade, andfurther enforces that a component may not be part of

more than one composite at any time. In this case, compositeshave a lifecycle responsibility for their parts. That is, the

whole may take direct responsibility for creating or destroying the parts, or it may accept an already existing part, and

later pass it on to some other whole that assumes responsibility for it.

Again, these lifecycle operations need to be applied in a recursive fashion: e.g. a composite that is destroyed, destroys

its parts, which recursively destroy their parts, and so on.
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Known uses in patterns:

Composition Cascade has the same known uses in patterns as Aggregation Cascade:COMPOSITE[11], CASCADE [9],

andORGANIZATION HIERARCHY [10]. The difference to the Aggregation Cascade known uses is that the patterns are

realized using aggregation relationships that assume lifecycle responsibility for the parts.

Modeling issues:

We face the same modeling issues as in Aggregation Cascade, but we need to model a more rigid aggregation relation-

ship: A component may not be part of more than one composite atany time. The recursive operations must also include

the aforementioned lifecycle operations.

Modeling solution:

The modeling solution is to extend the Aggregation Cascade primitive and add additional constraints on the≪Aggrega-

tion Cascade≫ Connector. We thus define the≪CompositionCascade≫ stereotype as an specialization of≪Aggrega-

tionCascade≫. In this case the Association that types the connector is a Composite Aggregation, so each part can only

be owned by one Composite.

We thus only have to add one more constraint. Of course, the rest of the constraints from AggregationCascade hold

here.

-- The association that types the

-- CompositionCascade is a CompositeAggregation

inv: self.baseConnector.type.memberEnd->exists(

aggregation=Core::AggregationKind::composite)

Figure 10 illustrates these stereotypes according to the UML 2.0 Profiles package, while Figure 12 depicts the

notation used for the stereotype.

Component1

Leaf1 Composite1

Leaf2 Composite2

«CompositionCascade»

«CompositionCascade»

Figure 12. Notation of a composition cascade
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4.8 Shield

Introduction:

In certain cases, a set of components cannot or should not be accessed directly by clients. Instead, another intermediary

component is to be used to access the set of components. The rationale behind this ‘shielding’ is usually information

hiding, separation of concerns, or the implementation of central tasks which should be respected by all the components

in the set.

The Shield primitive captures this design rationale with the following properties: One or more components act as

‘shields’ for a set of components that form a subsystem. No external client should be allowed to access members of the

subsystem directly, but access should happen only through these ‘shields’.

Known uses in patterns:

• The subsystem shielded by aFACADE [11] often should not be accessed directly, but only via theFACADE.

• In the LAYERS pattern [6], often layers should not get bypassed, i.e. lower-level layers should not be accessed

directly. Also, often layer elements should only be accessed via the layer’s interface. Hence, the layer’s interface

shields the layer’s elements and other lower-level layers.

• The INDIRECTION LAYER [45] shields the “target” component from the client.

• A MESSAGE REDIRECTOR[45] is a component whose task it is to redirect (dispatch) invocations for a subsystem.

It should usually not get bypassed.

• In theREFLECTION pattern [6], the meta-object protocol shields the meta-objects from the client component.

• A VIRTUAL MACHINE [12] shields the platform details in order for the byte-codeto be ported in different plat-

forms.

• An OBJECT SYSTEM LAYER[47] introduces a layer hosting a object system as an extension of the language in

which theOBJECT SYSTEM LAYERis implemented. The objects in theOBJECT SYSTEM LAYERshould only be

accessed through theOBJECT SYSTEM LAYER’ S interface.

• Many remoting patterns [44] used in a layeredBROKER architecture shield a whole subsystem realizing their

functionality: The subsystem’s should not be accessed directly.

Modeling issues:

We need to model the members of the subsystem, as well as the components shielding the subsystem. Here, the

problems in modeling the Shield primitive are similar to Grouping. Hence, for the same reasons as in Grouping, the

UML aggregation and composition relationships, as well as ordinary UML package structures, are not suitable to model

subsystems.
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Additionally, we need to make sure that no invocation can bypass the ‘shield’ components. This concept also cannot

be represented in standard UML. For instance, if we model thesubsystem as a Group following the Grouping primitive,

any element of the Group’s Package can be accessed from outside and is visible to clients. The imported package

member that are used to model Grouping offer no means to limitthe access to a Group member.
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«metaclass»
Connector

«stereotype»
Shield

Figure 13. Stereotypes for modeling Shields

Modeling solution:

We utilize the Grouping primitive (or extensions of it such as Layering), described above to model the membership of

the components in the ‘shielded’ group.

We introduce the stereotype≪IShield≫ that extends the Interface metaclass.≪IShield≫ is offered by the components

that shield the subsystem and provide access to the rest of the group members. We use UML’s Visibility Kind abstraction

to make an IShield interface a public interface, and add the constraint that all IShield interfaces must be group members.

This can be formalized in OCL as follows:

-- The visibility of the methods of IShield are

-- declared public so that any client can access

-- it directly

inv: self.baseInterface.feature->forAll(f |

f.visibility = Core::VisibilityKind::public)

-- IShield interfaces are provided by a member

-- of a group

inv: self.baseInterface->forAll(i|

Core::Package.importedMember.oclAsType(Core::Component).

provided->includes(i))

We also introduce the stereotype≪Shield≫ that extends the Connector metaclass. A≪Shield≫ connector can be used
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by a client to connect to the “shield” component. Thus we constrain ≪Shield≫ to match the provided≪IShield≫ in-

terface of a “shield” component to the matching required interface of a client component.≪Shield≫ is constrained as

follows:

-- A Shield Connector has only two ends

inv: self.baseConnector.end->size()=2

-- There is always an association that types

-- the Shield and that association is navigable

-- both ways so the classes own the association

-- ends (preconditions so that Property.opposite

-- is not empty)

inv: self.baseConnector.type->size()=1

inv: self.baseConnector.type.ownedEnd->isEmpty()

-- A Shield Connector matches the provided

-- IShield interface of a shield component

-- to the matching required interface of a

-- client component.

inv: self.baseConnector.end->forAll(

e1,e2:Core::ConnectorEnd|e1<>e2 implies (

(e1.role->notEmpty() and e2.role->notEmpty())

and

((e1.role.oclAsType(Core::Port).required=

e2.role.oclAsType(Core::Port).provided)

and

(e1.role.oclAsType(Core::Port).required->forAll(i|

IShield.baseInterface->exists(j|j=i))))

or

((e1.role.oclAsType(Core::Port).provided=

e2.role.oclAsType(Core::Port).required)

and

e1.role.oclAsType(Core::Port).provided->forAll(i|

IShield.baseInterface->exists(j|j=i)))))

Finally, we introduce the stereotype≪ShieldPort≫ that extends the Port metaclass. A port stereotyped as≪Shield-

Port≫ provides at least one≪IShield≫ interface.≪ShieldPort≫ is also extended by a tag definition, shieldGroup, for

denoting the group which is shielded.≪ShieldPort≫ is constrained so that all components that connect to its port and

are not client components, should be members of the shieldGroup. Finally, each such component that is not itself a

shield component for the same or other groups, should have a “package” visibility for all its provided interfaces. That

means, the member components of the shielded group can only be accessed by other members of the group or via the

≪IShield≫ interfaces. These constraints of≪ShieldPort≫ are formalized in OCL as follows:

-- A shield port provides one or more interfaces,

-- and one of them is an IShield interface
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inv: self.basePort.provided->size()>=1 and

self.basePort.provided->forAll(i:Core::Interface|

IShield.baseInterface->exists(j|j=i))

-- All components connected to this port who are

-- not client components (require the same IShield

-- that self provides) are members of the same

-- group and that group has the same name as the

-- tagged value "shieldGroup"

inv: let ShieldedComponents:Bag(Core::Component) =

self.basePort.opposite->reject(p:Core::Port|

p.required->includes(self.basePort.provided)).

class.oclAsType(Core::Component) in

Groupings::Group.basePackage->one(importedMember->

includesAll(ShieldedComponents) and

name = self.shieldGroup)

and

-- for each such component c, who does not provide

-- an IShield interface, all provided interfaces

-- of c are of visibility "package"

ShieldedComponents.ownedPort->reject(p:Core::Port|

Shields::IShield.baseInterface->

includesAll(p.provided))->forAll

(p:Core::Port|p.provided.feature->forAll(f |

f.visibility = Core::VisibilityKind::package))

C

B

Client

A

«IShield»«IShield»

«Group»
Group1

«ShieldPort»

Figure 14. The notation of the stereotypes in Shield modelin g (1)

Figure 13 illustrates these stereotypes according to the UML 2.0 Profiles package, while Figure 14 and Figure 15

depict the notation used for the stereotypes.
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Figure 15. The notation of the stereotypes in Shield modelin g (2)

4.9 Typing

Introduction:

In many situations, the typing abstraction provided by the design or programming language is not sufficient for modeling

domain types. For instance, the domain might require dynamic or constrained type dependencies.

Consider for example a typical business situation: There are different Party Types in a company (e.g. “manager”,

“implementation group”), and a particular business entity(e.g. John, group X) can change its Party Type at runtime: A

component of party type “manager” can become “senior manager”, a group of type “test group” can become “imple-

mentation group”, and so forth. There are usually constraints on these type changes (e.g. a group cannot take a Party

Type that needs to be fulfilled by a person).

The only abstraction that can be used in these cases, is the generic association, but that does not include the semantics

of dynamic or constrained typing. A custom, dynamic type system for Party Types needs to be implemented from

scratch by the developers. The Typing primitive introducesthe notions of a supertype connector and a type connector,

which can be used to define custom typing models using associations.

Known uses in patterns:

• The patternTYPE OBJECT [21] resolves the problem that a certain type relationship has to be dynamic in a

statically typed, object-oriented language. By building the type relationship with the objects of the language,

instead of the static classes, dynamic typing is “simulated” using delegation.

• A common example of an extension of theTYPE OBJECTS[21] pattern are analysis pattern that realize aKNOWL-

EDGE LEVEL [10], a meta-level architecture for typing in the sense ofTYPE OBJECT. We give below the examples

of party types and accountability types.

• An OBJECT SYSTEM LAYER[47] introduces a layer hosting a object system as an extension of the language in

which theOBJECT SYSTEM LAYERis implemented. Thus a whole custom type system is introduced with in the

OBJECT SYSTEM LAYER.
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Modeling issues:

In UML2 the Generalization metaclass is used to model inheritance. A generalization is a relationship between a more

general classifier and a more specific classifier. The specificclassifier inherits the features of the more general classifier.

The InstanceSpecification metaclass is used to define a modelelement that represents an instance of a Classifier. Those

metaclasses exactly match our concern to model a type system, and of course they can be extended to model custom

aspects of it. However, in UML there is no notion of changing amodel derived from the UML2 meta-model at runtime.

For instance, a reclassification of an instance, or a change of the supertype, are not supported by UML’s Generalization

and InstanceSpecification metaclasses.

UML supports associations as relationships that are changeable at runtime. However, associations are only change-

able at the instance level. Typing, in contrast, requires toexpress a relationship between Classifiers, or Classifiers and

their instances.

Additionally, the model cannot make explicit the fact that atyping relation is modeled, because the relationship looks

like an ordinary association. The semantics of typing, suchas type compliance rules, type conversion rules, inheritance,

etc., are only implicit and not documented. Constraints of the typing relation are also not documented as such.

«stereotype»
TypeConnector

«metaclass»
Connector

«stereotype»
SuperTypeConnector

Figure 16. Stereotypes for modeling Typing

Modeling solution:

We introduce components that represent types at runtime. These components for types form a meta-level or type-

level. Between any ordinary component and a type-level component, a Connector can be stereotyped as being a Type

Connector. This Connector depicts an instance-of relationship. Between two elements of the type-level, a Connector

can be stereotyped as being a Super Type Connector. This Connector depicts an inheritance relationship.

We introduce two stereotypes that extend the Connector metaclass, and realize these typing relationships:

• ≪TypeConnector≫ realizes the typing relationship (using the associated≪TypeConnectorBehavior≫). It has a

constraint to avoid circular type dependencies:

-- A Type Connector has only two ends

inv: self.baseConnector.end->size()=2

-- A Type Connector might not be applied

-- in circular order

inv: self.baseConnector.end.role->forAll(

c1,c2:Core::ConnectableElement|c1<>c2 and

c1.oclAsType(Core::Port).class =
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c2.oclAsType(Core::Port).class implies

not c1.typeConnection(c2))

• ≪SupertypeConnector≫ realizes the supertype relationship (using the associated≪SupertypeConnectorBehav-

ior ≫). It has a constraint to avoid circular supertype dependencies:

-- A Super Type Connector has only two ends

inv: self.baseConnector.end->size()=2

-- A Super Type Connector might not be

-- applied in circular order

inv: self.baseConnector.end.role->forAll(

c1,c2:Core::ConnectableElement|c1<>c2

and

c1.oclAsType(Core::Port).class =

c2.oclAsType(Core::Port).class implies

not c1.supertypeConnection(c2))

The two constraints above check for direct and indirect circularity of the type relationships using thetypeConnection

andsupertypeConnection definition, which are defined for the UML metaclass Component:

def: typeConnects(target: Component) :

Boolean =

if self.ownedPort.opposite.class->includes(target)

and Typings::TypeConnector.baseConnector.end.role.

oclAsType(Property).class->includesAll(Set{self,target})

then

true

else

if self.ownedPort.opposite.class->

exists(connects(target))

then

true

else

false

endif

endif

def: superTypeConnects(target: Component) :

Boolean =

if self.ownedPort.opposite.class->includes(target)

and Typings::SuperTypeConnector.baseConnector.end.role.

oclAsType(Property).class->includesAll(Set{self,target})

then

true

else
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if self.ownedPort.opposite.class->

exists(connects(target))

then

true

else

false

endif

endif

Using these Connectors we can model a custom-built type system. For instance, in the example above we can make

the Party component have a≪TypeConnector≫ to a specific Party Type “manager”, which itself has a≪SupertypeCon-

nector≫ to a generic “party type” class. Using this meta-model, we can derive instances, representing different parties

and party types, and we can provide the respective constraints both on the instance-level and the meta-level.

«TypeConnector»
A AType

BType
«SuperTypeConnector»

CType
«SuperTypeConnector»

Figure 17. The notation of the stereotypes in Typing modelin g

Figure 16 illustrates these stereotypes according to the UML 2.0 Profiles package, while Figure 17 depicts the

notation used for the stereotypes.

Figure 18 illustrates an example of how a typing meta-model can be built according to the Party Type example given

before. We introduce an additional Accountability Type. The component instances derived from this model realize

typed components (Party, Accountability, and specialization of these), and meta-descriptions for these types (Party

Type, Accountability Type, and specialization of these). Both, Party and Accountability instances can dynamically

change their types because types are realized as runtime components. Also we can provide constraints between these

types, such as the ones depicted in the figure. Thus the resultis a dynamic and constrained type system.

4.10 Virtual Connector

Introduction:

In many patterns and larger architectures, components haveno direct relationship, but still communicate virtually

using other components and connectors in between. For instance, in a layered distributed client/server architecture a

component on the client-side often virtually communicateswith a component from the same layer on the server side.

The Virtual Connector primitive models this concern.
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«SupertypeConnector»

commisioner

Accountability

Party
«TypeConnector»

type[0..*]

PartyType

instance[1]

superType[0..1]

subTypes [0..*]

AccountabilityType

For each instance x that is of type Accountability:
  x.commisioner.type must be element of
x.type.commissioners
and

  x.responsible.type must be element of
x.type.responsibles

commisioners responsibles

«TypeConnector»

type[0..*] instance[1]

responsible

superType[0..1]

subTypes [0..*]

«SupertypeConnector»

Figure 18. Example of typing: Party Type and Accountability Type

Known uses in patterns:

• The client side components and the server side components ofa BROKER [6] communicate virtually among each

other.

• Many remoting patterns [44] virtually communicate with each other, for instance: client and serverINVOCATION

INTERCEPTORS, REQUESTORand INVOKER, client and serverMARSHALLERS, CLIENT andSERVER REQUEST

HANDLER, and client and serverPROTOCOL PLUG-INS.

• PROXIES[11] often use intermediate components and thus virtually communicate with their target. For instance,

remotePROXY [6] use aBROKER [6] to access the remote target.

Modeling issues:

The virtual relationship is an important additional information, but is not explicit in a UML diagram. It must be

deduced from the implicit collaboration of components and connectors. If multiple virtual dependencies exist in the

same architecture, as for instance in distributed layers, it cannot be deduced which component corresponds with which

other component without further documentation.

In standard UML the virtual relationship can only be modeledby introducing another explicit connector or asso-

ciation between the component. Then, however, we cannot distinguish the virtual communication from non-virtual

communication in the models anymore.
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«stereotype»
IVirtual

«stereotype»
VirtualConnector

«metaclass»

Connector

«metaclass»
Interface

Figure 19. Stereotypes for modeling Virtual Connector

Modeling solution:

We introduce a stereotype≪VirtualConnector≫ as an extension of the Connector metaclass. This connector is used

between components that have a virtual relationship. We further define the stereotype≪IVirtual ≫, as an extension

of the Interface metaclass. Therefore a≪VirtualConnector≫ matches an≪IVirtual ≫ Interface of one component to

another. We enforce the constraint that the≪VirtualConnector≫ can only be used between two componentsA andB,

if there is a path of components and connectors that linkA to B. For instance, ifA is connected toC, C is connected

to D, andD is connected toB, then a≪VirtualConnector≫ from A to B might be introduced.

We can formalize the constraints as follows:

-- A Virtual Connector has only two ends

inv: self.baseConnector.end->size()=2

-- A Virtual Connector matches the provided

-- IVirtual interface of one component to

-- to the matching required interface of another.

inv: self.baseConnector.end->forAll(

e1,e2:Core::ConnectorEnd|e1<>e2 implies (

(e1.role->notEmpty() and e2.role->notEmpty())

and

((e1.role.oclAsType(Core::Port).required=

e2.role.oclAsType(Core::Port).provided)

and

(e1.role.oclAsType(Core::Port).required->forAll(i|

IVirtual.baseInterface->exists(j|j=i))))

or

((e1.role.oclAsType(Core::Port).provided=

e2.role.oclAsType(Core::Port).required)

and

e1.role.oclAsType(Core::Port).provided->forAll(i|

IVirtual.baseInterface->exists(j|j=i)))))
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-- A VirtualConnector can only be used between

-- two components A and B, if there is a path of

-- components and connectors that link A to B.

inv: self.baseConnector.end.role.

oclAsType(Core::Property).class->forAll(

c1,c2:Core::Component|c1<>c2 implies

c1.oclAsType(Core::Component).connects(c2))

BA

DC

«VirtualConnector»

BA

«IVirtual»

service

«IVirtual»

service

Figure 20. The notation of the stereotypes in Virtual Connec tor modeling

Figure 19 illustrates these stereotypes according to the UML 2.0 Profiles package, while Figure 20 depicts the

notation used for the stereotypes.

5 Case Study

Leela [46] is an infrastructure that provides a federated model of remote peers, thus offering loosely-coupled services.

Within a federation, all peers are equal, they can offer Web services (and possibly other kinds of services) to other peers,

and they can connect spontaneously to other peers (and to thefederation). Each remote object can potentially be part

of more than one federation as a peer, and each peer decides which services it provides to which federation. Certain

peers in a federation may be able to access extra services that are not offered to other peers in this federation, via their

partaking in other federations. Leela peers are hosted by Leela applications. One such application can host multiple

peers and federations.

Leela is implemented using the architectural patterns from[44]. In our first attempt to design the system, we used the

standard UML class diagrams [46]. However, the architectural patterns could not be explicitly modeled and therefore

the design decisions taken that were concerned with these patterns are not documented, except as complementary
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meta-information to the class diagrams. This meta-information can be textual or it can make use of a formal notation,

nevertheless it is not part of the UML diagrams. To overcome this problem, we have applied our UML profile to

explicitly model the architectural components, connectors, configurations, and constraints in Leela’s design. Due to

space constraints, as a case study we present an excerpt of this design: the basic communication framework of Leela.

5.1 Broker architecture

Leela implements aBROKER [6], which suggests a general architectural configuration that separates a distributed sys-

tem’s communication functionality from its application functionality by isolating all communication-related concerns.

A BROKER hides and mediates all communications between the objects or components in a system. Local client-side

and server-side brokers enable the exchange of requests andresponses between the peers.

Each peer in Leela acts as a client and a server at the same time. Thus, Leela peers are composite components that

contain both client-side and server-sideBROKER sub-components. In the following description, theBROKER is viewed

as a compound pattern that is implemented using several patterns from the Remoting pattern language [44]. Even

though client-side and server-sideBROKER components are present in the same system, it makes sense to distinguish

client-side and server-side roles of the components in order to make the pattern-based architecture more understandable.

Unfortunately, this cannot be easily modeled with UML because theBROKER as a whole is not an explicit component,

but consists of several components. Thus we cannot use UML composition or aggregation relationships here. However,

the Grouping primitive from our UML profile is an ideal match.We introduce two≪Group≫ packages: ClientBroker

and ServerBroker. For eachBROKER component, we add a namespace relationship either to ClientBroker package

or ServerBroker package, indicating membership to the respective group. The group membership of the components

introduced, is depicted in Figure 21.

5.2 Basic invocation architecture

Figure 22 shows the basic software architecture diagram of Leela, using our profile. ABROKER consists of a client-

sideREQUESTOR[44] to construct and forward invocations, and a server-side INVOKER [44] that calls the target peer’s

operations. AMARSHALLER [44] on each side of the communications path handles the transformation of requests and

responses from programming-language-native data types into byte arrays that can be sent over the wire.

As its basic communication resource each Leela applicationuses a component, called theRequestHandler, that

implements both aCLIENT REQUEST HANDLER[44] and aSERVER REQUEST HANDLER[44]. TheCLIENT REQUEST

HANDLER forwards request messages from a client to the server. TheSERVER REQUEST HANDLERreceives these

requests at the server side, and triggers the invocation of the peer. BecauseRequestHandler realizes both patterns, it

is member of both groups, ClientBroker and ServerBroker.

The request handlers containPROTOCOL PLUG-INS [44] for the various protocols that transport the message across

the network. Currently, Leela supportsPROTOCOL PLUG-INS [44] for various SOAP implementations. However, vir-

tually any other communication protocol can be used as well,because Leela’sMARSHALLER [44] uses a simple string-

based format as a message payload, and (re-)uses Tcl’s automatic type converter to convert the string representations to
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MarshallerClient MarshallerServer

Requestor

RequestHandler

ProtocolPlugInServerProtocolPlugInClient

«Group»
ServerBroker

«Group»
ClientBroker

Invoker

InterceptorClient InterceptorServer

Figure 21. Group membership of the Leela components

native types and vice versa.

There are a number of further design issues which need to modeled. First of all, the application of the Remoting

patterns leads to an architecture based on theLAYERS pattern [6]. The same layers are present on client and serverside:

Protocol, RequestHandling, Invocation, and Application.We model the layers according to our Layering primitive. For

each layer, we introduce a≪Layer≫ package and the tagged value receives the respective layer number. Each layered

component is imported to the corresponding layer. Figure 23shows the layer membership of the components discussed

in this section. There a number of constraints:

• Components from the layer Application can only interact with components from the layers Application and

Invocation, or components who are not part of a layer.

• Components in the layer Invocation can only be accessed viaInvoker or Requestor, through a Shield Con-

nector. That is, all internal interfaces are stereotyped≪IShield≫.

• Components from the layer Invocation can only interact withcomponents from the layers Invocation and Re-

questHandling, or components who are not part of a layer.

• Components in the layer RequestHandling can only be accessed via theRequestHandler component through

a Shield Connector. That is, all internal interfaces are stereotyped≪IShield≫.

• Components from the layer RequestHandling can only interact with components from the layers RequestHandling

and Protocol, or components who are not part of a layer.
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*

marshaller

requestor
1*

requestors

1..* invokers

«Shield»

  1..*  serverRequestHandler

clientProtocolPlugIns  1..*

requestHandler

1 requestHandler
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Figure 22. Basic, broker-based invocation architecture
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Figure 23. Layers of the Leela architecture
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• Components from the layer Protocol can only interact with components from the layer Protocol or components

who are not part of a layer.

Note that these constraints apply for client-side and server-side components. The client-side and server-side com-

ponents are distinguished using the Grouping primitive. The client-sidePROTOCOL PLUG-IN is simply invoked by the

request handler component. The server-sidePROTOCOL PLUG-IN, however, receives requests and result messages from

the network asynchronously (it contains aREACTOR [39] implementation). Thus the request handler is informedof

network events using callback events. This is modeled usingour Callback primitive (see Figure 22).

In addition a virtual communication between the respectivecomponents at each layer of theBROKER architecture

happens. This is modeled using the Virtual Connector primitive, as shown in Figure 24.

«VirtualConnector»

«VirtualConnector»

«VirtualConnector»

«VirtualConnector»

ProtocolPlugInClient

Requestor

MarshallerClient

ProtocolPlugInServer

InterceptorServer

Invoker

MarshallerServer

Peer

InterceptorClient

RequestHandler

«VirtualConnector»

«VirtualConnector»

Figure 24. Virtual communication among Leela components

So far we have only modeled the base components. In the next sections, let us take a closer look at two exemplary

component types: peers and interceptors.

5.3 Peers and federations

As aforementioned, two different kinds of peers exist: ordinary peers and federations of peers. Federations of course

contain peers, but this cannot be properly modeled with UML’s composition or aggregation relationship alone because

we require a constrained relationship here. Thus we model federations as special, composite peers that are connected

through an Aggregation Cascade to other peers with the following constraints:

• A peer can be part of multiple federations. That’s why we use Aggregation Cascade and not Composition Cas-

cade.
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• A federation cannot contain peers of the type federation, unless they are federation proxies (see below).

• A federation proxy (see below) cannot contain other peers.

Peers can interact with other peers using theREQUESTOR, which realizes the virtual communication link. Sometimes

it is more handy to use the patternCLIENT PROXY [44]: A CLIENT PROXY is a placeholder for the peer in the client

process. By presenting clients with an interface that is thesame as the peer’s, the proxy lets the client interact with the

peer as if it were a local object. Internally, theCLIENT PROXY transforms the invocations it receives intoREQUESTOR

invocations. Leela also supports peer and federation proxies that act asCLIENT PROXIES, offering the interfaces of a

peer or federation. The proxies thus provide indirections,which can be modeled using the Indirection primitive. We

have realized the proxies slightly different from thePROXY pattern in [11]. In order to have “real” proxies we need two

more constraints for the indirections in Figure 25:

• A peer proxy cannot have peers of the types peer proxy or federation as indirection targets.

• A peer proxy cannot have peers of the types federation proxy as indirection targets.

«Indirection»

Peer

PeerProxy Federation

FederationProxy

«IndirectionPort»

«IndirectionTargetPort»

«Indirection»

«IndirectionPort»

«AggregationCascade»

«IndirectionPort»

«IndirectionTargetPort»

«IndirectionTargetPort»

peer   *

peerProxy   1

peers  *

* federations

* federations

1  federationProxy

Figure 25. Proxy-based indirection in Leela

5.4 Invocation interceptors

The Leela invocation chain on the client side and the server side is based onINVOCATION INTERCEPTORS[44],

which transparently extend the invocation on both sides with new behavior. The most prominent task of theINVO-

CATION INTERCEPTORSin Leela is control of remote federation access. On the client side, anINVOCATION INTER-

CEPTOR intercepts the construction of the remote invocation and adds all federation information for a peer into the

INVOCATION CONTEXT [44]. On the server side this information is read by anotherINVOCATION INTERCEPTOR.

If the remote peer is not allowed to access the invoked peer, the INVOCATION INTERCEPTOR stops the invocation
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and sends aREMOTING ERRORto the client, otherwise access is granted.INVOCATION INTERCEPTORSare triggered

by callbacks (modeled using the Callback primitive), as canbe seen in Figure 26. Naturally the interceptors on the

client-side and the server-side are linked through a virtual connector.

Requestor

InterceptorClient

«Callback»

«EventPort»

Invoker

InterceptorServer

«Callback»

«EventPort»

«CallbackPort»«CallbackPort»

«VirtualConnector»

«VirtualConnector»

invoker   1

interceptors   *

requestor   1

interceptors   *

Figure 26. Invocation interceptors in the invocation chain

Often interceptors for one and the same task exist both on client-side and server-side. In Figure 27 three examples

are presented. Logging is needed both on client-side and server-side, but no Virtual Connector between the logging

interceptors is necessary. The server-side federation interceptor checks whether an invoking peer belongs to a federation

or not. The client-side federation interceptors thus must put the federation information of the invoking peer into the

INVOCATION CONTEXT. Thus there is a virtual communication between these two interceptors, which is modeled using

a Virtual Connector. Likewise, the client-side and server-side authentication interceptors need to transmit authentication

information over the wire.

6 A Model Validator for the Architectural Primitives

To further support the use of the architectural primitives in model-driven software development, we have developed

a model validator, which can be used as a plug-in in a model-driven tool chain (such as the OpenArchitectureWare

generator [33]). The plug-in is capable of validating architectural models that conform to UML2 meta-models (like the

excerpt in Figure 1 or other compliant meta-models) and OCL constraints. We have specified the proposed architectural

primitives UML profile using the tool, in order to validate architectural models that contain such primitives. Based on

both the UML metamodel and the primitives profile, the validator can parse architectural models and check that the

constraints of the primitives are not violated. The models produced by the validator can be then used as input for code

generators.

We use the language Frag [49, 48] as the syntactic foundationfor defining the UML meta-model, the architectural

primitives profile, as well as the UML models per se. Frag’s main goal is to provide a tailorable language. Among

other things, Frag supports the tailoring of its object system and the extension with new language elements. In addition

to the UML2 meta-model and the meta-meta-model, we have defined a constraint language which follows the OCL

constructs.
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Figure 27. Special invocation interceptors
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Figure 28. Tool Chain Overview
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The process of using the plug-in conforms to a typical workflow for model-driven development. First, the input

models need to be read and transformed into the special Frag syntax for UML2 models and the architectural primitives,

which are defined using a meta-model and a profile respectively. The UML2 models can either be written with UML

tools (with XMI export) or directly in the textual Frag syntax. If a UML tool is used, the XMI export is transformed

into the textual Frag syntax. Second, the application models get validated with respect to the UML meta-model, as

well as the OCL constraints defined upon them with respect to the primitives profile. After the model is validated it is

transformed into an EMF model, which is understood by the code generator. The latter creates the code in the target

output languages, such as Java. This tool chain is depicted in Figure 28. In between this sequence, other steps may be

inserted, such as domain-specific model transformations.

MMM

Frag

Object

ConstrainedClassConstraintChecker

Class

attribute

AssociationEnd

Association

ends

CompositionAggregation

EnumStereotype

FCL

FCL

Dependency

class

extends

supplier

client

«instanceOf»
«instanceOf»

«instanceOf»

«instanceOf»

«use»
«use»

Figure 29. Validator Tool UML2 Meta-meta-model – Excerpt

In our plug-in, we define all meta-models, including the UML meta-model, on top of one common meta-meta-

model. The meta-meta-model can be very simple, or more elaborate like the OMG Meta Object Facility (see

http://www.omg.org/mof/). The meta-meta-model is used todefine meta-models. In addition, the constraint language is

defined using the meta-meta-model, with which models can be constrained at the meta-level and hence validated at the

model level. In the case of our plug-in and the Frag language,we have defined a simple meta-meta-model that reuses

Frag’s language features wherever possible. An excerpt of this meta-meta-model for defining UML2 meta-models is

shown in Figure 29. The meta-meta-model is based on the most general class in the Frag object system:Object.

The meta-meta-model classes are sub-classes ofConstrainedClass which allows to add OCL-style constraints to

classes. The convenience classConstraintChecker looks up allConstrainedClass instances via reflection and
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checks the constraints. Constraints are specified in a language similar to OCL (defined using the classFCL). The

meta-models are defined usingClass. We introduce also a number of relationships between classes: Dependencies,

Associations, Compositions, and Aggregations. In addition, typed attributes can be specified. Please note that we

do not define the generalization relationship, because multiple inheritance is suitably predefined by Frag and we can

reuse this implementation. TheStereotype class defines the UML2 extends-relationship; that is, it allows to extend

meta-classes.Enum is a convenience class to define Enumeration types.

Using the meta-meta-model, we can define meta-models like the UML2 meta-model shown in Figure 1. As an exam-

ple, consider the Component and Namespace metaclasses and two associations of Component of the UML2 metamodel

in the Frag syntax:

namespace eval UML2 {

...

MMM::Class create Component -superclasses {PackageableElement Class}

MMM::Association create ComponentInterfaceRequired -ends {

{Component -multiplicity * -navigable 0}

{Interface -roleName required -multiplicity * -navigable 1}

}

MMM::Association create ComponentInterfaceProvided -ends {

{Component -multiplicity * -navigable 0}

{Interface -roleName provided -multiplicity * -navigable 1}

}

MMM::Class create Namespace -superclasses NamedElement

...

}

Once the UML metamodel is defined, the UML profile for the architectural primitives needs to be specified. Consider,

as an example the textual definition of the Grouping primitive. Again, we can also use the model transformers to

generate this textual model from graphical models:

namespace eval Grouping {

MMM::Stereotype create Group -extends UML2::Package

Group addInvariant {

[FCL size [[self basePackage] ownedMember]] == 0

}

Group addInvariant {

[FCL forAll im [[self basePackage] importedMember] {

[FCL isKindOf $im UML2::Component]

}]

}

}

The primitive specification first defines the necessary stereotype for Grouping, and then it provides all constraints

required for that primitive. It is noted that the constraints are almost a one-to-one translation of the OCL constraints

explained before for Grouping, but in Frag constraint syntax as in the example above (called FCL). We can use the
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OCL-to-FCL transformer to automatically generate FCL codefrom OCL, and vice versa. The UML profile for the

architectural primitives is thus translated into a set of such specifications in the Frag syntax, and subsequently used to

parse and validate models.

As a small example, we consider a small model with the following elements (also shown graphically in Figure 30):

UML2::Component create WorkflowEngine

UML2::Component create ProcessIntegrationAdapter

UML2::Component create Dispatcher

UML2::Package create WorkflowCorrelationGroup -importedMember {

WorkflowEngine ProcessIntegrationAdapter

Dispatcher

}

Grouping::Group create g1 \

-basePackage WorkflowCorrelationGroup

DispatcherProcessIntegrationAdapterWorkflow Engine

«Group»
WorkflowCorrelationGroup

Figure 30. Example model for workflow correlation

In this example model, we first specify three UML components:a workflow engine, a process integration adapter,

and a dispatcher. Then we define a Package that depicts a correlation group of three components and we use the Group

stereotype to apply the relevant constraints of the Grouping architectural primitive. Our model validator automatically

checks all constraints, once a model is assembled. In this example, no problems are found, but if we would for instance

have owned members in the Package or other member types then Components, the model validation would fail.

It is noted that our syntax introduced above is not necessarily intended to be used by developers. Rather it can itself

be generated from the export of an UML2+OCL tool. That is, thedevelopers can also specify UML2 models and

constraints graphically, and the models can then be validated in the model-driven tool chain. During this validation, the

primitives are automatically checked as well.

7 Lessons Learned

Our case study in Section 5 was conducted to demonstrate thata non-trivial system, that was initially modeled and

implemented independently of our approach can retroactively be modeled using our pattern primitives. During the ap-

plication of the approach and the application of the model validator, presented in Section 6, a number of inconsistencies

in the initial models have been found and corrected. This is an important benefit, as the proposed approach can help to
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improve the quality of a system’s current documentation. Italso demonstrated that each of the primitives were variable

enough to deal with multiple situations, where the respective patterns were applicable.

Furthermore, we have used the resulting models in a number ofstudent projects. Despite the fact that a higher

quantity of information was given through the stereotypes,the students did not find the enriched primitives models less

intuitive than the original models. In contrast – after someinitial explanation – the primitives conveyed the design intent

of our case study prototype in a better way. This proved especially useful for evolution of the prototype: changes have

been made without violating the design constraints of the patterns. This aspect is especially important, when systems

are generated from the models using a model-driven approach. Also, the students deemed that they were able to link the

primitives to the patterns, which document important forces and consequences of the design decisions (especially the

consequences of architectural patterns to the system’s quality attribute). This link, however, could be improved through

better tool support, specifically targeted at making this link explicit.

When modeling the case study we have mainly used textual representations of the models, as shown in Section 6, and

created the graphical UML representation based on them. Forthe model validator, we have also realized an integration

with EMF, to demonstrate the interplay with existing modeling tools. This, however, often requires customizations of

the models or tools, as there are usually certain differences between the various UML tools.

We have selected UML, a de-facto standard modeling languagein software architecture, in order to guarantee broad

tool support and familiarity of modelers with the language.However the main shortcoming of this approach stems

from the very own use of UML. The extension mechanisms of UML,in particular the stereotypes, are cumbersome to

use because of their second-class status: they are neither metaclasses of the standard metamodel, nor model elements

and this fact often confuses the users of UML. Furthermore, OCL constraints, even though they provide semi-formal

semantics to the stereotypes, are not well accepted in the software architecture community, partly because there are

no tools so far that can dynamically check the constraints inUML models. Lastly, the constant evolution of the UML

standard, forces us to update the mapping of the architectural primitives in the language in its subsequent versions,

which can prove to be cumbersome. However, we do believe thatthe advantages that UML conveys outweigh these

disadvantages.

In addition, our choice to use only UML profiles limits the capabilities of the visual representations of the models.

In particular, as can be seen in the case study, the UML representations may quickly lead to visual cluttering, especially

if multiple primitives are combined in one model. One solution would be to build customized UML tools that can

lessen the visual clutter, e.g. by visually replacing some of the primitives’ stereotypes with textual notes. This way,

the primitives are still formalized in the model, but the graphical representation is more usable. Another solution is

to use other modeling environments, which introduce their own abstractions as new modeling language elements, and

can thus provide richer visualizations. For instance, the Generic Modeling Environment (GME) [24] provides a notion

of hierarchy in its modeling syntax, which is a clearer representation of the concern represented by aggregation and

composition cascade than the UML representation. In this research, we deliberately focused only on UML profiles, for

the reasons explained before, but as future work we plan to explore the possibilities of using domain-specific modeling

languages as concrete syntax and our UML profiles as abstractsyntax (e.g., following the approach described in [15])

to combine the best of both worlds.
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The primitives that we have proposed are structural in nature, as they concern the composition of components and

connectors as well as interface matching between them. Nonetheless, architectural patterns contain also a behavioral

part that mandates the interaction of architectural elements, which has not been studied yet. For example The Callback

primitives can be used to compose the Model-View-Controller, but the interaction protocol between the Model on the

one hand and Views and Controllers on the other hand, is not covered by the current definition of the primitive. We

aim to extend this work with behavioral models for the individual primitives, as mentioned in the future work section.

We have already performed this in a another approach, where we have successfully integrated activity diagrams and

class diagrams via OCL constraints for modeling compositions in dynamic programming environments (see [50]). Even

though this is quite a different modeling problem, the general approach for integrating activity diagrams with structural

models can be followed for the primitives approach reportedin this paper as well.

The proposed primitives are a modeling solution that can address the inherent variability of patterns – an issue that

makes the modeling of the pattern participants themselves highly problematic. However this does not automatically

make the patterns explicit in an architectural design – the primitives only give a hint of the application of specific

patterns. An architect needs to further annotate a specific collaboration of primitives to denote their synergy and

implementation of the patterns semantics.

The full benefits of our approach can be obtained when full tool support is accessible to ordinary developers. We have

started working on model-driven tool support by providing amodel validator (see Section 6), which is an important aid

for composing and decomposing primitive models via model-driven development. In addition, further visualizations of

the composition/decomposition would be helpful. Also toolsupport is needed to facilitate the composition of primitives

into patterns, making explicit that a set of primitives withcustomized constraints form a specific pattern variant. This

would furthermore support analysis of the design, by linking each pattern with the quality attributes it affects positively

or negatively.

8 Related Work

The approach described in this paper is based on related research on architectural primitives, UML profiles for

architectural description, and modeling architectural patterns. Table 1 gives an overview of the related work, and how

it compares to the approach presented in this paper.

The idea of primitives as the fundamental elements of architectural patterns and design patterns has been investigated

from several viewpoints. Pree has worked in the area of object-oriented frameworks and has explored primitives in the

construction of ‘hot spots’, i.e. variation points that areadapted in individual applications [35, 36]. His primitives are

defined in two levels of abstraction: At a lower level, the fundamental elements of patterns are ‘hook’ and ‘template’

methods and their corresponding classes; at a higher level the aforementioned fundamental elements are used to specify

composition patterns for hot spots that are calledmeta-patterns. These composition patterns themselves can be used for

specifying even higher-level patterns, such as the GoF [11]patterns; however they are not architectural elements and

thus cannot be used to describe architectural patterns likethe architectural primitives in this paper.

In the realm of patterns, many patterns are described as compound patterns that consist of other, existing patterns. For
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Table 1. Overview and comparison of related work

Approach Building blocks Granularity Application Semantics

Hot spots[35, 36] Class methods Class Object-oriented

frameworks

Object-oriented

Alfa primitives[28] Form and function

of architectural pat-

terns

Component and con-

nector

Architectural pat-

terns

General characteris-

tics

Unit operations[3] Abstract principles Component Architecture informal

Architectural Tactics

[3, 7, 13, 20, 4, 40]

Abstract principles

or heuristics

Component and con-

nector

Quality-attribute

driven design

Informal

UML profiles[26] UML stereotypes Components and

connectors

Architectural de-

scription

ADLs

Acme[14] Templates for pat-

terns

Components and

connectors

Architectural de-

scription

Acme ADL

Formal approaches

to modeling patterns

[8, 29, 43, 25]

Language constructs Class Design patterns Formalization of one

specific pattern vari-

ant

Primitives of archi-

tectural patterns

Participants of archi-

tectural patterns

Component and con-

nector

Architectural pat-

terns

Specialized and for-

malized
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instance, in [44] theBROKER pattern is described as a compound pattern composed from patterns from [44, 39, 11, 6].

Our approach follows a similar philosophy as we define primitives that can be used to model architectural patterns, but is

different in that these architectural primitives are more specific and formally specified than patterns. The primitivescan

be seen as participants of patterns, whereas patterns require substantial hand-crafting (i.e. a design and implementation

effort) in order to be used as part of another pattern.

Mehta and Medvidovic proposed a framework, called Alfa, forcomposing architectural patterns througharchitec-

tural primitives [28] that are certain underlying concepts, shared by all patterns. They propose a number of such

primitives as the building blocks for constructing the architectural elements of patterns and demonstrate their approach

through the representation of several architectural patterns through the primitives. This approach is based on the as-

sumption that there exists a fixed set of fundamental primitives that can potentially characterize any architectural pattern

participant and therefore this framework of primitives canbe used for characterizing and comparing patterns. Our ap-

proach is different in the sense that we investigate architectural primitives at a larger granularity and level of abstraction.

Moreover, our primitives are recurring concepts in several, but not all, architectural patterns, and they are characterized

by rich semantics that serve specialized purposes.

Similarly, Bass et al. in the first edition of [3] had proposeda predefined set ofunit operations, such as separation,

abstraction, compression and resource sharing as the building blocks for all architectural and design patterns. In con-

trast to our architectural primitives, these unit operations are defined at a much higher level of abstraction. They rather

describe atomic architectural transformations and operations, whereas our primitives describe fundamental, recurring

structures. The same authors, in the second edition of theirbook propose a number ofarchitectural tacticsfor con-

trolling the response of quality attributes. Architectural patterns packages a number of tactics, in the sense that the

consequences of applying the pattern is the realization of one or more tactics. Tactics are abstract hints on how to

support a specific quality attribute and are not directly related to how an architectural pattern is modeled.

There have also been several attempts for specifying existing ADLs or proposing new ADLs as extensions of UML,

usually in the form of profiles. Medvidovic et al. have pointed out three different ways to use UML as an ADL [26]:

(a) using the “pure” UML metamodel “as is”, which forces the architect to implicitly define the necessary architectural

concepts; (b) constraining the UML metamodel through profiles and thus providing explicitly the architectural concepts

as constrained stereotypes, while still conforming to the standard metamodel; (c) modifying the UML metamodel and

thus providing “native” support for architectural description, but losing conformance to the standard metamodel. They

have also evaluated the first two approaches by using them to map three ADLs to UML.

An ADL that treats architectural patterns as first-class entities is Acme [14] supported by the AcmeStudio tool [38].

The language itself provides built-in templates that can beused to model patterns, while AcmeStudio has some well-

established patterns (e.g. Layers, Pipes and Filters, Client-Server) in its default package. However, the syntax support

offered by Acme is rather limited, as it provides a fixed set ofarchitectural elements like components, connectors,

ports, roles etc. Our approach aims at more flexibility by providing a wider range of lower-level primitives, such as

namespaces or aggregations used in Grouping and Aggregation Cascade.

Clements et al. in [7] demonstrated how UML 1.x can be used “asis” in representing the fundamental architectural

concepts in a number of architectural views. This work was continued by Garlan et al. in [13] and later by Ivers et
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al. in [20] to take under account the forthcoming UML 2.0, andparticularly focus on the provision for the component

and connector view in the new standard. The improvements of the new UML 2.0 metamodel for architectural con-

cepts, especially ports and internal structures, was also advocated by Björkander and Kobryn in [4]. Finally Selic and

Rumbaugh [40, 41] have defined a UML profile for real-time systems, UML-RT, which embodies several architectural

concepts such as components (so-called “capsules”), connectors, and ports. Our approach uses a different line of at-

tack: we do not model the architectural concepts that are specific to an architectural pattern, but rather the fundamental

primitives that participate in a number of patterns. Thus weovercome the limitations of ADLs by providing a wealth of

abstractions, capable of modeling several of the well-known architectural patterns.

There are many approaches for modeling or representing software patterns, the vast majority of which focuses on the

design patterns from [11]. A number of such approaches attempted to formally specify these patterns (see for instance

[8, 29, 43, 25]). These approaches, however, have not gainedmuch momentum in recent years mainly because of their

complexity and their resulting limitations regarding their practical use. Moreover, these approaches have not been used

for architectural patterns or whole pattern languages, like our primitives, but just for some isolated patterns from [11]. A

third major difference of these approaches, compared to ourapproach, is that they only support one variant of a pattern

(often simply following the C++ example from [11]) and not other possible pattern variations. The same problem

appears also when using the Collaboration metaclass provided by UML 2.0 to describe a design pattern. Most patterns

(especially architectural patterns), however, can be realized using a multitude of different design variants. Our approach

describes primitives that are participants of the patternsand can be tailored to support multiple variants of a pattern. In

other words, we can model the variants of a pattern, by constraining the specific semantics of the architectural primitives

that comprise the pattern.

There have also been some approaches that propose language support for design patterns, such as [31, 5], or imple-

mentations of patterns as aspects, such as [16, 17]. These approaches make patterns first-class entities of the language

or aspect framework, and thus they become more traceable in the code than a pattern implementation scattered across a

number of classes. All of these approaches might be considered as a way to better understand the use of a single pattern

in an architecture, but not for documenting the design of complex architectures based on (multiple) patterns, as this

paper advocates.

9 Conclusions and Future Work

We have proposed modeling architectural patterns through anumber of architectural primitives in the component and

connector view. We have elicited an initial set of these primitives from a pool of established architectural patterns in

order to ensure their correctness and broad applicability.This set of primitives is original and helps solving the funda-

mental problems in modeling architectural patterns that were outlined in Section 1: they offer the necessary abstractions

that grasp the rich semantics found in patterns; they can represent not only a specific pattern variant but multiple vari-

ants of a pattern, by tailoring the architectural primitives with constraints. We have validated our approach by modeling

the primitives in the well-known Eclipse/Octopus tool set,applying it to a number of case studies (one of them was

presented in Section 5), and developing our own model validator prototype to support model-driven development using
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our concepts (see Section 6 for details).

We plan to extend this work in the following directions:

• document the architectural primitives of other domain-specific patterns and pattern languages in the component

and connector view;

• provide the explicit modeling of patterns through the collaboration of a group of primitives by annotating them

and adding semantics to them;

• experiment on modeling the variability of the patterns, notonly by modifying the constraints of primitives but

also by combining alternative primitives in given patterns;

• relate our approach to the notion of pattern languages (larger collections of interrelated patterns). In particular,

we plan to document more patterns from the remoting pattern language (see [44]) and a pattern language for

general-purpose architectural patterns (see [2]);

• offer support for a better visualization (or concrete syntax) of the primitives than the current representation as

UML stereotypes;

• add behavioral modeling (e.g., based on activity or sequence diagrams or state machines) to the pattern primitives;

• search for architectural primitives in other views, such asthe module view;

• offer the validation tool as a ready-to-use Eclipse plug-inthat can be used in cooperation with other model-driven

development plug-ins.
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