A Catalog of Architectural Primitives for Modeling Archite ctural Patterns

Uwe Zdun Paris Avgeriou
Distributed Systems Group Department of Computer Science

Vienna University of Technology University of Groningen
Austria The Netherlands
zdun@infosys.tuwien.ac.at paris@cs.rug.nl
Abstract

Architectural patterns are a fundamental aspect of the iecting process and subsequently the architectural docu-
mentation. Unfortunately, there is only poor support fordmling architectural patterns for two reasons. First, gatis
describe recurring design solutions and hence do not direnfitch the elements in modeling languages. Second, they
support an inherent variability in the solution space thethard to model using a single modeling solution. This pa-
per proposes to address this problem by finding and reprasgmirchitectural primitives: fundamental, formalized
modeling elements in representing patterns. In particuwee examined architectural patterns from the components
and connectors architectural view, and we discovered néegrprimitive abstractions among the patterns, that also
demonstrate a degree of variability for each pattern. Wedud®IL 2 as the language for representing these primi-
tive abstractions as extensions of the standard UML elesnéltie contribution of this approach is that we provide a
generic and extensible concept for modeling architectpetterns by means of architectural primitives. Also, we can

demonstrate a first set of primitives that participate inegal’well-known architectural patterns.

1 Motivation

The software architecture of a system needs to be rigoraistymented in order to profit from the advantages of
architecture-centric development and evolution. One efrtiost significant aspects of documenting software archi-
tectures is the representation of architectural pattesiso (known as architectural stylgs In general, a pattern is a
problem-solution pair in a given context. A pattern doesomy document ‘how’ a solution solves a problem but also
‘why’ itis solved, i.e., the rationale behind this partiaukolution. Architectural patterns help to document destural

design decisions, facilitate communication between $ialkiers through a common vocabulary, and assist in angyzin

In this paper we do not distinguish between the terms ‘agchitral pattern’ (used e.g. in [6, 39, 44]) and ‘architeatstyle’ (used e.g. in
[42]). For the sake of simplicity, we shall use only the tearchitectural pattern’ for the rest of this paper. Their coomalities and differences
are elaborated in [2].

the quality attributes of a software system.

There are three major approaches, that have been used so faodeling architectural patterns:
1. Architecture Description Languages (ADLS), which ainegdresenting software architectures in general [27];

2. the Unified Modeling Language which is a generic modelamggliage but can also be used to describe software
architectures [37, 26, 4];

3. some formal or semi-formal approaches for the formalirapf pattern specifications [8, 29, 43, 25].

Unfortunately, none of these approaches succeeds inieéflsctnodeling architectural patterns for the followingare

sons:

e The approaches are too limited in the abstractions theygsepo grasp the rich concepts found in patterns.
UML, to start with, falls short in offering certain standacdncepts of architectural patterns [1, 26, 20]. For
example in the ‘pipes and filters’ architectural pattern,[8R a pipe does not match the UML connector, since
the latter cannot have an associated state or even interfeoethermore there are no elements in UML to model
architectural configurations such as a virtual machine,[d2jlackboard [3], or a C2 topology [26]. In contrast,
many ADLs inherently support a few specific patterns such 2426] or pipes and filterd42, 6], or can be
extended to represent patterns (e.g. using style repiesitf30]). But except for these few patterns, ADLs do not
support the rest of the patterns. Similarly, the third afeeationed approach is basically concerned with just a

handful of design patterns from [11].

e The approaches do not deal with the inherent variability rohiéectural patterns. This is not restricted to ar-
chitectural patterns but it is a general problem of spesgypatterns because each pattern covers not only one
(parametric) solution, but informally describes a whol&igon space for a recurring design problem. It is ob-
vious in UML and ADLs, and even more so in the third aforemamid approach that deals with the formal
specification of design patterns [8, 29, 43, 25]: such mettard capable of specifying one particular solution
in the solution space of the pattern, but fail to specify thle solution space covered by the informal pattern

description.

We propose to remedy the problem of modeling architectuaibpns through identifying and representing a number
of ‘architectural primitives’ that can act as the partigifgin the solution that patterns convey. We use the terrmipri
tive’ because they are the fundamental modeling elememepiesenting a pattern, and they are the smallest units that
makes sense at the architectural level of abstraction ¢perialized components, connectors, ports, interfacesy.
approach relies on the assumption that architecturalmpattmntain a number of architectural primitives that aire
ring participants in several other patterns [28]. Thesmjtives are common among the different patterns even if thei
semantics demonstrate slight variations from pattern ttepa We have ‘mined’ a humber of architectural patterns
and discovered several architectural primitives that wiebe are key concepts in modeling architectural patters a

subsequently software architectures in general. We pecwichodeling abstraction for each type of elicited archibedt

primitive, and then demonstrate that it is possible to madlehitectural patterns explicitly, precisely, and initety,
through a case study. It is noted that the set of primitivemtified in this paper is not exhaustive, but does contain
some of the most common primitives found in popular archited patterns.

Our general approach to define architectural primitiveste&le advantage of any modeling language, as long as it
can be extended to provide the syntax and semantics of timitiggs. We have chosen the Unified Modeling Language
for this purpose, because it has become the ‘lingua frantabfiware design and is vastly supported by tools. We
have specified an extension of UML 2.0 metaclasses for eadited| primitive, using the standard UML extension
mechanisms: stereotypes, tag definitions, and constralfegshave also used the Object Constraint Language (OCL) to
formalize the constraints and provide more precise sewmnfithe primitives. The result is a UML profile that can be
imported in modeling tools; in our case we specified the profilEclipse/Octopus. We have also developed a model
validator as a prototype implementation for supporting edattiven development using our concepts.

The rest of this paper is structured as follows: In Sectiorezyive an overview of the proposed approach. Section 3
presents the UML extension mechanism of ‘Profiles’ and thsasuof the UML 2.0 metamodel that was used for spec-
ifying our Profile. Section 4 elaborates on the results ofahproach by demonstrating several architectural primstiv
that were mined from some of the most popular architectuatiepns. Section 5 demonstrates the approach through
a case study, while Section 6 further presents a prototypliethat validates the proposed architectural primitiveg in
model-driven development context. Finally, Section 8 asses related work in this field, and Section 9 sums up with

conclusions and future work.
2 The proposed approach

The underlying idea behind our approach is that the variocisitectural patterns share some common architectural
‘primitives’. Thus we use the patterns as a foundation toitelhe recurring architectural primitives for a particula

architectural view. Specifically, we propose the followegproach:

1. Analyze the architectural patterns of a given architedtview to discover common participants in their solutions
These should be recurring and probably varying instancteafame architectural concept, e.g. a special-purpose
component or connector. Patterns (a) capture the var@atidra solution and (b) describe the solution in a
realization-independent way. For instance, pattern degmns contain pattern variants, implementation hints,
design alternatives, consequences, forces that goverutiosg and so forth. These are all sources for eliciting

the architectural primitives.

2. Model these architectural primitives as extensions oflUNirst we find the UML metaclasses that are a close
semantic match to the primitives, e.g. components, conredhterfaces etc. Then define the semantics of these
primitives more precisely with the help of OCL in order to ifdaate the unambiguous and consistent modeling

of patterns.

3. Use the derived UML extensions of primitives to model grattinstances in real case studies and validate the

effectiveness of the primitive to unambiguously model dettural patterns (e.g. using tool support).

3

Itis noted that the pool of architectural patterns, we useglitit primitives, includes some patterns that are déscti
as ‘design patterns’ in the literature. In general it is hrdiraw the line between architectural patterns and design
patterns. In fact, it depends heavily on the viewpoint ofdlbsigner or architect whether a specific pattern is categgri
as an architectural pattern or a design pattern. Considéngtance, a classical design pattern, thieERPRETER[11].
The description in [11] presents it as a concrete designaljniel Yet, instances of the pattern are often seen as aatentr
elements in the architecture of software systems, becaus€TarRPRETERIS a central, externally visible component
—i.e. the pattern is treated like an architectural patteae (42]). Thus, in this paper, we refer to such design patter
as architectural patterns, considering them at an ar¢hitclevel of abstraction. However this has resulted in few
object-oriented concepts being used in the primitives, @gposition and aggregation cascade use object-oriented

inheritance.
3 Extending UML to represent the primitives
3.1 A UML profile

According to the UML standard there are two ways to extendahguage: thdard extensioproduces an extension
of the language meta-model, i.e., a new member of the UMLIfaofilanguages is specified; tlseft extensiomesults
in a profile, which is a set of stereotypes, tag definitions, and comitréihat are based on existing UML elements with
some extra semantics according to a specific domain. In ¢odeodel the architectural primitives we chose Huodt

extension mechanism of UML, i.e., the definition of a profie drchitectural primitives for the following reasons:

e A UML profile is good enough for this task since there are alyeexisting UML metaclasses that are semantically
a close match to the architectural primitives. Thereforecare simply extend the semantics of these metaclasses

rather than having to define completely new metaclasses.

e The users of this profile will feel comfortable by using stagges that are extensions of existing metaclasses

rather than using concepts they are not familiar with. Tlaerimg curve can thus be minimized.

e A profile is still valid, standard UML, so we can count on sugigiom the existing UML tools, rather than offer

proprietary UML tools which are rarely used in practice.

We also use OCL to define the necessary constraints for theediesitereotypes to formalize their semantics. OCL
constraints are the primary mechanism for traversing UMLdeis and specifying precise semantics on metaclasses

and stereotypes.
3.2 The UML 2 metamodel

This section briefly presents part of the existing UML 2.0 ameddel for architectural description, and in particular
those metaclasses that we have extended to model the atafatgrimitives. It is noted that, according to the softeva

architecture community, an architectural descriptionamprised of multiple views [7, 18, 19, 23]. In this paper we

focus on the view that is considered to contain the mostfigmit architectural information, which is tll@mponent-
and-connectowriew [7]. This view deals with the components, which are sioit runtime computation or data-storage,
and the connectors which are the interaction mechanismeeketcomponents [34, 7]. We have focused on this view
because the patterns that we have mined concern mainly igvis \However other architectural patterns from other
views, such as the ‘logical’ or ‘module’ view, can also bersbad for primitives, as will be stated in Section 9.

The following UML 2.0 metaclasses are extended to modelictural primitives in the component and connector

view, mainly taken from the composite structures and coreptspackages:

1. Componentsre specializations of classes and therefore have atgband operations, but are also associated
with provided and required interfaces. Finally componentterit indirectly from EncapsulatedClassifier and

thus may own ports that formalize their interactions points

2. Interfacesserve as contracts that components must comply with. Anfaue is either grovided interface
that describes a set of functionalities offered by a compgner arequired interfacethat describes a set of

functionalities that a component expects from its envirentn

3. Ports specify a distinct interaction point between the comportbat owns the port and its environment, or
between the component and its internal parts (propertiesits may specify required and provided interfaces of

the component that owns them.

4. Connectorsare eitherassembly connectothat connect the required interface of one component to tnged

interface of a second, alelegation connectorthat link the ports of a component to its internal parts.

5. Packagesare mechanisms for grouping model elements either by owtliam or importing them. They also

provide a namespace for uniquely identifying the elementhbir name.

We have also used the following UML metaclasses in order fwess the OCL constraints while traversing the
UML metamodel: AggregationKind, Association, ClassifiégnnectableElement, ConnectorEnd, EncapsulatedClas-
sifier, Feature, RedefinableElement, Namespace, NamedBteRackageableElement, Property, RedefinableElement,
VisibilityKind.

It is noted that UML 2.0 provides the means to describe degaiterns through the Collaboration metaclass, as an
interaction between instances of components and conseckiowever we do not use this metaclass since it is also
bounded by the limitations for modeling patterns discussegkction 1.

The specification of the primitives was implemented with lileép of the Octopus plug-in (http://www.klasse.nl/) in
the Eclipse environment (http://www.eclipse.org/). Wesh this tool for specifying the primitives because Eclipse
open-source and widely used, and also because the Octamnptan statically check OCL 2.0 constraints. For all
OCL constraints we assume the standard UML 2.0 role namebdaxtensions: “base$X”, where $X is the extended
metaclass, and “extension$Y”, where 3$Y is the stereotypaenaAdditionally, we have also implemented our own

model validator tool to support model-driven developmesihg our concepts (see Section 6 for details).

Figure 1 illustrates the part of the existing UML metamodiettcontains the aforementioned metaclasses and shows
their relationships, especially for traversing OCL coastts. The figure has been adapted from the UML 2 standard

[32] and, for simplicity, some details have been omitted.

v

. Classifier Packageable
-required Element
B e name:String
Component * Interface
-provided parents() -ownedMember’|' *
* K * | -importedMember
-required| * = | -provided /\ «| + featuringClassifier
N . -owningPackage & 0..1
0..1 Pack
*>— — Port ackage
. . L + feature *
Association |-owningAssociation 1
-ownedPort *
Feature
0..1
0.1|+type ° 0..1 (Namespace
. + association
Encapsulated _W
Classifier
Connector Redefinable
Element NamedElement
1
= Class +class visibility:
-end 2." visibilityKind
0..1 name: String
ConnectorEnd
p «enumeration»
-en * -ownedEnd Property «enumeratl_on» V|$|_b|||ty
* « +ownedAttribute Aggregation Kind
-role 0..1 2." . Kind
+ memberEnd :gg:ggzgggkind public
Connectable f * none prgtected
Element . oA shared private
+ opposite - composite package

Figure 1. Part of the UML 2.0 metamodel that was used for the st ereotype definition

4 Modeling Architectural Primitives

In this section, we provide more details about our approdemonstrating the elicitation of architectural primitve
from general purpose architectural patterns, and modétiag with a UML 2.0 profile. We first show the template for

documenting the architectural primitives and continuehwit elaborate presentation of nine primitives.
4.1 Template for architectural primitive documentation

We propose a simple template for documenting the eliciteHigactural primitives, consisting of four elements:

e Introduction A brief textual description and discussion of the architea primitive.

e Known uses in pattern®\ short description of the patterns in which the architeaityrimitive participates.

6

e Modeling issuesAn explanation why this primitive cannot be modeled withretard UML and thus needs to be

supported with a UML extension.

e Modeling solution A description of UML 2.0 extensions, containing stere@yppossibly with tag definitions,

and constraints.
4.2 Callback

Introduction:
‘Callback’ is described as follows:

A callback denotes an invocation to a componBrihat is stored as an invocation reference in a component
A. The callback invocation is executed later, upon a specsigdf runtime events, usually implemented as
methods. Between two componemtsand B, a set of callbacks can be defined, also usually implemented
as methods. Note that in this descriptidnmight be equal taB. In essence, the callbacks between two
componentsd and B are a set of tuples. Each tuple consists of one methethod A, € Methods 4 that

represents a trigger event and a methedhodB, € Methodsp that is a callback, like:

Callbacksap = {(methodAs, methodBy),
(method Ay, methodBs),
(methodAs, methodBs),

)

There are two main variants of callbacks:

e The runtime events are ordinary method invocations, fietsesges, or other events in the program flow. (Note

that these are also called ‘joinpoints’ in aspect-oriemegyramming [22]).
e The runtime events are ‘real events’ in an event-based anogring system, triggered by some event loop.

With regard to modeling the callback, the two variants masadifference: Structurally, both kinds of callbacks are
realized in the same way. Sometimes a callback has only aoeiated runtime event (e.g. a set with only one tuple),

sometimes it is raised by a number of different runtime event

Known uses in patterns:

¢ IntheoBSERVERpattern [11] an observer component is notified by one or malogests about state changes and

other events. Usually the notification is realized as a aaltb

e MODEL-VIEW-CONTROLLER[6] uses callbacks to inform views about changes in the madeth like the logic

behind theoBSERVERpattern.

A REACTOR[39] is a special kind obBsERVERthat is informed about network events using callbacks.

e In the EVENT SYSTEM pattern [42] components may broadcast a number of eventsth&ncomponent may
register an interest in an event by associating a callba¢k thie event. When an event occurs, theENT

sysTEM dispatches all the callbacks associated with the event.

e There are various patterns describing interception achites, such asiTERCEPTOR[39], MESSAGE INTER
CEPTOR[45], andINVOCATION INTERCEPTOR([44]. Interceptors are invoked as extensions to some otiver i
cation; thus they must be invoked, when this other invocatizdkes place. Usually, the interceptors are triggered

by callback events like ‘invocation arrived’ or ‘invocatidinished'.

e VISITORS[11] are used to define an interpretation mechanism apart fhe structure to be interpreted. They are

usually called back, by the elements to be visited.

Modeling issues:

A major problem in modeling these patterns in UML is that,retleough the callback-structure is a key participant in
the patterns, it cannot be explicitly modeled and made Mdilb UML diagrams, such as component diagrams, class
diagrams, or sequence diagrams. There are only some ‘tirstsimight imply the presence of a callback but there is

much ambiguity that could lead to false detections of calisa Consider the following examples of such ‘hints’:

e A structural indicator for a callback that we could includelWML's structural diagrams is to have a class or a
componentA store a reference to a method Bf Using this indicator, however, is problematic becauseethe
is no unambiguous indication whether the method referendasténded for being used as a callback or not. To
make matters worse, invocation references are not nedgswalized by using a reference to a method. Many
programming languages don't require a reference to thdaell operation at all. For instance, in Java it is
sufficient to have the operation name stored in a string tdobeta look-up the operation using reflection. When
the patterncoMmMAND [11] is used, the callback can be encapsulated indb®MAND. In both cases, the

intended use of these structures as callbacks is not gingsible in a UML model.

e Another structural hint for callbacks is their return type event-driven applications, the return type of a callback
is usuallyvoi d, because the callback is raised by an event, and thus thackltannot return anything. However,
this is not always the case: For instance, an interceptenoftturns an error state to indicate to the interceptor
architecture, whether the interceptor invocation was essftil or not. Also, in non-event-driven applications, for
instance, in the/ISITOR andOBSERVERpatterns, this rule-of-thumb does not hold: Here, the eallmay well

be used with a return value.

¢ In some cases, where the callback can be modeled as simplsivecinvocations (as in theiSITOR pattern),
we can get around this problem by using an accompanying segudiagram that shows the recursive callback

(e.g. classA calls B and thenB calls A back). However, there are two basic problems with this aggiio

— No semantic annotatiorEven though the sequence diagram has a callback-like steyj¢he same kind of

sequence diagram might be used for a ‘normal’ invocatiomgybiack and forth, which is not a callback.

— Temporal decouplingCallbacks are usually stored until an event happens, oftechrtater in time, and
then they are invoked upon that event. This cannot be easpictéd with a sequence diagram because
of the many invocations that happen between performing #fileack and the event that caused it to be

invoked.

In summary, UML elements can be used as an indicator thatllzacélis used, but the callback structure cannot
be identified unambiguously in UML's structural and intdrae diagrams. Thus, the runtime behavior and interaction

semantics of the callback-structure cannot be properlyateabin standard UML.

«stereotype»
IEvent
«metaclass»
Interface
«stereotype»
«stereotype» required provided Callback
ICallback
/
«stereotype»
EventPort «metaclass»
Connector
«metaclass»
Port
«stereotype»
CallbackPort

Figure 2. Stereotypes for modeling Callback

Modeling solution:

To capture the semantics of callbacks properly in UML an#leathe above problems, we propose five new stereotypes:

e <IEvents: A stereotype that extends the ‘Interface’ metaclass anthits a number of methods that are exclu-

sively trigger events for a callback.

e <ICallback>: A stereotype that extends the ‘Interface’ metaclass amiaats a number of methods that serve

exclusively as callback methods.

e <EventPorts>: A stereotype that extends the ‘Port’ metaclass and is tiyed/o interfaces: IEvent as@ovided

interface and ICallback asraquiredinterface. This can be formalized using two OCL constraiot€EventPort:

-- An event port is typed by IEvent as a

-- provided interface
inv: self.basePort.required->size()=1
and sel f. basePort.required->forAll(
i:Core::Interface|
| Cal | back. basel nterface->exists(j|j=i))

-- And: An event port is typed by ICallback
-- as a required interface.
inv: self.basePort. provi ded->size()=1
and sel f. basePort. provi ded->forAl | (
i:Core::Interface|
| Event . basel nterface->exists(j|j=i))

e «CallbackPorts: A stereotype that extends the ‘Port’ metaclass and is tygetivo interfaces: ICallback as
a providedinterface and IEvent asraquiredinterface. This can be formalized using two OCL constrafats
CallbackPort:

-- A callback port is typed by ICallback as a
-- provided interface
inv: self.basePort.required->size()=1
and sel f. basePort.required->forAll(
i:Core::Interface|

| Event . basel nterface->exists(j|]j=i))

-- And: A callback port is typed by | Event
-- as a required interface.
inv: self.basePort.required->size()=1
and sel f. basePort.required->forAll(
i:Core::Interface|
| Cal | back. basel nterface->exists(j|j=i))

e «Callbacks: A stereotype that extends the ‘Connector’ metaclass aerdifsggs the semantics of a callback
connector, which connects an EventPort of a component taehing CallbackPort of another component. This
can be formalized using two OCL constraints:

-- A Cal |l back connector has only two ends.

inv: self.baseConnector.end->size()=2

-- A Cal |l back connector connects an Event Port

-- of a conponent to a matching Call backPort of
-- anot her conponent. An EventPort matches a

-- Call backPort if the provided | Event interface
-- of the forner matches the required | Event

10

-- interface of the latter, and the required
-- ICallback interface of the forner matches
-- the provided | Call back interface of the latter:
inv: self.baseConnector.end->forAll
el, e2: Core: : Connect or End| el<>e2 i npli es(
(el.rol e->not Empty() and
e2.rol e->not Enpty()) and
(if EventPort.basePort->exists(p|
p. ocl AsType(Cor e: : Connect abl eEl ement) =
el.role)
t hen
(Cal | backPort . basePort ->exi sts(p|
p. ocl AsType(Cor e: : Connect abl eEl enent) =
e2.role)
and
el.rol e.ocl AsType(Core::Port).required=
e2.rol e. ocl AsType(Core:: Port). provi ded
and
el.rol e. ocl AsType(Core:: Port). provi ded=
e2.rol e. ocl AsType(Core:: Port).required)
el se
Cal | backPort . basePort - >exi st s(p|
p. ocl AsType(Cor e: : Connect abl eEl enent) =
el.role)
endif)))

Figure 2 illustrates these stereotypes according to the @MLProfiles package, while Figure 3 depicts the notation
used for the stereotypes. All stereotypes use the notafidheometaclass they extend adorned by the name of the
stereotype in guillemets.

«|Event»

«|Event» ObserveEvent

ObserveEvent

2] ll
A <BventPort> GallbackPort» B
«|Callback>» «|Callback>»
update update
z] «Callback» z]
A B
«EventPort» «CallbackPort»
e C
Figure 3. The notation of the stereotypes in Callback modeli ng

11

4.3 Indirection

Introduction:

Indirection happens when one or more related “proxy” congms receive a message on behalf of one or more “target
components and forward the message to these “targets"aperditer some computation has taken place. Afterward
the result is sent back, again through the “proxy” compasnent

Indirection can take place at small scale, with only onentliene proxy, and one target component. It can also
involve multiple components playing the role of any of theseticipants. For instance, a whole layer or sub-system,

consisting of multiple components and connectors, migfitéct invocations to other components.

Known uses in patterns:

e An INDIRECTION LAYER [45] is a general pattern describing aver [6] that redirects all invocations from one

system context into another.
e OrdinaryLAYERS [6] redirect invocations from layer X to the layer beneathl X

e A VIRTUAL MACHINE [42] redirects invocations from a byte-code layer into ampliementation layer for the

commands of the byte-code.

e An INTERPRETER[42, 11] redirects invocations from a script (interpretamie) layer into an implementation

layer for the commands of the script (interpreted code).
e An ADAPTER [11] redirects invocations from one interface to another.
e FACADE [11] shields a subsystem and redirects invocations intbstilasystem.
e A PROXY [11] is a placeholder of another object and redirects intiona to that object.
e A CLIENT PROXY [44] is a speciaPROXY in the distributed system context.
e A COMPONENT WRAPPER47] wraps a component and redirects invocations to thatpoorant.
e WRAPPER FACADE[39] wraps a procedural library, and redirects invocatitmthat library.

A MESSAGE REDIRECTOHR45] is a component whose task it is to redirect (dispatcdations for a subsystem.

Modeling issues:

The indirection structure is not explicit in structural oghavioral UML diagrams. The causes for this problem are
similar to those explained for the Callback primitive besmagain two consecutive invocations cannot be semanticall
aligned. That is, the semantics are missing: is it an orglicallaboration or an indirection?

There are similar structural and behavioral indicatorsnaGallback, that cause similar problems. We do not repeat

these here in full detail but we provide a brief description:

12

e In an Indirection, clients store invocation referencesnuxes, which store references to targets. However, this
is a vague hint because an Indirection’s invocation refegsrcannot be distinguished from ordinary references.

That is, it cannot be detected from the structure that inttora are passed along the references.

e In some Indirections a standardized return type is used ®@obthe passed parameters is a context object for the

Indirection. However, these are both occasionally useditan hard to detect them automatically.

e As in callback, sequence diagrams may help, but are ambéghecause again there is no semantic annotation

and it is difficult to cope with temporal decoupling as well.

«stereotype»
lindirector
«metaclass»
Interface
«stereotype»
«stereotype» required provided Indirection
ITarget
A4
«stereotype»
IndirectionPort «metaclass»
Connector
«metaclass»

Port

«stereotype»
IndirectionTargetPort

\/

Figure 4. Stereotypes for modeling Indirection

Modeling solution:

To capture the semantics of indirections properly in UML aackle the above problems, we propose the following

new stereotypes and constraints:

e <lIndirector >: A stereotype that extends the Interface metaclass angrdgss the proxy component’s interface

to the Indirection client.

e <ITarget>: A stereotype that extends the Interface metaclass angragss the proxy component’s interface to

the Indirection target.

e <IndirectionTargetPort-: A stereotype that extends the Port metaclass. dImgirectionTargetPort> is at-
tached to the target component, and providesAmrget> interface, in order to accept requests from the proxy

component. This can be formalized as follows:

13

-- An IndirectionTargetPort provides an | Target interface
inv: self.basePort. provi ded->size()=1 and
sel f. basePort. provi ded->forAl | (
i:Core::Interface|
| Tar get . basel nterface->exists(j|j=i))

<IndirectionPort>: A stereotype that extends the Port metaclass. dlhdirectionPorts is attached to a proxy
component, requires anlTargets interface and provides aallndirector > interface. The client of the target
component can connect via thdindirector > interface to the proxy component, which forwards the retjues
to the target component through kdTargets interface. This can be expressed in OCL with the following

constraints:

-- The IndirectionPort requires an | Target interface
inv: self.basePort.required->size()=1 and
sel f. basePort.required->forAll(
i:Core::Interface|

| Tar get . basel nterface->exists(j|j=i))

-- The IndirectionPort provides an lIndirector interface
inv: self.basePort. provi ded->size()=1 and
sel f. basePort. provi ded->forAl | (
i:Core::Interface|
Il ndirector. baselnterface->exists(j|j=i))

<Indirection>: A stereotype that extends the Connector metaclass. lteid tesconnect two ports which are

stereotyped as IndirectionPort and IndirectionTargetPldne connector is constrained as follows:

-- An Indirection connector has only two ends

inv: self.baseConnector.end->size()=2

-- An Indirection connector connects an
-- IndirectionPort of a proxy component to a
-- matching IndirectionTargetPort of the target
-- conponent. An IndirectionPort matches an
-- IndirectionTargetPort if the provided | Target
-- interface of the latter matches the required
-- | Target interface of the forner.
inv: self.baseConnector.end->forAll(
el, e2: Core: : Connect or End| el<>e2 i npli es(
(el.role->notEmpty() and e2.rol e->not Enpty())
and
(if IndirectionPort. basePort->exists(p
p. ocl AsType(Cor e: : Connect abl eEl enent) =el. r ol e)
t hen

(I'ndirectionTarget Port. basePort - >exi sts(p

14

p. ocl AsType(Cor e: : Connect abl eEl enent) =e2. rol e)

and

el.rol e.ocl AsType(Core::Port).required=

e2.rol e. ocl AsType(Core::Port). provi ded

and

el.rol e. ocl AsType(Core:: Port). provi ded=

e2.rol e. ocl AsType(Core:: Port).required)
el se

I ndirectionTarget Port. basePort->exi sts(p|
p. ocl AsType(Cor e: : Connect abl eEl enent) =el. rol e)

endif)))

«|Indirector»
IndirectedOp

A «IndirectionPort» «IndirectionTargetPort» B
ip
«|Target» «|Target»
targetOp targetOp
Client
1
«lIndirector»
IndirectedOp
z] «Indirection» z]
A B
«IndirectionPort» «IndirectionTargetPort»
ip itp

Figure 5. The notation of the stereotypes in Indirection mod eling

Figure 4 illustrates these stereotypes according to the BMILProfiles package, while Figure 5 depicts the notation

used for the stereotypes.
4.4 Grouping

Introduction:

In several design situations, a number of components bedentantically together, for instance because they fulfill a
collective task. In some of these situations, designers teamodel this concern explicitly using the object-orighte
“part-of” (or aggregation) relationship like the ones offd by UML. In such aggregation relationships, there is ame (
more) components that is (are) a “whole” which has (haveyadéner components as “parts”.

However, there are also other situations in which the whohaade up only from the parts, and there is no notion of

a component that explicitly represents the whole. The Grmuprimitive deals with such situations: A group member

15

is part of a whole, and the whole is virtual. That is, thereascomponent in the software architecture for representing

the group as a whole, but it is made only of its parts.

Known uses in patterns:

e The subsystem shielded byracADE [11] is a group of those components belonging to the subisyste

TheLAYERS pattern [6] divides the system into logical layers, eacthef is a ‘virtual’ group of components.

The components of BROKER[6] architecture are a group of components working on theestask.

An INDIRECTION LAYER [45] redirects invocations from one group of components arother.

A VIRTUAL MACHINE [42] redirects invocations into a group of implementatiagdr components.

An INTERPRETER[42, 11] redirects script invocations into a group of impkamation components.

A MESSAGE REDIRECTORA45] dispatches invocations into a group of componentsftirat a sub-system.

A BLACKBOARD [6, 42] is accessed and modified by a group of Knowledge Seurce

A MICROKERNEL [6] offers services by groups of internals and external sexv

TheREFLECTION pattern [6] allows a group of application-logic componetsjuery a group of meta-objects in

order for the former to abstract their structural and bebi@tiaspects.

A PEERTO-PEER[7] system groups peer components and relates differenfogravith each other.

ThePUBLISH-SUBSCRIBEpattern [6, 7] offers asynchronous notification to a grouphdependent subscribers.

Modeling issues:

UML's aggregation (shared aggregation) or compositionm(gosite aggregation) relationships can be used to model
part-whole relationships. According to [32] these relasibips have the following semantics: Composite aggregégio

a strong form of aggregation that requires a part instandadheded in at most one composite at a time. If a composite
is deleted, all of its parts are normally deleted with it. ¢fse semantics of shared aggregation varies by application
area and modeler. In both cases, a component is used in #tienship as an explicit whole.

But in Grouping, the whole does not really exist as a compgrieis only the sum of its parts. For instance, a
subsystem contains subsystem elements, but usually geceexplicit component for representing the subsystem as a
whole. Hence, both UML's aggregation or composition, maslightly different situation, which expresses different
semantics than Grouping.

Alternatively, a UML package can be used to depict such amrout a package may own the elements, which means
that a destruction of the package would also destroy theeazitsn On the contrary we need a more loose relationship

between the group and its members.

16

The aggregation relationships and packages alike caninosliiements other than components. Hence, it is not
possible to ensure in UML that only a virtual group of compatises modeled. Modelers can add other types of UML

elements to the group.

Indirect inheritance, since N
Component is a Class, who is a
Classifier, who is a Type, who is a
PackageableElement

/ «metaclass» importedMember
«metaclass» ; portedMembe «metaclass»
] Packageable
Component Namespace
Element
«stereotype» «metaclass»
Group o Package

Figure 6. Stereotypes for modeling Grouping

Modeling solution:

We add a simple extension to the UML meta-model for modeliogigs: a stereotypeGroup=>, extending the Package
metaclass, is used to model a group, providing a namespatieefdifferent group member components. We constrain
the Group stereotype, so that only components can be its emspdnd these components are only imported and not
owned by the group.

We formalize grouping in OCL using the following constraint

-- A G oup does not own any nenbers

inv: sel f.basePackage. ownedMenber - >si ze() =0

-- Al the inported nmenbers of a group are Conponents
inv: sel f.basePackage. i nportedMenber->forAll (
ocl I sTypeO (Cor e: : Conponent))

Figure 6 illustrates these stereotypes according to the 2MLProfiles package, while Figure 7 depicts the notation

used for the stereotypes.
4.5 Layering

Introduction:

Layered structures are ubiquitous in software architestuwhere groups of components are ordered and invocations
between the different groups need to respect certain resinstance, the most common rule is that an intermediate

layer cannot be bypassed during an invocation from a highyerlto a lower layer. As in the Grouping primitive, a

17

«Group» «Group»
Group1 Group2
8] 2] g] 2]
A B c D
Figure 7. The notation of the stereotypes in Grouping modeli ng

layered component structure should only contain compaen@mid not other UML elements). Also, a layer is typically
a virtual entity, i.e., in many cases it only exists to indéca conceptual abstraction in the system.

Hence, Layering builds upon the Grouping primitive andHertconstrains it. Specifically, it entails that group
members from layeX may call into layerX — 1 and components outside the layers, but not into layer 2 and

below.

Known uses in patterns:

e TheLAYERS [6] andLAYERED SYSTEM [42] patterns described layered structures.

e An OBJECT SYSTEM LAYER[47] introduces a layer hosting a object system as an exterdfithe language in

which theOBJECT SYSTEM LAYERIS implemented.
e INDIRECTION LAYER [45] describes AYERS [6] that redirects all invocations in one system context swother.
e A MICROKERNEL [6] is structured in three layers: external servers, therokiernel, and internal servers.

e The PRESENTATIONABSTRACTION-CONTROL pattern also enforces layers: a top layer with one agenérakv
intermediate layers with numerous agents, and one bottpen Vehich contains the ‘leaves’ agents of the tree-like

hierarchy.

Modeling issues:

The problems in modeling Layering are similar to Groupingenie, for the same reasons as in Grouping, the UML
aggregation and composition relationships, as well asnargiUML package structures, are not suitable to model all
concerns of Layering. Additionally, we need to ensure tlaisdetween components residing in different layers do not

violate the aforementioned constraints. In contrast tagsp one layer member cannot be part of multiple layers.

18

Indirect inheritance, since Component is a Class,
who is a Classifier, who is a Type, who is a
PackageableElement

«metaclass»
Namespace

Group

+layerNumber:Integer

y «metaclass» importedMember
metaclass» | ¢ ~ | packageable
Component
Element
«stereotype»
Layer «stereotype»

Figure 8. Stereotypes for modeling Layering

Modeling solution:

We introduce the<Layer> stereotype, which specializes th&roup> stereotype introduced above (which itself is an

extension of the Package metaclass). We also impose tha/ifiofj constraints:

e A component can only be member of one layer and not multiplerta

e Components who are members of layémay call their fellow components in layéf, as well as components

in layer X — 1 but not in other layers (e.g — 2 and below).

It is noted that there is no constraint about calling comptsé layerX -+ 1 or above, since this is a specific issue to

the pattern realization. Also, we introduce the tag debnitiayerNumber for Layers which represents the number of

«metaclass»
Package

the layer in the ordered structure of layers. The consaant formalized as follows:

-- A Layer nmenber can only be part of one
-- layer and not nultiple | ayers
i nv: sel f.basePackage->forAll (pl, p2: Core:: Package
pl<>p2 inplies
pl.i nport edMenber - >
intersection(p2.inportedMenber)->i senpty())

-- Conponents in Layer X may only call
-- conponents in the same Layer and Layer X-1
-- but not other Layers.
inv: self->forAll(I1,12:Layer|l1<>l2 inplies

if ((121.1ayerNunber-12.1ayerNunber). abs()>1)

t hen

not | 1. basePackage. ownedMenber - >f or Al | (
c: Cor e: : Conponent |
| 2. basePackage. ownedMenber - >exi st s(connects(c)))

19

el se
true
endi f)

To realize theconnect s definition used above, the Component metaclass of UML isebete as follows:

-- Check whet her a Conponent is connected
-- directly or indirectly to another conponent
-- through connectors
def: connects(target: Conmponent) : Bool ean =
if self.ownedPort. opposite.class->includes(target)
t hen
true
el se
if self.ownedPort. opposite.class->
exi sts(connects(target))

t hen
true
el se
fal se
endi f
endi f
«Layer» «Layer»
Application- Application-
specific general
{layerNumber=1} {layerNumber=2}
g] £] g] g]
A B (o] D
Figure 9. The notation of the stereotypes in Layering modeli ng

Figure 8 illustrates these stereotypes according to the BMILProfiles package, while Figure 9 depicts the notation

used for the stereotypes.

4.6 Aggregation Cascade

Introduction:

A comPOSITE[11] describes part-whole hierarchies where a composigcbls composed of numerous subparts. Both

composite and leaf components inherit from the same claskage treated uniformly by clients. For example a GUI

20

widget can call its parts to paint themselves, and they kall parts and so on. A cascade [9] isamPOSITEStructure
with (recursive) constraints of the form: “A compositecan only aggregate components of typeB only C, etc”.

Such interconnected or recursizg@®MPOSITE structures of components are in fact a common concern ircbbje
oriented systems. An Aggregation Cascade models thistisitidut it does not define the precise semantics of the
aggregation relationships between tt@mpPoOSITEStructures. Instead, these are to be defined by the applicddimain

and the architect.

Known uses in patterns:

e ThecompPosITE[11] pattern describes general composite structures. @unitive concerns especially design
situations with multiple composite structures that arericdnnected or recursive (and may have additional con-

straints).

e A CASCADE [9] is a cOMPOSITE structure with (recursive) constraints of the form: “A coosfie A can only

aggregate components of typk B only C, etc”.

e ORGANIZATION HIERARCHY [10] is an analysis pattern that requires both compositesttaimts and (recursive)
constraints of the form: “A composité can only aggregate components of typeB only C, etc”. Such analysis

patterns are frequently realized by component architestur

Modeling issues:

For this primitive, we could consider the UML Aggregatiorhieh is a special form of the UML Association. Because it
depicts a part/whole relationship, but the precise semsnfishared aggregation varies by application area andlerode
(see [32)]), itis the UML modeling element that matches thgrégation Cascade primitive concerns the closest.
Through Aggregation, a whole aggregates parts, and a pambtaontain its whole, but it is possible for a part to be
aggregated in multiple wholes. Thatis, links between hévias are possible, but not circular links. In our prinmatithe
composites call their parts recursively, and there arersdgel composition constraints. UML's aggregation, howgve

cannot perform such recursive calls or ‘cascading’ coirgsa

Modeling solution:

We constrain all components of the hierarchy, compositesleafs, to inherit from the same component type. Fur-
thermore we define a stereotypéggregationCascade as an extension of the stereotypkndirection, which itself
extends the Connector metaclass. An Aggregation Cascadeects a composite to its parts. It extends Indirection
since it forwards the recursive operations to clients. 8ihspecializes Indirection all the constraints from ledtion
are also valid here.

The Association that types the Connector is an Aggregatmmenforce that this is really a connector between a

composite and its parts. Since we introduce the aggregatdmeen two specific, connected components, and not

21

«stereotype»
Composition
Cascade

«stereotype»
Aggregation
Cascade

Y

«stereotype» «metaclass» +type «metaclass»
Indirection Connector Association

Figure 10. Stereotypes for modeling Aggregation and Compos ition Cascades

between a Composite and a generic interface (as icthePoSITEpattern), these aggregations are constrained so that
“A composite A can only aggregate components of typeB only C, etc”.

These constraints can be formalized as follows:
-- There is always an association that types
-- the Aggregati onCascade and that association
-- is an Aggregation. Note that the association
-- being an aggregation inplies that it is also
-- binary (only binary associations can be
-- aggregations)
inv: self.baseConnector.type->size()=1 and

sel f. baseConnect or. t ype. nenber End- >
exi st s(aggregation=

Cor e: : Aggr egat i onKi nd: : shar ed)

-- The association i s navigable both ways
-- (so the classes own the associ ati on ends)
inv: self.baseConnector.type. ownedEnd- >i sEmpty()

-- Conmponent A can only aggregate conponents
-- of the sane type B
inv: let conponentA: Core::C ass =
sel f. baseConnect or. t ype. nenber End- >
sel ect (aggregati on=
Cor e: : Aggr egat i onKi nd: : shared).
cl ass->any(true) in
conponent A. ownedAt t ri but e. opposi te.cl ass->
forAll (cl,c2: Core::C ass|
cl<>c2 inmplies cl.nane=c2. nane)

22

-- Al conponents of the hierarchy inherit
-- fromthe sane type
inv: self.baseConnector.type. nenber End. cl ass- >
forAll (cl,c2:Core::dass|cl<>c2 inplies
cl.parents()->intersection(c2. parents())->
not Enpt y())

«AggregationCascade»

Division

Operating Unit «AggregationCascade»

Department

«AggregationCascade»

Sales Office

Figure 11. Example of an aggregation cascade

Figure 10 illustrates these stereotypes according to the. @M Profiles package, while Figure 11 depicts the
notation used for the stereotype using an example: a modef@diag to theORGANIZATION HIERARCHY [10] analysis
pattern.

4.7 Composition Cascade

Introduction:

A Composition Cascade builds upon Aggregation Cascadefuatibr enforces that a component may not be part of
more than one composite at any time. In this case, compdsitesa lifecycle responsibility for their parts. That iseth
whole may take direct responsibility for creating or degitng the parts, or it may accept an already existing part, and
later pass it on to some other whole that assumes respatysibii it.

Again, these lifecycle operations need to be applied inarsdge fashion: e.g. a composite that is destroyed, destroy

its parts, which recursively destroy their parts, and so on.

23

Known uses in patterns:

Compoasition Cascade has the same known uses in patterngesgatjon CascadecOMPOSITE[11], CASCADE[9],
andORGANIZATION HIERARCHY [10]. The difference to the Aggregation Cascade known usésait the patterns are

realized using aggregation relationships that assumgytife responsibility for the parts.

Modeling issues:

We face the same modeling issues as in Aggregation Casaatdeemeed to model a more rigid aggregation relation-
ship: A component may not be part of more than one composényatime. The recursive operations must also include

the aforementioned lifecycle operations.

Modeling solution:

The modeling solution is to extend the Aggregation Cascaideitive and add additional constraints on thAggrega-
tion Cascade- Connector. We thus define thaCompositionCascade stereotype as an specialization-ofggrega-
tionCascade-. In this case the Association that types the connector ismapgosite Aggregation, so each part can only
be owned by one Composite.

We thus only have to add one more constraint. Of course, 8tefehe constraints from AggregationCascade hold
here.

-- The association that types the
-- ConpositionCascade is a ConpositeAggregation
i nv: sel f.baseConnector.type. nenber End- >exi st s(

aggr egat i on=Cor e: : Aggr egat i onKi nd: : conposi te)
Figure 10 illustrates these stereotypes according to thd. @M Profiles package, while Figure 12 depicts the

notation used for the stereotype.

Componenti
«CompositionCascade»
LT
Leaf1 Compositel
«CompositionCascade»
L
Leaf2 Composite2

Figure 12. Notation of a composition cascade

24

4.8 Shield

Introduction:

In certain cases, a set of components cannot or should natckssed directly by clients. Instead, another intermgdiar
component is to be used to access the set of components. fidrata behind this ‘shielding’ is usually information
hiding, separation of concerns, or the implementation ofreé tasks which should be respected by all the components
in the set.

The Shield primitive captures this design rationale witl thllowing properties: One or more components act as
‘shields’ for a set of components that form a subsystem. Nereal client should be allowed to access members of the

subsystem directly, but access should happen only thrcheget'shields’.

Known uses in patterns:

e The subsystem shielded byracADE [11] often should not be accessed directly, but only viafkeADE.

¢ In the LAYERS pattern [6], often layers should not get bypassed, i.e. idexe| layers should not be accessed
directly. Also, often layer elements should only be aco#gsée the layer’s interface. Hence, the layer’s interface

shields the layer's elements and other lower-level layers.
e TheINDIRECTION LAYER [45] shields the “target” component from the client.

e A MESSAGE REDIRECTOR45] is a component whose task it is to redirect (dispatcidations for a subsystem.

It should usually not get bypassed.
e IntheREFLECTION pattern [6], the meta-object protocol shields the metactsjfrom the client component.

e A VIRTUAL MACHINE [12] shields the platform details in order for the byte-cddéoe ported in different plat-

forms.

e An OBJECT SYSTEM LAYER[47] introduces a layer hosting a object system as an exterdfithe language in
which theOBJECT SYSTEM LAYERIs implemented. The objects in tleBJECT SYSTEM LAYERshould only be

accessed through tteBJECT SYSTEM LAYERS interface.

e Many remoting patterns [44] used in a layer@HOKER architecture shield a whole subsystem realizing their

functionality: The subsystem’s should not be accessedttiire

Modeling issues:

We need to model the members of the subsystem, as well as thpooents shielding the subsystem. Here, the
problems in modeling the Shield primitive are similar to Goping. Hence, for the same reasons as in Grouping, the
UML aggregation and composition relationships, as wellrdéary UML package structures, are not suitable to model

subsystems.

25

Additionally, we need to make sure that no invocation caralsghe ‘shield’ components. This concept also cannot
be represented in standard UML. For instance, if we modealtiwsystem as a Group following the Grouping primitive,
any element of the Group’s Package can be accessed frond@wsd is visible to clients. The imported package

member that are used to model Grouping offer no means totimaiaccess to a Group member.

«stereotype»
IShield
«stereotype» «stereotype»
Shield ShieldPort
y / /
«metaclass» «metaclass» «metaclass»
Interface Connector Port
provided
«metaclass» importedMember «stereotype»
Component Group

Figure 13. Stereotypes for modeling Shields

Modeling solution:

We utilize the Grouping primitive (or extensions of it suchlaayering), described above to model the membership of
the components in the ‘shielded’ group.

We introduce the stereotypdShields that extends the Interface metaclastShields is offered by the components
that shield the subsystem and provide access to the rest gfdlnp members. We use UML’s Visibility Kind abstraction
to make an IShield interface a public interface, and add ¢éimstraint that all IShield interfaces must be group members
This can be formalized in OCL as follows:

-- The visibility of the nethods of IShield are

-- declared public so that any client can access

-- it directly

inv: self.baselnterface.feature->forAll (f |
f.visibility = Core::VisibilityKind::public)

-- IShield interfaces are provided by a nmenber
-- of a group
inv: self.baselnterface->forAll(i]
Cor e: : Package. i mport edMenber . ocl AsType(Cor e: : Conponent) .

provi ded- >i ncl udes(i))

We also introduce the stereotyp&hields that extends the Connector metaclassc@hields connector can be used

26

by a client to connect to the “shield” component. Thus we trans<Shields> to match the provideekIShields in-
terface of a “shield” component to the matching requireeériigice of a client componenkShields is constrained as
follows:

-- A Shield Connector has only two ends

inv: sel f.baseConnector. end->size()=2

-- There is always an association that types

-- the Shield and that association is navigable
-- both ways so the classes own the association
-- ends (preconditions so that Property.opposite
-- is not enpty)

inv: self.baseConnector.type->size()=1

inv: self.baseConnector.type. ownedEnd- >i sEmpty()

-- A Shield Connector nmatches the provided
-- IShield interface of a shield conponent
-- to the matching required interface of a
-- client conponent.
inv: self.baseConnector.end->forAll(
el, e2: Core:: Connector End| el<>e2 inplies (
(el.role->notEmpty() and e2.rol e->not Enpty())
and
((el.rol e.ocl AsType(Core::Port).required=
e2.rol e. ocl AsType(Core: : Port). provi ded)
and
(el.role.ocl AsType(Core::Port).required->forAll(i|
I Shi el d. basel nterface->exists(j|j=i))))
or
((el.rol e.ocl AsType(Core::Port). provi ded=
e2.rol e. ocl AsType(Core:: Port).required)
and
el.rol e. ocl AsType(Core::Port).provided->forAll (i
| Shi el d. basel nterface->exists(j|j=i)))))

Finally, we introduce the stereotypeShieldPorts> that extends the Port metaclass. A port stereotypedSigeld-
Port> provides at least onelShield> interface. <ShieldPorts is also extended by a tag definition, shieldGroup, for
denoting the group which is shielde@ShieldPorts is constrained so that all components that connect to itsgrat
are not client components, should be members of the shielgirFinally, each such component that is not itself a
shield component for the same or other groups, should hapaekage” visibility for all its provided interfaces. That
means, the member components of the shielded group can erdgdessed by other members of the group or via the
<IShield> interfaces. These constraintse$hieldPorts> are formalized in OCL as follows:

-- A shield port provides one or nore interfaces,
-- and one of themis an IShield interface

27

inv: self.basePort. provi ded->si ze()>=1 and
sel f. basePort. provi ded->forAll (i: Core::Interface|
| Shi el d. basel nterface->exists(j|j=i))

-- Al conponents connected to this port who are
-- not client conmponents (require the sane | Shield
-- that self provides) are nmenbers of the sane
-- group and that group has the same nanme as the
-- tagged val ue "shi el dG oup"
inv: |let ShieldedConponents: Bag(Core:: Conponent) =
sel f. basePort . opposite->reject(p: Core::Port|
p. requi red->i ncl udes(sel f. basePort. provi ded)).
cl ass. ocl AsType(Cor e: : Conponent) in
Groupi ngs: : Group. basePackage- >one(i nport edMenber - >
i ncl udesAl | (Shi el dedConponents) and
nane = sel f.shi el dG oup)

and
-- for each such conponent ¢, who does not provide
-- an IShield interface, all provided interfaces
-- of c are of visibility "package"

Shi el dedConponent s. ownedPort - >rej ect (p: Core: : Port |

Shi el ds: : | Shi el d. basel nterface->
i ncl udesAl | (p. provided))->forAll
(p: Core::Port|p.provided.feature->forA |l (f |
f.visibility = Core::VisibilityKind:: package))

g]
A
2] —
— . °
«Group»
Group1
2] 2]
c «ShieldPort» Client

«|Shield» «IShield>»

Figure 14. The notation of the stereotypes in Shield modelin g (@)

Figure 13 illustrates these stereotypes according to the 2N Profiles package, while Figure 14 and Figure 15

depict the notation used for the stereotypes.

28

1
g] T 2]
Cc Client
«ShieldPort» «Shield»

Figure 15. The notation of the stereotypes in Shield modelin g2

4.9 Typing

Introduction:

In many situations, the typing abstraction provided by tegigh or programming language is not sufficient for modeling
domain types. For instance, the domain might require dyo@amconstrained type dependencies.

Consider for example a typical business situation: Theeediferent Party Types in a company (e.g. “manager”,
“implementation group”), and a particular business er(gty. John, group X) can change its Party Type at runtime: A
component of party type “manager” can become “senior maiageroup of type “test group” can become “imple-
mentation group”, and so forth. There are usually condisaam these type changes (e.g. a group cannot take a Party
Type that needs to be fulfilled by a person).

The only abstraction that can be used in these cases, isriBegassociation, but that does not include the semantics
of dynamic or constrained typing. A custom, dynamic typetaysfor Party Types needs to be implemented from
scratch by the developers. The Typing primitive introduttesnotions of a supertype connector and a type connector,

which can be used to define custom typing models using asiemsa

Known uses in patterns:

e The patternTYPE OBJECT[21] resolves the problem that a certain type relationskdp to be dynamic in a
statically typed, object-oriented language. By buildihg type relationship with the objects of the language,

instead of the static classes, dynamic typing is “simulatesihg delegation.

e A common example of an extension of thePeE OBJECTH21] pattern are analysis pattern that realizeNedwL-
EDGE LEVEL [10], a meta-level architecture for typing in the sensgexafe 0BJECT We give below the examples

of party types and accountability types.

e An OBJECT SYSTEM LAYER[47] introduces a layer hosting a object system as an exterdfithe language in
which theOBJECT SYSTEM LAYERIs implemented. Thus a whole custom type system is intradiugth in the

OBJECT SYSTEM LAYER

29

Modeling issues:

In UML2 the Generalization metaclass is used to model itduece. A generalization is a relationship between a more
general classifier and a more specific classifier. The spetifssifier inherits the features of the more general classifi
The InstanceSpecification metaclass is used to define a releteént that represents an instance of a Classifier. Those
metaclasses exactly match our concern to model a type syatahof course they can be extended to model custom
aspects of it. However, in UML there is no notion of changing@del derived from the UML2 meta-model at runtime.
For instance, a reclassification of an instance, or a chahtle supertype, are not supported by UML's Generalization
and InstanceSpecification metaclasses.

UML supports associations as relationships that are claget runtime. However, associations are only change-
able at the instance level. Typing, in contrast, requiresxyoress a relationship between Classifiers, or Classifiats a
their instances.

Additionally, the model cannot make explicit the fact thagging relation is modeled, because the relationship looks
like an ordinary association. The semantics of typing, agtype compliance rules, type conversion rules, inhargan

etc., are only implicit and not documented. Constraintdeftyping relation are also not documented as such.

«stereotype» «metaclass» | _ «stereotype»
SuperTypeConnector Connector TypeConnector

Figure 16. Stereotypes for modeling Typing

Modeling solution:

We introduce components that represent types at runtimeesdlsomponents for types form a meta-level or type-
level. Between any ordinary component and a type-level amapt, a Connector can be stereotyped as being a Type
Connector. This Connector depicts an instance-of relaskigm Between two elements of the type-level, a Connector
can be stereotyped as being a Super Type Connector. ThiseConmlepicts an inheritance relationship.

We introduce two stereotypes that extend the Connectoratast® and realize these typing relationships:

e <TypeConnectos realizes the typing relationship (using the associat@gpeConnectorBehavior). It has a

constraint to avoid circular type dependencies:

-- A Type Connector has only two ends
inv: self.baseConnector.end->size()=2

-- A Type Connector might not be applied

-- in circular order

inv: self.baseConnector.end.role->forAll(
cl, c2: Core:: Connect abl eEl ement | c1<>c2 and

cl. ocl AsType(Core:: Port).class =

30

c2.ocl AsType(Core::Port).class inplies
not cl.typeConnection(c2))

e <SupertypeConnector realizes the supertype relationship (using the associatdbertypeConnectorBehav-

ior >). It has a constraint to avoid circular supertype depeniésnc

-- A Super Type Connector has only two ends

inv: self.baseConnector.end->size()=2

-- A Super Type Connector night not be

-- applied in circular order

inv: self.baseConnector.end.role->forAll(
cl, c2: Core:: Connect abl eEl ement | c1<>c2
and
cl. ocl AsType(Core:: Port).class =
c2.ocl AsType(Core::Port).class inplies

not cl.supertypeConnection(c2))

The two constraints above check for direct and indirectutindty of the type relationships using thgpeConnect i on
andsuper t ypeConnect i on definition, which are defined for the UML metaclass Component

def: typeConnects(target: Component)
Bool ean =
if self.ownedPort. opposite.class->includes(target)
and Typi ngs:: TypeConnect or . baseConnect or. end. rol e.
ocl AsType(Property).class->incl udesAll (Set{self,target})
t hen
true
el se
if self.ownedPort. opposite.class->
exi sts(connects(target))
t hen
true
el se
fal se
endi f

endi f

def: super TypeConnect s(target: Conponent)
Bool ean =
if self.ownedPort. opposite.class->includes(target)
and Typi ngs: : Super TypeConnect or. baseConnect or. end. rol e.
ocl AsType(Property).class->includesAll (Set{sel f,target})
t hen
true

el se

31

if self.ownedPort. opposite.class->
exi sts(connects(target))

t hen
true

el se
fal se

endi f

endi f

Using these Connectors we can model a custom-built typemsydtor instance, in the example above we can make
the Party component have<dypeConnectos to a specific Party Type “manager”, which itself has @upertypeCon-
nector> to a generic “party type” class. Using this meta-model, we derive instances, representing different parties

and party types, and we can provide the respective contstiiaath on the instance-level and the meta-level.

2] «TypeConnector» =
A AType
[]

«SuperTypeConnector»
BType

cll
CType
«SuperTypeConnector»

Figure 17. The notation of the stereotypes in Typing modelin g

:

Figure 16 illustrates these stereotypes according to thd. @M Profiles package, while Figure 17 depicts the
notation used for the stereotypes.

Figure 18 illustrates an example of how a typing meta-modellze built according to the Party Type example given
before. We introduce an additional Accountability Type.eTdomponent instances derived from this model realize
typed components (Party, Accountability, and specidbipabf these), and meta-descriptions for these types (Party
Type, Accountability Type, and specialization of theseptiB Party and Accountability instances can dynamically
change their types because types are realized as runtimgoremts. Also we can provide constraints between these

types, such as the ones depicted in the figure. Thus the resuttynamic and constrained type system.
4.10 Virtual Connector

Introduction:

In many patterns and larger architectures, components hawdirect relationship, but still communicate virtually
using other components and connectors in between. Fonuestén a layered distributed client/server architecture a
component on the client-side often virtually communicatés a component from the same layer on the server side.

The Virtual Connector primitive models this concern.

32

«SupertypeConnector»
superType[0..1]

«TypeConnector»

PartyType subTypes [0.."]

type[0..”] instance[1] 1]

commisioner . commisioners responsibles
responsible

L L

«TypeConnector»

Accountability AccountabilityType
superType[0..1]
type[0.."] instance[1] ¢ 1

subTypes [0..%]
«SupertypeConnector»

For each instance x that is of type Accountability:
x.commisioner.type must be element of
x.type.commissioners
and
x.responsible.type must be element of
x.type.responsibles

Figure 18. Example of typing: Party Type and Accountability Type

Known uses in patterns:

e The client side components and the server side componeatBRIPKER [6] communicate virtually among each

other.

e Many remoting patterns [44] virtually communicate with baxher, for instance: client and serv&vOCATION
INTERCEPTORS REQUESTORaNdINVOKER, client and serveMARSHALLERS, CLIENT andSERVER REQUEST

HANDLER, and client and servéafROTOCOL PLUGINS.

e PROXIES[11] often use intermediate components and thus virtuapmunicate with their target. For instance,

remotePROXY [6] use aBROKER|[6] to access the remote target.

Modeling issues:

The virtual relationship is an important additional infation, but is not explicit in a UML diagram. It must be
deduced from the implicit collaboration of components andrectors. If multiple virtual dependencies exist in the
same architecture, as for instance in distributed layecsnnot be deduced which component corresponds with which
other component without further documentation.

In standard UML the virtual relationship can only be modebgdintroducing another explicit connector or asso-
ciation between the component. Then, however, we canntihglissh the virtual communication from non-virtual

communication in the models anymore.

33

«stereotype»
VirtualConnector

«stereotype» | «metaclass»
IVirtual Interface

Y

«metaclass»
Connector

Figure 19. Stereotypes for modeling Virtual Connector

Modeling solution:

We introduce a stereotypeVirtualConnectors as an extension of the Connector metaclass. This connecteed
between components that have a virtual relationship. Wendurdefine the stereotypelVirtual >, as an extension
of the Interface metaclass. ThereforecHirtualConnectors> matches arx|Virtual > Interface of one component to
another. We enforce the constraint that #rtualConnectors can only be used between two componefitand B,
if there is a path of components and connectors thatfirtk B. For instance, if4 is connected t@”, C is connected
to D, andD is connected td, then a<VirtualConnectors from A to B might be introduced.

We can formalize the constraints as follows:

-- A Virtual Connector has only two ends

inv: sel f.baseConnector. end->size()=2

-- A Virtual Connector matches the provided
-- IVirtual interface of one conponent to
-- to the matching required interface of another.
inv: self.baseConnector.end->forAll(
el, e2: Core:: Connector End| el<>e2 inplies (
(el.rol e->not Enpty() and e2.rol e->not Enpty())
and
((el.role.ocl AsType(Core::Port).required=
e2.rol e. ocl AsType(Core:: Port). provi ded)
and
(el.role.ocl AsType(Core::Port).required->forAll (i
IVirtual . baselnterface->exists(j|j=i))))
or
((el.rol e.ocl AsType(Core::Port).provided=
e2.rol e. ocl AsType(Core:: Port).required)
and
el.rol e. ocl AsType(Core:: Port). provided->forAll (i

I Virtual . basel nterface->exists(j|j=i)))))

34

-- A Virtual Connector can only be used between
-- two conponents A and B, if there is a path of
-- conponents and connectors that link Ato B.
inv: sel f.baseConnector.end.role.
ocl AsType(Core: : Property).class->forAll (
cl, c2: Core:: Conponent | cl<>c2 inplies
cl. ocl AsType(Core: : Component). connects(c2))

«|Virtual» «|Virtual»
%j service service %:‘
A B
g | «VirtualConnector» 2 |

o [H——={] »
O [=—1{] w

Figure 20. The notation of the stereotypes in Virtual Connec tor modeling

Figure 19 illustrates these stereotypes according to thd. @M Profiles package, while Figure 20 depicts the

notation used for the stereotypes.

5 Case Study

Leela [46]is an infrastructure that provides a federated@hof remote peers, thus offering loosely-coupled sesvice
Within a federation, all peers are equal, they can offer Vehises (and possibly other kinds of services) to othergeer
and they can connect spontaneously to other peers (and fedbmtion). Each remote object can potentially be part
of more than one federation as a peer, and each peer decides senvices it provides to which federation. Certain
peers in a federation may be able to access extra servicesréhaot offered to other peers in this federation, via their
partaking in other federations. Leela peers are hosted ljalagpplications. One such application can host multiple
peers and federations.

Leela is implemented using the architectural patterns febth In our first attempt to design the system, we used the
standard UML class diagrams [46]. However, the architettpatterns could not be explicitly modeled and therefore

the design decisions taken that were concerned with theserms are not documented, except as complementary

35

meta-information to the class diagrams. This meta-infdionacan be textual or it can make use of a formal notation,
nevertheless it is not part of the UML diagrams. To overcohis problem, we have applied our UML profile to
explicitly model the architectural components, connegtaonfigurations, and constraints in Leela’s design. Due to

space constraints, as a case study we present an excerjg @éslign: the basic communication framework of Leela.

5.1 Broker architecture

Leela implements BROKER|[6], which suggests a general architectural configuratian $eparates a distributed sys-
tem’s communication functionality from its applicationnfttionality by isolating all communication-related conmts
A BROKER hides and mediates all communications between the objecsnoponents in a system. Local client-side
and server-side brokers enable the exchange of requestespahses between the peers.

Each peer in Leela acts as a client and a server at the sameTihms, Leela peers are composite components that
contain both client-side and server-sBiROKER sub-components. In the following description, #®ROKERs viewed
as a compound pattern that is implemented using severarpatfrom the Remoting pattern language [44]. Even
though client-side and server-si@®@OKER components are present in the same system, it makes serisériguish
client-side and server-side roles of the components inracd@ake the pattern-based architecture more understindab
Unfortunately, this cannot be easily modeled with UML bessatheBROKER as a whole is not an explicit component,
but consists of several components. Thus we cannot use UkMpasition or aggregation relationships here. However,
the Grouping primitive from our UML profile is an ideal matctie introduce two<Group> packages: ClientBroker
and ServerBroker. For eadROKER component, we add a nhamespace relationship either to Bligkdr package
or ServerBroker package, indicating membership to thee&spe group. The group membership of the components

introduced, is depicted in Figure 21.
5.2 Basic invocation architecture

Figure 22 shows the basic software architecture diagrameefd, using our profile. BROKER consists of a client-
sideREQUESTOR[44] to construct and forward invocations, and a servee-8itVOKER [44] that calls the target peer's
operations. AMARSHALLER [44] on each side of the communications path handles theftyanation of requests and
responses from programming-language-native data type$yte arrays that can be sent over the wire.

As its basic communication resource each Leela applicats®s a component, called tRequest Handl er, that
implements both @ LIENT REQUEST HANDLER[44] and aSERVER REQUEST HANDLER44]. TheCLIENT REQUEST
HANDLER forwards request messages from a client to the server. SER¥ER REQUEST HANDLERreceives these
requests at the server side, and triggers the invocationegb¢er. Becauseequest Handl er realizes both patterns, it
is member of both groups, ClientBroker and ServerBroker.

The request handlers contahROTOCOL PLUGINS [44] for the various protocols that transport the messagesac
the network. Currently, Leela suppoR®OTOCOL PLUGINS [44] for various SOAP implementations. However, vir-
tually any other communication protocol can be used as Wetlause Leela®ARSHALLER [44] uses a simple string-

based format as a message payload, and (re-)uses Tcl'satidaype converter to convert the string representations t

36

«Group» «Group»
ClientBroker ServerBroker
U X
S ©® B D
] _ [L
Requestor Invoker
MarshallerClient MarshallerServer
InterceptorClient 2] InterceptorServer
RequestHandler

ProtocolPluginClient ProtocolPluglnServer

Figure 21. Group membership of the Leela components

native types and vice versa.

There are a number of further design issues which need to lechdé€&irst of all, the application of the Remoting
patterns leads to an architecture based onMy&Rs pattern [6]. The same layers are present on client and ssicker
Protocol, RequestHandling, Invocation, and Applicatidfe model the layers according to our Layering primitive. For
each layer, we introduce-aLayers package and the tagged value receives the respective lagdren. Each layered
component is imported to the corresponding layer. Figurst8vs the layer membership of the components discussed

in this section. There a number of constraints:

Components from the layer Application can only interactrmébmponents from the layers Application and

Invocation, or components who are not part of a layer.

e Components in the layer Invocation can only be accessetinvaker or Request or, through a Shield Con-

nector. That is, all internal interfaces are stereotypé&shields.

e Components from the layer Invocation can only interact witmponents from the layers Invocation and Re-

guestHandling, or components who are not part of a layer.

e Components in the layer RequestHandling can only be aatess¢heRequest Handl er component through

a Shield Connector. That is, all internal interfaces areestyped<IShields.

e Components from the layer RequestHandling can only intevislh components from the layers RequestHandling

and Protocol, or components who are not part of a layer.

37

Peer
[[
Lt
peers * * | peers
MarshallerClient marshaller «Shield» «Shield» 2 rchaller MarshallerServer
requestors invoker invokers
«ShieldPort» « 4| requestor 1 «ShieldPort»
{shieldGroup=Invocation} {shieldGroup=Invocation}
Requestor Invoker
]]
requestorsT 1.% invokers T
«Shield» «Shield»
clientRequestHandler| 1..” 1..*| serverRequestHandler
«ShieldPort» «ShieldPort»
{shieldGroup=RequestHandling} {shieldGroup=RequestHandling}

«CallbackPort»

1 «Callback»
requestHandler ‘

requestHandler | RequestHandler

clientProtocolPlugins| 1..* serverProtocolPluglns |1..*

«EventPort»

L] L]

ProtocolPluginClient ProtocolPluginServer

Figure 22. Basic, broker-based invocation architecture

38

o 2]
eer :
Federation
r
«Layer»
Application B .
{layerNumber=4} FederationProxy
\— PeerProxy
] z | Invocationinterceptor
Requestor
«Layer»
Invocation
{layerNumber=3} gy . Invoker
& P
MarshallerClient
MarshallerServer
<<Layer»

RequestHandling
{layerNumber=2}

RequestHandler

<<|_aye|’>>
Protocol
{layerNumber=1}

ProtocolPluginClient

N
i

ProtocolPluginServer

Figure 23. Layers of the Leela architecture

39

e Components from the layer Protocol can only interact wittmponents from the layer Protocol or components

who are not part of a layer.

Note that these constraints apply for client-side and sesieke components. The client-side and server-side com-
ponents are distinguished using the Grouping primitivee Tlient-sidePROTOCOL PLUGIN is simply invoked by the
request handler component. The server-siHoTOCOL PLUGIN, however, receives requests and result messages from
the network asynchronously (it containRaAacTOR [39] implementation). Thus the request handler is inforrméd
network events using callback events. This is modeled umimgallback primitive (see Figure 22).

In addition a virtual communication between the respeativmponents at each layer of tBROKER architecture

happens. This is modeled using the Virtual Connector prmitas shown in Figure 24.

- «VirtualConnector»
g8 |
Peer

2 | «VirtualConnector» El
InterceptorClient InterceptorServer

=l «VirtualConnector» =l

Requestor Invoker

2 | «VirtualConnector» R

MarshallerClient MarshallerServer

LI «VirtualConnector»
g]
RequestHandler

=l «VirtualConnector» =l
ProtocolPluginClient ProtocolPluginServer

Figure 24. Virtual communication among Leela components

So far we have only modeled the base components. In the netidrsg let us take a closer look at two exemplary

component types: peers and interceptors.
5.3 Peers and federations

As aforementioned, two different kinds of peers exist: oady peers and federations of peers. Federations of course
contain peers, but this cannot be properly modeled with LdMIoOmposition or aggregation relationship alone because
we require a constrained relationship here. Thus we modelrétions as special, composite peers that are connected

through an Aggregation Cascade to other peers with thewoilp constraints:

e A peer can be part of multiple federations. That's why we uggr&gation Cascade and not Composition Cas-

cade.

40

e A federation cannot contain peers of the type federatiofeasthey are federation proxies (see below).
o A federation proxy (see below) cannot contain other peers.

Peers can interact with other peers usingrRE©@UESTOR which realizes the virtual communication link. Sometimes
it is more handy to use the patteonIENT PROXY [44]: A CLIENT PROXY is a placeholder for the peer in the client
process. By presenting clients with an interface that issmae as the peer’s, the proxy lets the client interact with th
peer as if it were a local object. Internally, thelENT PROXY transforms the invocations it receives ilREQUESTOR
invocations. Leela also supports peer and federation gsatkiat act asLIENT PROXIES offering the interfaces of a
peer or federation. The proxies thus provide indirectiomsich can be modeled using the Indirection primitive. We
have realized the proxies slightly different from theoxy pattern in [11]. In order to have “real” proxies we need two

more constraints for the indirections in Figure 25:
e A peer proxy cannot have peers of the types peer proxy or &ideras indirection targets.

e A peer proxy cannot have peers of the types federation prexgdirection targets.

«IndirectionTargetPort» =]
Peer «IndirectionTargetPort»
peer| *
«Indirection» «AggregationCascade»
* federations
peerProxy| 1

PeerProxy Federation «IndirectionPort»

«IndirectionPort»

«IndirectionTargetPort»
*|federations

«Indirection»

1| federationProxy

FederationProxy «IndirectionPort»

Figure 25. Proxy-based indirection in Leela

5.4 Invocation interceptors

The Leela invocation chain on the client side and the senderis based omNVOCATION INTERCEPTORS[44],
which transparently extend the invocation on both sidef weéw behavior. The most prominent task of the'o-
CATION INTERCEPTORSIN Leela is control of remote federation access. On the chate, aniNVOCATION INTER-
CEPTORIntercepts the construction of the remote invocation amdsaall federation information for a peer into the
INVOCATION CONTEXT [44]. On the server side this information is read by anotherOCATION INTERCEPTOR

If the remote peer is not allowed to access the invoked phenNtvOCATION INTERCEPTOR stops the invocation

41

and sends @EMOTING ERRORTto0 the client, otherwise access is grante@tvOCATION INTERCEPTORSare triggered
by callbacks (modeled using the Callback primitive), as lbarseen in Figure 26. Naturally the interceptors on the

client-side and the server-side are linked through a Mitoanector.

2]| «VirtualConnector» 2]
InterceptorClient InterceptorServer

1 1

«CallbackPort» «CallbackPort»
interceptors | * interceptors | *
«Callback» «Callback»
requestor | 1 invoker |1
«EventPort» «EventPort»
- L J

Z || «VirtualConnector»
Requestor Invoker

Figure 26. Invocation interceptors in the invocation chain

Often interceptors for one and the same task exist both entefide and server-side. In Figure 27 three examples
are presented. Logging is needed both on client-side amgrsgide, but no Virtual Connector between the logging
interceptors is necessary. The server-side federatienceptor checks whether an invoking peer belongs to a federa
or not. The client-side federation interceptors thus musttpe federation information of the invoking peer into the
INVOCATION CONTEXT. Thus there is a virtual communication between these tvaréeptors, which is modeled using
a Virtual Connector. Likewise, the client-side and sersiele authentication interceptors need to transmit auitegign

information over the wire.

6 A Model Validator for the Architectural Primitives

To further support the use of the architectural primitivesriodel-driven software development, we have developed
a model validator, which can be used as a plug-in in a modeéwlrtool chain (such as the OpenArchitectureWare
generator [33]). The plug-in is capable of validating arettiural models that conform to UML2 meta-models (like the
excerpt in Figure 1 or other compliant meta-models) and O@istraints. We have specified the proposed architectural
primitives UML profile using the tool, in order to validatechitectural models that contain such primitives. Based on
both the UML metamodel and the primitives profile, the validacan parse architectural models and check that the
constraints of the primitives are not violated. The modetsipced by the validator can be then used as input for code
generators.

We use the language Frag [49, 48] as the syntactic found&irodefining the UML meta-model, the architectural
primitives profile, as well as the UML models per se. Frag'smgoal is to provide a tailorable language. Among
other things, Frag supports the tailoring of its object sgsaind the extension with new language elements. In addition
to the UML2 meta-model and the meta-meta-model, we haveatefinconstraint language which follows the OCL

constructs.

42

g]

Invocationinterceptor

InterceptorClient

«VirtualConnector»

InterceptorServer

Il

LogginginterceptorClient

FederationinterceptorClient

LogginginterceptorServer

«VirtualConnector»

FederationlnterceptorServer

AuthenticationinterceptorClient

«VirtualConnector»

Frag SyntaxBased

AuthenticationinterceptorServer

Figure 27. Special invocation interceptors

Models

UML2 Component
Diagrams

v

XMI2Frag

Transformation Plugin Frag Model validator

~

Frag UML2 Profile:
Architectural Primitives

/

Frag2EMF
Transformation Plugin

Individual Code

/

Code Generator

L
Transformation _I_>\

Rules/Templates

4

System Code

Figure 28. Tool Chain Overview

43

Frag UML2 Meta-Model

The process of using the plug-in conforms to a typical workffor model-driven development. First, the input
models need to be read and transformed into the special ffné@xsfor UML2 models and the architectural primitives,
which are defined using a meta-model and a profile respegtiidle UML2 models can either be written with UML
tools (with XMI export) or directly in the textual Frag symtalf a UML tool is used, the XMI export is transformed
into the textual Frag syntax. Second, the application nwdet validated with respect to the UML meta-model, as
well as the OCL constraints defined upon them with respedtdgtimitives profile. After the model is validated it is
transformed into an EMF model, which is understood by theeageherator. The latter creates the code in the target
output languages, such as Java. This tool chain is depictEgyjure 28. In between this sequence, other steps may be

inserted, such as domain-specific model transformations.

1

Frag

Object

«instanceOf» «instance Of»
«instanceOf»

«instanceOf»

|
FCL MMM

attribute

FCL ConstraintChecker ConstrainedClass AssociationEnd

T
{ A
[}]
................

«use»

client

«use»

supplier

Class

class

Dependency Stereotype Enum Association

AN

Aggregation Composition

ends

Figure 29. Validator Tool UML2 Meta-meta-model — Excerpt

In our plug-in, we define all meta-models, including the UMletarmodel, on top of one common meta-meta-
model. The meta-meta-model can be very simple, or more e#bdike the OMG Meta Object Facility (see
http://mww.omg.org/mof/). The meta-meta-model is useddfine meta-models. In addition, the constraint language is
defined using the meta-meta-model, with which models carohst@ined at the meta-level and hence validated at the
model level. In the case of our plug-in and the Frag languagehave defined a simple meta-meta-model that reuses
Frag’s language features wherever possible. An excergtisfmeta-meta-model for defining UML2 meta-models is
shown in Figure 29. The meta-meta-model is based on the neostrgl class in the Frag object systegij ect .

The meta-meta-model classes are sub-class€sraft r ai nedd ass which allows to add OCL-style constraints to

classes. The convenience cl&mst r ai nt Checker looks up allConst r ai nedd ass instances via reflection and

44

checks the constraints. Constraints are specified in a &geggsgimilar to OCL (defined using the classL). The
meta-models are defined usi@gass. We introduce also a number of relationships between dad3ependencies,
Associations, Compositions, and Aggregations. In additigped attributes can be specified. Please note that we
do not define the generalization relationship, becauseipfauinheritance is suitably predefined by Frag and we can
reuse this implementation. TI8 er eot ype class defines the UML2 extends-relationship; that is, dvedl to extend
meta-classe€numis a convenience class to define Enumeration types.

Using the meta-meta-model, we can define meta-models kkE/lL2 meta-model shown in Figure 1. As an exam-
ple, consider the Component and Namespace metaclassegaassbciations of Component of the UML2 metamodel
in the Frag syntax:

nanmespace eval UM.2 {

MW : Cl ass create Conponent -superclasses {Packageabl eEl enent C ass}
MW : Associ ation create Conponentl| nterfaceRequired -ends {
{Conmponent -nultiplicity = -navigable 0}
{Interface -roleNanme required -rmultiplicity * -navigable 1}

}

MW : Associ ati on create Conponentl| nterfaceProvided -ends {
{Conponent -nmultiplicity * -navigable 0}
{Interface -roleNane provided -nmultiplicity * -navigable 1}

}

MW : Cl ass create Nanespace -supercl asses NanmedEl enent

Once the UML metamodel is defined, the UML profile for the aettural primitives needs to be specified. Consider,
as an example the textual definition of the Grouping prireitivAgain, we can also use the model transformers to
generate this textual model from graphical models:

nanespace eval G ouping {

MW : St ereotype create G oup -extends UM.2:: Package

G oup addl nvari ant {
[FCL size [[sel f basePackage] ownedMenber]] ==
}

Group addl nvariant {
[FCL forAll im[[self basePackage] i nportedMenber] {
[FCL isKindOF $i m UML2: : Conponent]
}H

}

The primitive specification first defines the necessary stgpe for Grouping, and then it provides all constraints
required for that primitive. It is noted that the constraiaire almost a one-to-one translation of the OCL constraints

explained before for Grouping, but in Frag constraint syrda in the example above (called FCL). We can use the

45

OCL-to-FCL transformer to automatically generate FCL céden OCL, and vice versa. The UML profile for the
architectural primitives is thus translated into a set affsspecifications in the Frag syntax, and subsequently wsed t
parse and validate models.

As a small example, we consider a small model with the follmueélements (also shown graphically in Figure 30):

UML2: : Conponent create Wrkfl owEngi ne
UML2: : Conponent create Processlntegrati onAdapt er
UML2: : Conponent create Di spatcher

UML2: : Package create Workfl owCorrel ati onG oup -i nportedMenber {
Wor kf | owEngi ne Processl nt egrati onAdapt er
Di spat cher

Grouping:: Goup create g1\
- basePackage Wor kfl owCorrel ati onG oup

1

«Group»
WorkflowCorrelationGroup

P

Workflow Engine ProcessintegrationAdapter Dispatcher

Figure 30. Example model for workflow correlation

In this example model, we first specify three UML componemtsvorkflow engine, a process integration adapter,
and a dispatcher. Then we define a Package that depicts &torregroup of three components and we use the Group
stereotype to apply the relevant constraints of the Graypinchitectural primitive. Our model validator automaliga
checks all constraints, once a model is assembled. In thimpbe, no problems are found, but if we would for instance
have owned members in the Package or other member types tepdDents, the model validation would fail.

It is noted that our syntax introduced above is not necdgdatended to be used by developers. Rather it can itself
be generated from the export of an UML2+OCL tool. That is, deeelopers can also specify UML2 models and
constraints graphically, and the models can then be valitiatthe model-driven tool chain. During this validatiome t

primitives are automatically checked as well.

7 Lessons Learned

Our case study in Section 5 was conducted to demonstrate that-trivial system, that was initially modeled and
implemented independently of our approach can retrodgtlve modeled using our pattern primitives. During the ap-
plication of the approach and the application of the modkdlator, presented in Section 6, a number of inconsistancie

in the initial models have been found and corrected. Thig igrgoortant benefit, as the proposed approach can help to

46

improve the quality of a system’s current documentatiomldd demonstrated that each of the primitives were variable
enough to deal with multiple situations, where the respeqtatterns were applicable.

Furthermore, we have used the resulting models in a numbetudient projects. Despite the fact that a higher
quantity of information was given through the stereotyle,students did not find the enriched primitives models less
intuitive than the original models. In contrast — after sanigal explanation — the primitives conveyed the desigieim
of our case study prototype in a better way. This proved eajpeciseful for evolution of the prototype: changes have
been made without violating the design constraints of thep#s. This aspect is especially important, when systems
are generated from the models using a model-driven appr@gsh, the students deemed that they were able to link the
primitives to the patterns, which document important fsread consequences of the design decisions (especially the
consequences of architectural patterns to the systemiygatiribute). This link, however, could be improved thugh
better tool support, specifically targeted at making thik kxplicit.

When modeling the case study we have mainly used textuadseptations of the models, as shown in Section 6, and
created the graphical UML representation based on themthEanodel validator, we have also realized an integration
with EMF, to demonstrate the interplay with existing modgltools. This, however, often requires customizations of
the models or tools, as there are usually certain differebedween the various UML tools.

We have selected UML, a de-facto standard modeling langueseftware architecture, in order to guarantee broad
tool support and familiarity of modelers with the languagg¢owever the main shortcoming of this approach stems
from the very own use of UML. The extension mechanisms of UMlLparticular the stereotypes, are cumbersome to
use because of their second-class status: they are neitaclasses of the standard metamodel, nor model elements
and this fact often confuses the users of UML. Furthermoi@l @onstraints, even though they provide semi-formal
semantics to the stereotypes, are not well accepted in thease architecture community, partly because there are
no tools so far that can dynamically check the constraintdMi models. Lastly, the constant evolution of the UML
standard, forces us to update the mapping of the archiwgwimitives in the language in its subsequent versions,
which can prove to be cumbersome. However, we do believettieaddvantages that UML conveys outweigh these
disadvantages.

In addition, our choice to use only UML profiles limits the edyities of the visual representations of the models.
In particular, as can be seen in the case study, the UML reptaisons may quickly lead to visual cluttering, espegiall
if multiple primitives are combined in one model. One sauatiwould be to build customized UML tools that can
lessen the visual clutter, e.g. by visually replacing sormthe primitives’ stereotypes with textual notes. This way,
the primitives are still formalized in the model, but the gnacal representation is more usable. Another solution is
to use other modeling environments, which introduce thein abstractions as new modeling language elements, and
can thus provide richer visualizations. For instance, tead&ic Modeling Environment (GME) [24] provides a notion
of hierarchy in its modeling syntax, which is a clearer reprgation of the concern represented by aggregation and
composition cascade than the UML representation. In tisisarch, we deliberately focused only on UML profiles, for
the reasons explained before, but as future work we plangimexthe possibilities of using domain-specific modeling
languages as concrete syntax and our UML profiles as absiratax (e.g., following the approach described in [15])

to combine the best of both worlds.

a7

The primitives that we have proposed are structural in matas they concern the composition of components and
connectors as well as interface matching between them. tNeless, architectural patterns contain also a behavioral
part that mandates the interaction of architectural eldsyevhich has not been studied yet. For example The Callback
primitives can be used to compose the Model-View-Controbat the interaction protocol between the Model on the
one hand and Views and Controllers on the other hand, is nared by the current definition of the primitive. We
aim to extend this work with behavioral models for the indival primitives, as mentioned in the future work section.
We have already performed this in a another approach, wherbawve successfully integrated activity diagrams and
class diagrams via OCL constraints for modeling compasstio dynamic programming environments (see [50]). Even
though this is quite a different modeling problem, the gahapproach for integrating activity diagrams with struatu
models can be followed for the primitives approach repoitetthis paper as well.

The proposed primitives are a modeling solution that camesddthe inherent variability of patterns — an issue that
makes the modeling of the pattern participants themseligtdyhproblematic. However this does not automatically
make the patterns explicit in an architectural design — ttimifives only give a hint of the application of specific
patterns. An architect needs to further annotate a speaflaboration of primitives to denote their synergy and
implementation of the patterns semantics.

The full benefits of our approach can be obtained when fullgopport is accessible to ordinary developers. We have
started working on model-driven tool support by providingnadel validator (see Section 6), which is an important aid
for composing and decomposing primitive models via modidedt development. In addition, further visualizations of
the composition/decomposition would be helpful. Also tagbport is needed to facilitate the compaosition of prineisiv
into patterns, making explicit that a set of primitives withstomized constraints form a specific pattern variants Thi
would furthermore support analysis of the design, by ligkémch pattern with the quality attributes it affects puslii

or negatively.

8 Related Work

The approach described in this paper is based on relatedrobsen architectural primitives, UML profiles for
architectural description, and modeling architecturatgras. Table 1 gives an overview of the related work, and how
it compares to the approach presented in this paper.

The idea of primitives as the fundamental elements of archital patterns and design patterns has been investigated
from several viewpoints. Pree has worked in the area of tlgjgented frameworks and has explored primitives in the
construction of ‘hot spots’, i.e. variation points that agapted in individual applications [35, 36]. His primitivare
defined in two levels of abstraction: At a lower level, thedamental elements of patterns are ‘hook’ and ‘template’
methods and their corresponding classes; at a higher leweiforementioned fundamental elements are used to specify
composition patterns for hot spots that are caltezta-patternsThese composition patterns themselves can be used for
specifying even higher-level patterns, such as the GoF patterns; however they are not architectural elements and
thus cannot be used to describe architectural patternghiéarchitectural primitives in this paper.

In the realm of patterns, many patterns are described asmamigpatterns that consist of other, existing patterns. For

48

Table 1. Overview and comparison of related work

Approach Building blocks Granularity Application Semantics
Hot spotg35, 36] Class methods Class Object-oriented Object-oriented
frameworks
Alfa primitives[28] | Form and functionf Component and con- Architectural pat-| General characteris
of architectural pat{ nector terns tics
terns
Unit operations[3] | Abstract principles | Component Architecture informal
Architectural Tactics| Abstract principles; Component and con- Quality-attribute Informal
[3,7,13, 20, 4, 40] | or heuristics nector driven design
UML profiles[26] UML stereotypes Components and Architectural de-| ADLs
connectors scription
Acme[14] Templates for pati Components and Architectural de-| Acme ADL
terns connectors scription
Formal approaches Language constructs Class Design patterns Formalization of on€g

to modeling patterng
[8, 29, 43, 25]

specific pattern vari

ant

Primitives of archi-

tectural patterns

Participants of archi

Component and con

- Architectural

terns

tectural patterns

nector

pat-

Specialized and for

malized

49

instance, in [44] th&ROKER pattern is described as a compound pattern composed fraermafrom [44, 39, 11, 6].
Our approach follows a similar philosophy as we define piireg that can be used to model architectural patterns, but is
different in that these architectural primitives are mgredfic and formally specified than patterns. The primitivas

be seen as participants of patterns, whereas patterngeegulistantial hand-crafting (i.e. a design and implentiemta
effort) in order to be used as part of another pattern.

Mehta and Medvidovic proposed a framework, called Alfa,domposing architectural patterns througfchitec-
tural primitives [28] that are certain underlying concepts, shared by allepas. They propose a number of such
primitives as the building blocks for constructing the atettural elements of patterns and demonstrate their agpro
through the representation of several architectural pattéhrough the primitives. This approach is based on the as-
sumption that there exists a fixed set of fundamental prestihat can potentially characterize any architecturaepa
participant and therefore this framework of primitives danused for characterizing and comparing patterns. Our ap-
proach is different in the sense that we investigate arctuital primitives at a larger granularity and level of abstion.
Moreover, our primitives are recurring concepts in sevdrat not all, architectural patterns, and they are charaeig
by rich semantics that serve specialized purposes.

Similarly, Bass et al. in the first edition of [3] had proposegredefined set afnit operations such as separation,
abstraction, compression and resource sharing as tharnguidbcks for all architectural and design patterns. In-con
trast to our architectural primitives, these unit openagi@are defined at a much higher level of abstraction. Thegrath
describe atomic architectural transformations and ofmrat whereas our primitives describe fundamental, réogirr
structures. The same authors, in the second edition of boeik propose a number afchitectural tacticsfor con-
trolling the response of quality attributes. Architectupatterns packages a number of tactics, in the sense that the
consequences of applying the pattern is the realizatiomefa more tactics. Tactics are abstract hints on how to
support a specific quality attribute and are not directhated to how an architectural pattern is modeled.

There have also been several attempts for specifying BgigtDLs or proposing new ADLSs as extensions of UML,
usually in the form of profiles. Medvidovic et al. have poihteut three different ways to use UML as an ADL [26]:
(a) using the “pure” UML metamodel “as is”, which forces thehatect to implicitly define the necessary architectural
concepts; (b) constraining the UML metamodel through psfdnd thus providing explicitly the architectural consept
as constrained stereotypes, while still conforming to taedard metamodel; (¢) modifying the UML metamodel and
thus providing “native” support for architectural des¢igm, but losing conformance to the standard metamodely The
have also evaluated the first two approaches by using thenapatmee ADLSs to UML.

An ADL that treats architectural patterns as first-classtiestis Acme [14] supported by the AcmeStudio tool [38].
The language itself provides built-in templates that camded to model patterns, while AcmeStudio has some well-
established patterns (e.g. Layers, Pipes and Filtersni€Herver) in its default package. However, the syntax sttpp
offered by Acme is rather limited, as it provides a fixed setathitectural elements like components, connectors,
ports, roles etc. Our approach aims at more flexibility byvjiimg a wider range of lower-level primitives, such as
namespaces or aggregations used in Grouping and Aggredadiecade.

Clements et al. in [7] demonstrated how UML 1.x can be useds'ais representing the fundamental architectural

concepts in a number of architectural views. This work wasticoed by Garlan et al. in [13] and later by Ivers et

50

al. in [20] to take under account the forthcoming UML 2.0, guaditicularly focus on the provision for the component
and connector view in the new standard. The improvementheohew UML 2.0 metamodel for architectural con-
cepts, especially ports and internal structures, was algocated by Bjorkander and Kobryn in [4]. Finally Selic and
Rumbaugh [40, 41] have defined a UML profile for real-time syst, UML-RT, which embodies several architectural
concepts such as components (so-called “capsules”), ctoragand ports. Our approach uses a different line of at-
tack: we do not model the architectural concepts that areifsp&o an architectural pattern, but rather the fundamenta
primitives that participate in a number of patterns. Thusowercome the limitations of ADLs by providing a wealth of
abstractions, capable of modeling several of the well-kmavehitectural patterns.

There are many approaches for modeling or representingaaftpatterns, the vast majority of which focuses on the
design patterns from [11]. A number of such approaches atiirto formally specify these patterns (see for instance
[8, 29, 43, 25]). These approaches, however, have not gameth momentum in recent years mainly because of their
complexity and their resulting limitations regarding thgiactical use. Moreover, these approaches have not been us
for architectural patterns or whole pattern languages, dilir primitives, but just for some isolated patterns frod][JA
third major difference of these approaches, compared t@pproach, is that they only support one variant of a pattern
(often simply following the C++ example from [11]) and nohet possible pattern variations. The same problem
appears also when using the Collaboration metaclass avig UML 2.0 to describe a design pattern. Most patterns
(especially architectural patterns), however, can béze@lusing a multitude of different design variants. Ourrapgh
describes primitives that are participants of the pattarmcan be tailored to support multiple variants of a pattern
other words, we can model the variants of a pattern, by cainétig the specific semantics of the architectural priregiv
that comprise the pattern.

There have also been some approaches that propose langypget $or design patterns, such as [31, 5], or imple-
mentations of patterns as aspects, such as [16, 17]. Thpseaahes make patterns first-class entities of the language
or aspect framework, and thus they become more tracealite icoide than a pattern implementation scattered across a
number of classes. All of these approaches might be comsides a way to better understand the use of a single pattern
in an architecture, but not for documenting the design of @lem architectures based on (multiple) patterns, as this

paper advocates.

9 Conclusions and Future Work

We have proposed modeling architectural patterns throuahn@er of architectural primitives in the component and
connector view. We have elicited an initial set of these fintes from a pool of established architectural patterns in
order to ensure their correctness and broad applicabilitys set of primitives is original and helps solving the fand
mental problems in modeling architectural patterns thatwetlined in Section 1: they offer the necessary abstrasti
that grasp the rich semantics found in patterns; they camesept not only a specific pattern variant but multiple vari-
ants of a pattern, by tailoring the architectural primifweith constraints. We have validated our approach by modeli
the primitives in the well-known Eclipse/Octopus tool sgbplying it to a number of case studies (one of them was

presented in Section 5), and developing our own model valigaototype to support model-driven development using

51

our concepts (see Section 6 for details).

We plan to extend this work in the following directions:

e document the architectural primitives of other domaine#ipe patterns and pattern languages in the component

and connector view;

e provide the explicit modeling of patterns through the dodieation of a group of primitives by annotating them

and adding semantics to them;

e experiment on modeling the variability of the patterns, ooty by modifying the constraints of primitives but

also by combining alternative primitives in given patterns

e relate our approach to the notion of pattern languagesdtasgllections of interrelated patterns). In particular,
we plan to document more patterns from the remoting pat@mguage (see [44]) and a pattern language for

general-purpose architectural patterns (see [2]);

o offer support for a better visualization (or concrete sytaf the primitives than the current representation as

UML stereotypes;
¢ add behavioral modeling (e.g., based on activity or seqeidiagrams or state machines) to the pattern primitives;
e search for architectural primitives in other views, suchtesmodule view;

o offer the validation tool as a ready-to-use Eclipse plutghiat can be used in cooperation with other model-driven

development plug-ins.

References

[1] P. Avgeriou, N. Medvidovic, and N. Guelfi. Software Artdéture Description with UML. In J. Nunes, B. Selic,
A. Silva, and A. Toval, editorsUML Modeling Languages and Applications - UML 2004 Satelictivities
Lisbon, Portugal, October 2004. Springer Verlag, Volum@3af LNCS.

[2] P. Avgeriou and U. Zdun. Architectural patterns regsit— a pattern language. FProceedings of the 10th

European Conference on Pattern Languages of Programs @opo2005) Irsee, Germany, July 2005.

[3] L. Bass, P. Clements, and R. KazmaS8oftware Architecture in Practice 1st (2nd) Editioddison Wesley,
Reading, MA, USA, 1998 (2003).

[4] M. Bjorkander and C. Kobryn. Architecting systems witiviL 2.0. IEEE Softw. 20(4):57—-61, 2003.
[5] J. Bosch. Design patterns as language constrdoisinal of Object Oriented Programming1(2):18-32, 1998.
[6] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, an&#tsl. Pattern-orinented Software Architecture - A

System of Patterns). Wiley and Sons Ltd., 1996.

52

[7] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivergjtie, R. Nord, and J. Stafforddocumenting Software
Architectures: Views and Beyondddison-Wesley, 2002.

[8] A. H. Eden and Y. Hirshfeld. LePUS — symbolic logic modgjiof object oriented architectures: A case study. In
Second Nordic Workshop on Software Architecture - NOS/R@@neby, Sweden, April 1999.

[9] T. Foster and L. Zhao. Cascad#murnal of Object-Oriented Programming1(9), Feb. 1999.
[10] M. Fowler. Analysis PatternsAddison-Wesley, 1997.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissid&esign Patterns: Elements of Reusable Object-Oriented
Software Addison-Wesley, 1994.

[12] J. Garcia-Martin and M. Sutil-Martin. Virtual machiseand abstract compilers - towards a compiler pattern

language. IrProceedings of EuroPlop 200pages 375-396, Irsee, Germany, July 2000.

[13] D. Garlan, S.-W. Cheng, and A. J. Kompanek. Reconcitlmg needs of architectural description with object-
modeling notationsSci. Comput. Program44(1):23—-49, 2002.

[14] D. Garlan, R. Monroe, and D. Wile. Acme: an architectdesscription interchange language. GASCON '97:
Proceedings of the 1997 conference of the Centre for AdebBtedies on Collaborative researghage 7. IBM
Press, 1997.

[15] J. Greenfield and K. ShorSoftware Factories: Assembling Applications with Pattefframeworks, Models &
Tools J. Wiley and Sons Ltd., 2004.

[16] J. Hannemann and G. Kiczales. Design pattern impleatientin Java and AspectJ. In C. Norris and J. J. B.
Fenwick, editorsProceedings of the 17th ACM conference on Object-orientegramming, systems, languages,
and applications (OOPSLA-02)olume 37, 11 oACM SIGPLAN Noticegpages 161-173, New York, Nov. 2002.
ACM Press.

[17] R. Hirschfeld, R. Lammel, and M. Wagner. Design Patseand Aspects — Modular Designs with Seamless Run-
Time Integration. IrProc. of the 3rd German Gl Workshop on Aspect-Oriented Soét®evelopment, Technical

Report, University of EsseiMar. 2003. 8 pages.

[18] C. Hofmeister, R. Nord, and D. Soripplied software architectureAddison-Wesley Longman Publishing Co.,
Inc., 2000.

[19] IEEE. Recommended Practice for Architectural Dediip of Software Intensive Systems. Technical Report
IEEE-std-1471-2000, IEEE, 2000.

[20] J. lvers, P. Clements, D. Garlan, R. Nord, B. Schmeud, &rR. O. Silva. Documenting component and connector
views with uml 2.0. Technical Report CMU/SEI-2004-TR-0&®ftware Engineering Institute, Carnegie Mellon
University, 2004.

53

[21] R. Johnson and B. Woolf. Type object. In R. C. Martin, Delite, and F. Buschmann, editoPattern Languages
of Program Design 3Addison-Wesley, 1998.

[22] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. \bé&s, J. M. Loingtier, and J. Irwin. Aspect-oriented
programming. IrProceedings of ECOOP’9Finnland, June 1997. LCNS 1241, Springer-Verlag.

[23] P. Kruchten. The 4+1 view model of architectutEEE Softw, 12(6):42-50, 1995.

[24] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, Thomason, G. Nordstrom, J. Sprinkle, and P. \Vol-
gyesi. The Generic Modeling Environment. Workshop on Intelligent Signal Processing, Budapest, ldong
volume 17, May 2001.

[25] J. K. H. Mak, C. S. T. Choy, and D. P. K. Lun. Precise motglhf design patterns in uml. IRroceedings of the
26th International Conference on Software Engineerpages 252—-261. IEEE Computer Society, 2004.

[26] N. Medvidovic, D. S. Rosenblum, D. F. Redmiles, and JRBbbins. Modeling software architectures in the
unified modeling languageACM Trans. Softw. Eng. Methodol1(1):2-57, 2002.

[27] N. Medvidovic and R. N. Taylor. A Classification and Coanigon Framework for Software Architecture Descrip-
tion LanguageslEEE Trans. Softw. Eng26(1):70-93, 2000.

[28] N. R. Mehta and N. Medvidovic. Composing architectigglles from architectural primitives. IRroceedings of
the 9th European software engineering conference heldyowith 10th ACM SIGSOFT international symposium
on Foundations of software engineerjmpges 347-350, Helsinki, Finland, 2003. ACM Press.

[29] T. Mikkonen. Formalizing design patterns. Rroceedings of the 20th international conference on Sofwa

engineering pages 115-124, Kyoto, Japan, 1998. IEEE Computer Society.

[30] R. T. Monroe and D. Garlan. Style-based reuse for sofiveaichitectures. IProceedings of the Fourth Interna-

tional Conference on Software Reusgril 1996.

[31] G. Neumann and U. Zdun. Filters as a language supportidsign patterns in object-oriented scripting lan-
guages. IrProceedings of COOTS'99, 5th Conference on Object-Oriefigehnologies and Systen@an Diego,
California, USA, May 1999.

[32] OMG. UML 2.0 superstructure final adopted specificatidiechnical Report ptc/03-08-02, Object Management
Group, August 2003.

[33] Open Architecture Ware. openArchitectureWare 4.1p:Htvww.openarchitectureware.org/, 2006.

[34] D. E. Perry and A. L. Wolf. Foundations for the study ofta@re architecture ACM SIGSOFT Software Engi-
neering Notesl17(4), October 1992.

[35] W. Pree. Metapatterns: A Means for Capturing the Esalsraf Object-Oriented Design. Buropean Conference
on Object-Oriented Programming, (ECOOP), Bologna, 4-& 11894 Springer-Verlag.

54

[36] W. Pree. Hot-spot-driven framework development. InJRM. Fayad, D. Schmidt, editoBuilding Application
Frameworks: Object-Oriented Foundations of Frameworkipeswiley & Sons, 2000.

[37] J. E. Robbins, N. Medvidovic, D. F. Redmiles, and D. Ss&wblum. Integrating architecture description lan-
guages with a standard design method.Pmceedings of the 20th ICShages 209-218, Kyoto, Japan, 1998.
IEEE Computer Society.

[38] B. Schmerl and D. Garlan. Acmestudio: Supporting stdatered architecture development (research demon-
stration). InProceedings of the 26th International Conference on Saévizngineering Edinburgh, Scotland,
23-28 May 2004.

[39] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmapaitterns for Concurrent and Distributed ObjecBattern-
Oriented Software Architecture. J. Wiley and Sons Ltd.,@200

[40] B. Selic. Turning clockwise: using UML in the real-tind®main. Commun. ACM42(10):46-54, 1999.
[41] B. Selic and J. Rumbaugh. Using UML for modeling compleal-time systems. 1998.
[42] M. Shaw and D. GarlanSoftware Architecture: Perspectives on an Emerging Diswp Addison-Wesley, 1996.

[43] N. Soundarajan and J. O. Hallstrom. Responsibilitied @wards: Specifying design patterns.Aroceedings of

the 26th International Conference on Software Engineenages 666—675. IEEE Computer Society, 2004.
[44] M. Voelter, M. Kircher, and U. ZdunRemoting PatternsPattern Series. John Wiley and Sons, 2004.

[45] U. Zdun. Patterns of tracing software structures anpedéencies. IriProceedings of EuroPlop 2003%see,

Germany, June 2003.

[46] U. Zdun. Loosely coupled web services in remote objedefations. IfProceedings of the Fourth International
Conference on Web Engineering (ICWE’O0Munich, Germany, July 2004.

[47] U. Zdun. Some patterns of component and language mtiegr InProceedings of the 9th European Conference

on Pattern Languages of Programs (EuroPlop 2Q00kee, Germany, July 2004.
[48] U. Zdun. Frag. http://frag.sourceforge.net/, 2005.

[49] U. Zdun. Tailorable language for behavioral compasitand configuration of software componen@omputer
Languages, Systems and Structures: An International JduB2(1):56-82, 2006.

[50] U. Zdun and M. Strembeck. Modeling Composition in Dynafrogramming Environments with Model Trans-
formations. InProc. of the 5th International Symposium on Software CoitiposVienna, Austria, March 2006.
LNCS 4089, Springer-Verlag.

55

