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Abstract

In object-oriented composition, classes and class inheritance are applied to realize type relationships and reusable

building blocks. Unfortunately, these two goals might be contradictory in many situations, leading to classes and in-

heritance hierarchies that are hard to reuse. Some approaches exist to remedy this problem, such as mixins, aspects,

roles, and meta-objects. However, in all these approaches,situations where the mixins, aspects, roles, or meta-objects

have complex interdependencies among each other are not well solved yet. In this paper, we propose transitive mixins as

an extension of the mixin concept. This approach provides a simple and reusable solution to define “mixins of mixins”.

Moreover, because mixins can be easily realized on top of aspects, roles, and meta-objects, the same solution can also

be applied to those other approaches.

1 Introduction

In many object-oriented approaches, the (multiple-)inheritance relationship and the type concept are modeled via the

same construct, the class. However, (multiple-)inheritance primarily aims at the reusability of classes, whereas a class

primarily defines the type of its instances, the objects (seealso [8]). These two goals are often contradictory, as, on

the one hand, a unit of reuse should be small and flexibly composable with arbitrary kinds of other classes, and, on the

other hand, an object’s type needs to be defined completely and requires a fixed place in the class hierarchy. Mixins are

proposed as a way to solve this problem (see, e.g. [3, 5, 6, 26,29, 41]). A mixin is a small unit of composition that is not

necessarily defined completely. It can bemixedinto a given class hierarchy at arbitrary places.
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An open issue in mixin-based composition is the compositionof multiple mixins in dependency to each other, i.e.

how to define “mixins of mixins”. As mixins can be used in arbitrary places of a class hierarchy, it is hard to define the

interdependencies between them in the context of compositions in a generic way.

Consider a simple example: an access control handler is conditionally composed with application logic classes in a

server. The access control handler depends on a number of other classes: for example the remote objects which have

to be protected, the users and/or roles whose access requests to objects must be controlled, the permissions of each

particular user or role, and the context constraints for these permissions1. As these classes are all together defining the

access control handler type, and each of them should be flexibly composable and reusable in many situations, it seems

to be a good choice to model each of them as a mixin. In a “flat” mixin model, however, we are not able to model the

interdependencies among these mixins. Example problems insuch models are that conditional composition based on

runtime state is not possible, the composition order cannotbe specified, multiple roles of one type cannot have different

instance-specific permissions, or all mixins would be applied to the user or role instances. Instead, we would like to

be able to explicitly model a kind of “mixin of mixin” relationship: a role mixin might only be configured for users,

a permission mixin only for roles, and a context constraint mixin only for permissions. In such cases, the problem

arises how these interdependencies among the classes can beproperly modeled while still retaining the reusable type

relationship offered by the mixin concept.

In this paper, we propose the transitive composition of mixin classes as a solution to this problem. In particular, in

our basic concept, which is calledtransitive mixin chains, each mixin can transitively have other mixins itself, to model

(and arbitrarily refine) mixin-based compositions. This way, multiple class hierarchies, expressing orthogonal concerns,

can be (dynamically) composed with the application logic ina transitive fashion. Moreover, we also introduce the more

elaboratetransitive mixin delegationconcept. It allows each transitive mixin to have its own (object-specific) state. These

concepts are defined in a generic way using Horn clauses in Section 3.

Our approach applies mixins as a simple basic concept for reusable types. We used this approach because of the

generality of the mixin concept. Similar concepts are present in many recent adaptation techniques, including aspect-

oriented programming, meta-object protocols, roles, message interceptors, interpreters, virtual machines, etc. That is, our

approach can also be implemented as an extension to these other techniques, and hence we expect a wide applicability

of our concepts.

Section 4 presents a proof-of-concept implementation of our approach that is based on XOTcl mixins [29, 30]. Sub-

sequently, in Section 5, we illustrate the practical use of the concepts with two case studies, a persistence manager

component and a role-based access control framework. We present these details, because we feel that — even though the

concept in general and its use are quite simple and straightforward — the implementation details are not obvious. We il-

lustrate the general problems in implementing transitive mixin classes by explaining the design challenges and decisions

1The access control example will be discussed in detail in Section 5.2.

2



of our implementation, as well as the corresponding case studies. Of course, many design challenges can be solved quite

differently in other implementations of our concepts. In Section 6 we evaluate our findings and Section 7 concludes the

paper.

2 Discussion of Related Work

In addition to the related work regarding the area of mixin-based composition [3, 5, 6, 26, 41], mentioned in the

previous section, various other extensions and implementation concepts for mixins have been proposed.

A number of approaches suggest to add mixins in a type safe framework. For instance, Flatt, Krishnamurthi, and

Felleisen present a mixin approach for Java [11] that is conceptually similar to mixin-based inheritance.

Van Hilst and Notkin describe an implementation technique for roles using C++ templates [40]. Here, roles are

composed using inheritance, and the superclass of a role is specified as a template argument. This approach can be seen

as a form of mixin classes that are statically composed (i.e., composed before runtime).

Smaragdakis and Batory simplified and extended the idea of role mixins into the mixin layers concept [35]. Mixin

layers group multiple mixin classes into a container class.The parameter (superclass) of the outer mixin determines the

parameters (superclasses) of inner mixins. Thus, the approach is more structured compared to Van Hilst’s and Notkin’s

approach, and it uses a more simple instantiation style. In both approaches, however, it can be challenging to understand

how the pieces compose together (mainly due to the use of templates and other complex C++ language features).

Traits [34] support the reuse of method collections over several classes. They are groups of methods that act as units

of reuse from which classes are composed. Thus, traits are pure units of reuse consisting only of methods (similar to the

per-class mixins presented below).

In all mixin approaches, explained so far, mixins are not supported as explicit mixin entities, but rather seen as

pure extensions of the inheritance relationship. That means, both stateful composition of mixin roles and object-specific

composition of mixins is not supported. Moreover, transitive mixin composition is not supported in any of the approaches.

In this paper, we will extend those other mixin concepts to support each of these facets as an option that can be chosen

by the developer.

A number of more dynamic, object-oriented environments, such as CLOS [3], Smalltalk [15], and Self [39], provide

both a programming environment and a runtime environment, allowing to influence the language behavior from within a

program. For this purpose, different language constructs are supported, such as computational reflection [25, 36], meta-

object protocols (MOP) [19], meta-classes [12], dynamic classes, or delegation constructs [2]. With these constructs, a

given composition and even the composition mechanism itself can be manipulated and adapted to a given context. The

above mentioned techniques provide a great expressive power to the developer. Yet, they also impose a high complexity.

To understand an expression, the current runtime definitionof the environment has to be understood (including class

relationships, meta-objects and meta-classes, and even (re-)definitions of language elements). As there is no standard
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way to express interdependencies between class relationships, manipulations of these interdependencies are often hand-

built. Thus, they look different in different applicationsand are not easy to understand for the developer.

To limit the complexity, but still allow for powerful software adaptations, different approaches have been proposed.

A number of these approaches can be classified as aspect-oriented programming (AOP) [21] approaches. AspectJ [20],

for instance, allows to declaratively provide “pointcuts”which are performing adaptations for a number of pre-defined

“joinpoints”. Joinpoints are specific, well-defined eventsin the control flow of the executed program. Aside from

AspectJ, there are many other aspect composition frameworks. They have in common that they are easier to understand

and apply than meta-programming or reflection. Also they provide a runtime indirection layer [42], so that an aspect can

react on context changes at runtime. However, as these mechanisms focus on static adaptation techniques, they cannot

be applied directly for runtime changes of the aspect configuration. Therefore, a number of extensions offer dynamic

aspect composition. For instance, Prose [33] and Steamloom[4] modify the Java Virtual Machine to allow for dynamic

configuration of aspects.

JBoss AOP [7] introduces a simple notion of mixins into an aspect-oriented programming framework. In particular,

a mixin class and a number of additional interfaces are addedto a class using byte-code manipulation. The mixin class

provides the implementation of the methods introduced using the additional interfaces. At runtime, an instance of the

mixin class is created for each instance of the class that is extended with the respective mixin. JBoss AOP mixin classes

introduce methods that can be used by interceptor methods. This feature resembles AspectJ’s inter-type declarations

[20].

The AOP approaches discussed above lack a clear solution forinterdependencies of aspects. Aspects of aspects can

be realized by a few research prototypes, such as Hyper/J [38] or EAOP [10]. In most AOP implementations, however,

it is difficult to compose aspects of other aspects, because the aspects are most often composed in a linear chain with

a predefined order. Inter-aspect dependencies are thus often hard to model (i.e. only with complex workarounds), and

resulting solutions are complex and hard to understand. Furthermore, when aspects have inter-dependencies among each

other, it is difficult to determine which aspects are appliedto which composition units in what order.

The composition of roles has been studied in a number of approaches. An object is allowed to possess or play

one or more roles. Typically, an object plays the roles whichare associated with the class from which the object was

instantiated (see e.g. [1, 16, 32]). Some of these role approaches distinguish class and role hierarchies, as for instance

[1, 16]. This way, roles are differentiated into role types and can be further specialized. This concept is similar to mixin

class hierarchies but offers no concept for transitive interdependencies of roles.

Kristensen and Østerbye [23, 24] extend the earlier role concepts with the notion of “roles of roles”. This concept is

transitively applicable, however, it requires manual casting to a role’s context. For instance, if an instance of a classC has

a roleR1, andR1 itself has a roleR2, then the methods ofR1 andR2 are not directly available to clients of the instance of

C, but first this instance must be classified toR1 or R2 respectively. A problem of this approach is that changes to clients
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are necessary to acquire the mixin behavior, which, again, hinders unanticipated evolution and reuse.

Zhao and Foster propose to model roles using the Cascade pattern [46]. Cascade uses a tree structure to represent

roles. Each Cascade layer is a Composite pattern [13]. Through the repeated use of the Composite pattern on different

levels, the Cascade pattern achieves an explicit semantic layering and ordering in whole-part relationships. Zhao’s and

Foster’s approach can be used to model class interdependencies of Cascade layers, but manual forwarding through the

Cascade hierarchy is required.

In the Object Teams approach [17], role concepts are combined with concepts from AOP. Here, a Team is a class that

contains direct inner classes that each implement a role. Instances of a base class will always be associated to instances of

the role classes in the team. A particular base class instance can be associated to multiple role objects in multiple teams.

The concept allows for method bindings between a class and its roles, which enable automated method forwarding in

both directions (so-called CallIns and CallOuts).

Most approaches explained above provide some special language construct, such as a dedicated mixin construct, meta-

object, role, or aspect. Even though the composition approaches are slightly different, they all can be applied to extend

or compose type relationships with the ordinary inheritance hierarchy. We can distinguish the following differences:In

some approaches, the composition can be changed at runtime,others do not provide this feature. Some approaches apply

the composition per individual instance (per-object), others do it for classes (per-class). When the composition is applied,

it can retain the identity of the object onto which it is applied, or there might be a separate compositional instance (like a

role or mixin instance) having its own (unique) identity. Moreover, the details of how the composition is actually applied

vary, e.g.: the ordering of the composition; the application of compositions before, after, or around the execution of an

actual method invocation; the resolution of ambiguities inthe class graph.

In the approach presented in this paper, we aim to remedy the composition problems, identified in the related work

especially with regard to transitive mixin composition. Even though the composition is realized in different ways, our

approach can be applied — with moderate effort — on top of mostof the other approaches. In Section 6 we will compare

our approach to those other approaches.

3 Transitive Mixin Classes: Concepts

Our goal is to extend the mixin concept with support for transitive mixins (“mixins of mixins”) — as a way to model

the interdependencies among different mixins. We have chosen mixins as a conceptual foundation for our approach

because mixin implementations and approaches exist for many environments, and the mixin concept can be realized in

or on top of many other adaptation techniques, including aspect-oriented programming, meta-object protocols, roles,

message interceptors, interpreters, virtual machines, etc. Thus, there is a wide potential for a common applicabilityof

our results.

In the remainder of this section we define the declarative semantics of two novel mixin concepts,transitive mixin
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chainsandtransitive mixin delegation. We present our concepts in a generic form, expressed via Horn clauses. The goal

is to express a general model that can be used with many of the approaches explained in the preceding section. Even

though there are slight differences in these approaches, our transitive mixin approach can be implemented on top of other

existing approaches, such as mixin, role, aspect, and MOP approaches. It may, however, require some modifications of

concrete mixin implementations to fully realize our concepts.

To make our approach as general as possible, we do not presumethat a special language construct, such as a dedicated

mixin construct, meta-object, or aspect, must be used to implement mixins. Instead, in our approach, a mixin must

just have the properties of an ordinary class. In our proof-of-concept implementation explained below, we indeed use

ordinary classes for implementing mixins, however, this isagain no prerequisite. Of course it is also possible to use more

advanced constructs to implement mixins, such as dedicatedmixin constructs, meta-objects, or aspects.

3.1 Basic Type Relationships

In this section, we provide declarative semantics fortransitive mixin chainsand transitive mixin delegation. We

first define the basic type relationships that we presuppose for the following mixin concepts. Therefore, we define the

following facts describing basic object-oriented constructs:

• Classes are specified viais class(C).

• Superclass relationships are specified viasuperclass(C,S). It is not specified if a classC can have only a single

superclassS or multiple superclasses, to cover single as well as multiple inheritance.

• Instances of classes (i.e., objects) are defined viainstance of(O,C).

• The methods provided by a particular classC are specified viaprovides method(C,M).

∀C : is class(C) −→ provides type(C,C) (1)

∀C, T ∃S : superclass(C,S) ∧ provides type(S, T ) −→ provides type(C, T ) (2)

∀O,T ∃C : instance of(O,C) ∧ provides type(C, T ) −→ is of type(O,T ) (3)

∀O,M ∃T : is of type(O,T ) ∧ provides method(T,M) −→ can invoke(O,M) (4)

Figure 1. Class and Superclass Relationship

Based on these facts, we define a set of clauses describing relationships that are common in most object-oriented

languages (see Figure 1): each classC defines a (custom) type for its instances (Clause 1). In presence of a class

hierarchy, a classC also provides all types defined by its superclasses (Clause 2). An objectO is said to be of a typeT ,
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if this typeT is provided by a classC, andO was instantiated fromC (Clause 3). This definition is sufficient for single

and multiple inheritance relationships alike. Clause 4 defines which methods can be invoked on a particular object based

on the predicatesis type of andprovides method.

is_class(’ASuperClass’)
is_class(’AClass’)
superclass(’AClass’, ’ASuperClass’)
instance_of(’anObject’, ’AClass’)

instance_of

AClass

anObject

ASuperClass

superclass

Facts describing the example:

Deduced relations:
provides_type(’ASuperClass’, ’ASuperClass’)
provides_type(’AClass’, ’AClass’)
provides_type(’AClass’, ’ASuperClass’)
is_of_type(’anObject’, ’AClass’)
is_of_type(’anObject’, ’ASuperClass’)

Figure 2. Class and Superclass Relationship: Example

Figure 2 depicts a simple example including two classes,ASuperClassandAClass, and an instance ofAClassnamed

anObject. Furthermore, the figure shows the facts needed to describe the example and the relations that can be deduced

via the clauses defined in Figure 1.

3.2 Declarative Semantics of Mixins and Transitive Mixin Chains

As an extension to the basic relationships we now define the semantics of mixins. As motivated above, we simplify the

type semantics of existing mixin concepts, and, at the same time, make them work in a transitive fashion. For this reason

we assume that a mixin is an ordinary class, supporting all the relationships defined in Figure 1. Again, we first define

some basic facts that are then used to define additional mixinrelated clauses: the facthas per object mixin(O,P )

specifies that an objectO has a per-object mixinP . And the facthas per class mixin(C,P ) defines that classC has

a per-class mixinP .

∀O,T ∃P : has per object mixin(O,P ) ∧ provides type(P, T ) −→ is of type(O,T ) (5)

∀C, T ∃P : has per class mixin(C,P ) ∧ provides type(P, T ) −→ provides type(C, T ) (6)

Figure 3. Mixin Relationships (1): Transitive Mixin Chains

Figure 3 specifies that per-object and per-class mixins extend theis of type andprovides type predicates defined in

Section 3.1:
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• Per-object mixinsare classes that are applied as mixins for an individual object, i.e. for an instance of a class

(see Clause 5). They extend the types of an object with (one ormore) per-object mixin classes. Figure 4 shows

an example of how an objectanObject acquires two new typesPOM 1 and POM 2 via the corresponding

per-object mixins.

• Per-class mixinsare classes that are applied as mixins for a class. Per-classmixins are types for all direct and

indirect instances of this class (see Clause 6). Figure 4 shows an example of howanObject as an instance of

AClass acquires two additional typesPCM 1 andPCM 2, if these classes are registered as per-class mixins for

ASuperClass.

Most mixin concepts can be used to realize at least one of the two relationships, per-object mixins or per-class mixins,

and each of the two relationships can be used to “simulate” the other. From a practical point of view, however, it makes

sense to define both relationships because they both occur frequently in design situations. Simulating the one with the

other is tedious and error-prone2.

Deduced relations:
provides_type(’ASuperClass’, ’ASuperClass’)
provides_type(’AClass’, ’AClass’)
provides_type(’PCM_1’, ’PCM_1’)
provides_type(’PCM_2’, ’PCM_2’)
provides_type(’POM_1’, ’POM_1’)
provides_type(’POM_2’, ’POM_2’)
provides_type(’ASuperClass’, ’PCM_1’)
provides_type(’ASuperClass’, ’PCM_2’)
provides_type(’AClass’, ’ASuperClass’)
provides_type(’AClass’, ’PCM_1’)
provides_type(’AClass’, ’PCM_2’)
is_of_type(’anObject’, ’AClass’)
is_of_type(’anObject’, ’ASuperClass’)
is_of_type(’anObject’, ’PCM_1’)
is_of_type(’anObject’, ’PCM_2’)
is_of_type(’anObject’, ’POM_1’)
is_of_type(’anObject’, ’POM_2’)

is_class(’ASuperClass’)
is_class(’AClass’)
is_class(’PCM_1’)
is_class(’PCM_2’)
is_class(’POM_1’)
is_class(’POM_2’)
superclass(’AClass’, ’ASuperClass’)
instance_of(’anObject’, ’AClass’)
has_per_class_mixin(’ASuperClass’, ’PCM_1’)
has_per_class_mixin(’ASuperClass’, ’PCM_2’)
has_per_object_mixin(’anObject’, ’POM_1’)
has_per_object_mixin(’anObject’, ’POM_2’)

Facts describing the example:

 has_per_object_mixin 

 instance_of 

POM_1

POM_2

 has_per_object_mixin 

 superclass 

PCM_2

PCM_1

ASuperClass

AClass

anObject

 has_per_class_mixin 

 has_per_class_mixin 

Figure 4. Per-Class and Per-Object Mixins: Example

While the example in Figure 4 only illustrates non-transitive mixins, the clauses provided in Figure 3 also describe

transitive mixin chains. Transitive mixin chains result from mixin classes which themselves have one or more per-class

mixins, as illustrated in Figure 5. In particular, the example in Figure 5 shows a mixin classPCM 2 which has itself

a per-class mixinTMix 1, andTMix 1 again has a per-class mixinTMix 2. The transitive mixin chains concept

transitively applies per-class mixins registered on a mixin class for all corresponding objects. With regard to the example

2This problem has been observed in our early XOTcl case studies. Initially, our XOTcl prototype (see Section 4.1) did onlysupport per-object

mixins. While this construct was very useful for some designsituations, in other design situations we frequently ran into problems when we wanted

to apply a mixin for all instances of a class. Hence, we introduced the per-class mixin feature to avoid writing per-object mixin generation code

into the constructors of each of these classes.
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in Figure 5 this means that the instanceanObject acquires all types obtained by per-class mixins of one of itsmixins.

To realize a transitive mixin chain for a per-object mixin, we need to define one or more per-class mixins for the

respective per-object mixin class. This is only possible because per-object mixins are assumed to be classes, and hence

per-class mixins can be defined on them. In other words, a transitive mixin chain, like the one depicted in Figure 5, may

also be attached to a class that is used as a per-object mixin.

The definitions given in this section introduce mixins as classes that support transitive mixin chains, both on a per-

object and per-class basis. The result is a powerful and simple concept for transitive mixin composition. This concept has

an important characteristic that needs some more consideration: as a mixin is itself a class of the object, the mixin retains

the identity of the object when it is applied. Thus, both per-object and per-class mixins extend the type relationship of

the object. Therefore, when a method defined on a mixin is invoked, the instance to which this method is applied must be

the same object on which the original method call was invoked. The concept of transitive mixin chains is thus applicable

for all mixin implementations that allow to retain the identity of the instance the mixin is registered for. In other words,

the identity of an object (that often can be referred to usinga language construct calledself or this) does not change

when passing a message call to the mixin classes of the corresponding object.

 instance_of 

is_class(’AClass’)
is_class(’PCM_1’)
is_class(’PCM_2’)
is_class(’TMix_1’)
is_class(’TMix_2’)
instance_of(’anObject’, ’AClass’)
has_per_class_mixin(’AClass’, ’PCM_1’)
has_per_class_mixin(’AClass’, ’PCM_2’)
has_per_class_mixin(’PCM_2’, ’TMix_1’)
has_per_class_mixin(’TMix_1’, ’TMix_2’)

Facts describing the example: Deduced relations:
provides_type(’AClass’, ’AClass’)
provides_type(’PCM_1’, ’PCM_1’)
provides_type(’PCM_2’, ’PCM_2’)
provides_type(’TMix_1’, ’TMix_1’)
provides_type(’TMix_2’, ’TMix_2’)
provides_type(’TMix_1’, ’TMix_2’)
provides_type(’PCM_2’, ’TMix_1’)
provides_type(’PCM_2’, ’TMix_2’)
provides_type(’AClass’, ’PCM_1’)
provides_type(’AClass’, ’PCM_2’)
provides_type(’AClass’, ’TMix_1’)
provides_type(’AClass’, ’TMix_2’)
is_of_type(’anObject’, ’AClass’)
is_of_type(’anObject’, ’PCM_1’)
is_of_type(’anObject’, ’PCM_2’)
is_of_type(’anObject’, ’TMix_1’)
is_of_type(’anObject’, ’TMix_2’)

AClass

PCM_1

PCM_2

TMix_2

TMix_1

anObject

has_per_class_mixin 

 has_per_class_mixin 

 has_per_class_mixin 

has_per_class_mixin 

Figure 5. Transitive Mixin Chains: Example

This is a particular strength of the transitive mixin chain concept for many typical application scenarios of mixins

because it enables developers to transparently extend an object using mixins. That is, neither the object itself nor the

class the object was instantiated from need to be altered to extend the object with the new behavior provided by the

mixin, it is sufficient to add a new (mixin) relation.

There are other composition scenarios (such as the one described in the case study in Section 5.2), however, in which

the transitive mixin chain relationship is not suitable forexpressing complex compositions of mixins because we require

the object identity to change, when a mixin is applied. This issue also occurs for ordinary object-oriented composition

by inheritance: the inheritance relationship also retainsthe object identity. If the identity should or must change, in
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ordinary object-oriented approaches, delegation is applied instead of inheritance. Analogously, in case of a mixin-based

composition we apply the concept of transitive mixin delegation (explained in the following section) in such situations.

In other words: transitive mixin delegation provides a concept for transitive mixin composition based on the concept of

delegation.

3.3 Declarative Semantics of Transitive Mixin Delegation

A typical example in which the identity of the object should change when a mixin is applied are stateful roles modeled

as mixins. A stateful role can be seen as a collection of newbehavioradded to an objectplussome additional per-role

state. It should be possible to add different roles independently, and the developer of a certain class/object cannot foresee

all possible role extensions, therefore a mixin implementing a role must somehow realize the per-role state.

Unfortunately, it is cumbersome to realize such stateful roles with (transitive) per-class mixins. In particular, we

would need to instantiate helper objects to hold the per-role state, and there would be no common concept for such

helper objects. Thus, each developer of a stateful mixin would have to realize this concern from scratch, which is likely

leading to code that is hard to reuse, understand, and maintain.

For this reason, we introduce the concept oftransitive mixin delegation. This concept has similar type semantics as the

transitive mixin chains explained before, and additionally it defines how to automaticallydelegatethe mixin invocation

to an object holding the mixin’s state. The additional declarative semantics is defined in Figure 6.

∀O,M : can invoke(O,M) −→ can invoke(O,M,O,M) (7)

∀O1,M1, O2,M2 : delegate(O1,M1, O2,M2) ∧ can invoke(O1,M1) ∧ can invoke(O2,M2) (8)

−→ can invoke(O1,M1, O2,M2)

∀O,M1, P,M2 : has per object mixin(O,P ) ∧ transitive mixin delegation(P,M1,M2) (9)

−→ delegate(O,M1, P,M2)

Figure 6. Mixin Relationships (2): Transitive Mixin Delega tion

The transitive mixin delegation relationship enables an object to invoke additional methods via delegation (defined

on one or more of its mixins). First, we must define the generalsemantics of “invoking a method via delegation”. The

can invoke predicate (from Clause 4) is extended in Clause 7 and 8. Thecan invoke predicate with four parameters

specified in Clause 7 defines that an object (first parameter) can invoke a method (fourth parameter) on another object

(third parameter) using a delegation that happens when one of its own methods (second parameter) is invoked. Clause 7

extends thecan invoke predicate from Clause 4 to the four parameter version. Next,Clause 8 defines how a delegated

invocation works: if a methodM1 can be invoked on objectO1 and a methodM2 can be invoked on objectO2, and the
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fact delegate(O1,M1, O2,M2) is defined, then the objectO1 can invokeO2’s M2 via its own methodM1. In other

words,M1 includes a delegation toM2. Again, the delegation can happen before, after, or around the invocation ofM1.

To define transitive mixin delegation, we assume the additional fact transitive mixin delegation(P,M1,M2).

This fact means that a transitive mixin delegation is definedfor a particular per-object mixinP , between methodsM1

andM2. If an objectO has a classP registered as a per-object mixin, andtransitive mixin delegation is defined for

P ’s methodsM1 andM2, then a delegation (defined via thedelegate predicate) between the methodM1, invokable on

O, and the methodM2, invokable onP , can be deduced. This relation is expressed in Clause 9. Here, P is assumed to

be a per-object mixin of the objectO because we want to perform an object-specific extension, andin our mixin concept

per-object mixins are used to model object-specific extensions (see Section 3.2).

In Clause 8 we assumecan invoke(O1,M1) and can invoke(O2,M2). For transitive mixin delegation

can invoke(O1,M1) is trivially fulfilled because the objectO from Clause 9 of course can invoke its own method

M1. The second part from Clause 8,can invoke(O2,M2), means that — in Clause 9 — the per-object mixinP itself

can invoke a methodM2. This is a central assumption made by the concept of transitive mixin delegation:mixins

themselves must be able to receive method invocations. In other words, a mixin must either be an object itself, or itmust

be represented by some (proxy) object. In the mixin definitions provided above, mixins were assumed to be classes,

however (see Section 3.2). Thus, we require classes that canreceive method invocations.

There are many ways to realize this assumption. In our proof-of-concept implementation described below (see Section

4) we use the concept of class objects: aclass objectis an object representing the class at runtime while additionally

containing a per-class state (that can also be used to realize a per-mixin state). Class objects, however, are not supported

by all mainstream programming languages. Thus, in such situations we use some other object to hold the per-mixin state.

One simple solution are helper objects for holding a mixin’sstate. This solution is equally powerful, but less elegant than

class objects, because it requires some additional centralmanagement facility for the helper objects. As an alternative,

we can “simulate” the class object approach: For example, there are many patterns describing how to implement dynamic

object systems where classes act as objects, such as Object System Layer [14] or Type Object [18]. These patterns can

be realized in almost any object-oriented programming language. Our approach, however, does not assume any of these

implementation variants, the only assumption made by our concept is that mixins are themselves able to receive method

invocations.

The consequence of the semantics of transitive mixin delegation (defined in Figure 6) is that per-object mixins can be

used to express stateful composition of mixins (like stateful roles for instance) and all its direct and indirect relationships

(i.e. ordinary type relationships and other mixin relationships). To illustrate this feature, consider the example diagram

in Figure 7. In this example, an objectanObject has a per-object mixinMix 1 providing a methodaMethod1. For this

method a transitive mixin delegation to a methodaMethod2 is defined which is dispatched on the class hierarchy the

mixin object was instantiated from (here the method is defined onClass 1). Moreover, the mixin classMix 1 has itself
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anObject

 instance_of  instance_of 

 has_per_object_mixin  has_per_object_mixin 

transitive_mixin_delegation(Mix_1, aMethod1, aMethod2)

aMethod2

Mix_2

aMethod1

Mix_1

aMethod2

Class_1

 instance_of 

AClass

is_class(’AClass’)
is_class(’Mix_1’)
is_class(’Mix_2’)
is_class(’Class_1’)
is_class(’Class_2’)
instance_of(’anObject’, ’AClass’)
instance_of(’Mix_1’, ’Class_1’)
instance_of(’Mix_2’, ’Class_2’)
provides_method(’Mix_1’, ’aMethod1’)
provides_method(’Mix_2’, ’aMethod2’)
provides_method(’Class_1’, ’aMethod2’)
provides_method(’Class_2’, ’aMethod3’)
has_per_object_mixin(’anObject’, ’Mix_1’)
has_per_object_mixin(’Mix_1’, ’Mix_2’)
transitive_mixin_delegation(’Mix_1’, ’aMethod1’, ’aMethod2’)
transitive_mixin_delegation(’Mix_2’, ’aMethod2’, ’aMethod3’)

Facts describing the example:

Deduced relations:

provides_type(’AClass’, ’AClass’)
...
can_invoke(’anObject’, ’aMethod1’)
can_invoke(’Mix_1’, ’aMethod2’)
can_invoke(’Mix_2’, ’aMethod3’)
can_invoke(’anObject’, ’aMethod1’, ’anObject’, ’aMethod1’)
can_invoke(’Mix_1’, ’aMethod2’, ’Mix_1’, ’aMethod2’)
can_invoke(’Mix_2’, ’aMethod3’, ’Mix_2’, ’aMethod3’)
delegate(’anObject’, ’aMethod1’, ’Mix_1’, ’aMethod2’)
delegate(’Mix_1’, ’aMethod2’, ’Mix_2’, ’aMethod3’)
can_invoke(’anObject’, ’aMethod1’, ’Mix_1’, ’aMethod2’) 
can_invoke(’Mix_1’, ’aMethod2’, ’Mix_2’, ’aMethod3’)
can_invoke(’aObject’, ’aMethod1’, ’Mix_2’, ’aMethod3’)

transitive_mixin_delegation(Mix_2, aMethod2, aMethod3)

aMethod3

Class_2

Figure 7. Example for transitive mixin delegation

a per-object mixinMix 2, which has a transitive mixin delegation fromaMethod2 to aMethod3 (here the method is

provided byClass 2). As a consequence, three delegated invocations can be deduced foranObject (using the clauses

defined in Figure 1, Figure 3, and Figure 6):

• Delegation fromaMethod1 to aMethod2: An invocation ofaMethod1 onanObject is automatically delegated

to aMethod2 on the objectMix 1 (Mix 1 is an instance ofClass 1 and can therefore invokeaMethod2 pro-

vided byClass 1).

• Delegation fromaMethod2 to aMethod3: An invocation ofaMethod2 on Mix 1 is automatically delegated to

aMethod3 on the objectMix 2 (Mix 2 is an instance ofClass 2 and can invokeaMethod3).

• Transitive delegation fromaMethod1 to aMethod3: An invocation ofaMethod1 onanObject is automatically

delegated toaMethod3 on the mixinMix 2. This transitive delegation is conducted viaaMethod2 that can be

invoked byMix 1 (see Figure 7). The state of the mixins is introduced throughthe object-specific delegation

between the mixins. Each mixin is implemented as a class object, and hence it has its own mixin-specific state.
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3.4 A decision tree for the modeling of mixin composition

Above we have introduced two novel concepts for modeling mixin interdependencies, transitive mixin chains and

transitive mixin delegation, as well as a number of variations for the application of these concepts (per-object vs. per-

class; directly applied vs. transitively applied). Now we take a look at the “big picture” and illustrate when which of

these variants is applicable. To assist developers in a systematic decision, Figure 8 provides a decision tree when to apply

which of the concepts.

Transitive Mixin
Chains

Transitive Mixin
Delegation

Per-Class Mixin
on Per-Class Mixin

Per-Class Mixin
on Per-Object Mixin

Type Relationship

define type for instances

Mixin Classes

composition with object or class composition with a mixin

Directly-Applied
Mixin Classes

Transitive
Mixin Classes

Per-Object Mixin

should be applied
per-object

Per-Class Mixin

should be applied
per-class

object identity
should change

object identity
should be retained

should be applied
per-object

should be applied
per-class

Class Relationship/
Inheritance

define flexibly reusable type

Figure 8. Decision tree for mixin composition

The class primarily defines the type of its instances. Hence,for defining ordinary types the standard class relationship

(instance of ) or ordinary inheritance (superclass) should be used.

In turn, if flexible reusability of classes is the goal, a mixin class should be applied. Thus, if an ordinary object or

class is to be extended, we use directly-applied mixin classes. Per-object mixins are used for object-specific extensions

that apply to an individual object only, and per-class mixins for class-specific extensions that apply for all instancesof a

particular class.

We also use mixin classes for refining mixin compositions. Inthis case, however, we apply them transitively (see

Figure 8). We have to further decide whether the object identity should be retained or not (i.e. whether stateless or

stateful mixins are needed). If the object identity should be retained, we apply transitive mixin chains, otherwise we
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choose transitive mixin delegation (see Figure 8).

As transitive mixin delegation is always object-specific, it requires the usage of per-object mixins. Transitive mixin

chains are always class-specific and are thus applied as per-class mixins. There is, however, the choice whether an

object-specific mixin relationship should be extended (per-class mixin on a per-object mixin), or if a class-specific mixin

relationship is to be extended (per-class mixin on a per-class mixin). The options are summarized in the decision tree

depicted in Figure 8.

4 Proof-Of-Concept Implementation: Transitive Mixins in X OTcl

As discussed in Section 1 and Section 2, many variations of the mixin concept exist. Most of them can, in principle, be

used to implement the concept of transitive mixin classes asdescribed in Section 3. In our examples we use XOTcl mixin

classes for illustration and as a proof-of-concept implementation. In this section, we provide the essential implementation

details, because we found them to be non-obvious and still necessary for a successful realization of the concepts. Our

implementation is close to the concepts defined in Section 3.However, other implementations based on other existing

frameworks (like existing mixin implementations or AOP frameworks, see Section 2) may of course choose other ways

to implement these concepts. For instance, we follow the distinction of per-object and per-class mixins. Most other

realizations of mixin concepts do not support both variants. Thus, one of the two has to be simulated using the other,

before the concepts presented in Section 3 can be fully realized.

4.1 Proof-of-concept implementation and XOTcl details

For our proof-of-concept implementation we have used an object-oriented extension of the scripting language Tcl

[31], called XOTcl (eXtended Object Tcl) [29]. XOTcl is a C-library that that can be dynamically loaded into every

Tcl compatible environment such astclsh or wish and is embeddable in C programs. As a Tcl extension, all Tcl

commands [31] are directly accessible in XOTcl. XOTcl is open source and publicly available from [30].

The code for our proof-of-concept implementation, described below, is implemented in C (about 3000 lines of code

of the XOTcl C implementation are relevant for the mixin and transitive mixin implementations). In this paper, we

will, however, not explain the details of the C reference implementation, rather we describe transitive XOTcl mixins and

their application in software development situations — please refer to [30] for the XOTcl source code and a language

reference.

Moreover, to show the generality of our results, we have donea second implementation of our concepts in a Java

extension, called Frag [44, 45]. Basically, this implementation extends the Java-library Jacl [9] with the same mixin

concepts as XOTcl. Here, AspectJ [20] is used to connect the dynamic mixin-based object system to existing Java classes

(see [43] for details). We will not explain the details of Frag because the XOTcl implementation of the transitive mixin
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concepts is more advanced and from a user-level view both arevery similar. Only the internal implementation details of

the XOTcl C implementation and the Frag implementation differ. The source code of the Frag reference implementation

can be obtained from [44].

XOTcl is based on the object system of OTcl [41]. This object system enables us to define objects, classes, and meta-

classes. Here, classes are special objects with the purposeof managing other objects. In this context, “managing” means

that a class controls the creation and destruction of its instances and that it contains a repository of methods accessible

for the instances. Every object may be enhanced with object-specific methods.

XOTcl supports single and multiple inheritance. All relationships in XOTcl, including class and superclass relation-

ships, are completely dynamic. Furthermore, XOTcl offers arich introspection mechanism which allows to inquire

nearly all characteristics of XOTcl objects and classes at runtime.

Through the superclass-relation classes are arranged in a directed acyclic graph. XOTcl defines a linearized precedence

order for class and mixin hierarchies to avoid potential conflicts during the name resolution (for details see Section 4.3).

In XOTcl every object (and class) may contain other objects (or classes). Objects can be aggregated dynamically by

another object at runtime. An aggregation constitutes a part-of-relationship between the corresponding objects.

4.2 XOTcl Mixin Classes

XOTcl mixin classes are a dynamic message interception technique based on the general mixin concept. They allow to

define extension classes in addition to the inheritance hierarchy of the target object a mixin is registered for. For method

resolution, mixin classes are searched prior to searching the object’s class itself (and the corresponding inheritance

hierarchy). XOTcl supports both, per-object mixins (POM) and per-class mixins (PCM), following the generic semantics

defined in Section 3.

In XOTcl any “ordinary” class can be registered as a mixin. This design is chosen because developers should not have

to learn new features of advanced constructs (such as aspects, meta-classes, or meta-objects) to use mixins. Additionally,

this also eases the composition of any existing (e.g. third party) classes, because — provided that there are no name

conflicts on the classes — the classes can be composed as mixins without modification.

The predefinedinstmixin3 method accepts a list of classes to be registered as per-class mixins, whereas the prede-

finedmixin method registers classes as per-object mixins.

XOTcl mixins may be dynamically added and removed at any time. To keep track of these dynamic relationships,info

instmixin andinfo mixin provide introspection functions for mixins. Thus, at runtime one can always determine

the current mixins of an object or class.

3“instmixin” is a short form of “instance mixin”, meaning that a corresponding mixin is applied for all instances of the class the mixin was

registered for. XOTcl uses a similar naming convention for methods: a method applying to all instances of a class is called “instproc”.
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4.3 Method Resolution Order of Class and Mixin Hierarchies in XOTcl

The concepts introduced in Section 3 allow for the definitionof type extensions for an object using mixins. An

important implementation facet, when realizing these concepts, is how mixins affect the method resolution order defined

by the corresponding object-oriented language — i.e., which methods of which classes are dispatched in what order. In

general, many solutions are possible and it is advisable to use a solution that follows the method resolution rules of the

respective object-oriented language as close as possible so that developers can apply mixins in a natural way without

having to learn semantics that are significantly different from the rest of the language.

In XOTcl, the method resolution order is given by a simple linearization of the class and mixin hierarchies that apply

for a certain object. Here, linearization means that duplicates in the method resolution order are eliminated. First, we

illustrate this for ordinary class hierarchies and subsequently for mixin classes.

Conceptually, all methods in XOTcl are mixin methods, meaning that they can mix-in the next, same-named

method on the class-graph. Let us consider an example: In Figure 9, a methodaMethod is dispatched, first on the

object anObject4, then on its class (here:AClass), and finally on each of the corresponding superclasses (here:

ASuperClass). Each method namedaMethod that is found somewhere in this method resolution order is executed. An

XOTcl code skeleton for this situation looks as follows:

Class ASuperClass

ASuperClass instproc aMethod args {

### code of aMethod

...

}

Class AClass -superclass ASuperClass

AClass instproc aMethod args {

### code of aMethod

...

}

AClass create anObject; # instantiation of anObject

anObject aMethod; # method invocation of aMethod

We can model before, after, and around behavior of a method call using the placement of thenext command within

the source code. That means, code after the invocation ofnext is executedafter the invocation of the next same-named

method (as shown in the example below), and code before the execution ofnext is executedbeforethe invocation of

the next same-named method. Before and after code is implemented as a variant ofaroundbehavior (as also provided

4In XOTcl objects might have object-specific methods which isa specialty of the XOTcl object system. For completeness, weshow “methods

defined on the particular object” in the method resolution order diagrams (see also Figure 10), but this language featureis not relevant for realizing

the concepts presented in this paper.
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method
invocation

(of aMethod)

AClass

aMethod

anObject

ASuperClass

aMethod

 next 

 next  instance-of 

 superclass 

Figure 9. Method resolution order for an invocation

in CLOS [3] or AspectJ [20] for example). When omittingnext, the originally called method is the only method that is

executed — i.e. the method call is not forwarded along the method resolution order. The following code is a skeleton of

an XOTcl method withnext:

AClass instproc aMethod args {

### instructions before ’next’ (might be omitted)

...

### invocation of ’next’ (might be omitted)

next

### instructions after ’next’ (might be omitted)

...

}

XOTcl’s per-object and per-class mixins use thenext command to forward messages to the mixin chain that is

registered for a particular object and to finally pass it to the “original” class hierarchy the object was instantiated from.

For instance, we can define two classesPOM 1 andPOM 2 (POM 1 andPOM 2 are ordinary classes):

Class POM_1

POM_1 instproc aMethod args {...}

Class POM_2

POM_2 instproc aMethod args {...}

In XOTcl, any class may be assigned the role to act as a mixin class (simply by registration as a mixin class). For

instance, we can register these classes as per-object mixins for the objectanObject. This means that only this particular

object is extended with the functionality of the two mixin classes:

anObject mixin {POM_1 POM_2}

In contrast to a per-object mixin (as motivated above), a per-class mixin operates on all instances of a class and

all instances of its subclasses. For example, the followinginvocation registers two ordinary classesPCM 1 andPCM 2
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dynamically for all instances ofASuperClass (which means that they are also applied foranObject which is an

instance ofAClass — see Figure 10):

ASuperClass instmixin {PCM_1 PCM_2}

Method resolution order

Methods defined on associated
Per-Object Mixins (POMs)

Methods defined on associated
Per-Class Mixins (PCMs)

Methods defined on the object’s
Class / Class Hierarchy

Methods defined on
the particular Object

Figure 10. Method resolution order in XOTcl

To avoid conflicts, XOTcl applies an unambiguous method resolution order: before the class hierarchy of an object is

searched, XOTcl searches the mixins that are registered forthis particular object. Moreover, per-object mixins are applied

before per-class mixins (see Figures 10 and 11). Subsequentto the mixins, the object’s own heritage is searched in the

following order: object, class, and superclasses (mixins are applied in the same order). All classes (mixins and ordinary

classes) in the method resolution order are linearized, andeach class may only appear once on a method resolution order

because duplicates are eliminated. If a class can be reachedmore than once, the last occurrence in the linearized list is

used.

per-object-mixin 

 instance-of 

per-object-mixin 

 superclass 

ASuperClass

AClass

anObject

PCM_1

aMethod

PCM_2

aMethod

POM_2

aMethod

POM_1

aMethod

 per-class-mixin 

anObject

Per-Class Mixins Class / Class HierarchyObjectPer-Object Mixins

Method resolution order

POM_2POM_1 PCM_2PCM_1 AClass ASuperClass

 per-class-mixin 

Figure 11. Method resolution order with per-object and per- class mixins

Each time this method resolution order is used in a method invocation, the method resolution order is searched for
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the first implementation of the respective method. This particular implementation is then invoked by XOTcl’s message

dispatcher. Moreover, if this implementation invokesnext, the next occurrence of this particular method is searched and

mixed into the current invocation, and so on.

The registration lists of mixin classes are “order-sensitive”, i.e. the order of the mixin classes determines the resulting

method resolution order. Figure 11 depicts the method resolution order for an invocation of a method calledaMethod on

an objectanObject (using the example mixin registrations from above). The mixins POM 1, POM 2, PCM 1, andPCM 2

can be reached fromanObject, as well as its classAClass and the superclassASuperClass.

4.4 Transitive Mixin Chains in XOTcl

As explained in Section 3, transitive mixin chains can be applied to define a mixin composition. For example, consider

a situation where we would like to configure the composition of a per-class mixinPCM 2 with a facet implemented in

a classTMix 15, while the original composition of mixins should stay unaffected. Moreover,TMix 1 itself should be

refined by another mixinTMix 2 (see Figure 12).

anObject

AClass

aMethod

TMix_1

aMethod

TMix_2

aMethod

PCM_2

aMethod

 instance-of 

 per-class-mixin 

PCM_1

aMethod

 per-class-mixin 

Method resolution order

PCM_2TMix_1TMix_2PCM_1 anObject AClass

Per-Class Mixins Class / Class HierarchyObjectPer-Object Mixins

 per-class-mixin 

 per-class-mixin 

Figure 12. Example of transitive per-class mixins

In XOTcl this is solved by adding the corresponding per-class mixins to the method resolution order of the affected

object. This means that all per-class mixins of the mixin itself (and their superclasses) are searched before the method

5We use “TMix” as an abbreviation for “transitive mixin” in this example.
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resolution order proceeds to the next mixin, resulting in atransitive mixin chain(see also Figure 12). This scheme is

applied recursively, because mixins might themselves haveper-class mixins, which again might have per-class mixins,

and so on.

In a transitive mixin chain the original target object of a method invocation — in XOTcl referred to asself — does

not change. This means that a referral toself from any mixin contained in a specific transitive mixin chainrefers to

the target object of the original method invocation (for theexample shown in Figure 12self would always refer to

anObject).

Figure 12 also shows the method resolution order resulting from aaMethod invocation to an objectanObject which

has two mixins (PCM 1 andPCM 2) registered as per-class mixins on its classAClass. Moreover, the per-class mixin

PCM 2 has itself a per-class mixinTMix 1, andTMix 1 is again extended with another per-class mixinTMix 2.

4.5 Transitive Mixin Delegation in XOTcl

To realize transitive mixin delegation, per-object mixinsare used. As explained in Section 3, transitive mixin delega-

tion is applied when theself reference should change in case a per-object mixin is applied. In XOTcl, this is solved

by delegating the mixin invocation to the class object of therespective per-object mixin. Classes in XOTcl are objects

with all object-specific characteristics (see also [29]). Thus, at runtime, a class can be treated as an instance (i.e. asan

individual object). Class objects are defined using a special type of class, a so-called meta-class. In XOTcl, all objects

need to have a class. A meta-class is a special kind of class whose instances are (ordinary) classes.

anObject

 instance_of  instance_of 

 per-object-mixin per-object-mixin Mix_2 Mix_1

Mix1_Meta

 instance_of 

AClassMix2_Meta

Figure 13. Per-object mixins which are themselves configure d using per-object mixins

Meta-classes (see also [12]) are only one of many possible concepts to define the properties of classes. Other concepts

that might be used equivalently are meta-object protocols (MOPs) [19], aspect-oriented programming [21], or patterns

like Object System Layer [14] or Type Object [18]. To fully realize the concept of transitive mixin delegation, we still

need to enable the transitive application of the mixin delegation relationship for the respective target object. For instance,

in Figure 13, the per-object mixin relationship of a classMix2 to a classMix1 refers to the corresponding targetMix1

only, and not to the objectanObject. Thus, in the example in Figure 13, an invocation toanObject is intercepted and
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automatically forwarded toMix1, however it is not transitively sent toMix2.

We solve this problem using a simple and automatically generateddelegator method. This delegator method realizes

the transitive mixin delegation relationship as defined in Section 3.3. The resulting delegation behavior is defined

by the meta-class.

Figure 14 depicts the method resolution order resulting from the object-specific transitive mixin delegation in more

detail. In order to forward a call ofaMethod invoked onanObject from classMix 1 to its per-object mixinMix 2 (or

to another transitive mixin), we need to invoke a corresponding method inMix 1 which is again forwarded along its own

linearized method resolution order. Therefore, each mixinclass (Mix 1, . . . ,Mix n) implements adelegator methodfor

aMethod (or for any other method which should be forwarded during themethod resolution usingnext). This delegator

method simply forwards the call to the meta-class (which implements the respective method).

To realize this concept in XOTcl we define, in a first step, a meta-class (in XOTcl this is done by specifyingClass as

superclass) and implementaMethod on this class:

Class Mix1_Meta -superclass Class

Mix1_Meta instproc aMethod args {

### code of aMethod

...

}

The methods implemented on a meta-class define the methods applicable on all individual classes that are instantiated

from this meta-class. We automatically generate a delegator method on the mixin classes (i.e. the meta-class’ instances)

for each method of the meta-class that should be (transitively) available to the objects which are associated with the

respective mixin classes at runtime. Typically this is donein the constructor of the meta-class. The following code

snippet contains a meta-class constructor (theinit method) of theMix1 Meta class that generates a delegator method

aMethod:

Mix1_Meta instproc init args {

next

[self] instproc aMethod args {

eval [self class] aMethod $args

return [next]

}

}

When instantiatingMix1 Meta the[self] call in [self] instproc aMethod args is replaced with the name

of the newMix 1Meta instance (see also Figure 14). Within the delegator method,the[self class] call is replaced at

runtime with the name of the mixin class instance. That means, whenaMethod is invoked onanObject, the invocation
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Mix2_Meta

 pom 
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aMethod

Mix1_Meta

aMethod
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anObject AClass
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Figure 14. Method resolution order for transitive mixin del egation
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is intercepted by the delegator method onMix 1 which then invokes the implementation onMix 1’s class that is defined

in Mix1 Meta.

At this point, the scheme described above gets automatically applied in a transitive fashion: before the invocation of

aMethod is executed forMix 1, all per-object mixins ofMix 1 are invoked. As the same scheme is executed onMix 2,

Mix 3, and so on (see Figure 14), a call ofaMethod on anObject automatically invokes all (direct and transitive)

per-object mixins associated withanObject.

Even though this recursive scheme might look quite complex at first glance, the use of this mechanism is relatively

simple (see the case study in Section 5.2 for instance). The developer only has to define the delegator method template.

anObject

instance-of

per-object-mixin

method
invocation

(of myMethod)

pom interception

Mix_n

aMethod per-object-mixinper-object-mixin

AClass

aMethod

Mix_1

aMethod

Mix_2

aMethod

transitive 
mixin delegation 

transitive 
mixin delegation 

Figure 15. Method resolution order for transitive mixin del egation with multiple mixin hierarchies

Figure 15 shows an example of the typical developer perspective on transitive mixin delegation. A number of arbitrary

class hierarchies can be composed, and all inter-class hierarchy composition issues are automatically handled using

transitive mixin delegation in conjunction with thenextmechanism. In particular, this means the programmer is released

from implementing a method/mixin lookup procedure on her own. Figure 15 shows a characteristic example of a resulting

method resolution order. In this example, anaMethod invocation is forwarded fromMix 1 to the last mixin class in the

transitive mixin chain (here:Mix n). Subsequently, the respective invocation follows the method resolution order shown

in Figure 15 before it finally reachesaMethod provided throughAClass.

5 Case Studies

5.1 Transitive Mixin Chains: Configuring a Persistent Storage

In XOTcl, every object can be made persistent using a simple API. In essence, this persistence property is added using

a mixin class. For instance, the following code adds the eager persistence strategy to an object (here “eager” means

that changes of variable values are directly written into the persistence store. XOTcl also implements a lazy persistence

strategy):
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anObject mixin PersistentEager

Using a per-class mixin we can add the same functionality to aclass. Thus, the persistence mixin is applied for all

instances of that class, for instance:

AClass instmixin PersistentEager

However, in this situation we face the problem that the persistence relationship needs to be further configured and

refined: the persistence storage type has to be chosen and itsfunctionalities need to be accessed. In XOTcl, multiple

storage types are supported (a GDBM database, an SDBM database, a memory storage, and a plain file storage). All

these storages can be accessed using a unified storage interface.

Thus, to access these storages fromanObject or instances ofAClass (which have the persistence logic mixed in

using the per-class mixin onAClass), we only require the additional storage functionalities.This configuration is a

stateless configuration that just adds the storage type behavior. That is, even though there might be multiple objects and

classes that are made persistent, usually all objects should be written into the same (type of) persistence store. In such

cases, it is tedious to configure each object and class on its own. Instead, we can use the transitive mixin chain feature

and configure thePersistentEager strategy with a certain storage type:

PersistentEager instmixin StorageGdbm

Now all objects are made persistent (using the eager strategy) and are written into a GDBM persistence store.

A strength of this approach is that it is still possible to further configure and refine persistence for individual objectsif

needed by an application. We can for instance configure the two mixin compositions above individually, by registering

persistence as a second mixin.

anObject mixin StorageGdbm

...

AClass instmixin StorageMem

The central benefit of using transitive mixin chains for persistence storage configuration is the increased flexibility

without compromising reuse or simplicity. Just consider the eight example configurations in Figure 16, which all can be

easily configured, without changes to any of the respective classes (these eight examples are shown for demonstration

purposes and do not show all possible configurations). In different design situations, each of these configurations makes

sense:

1. One specific object is made persistent with the eager strategy, using the GDBM storage.

2. One specific object is made persistent with the eager strategy, and all objects associated with the eager strategy are

written to a GDBM storage.
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Figure 16. Example configurations of two persistence mixin c lasses
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3. All instances of a class are made persistent with the eagerstrategy using the GDBM storage.

4. All instances of a class are made persistent with the eagerstrategy, and all objects written eagerly are written to a

GDBM storage.

5. One specific object is made persistent with the eager strategy, and all instances of that class, if they are made

persistent, are written to the GDBM storage.

6. All instances of a class are made persistent with the eagerstrategy. The storage is configured object-specifically:

for the example object GDBM is chosen.

7. All instances of a class are made persistent and written tothe GDBM storage. All instances written to the GDBM

storage are written eagerly.

8. One specific object is made persistent and written to the GDBM storage. All instances written to the GDBM

storage are written eagerly.

Using transitive mixin chains the definition of other persistence configurations simply results in a different mixin

registration, whereas in many other approaches, some of these variants would mean that internal changes are required to

some of the classes. This is just a simple example with two mixins realizing one concern, persistence, configured on one

object and one class. The transitive mixin chain works equally well for more behavioral concerns realized by a bigger

number of mixins and applied for more complex hierarchies ofclasses and on arbitrary numbers of objects.

In the persistence example, ordering of the mixin classes does not matter. If the order of mixin classes matters (i.e.,

with respect to the example: whetherPersistenceEager or StorageGDBM is applied first), then not all example

configurations are exchangeable, because they yield different orders of the two mixins. In general, it is a strength of the

transitive mixin chain approach that ordering can be controlled by the developer, if this is required.

5.2 Transitive Mixin Delegation: Implementing the xoRBAC component

xoRBAC [27, 28] is a software component that provides a role-based access control (RBAC) service. xoRBAC is

implemented in XOTcl and, among other things, uses per-object mixins to implement thecheckAccess method which

renders xoRBAC access control decisions. We have applied the transitive mixin delegation feature of XOTcl to facilitate

the implementation of role-, permission-, and constraint-lookup procedures.

Figure 17 depicts the high-level relations between xoRBAC objects: permissions are assigned to roles, roles are

assigned to subjects, and roles may be arranged in a role-hierarchy (a directed acyclic graph). Furthermore, xoRBAC

allows for the definition of context constraints [37]. A context constraint specifies a number of conditions that must hold

simultaneously to grant a certain access request. On the implementation level, we use per-object mixins to associate

subjects with roles, roles with permissions, and permissions with context constraints.
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An example for the method resolution order of acheckAccess call is shown in Figure 18. Here,permission1 is

assigned torole1, androle1 is assigned tosubject1. Moreover,permission1 is linked to two context constraints

constraint1 andconstraint2. Regarding thecheckAccess method, the instances ofRole andPermission

(andContextConstraint) form a Chain of Responsibility [13]. Thus, acheckAccess call is passed via the method

resolution order until aPermission object declares itself responsible and grants the access request by returningtrue.

If, however, the respective permission is associated with one or more context constraints (as in Figure 18 for example),the

permission must check its context constraints first. In other words, to grant a certain access request it is not sufficientfor

a subject to own a corresponding permission, but, at the sametime, all context constraints associated with this permission

must be fulfilled.

pom interception
checkAccess

checkAccess

checkAccess

checkAccess

true
next

falsefalse

false
false

false
false

pom interception

false

checkAccess

pom interception

Transitive mixin delegation Transitive mixin delegation

role1 constraint1subject1 permission1 constraint2

Figure 19. Sequence diagram of a checkAccess call for the ret urn of false

We chose transitive mixin delegation to associate context constraints with permissions, permissions with roles, and

roles with subjects. The source code for the automatic generation of thecheckAccess delegator method forRole

objects is shown below. An access request is represented by the triple 〈Subject,Operation,Object〉 which again is

represented through thesu op ob parameters passed to thecheckAccess method (the source code of the respective

delegator method forPermission objects is quite similar, while context constraints, in contrast, returnfalse if the

constraint is violated and forward the call usingnext instead of returningtrue if the constraint is fulfilled).
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Role instproc init args {

next

[self] instproc checkAccess {su op ob} {

if {[[self class] checkAccess $su $op $ob]} {

return 1

} else {

return [next]

}

}

}

Figure 19 shows a sequence diagram for the return offalse (checkAccess returnsfalse if the corresponding

access request cannot be granted). The sequence diagram thus provides an alternative view of the action and event

sequence resulting from acheckAccess call (see also Figure 18).

Transitive mixin delegation offers a number of advantages in this case. One of the most important benefits is that the

unambiguous method resolution order of thecheckAccess method always includes all roles, permissions, and context

constraints which are registered as per-object mixins on a specificSubject (directly as well as transitively). Thereby,

xoRBAC does not need to implement separate lookup-methods for roles, permissions, or context constraints. Rather, a

checkAccess method invocation follows the method resolution order to automatically visit all roles, permissions, and

context constraints which are (potentially) relevant to the corresponding access request.

6 Evaluation

Our approach has a number of unique properties, compared to the other approaches discussed in Section 2. The

main contribution of our approach is a clear concept for the transitive composition of mixins. This way we can express

extensions to a class, superclass, or mixin using one and thesame reusable programming technique: the transitive mixin

class. From a conceptual point of view, mixin roles [40] and mixin layers [35] are heading to a similar direction as they

also provide some additional composition mechanism using the mixin concept. However, the realization using static C++

templates is completely different and not well suited for expressing dynamic mixin interdependencies.

Even though some approaches, such as AOP and role concepts, can express class interdependencies quite well, it is

usually difficult to apply these concepts transitively — like for instance “an aspect of an aspect”. Aspects of aspects are

only realized by a few prototypes, such as Hyper/J or EAOP. Our approach especially adds a clear precedence order that

helps to easier understand aspect interdependencies. As aspects can be used to realize mixins, our concepts for transitive

mixin composition can also be used as a concept to add transitivity to the other AOP approaches.

In a similar way, our approach can be used to extend role concepts with the notion of transitivity. Kristensen and

Østerbye [23, 24] have proposed a notion of “roles of roles” before. Nevertheless, as explained in Section 2, in their ap-
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proach changes to clients are necessary to acquire the mixinbehavior. Our approach, in contrast, transparently composes

transitive mixins. Thus, our approach is more suited for unanticipated evolution and reuse.

A similar problem occurs in Zhao’s and Foster’s approach [46]: manual forwarding through the Cascade hierarchy

is required to compose Cascade layers (see also Section 2) toachieve the same effect as offered by our transitive mixin

concepts. In our concept, automatic composition via the next-primitive and a linear precedence order are supported.

Object Teams [17] support automated method forwarding for method bindings between a class and its roles. That

is, regarding transparent composition support, this concept is closer to our transitive mixins than the mentioned role

approaches. However, Object Teams do not support transitive roles.

Our approach introduces one and the same construct for direct and transitive composition: the mixin class. Many of

the related approaches introduce different constructs formixin (or, for example, aspect/role/meta-object) and class. Thus,

in our approach, developers only have to learn a single language feature to perform all kinds of composition. Only a

few additional (implementation-dependent) facets have tobe understood. Any class can be used as a mixin class through

registration — without further modification of that class. This is supported by an automatic forwarding mechanism that

also handles type conversions and argument passing transparently, themethod resolution order. This results in a simple,

unambiguous ordering scheme.

In AOP approaches, like AspectJ or JBoss AOP, mixins often need to be introduced as inter-type declarations. In

contrast, our approach directly applies mixins as message interceptors (see also Section 4). As virtually all aspect

composition frameworks support some kind of message interceptor (see [42] for a discussion) and some automatic

forwarding mechanism (such as AspectJ’s “proceed” [20] forinstance), mixin classes can be realized using most AOP

approaches with moderate efforts.

A major composition problem in many AOP approaches is the so-called fragile pointcut problem [22]. Many point-

cuts have dependencies into the base program. Hence simple changes like renaming a method in the base program can

break the pointcut. This problem is only a minor problem in our prototype, because we use explicit mixin registra-

tion on classes. Hence there is a direct relation between themixin class and the base program that it extends. Only

changes to base class names or method names that are intercepted by the mixin can potentially be the cause of a fragile

mixin composition. In most cases, such a change directly causes an error (and can thereby easily be detected). If AOP

approaches are used to implement our approach, however, fragile pointcuts might cause massive debugging problems,

because transitive mixin composition leads to complex aspect interdependencies which might get hard to understand and

trace if arbitrary pointcuts can be used. Our solution in theFrag prototype [44, 45], which uses AspectJ to compose Frag

mixin classes with Java base classes, is to use only simple, explicit pointcuts that are limited to the expressive power of

mixin registration (see [43] for details). To ensure that this limitation is not violated by developers, it is advisableto use

a program generator to automatically create the pointcuts.

In contrast to the model used in more dynamic object-oriented environments, such as CLOS, Smalltalk, or Self, as well
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as in programming techniques such as reflection, MOP, or meta-classes, transitive mixins provide a first-class entity for

expressing the interdependencies of mixins. Method invocations on mixins are always resolved in an unambiguous, linear

method resolution order — instead of a complex graph of meta-objects or other delegators with different responsibilities.

Our mixins provide a very simple interface allowing for registration and introspection of mixins only. Thus, compared

to more complex approaches such as MOPs they are very simple.

When configuring elements of an object-oriented software system, it is often not enough to provide configuration

options on a per-class level. Many object-oriented adaptation techniques, however, perform adaptations on a per-class

level only, making it cumbersome to apply these techniques for object-specific composition. On the other hand, when

class-specific composition is required, having only an object-specific configuration option is tedious as well. Thus, our

approach supports both variants: it can be applied using per-object and per-class mixins.

Some of the approaches discussed in Section 2 are static composition techniques meaning that the core composition

mechanism cannot be used for dynamic composition. For instance, AOP approaches, like AspectJ or JBoss AOP, focus on

static adaptation techniques. Therefore, in contrast to our approach, they cannot be directly applied for runtime changes

of the aspect configuration. There are some workarounds to these problems (for instance, aspects that can be turned on

and off usingthisJoinPoint in AspectJ), but these are hand-built solutions that are notoptimized for performance and

without further composition support. This problem is resolved by dynamic AOP approaches. Our concept of transitive

mixins can be applied in both a static as well as in a dynamic fashion, yet our examples (and prototype implementation)

are focused on dynamic mixin configuration. The dynamic AOP approaches are closer to the examples in this paper than

more static approaches like AspectJ. To implement our concepts on top of an AOP framework, it is thus advisable to

reuse a dynamic AOP framework if possible, because this allows for the reuse of existing dynamic aspect composition

means.

A sub-problem of dynamic composition is the dynamic ordering of aspects, which might be needed in some application

scenarios. Mixin classes are dynamically composed and the order can be provided at runtime as a mixin list. Our mixin

class concepts can also be used as a simple and intuitive conceptual foundation to add dynamics to static approaches.

Nevertheless, our approach is not limited to languages and environments that support mixins. The mixin concept is a

rather simple extension of the basic object-oriented type concept and similar concepts can be found in many other adap-

tation techniques, such as aspect-oriented programming, meta-object protocols, roles, message interceptors, interpreters,

virtual machines, etc. Therefore, our approach can be applied on top of those other approaches and usually reuse large

parts of their implementation.

In our proof-of-concept implementation we describe the dynamic mixin classes of XOTcl. If dynamic composition is

not required (i.e. if compile time or load time approaches are sufficient), the concepts presented in this paper can also

be implemented using static mixin approaches. All implementation approaches for static mixins support some of the

properties of transitive mixin classes. Essentially, to implement our concepts using one of these approaches, it is neces-
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sary to generate delegator methods to simulate the transitive “next” behavior and automatic forwarding (including type

conversions, parameter adaptation, etc.). For programming languages without support for dynamic method generation,

such as Java, many code generators exist that ease this task.

Even though our approach is easy to use and simple from a developer’s perspective, the internal use of meta-classes

and interceptors is far from being simple (as the discussionin Section 4 indicates). Thus, implementing our approach

completely from scratch for another programming language or framework requires some effort that might be too much

an effort for a small project.

Runtime composition techniques always impose an overhead in terms of runtime performance (for dynamic indirec-

tions). Even though XOTcl message interceptors are optimized for performance, they should not be applied for problems

that do not require dynamic adaptations. Here, static techniques usually have a superior performance. However, this is,

of course, only a potential drawback of our prototype implementation, not of the transitive mixin concepts in general.

7 Conclusion

In this paper, we have presented a practical approach to model mixin interdependencies. By applying mixin classes

transitively, we are able to use the concept of mixin classesto define composition relationships of ordinary classes and

mixins. Problems similar to the problem to define “mixins of mixins” are present in many other composition approaches

as well — such as in aspect-oriented programming, meta-object protocols, roles, message interceptors etc. Hence,

there is a broad applicability of the transitive mixin approach. The mixin concept is a rather simple extension to the

basic type concepts of object-oriented languages, and is thus well suited to explore the problems of class relationships

and interdependencies generally and conceptually — apart from the implementation details of the other composition

approaches. We did two proof-of-concept implementations,XOTcl and Frag, which are both available as open source.

Moreover, our mixin concepts have been successfully applied in a number of projects (including the two case studies

presented in this paper). As future work, we plan to implement the concepts as an extension of an existing AOP frame-

work. In this paper, we focused on the extension of programming frameworks or languages by transitive mixin classes.

As further work we also plan to provide modeling support for the concepts presented in this paper, for instance using a

UML 2 extension.
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[16] G. Gottlob, M. Schrefl, and B. Röck. Extending Object-Oriented Systems with Roles.ACM Transactions on Information

Systems, 14(3), July 1996.

[17] S. Herrmann. Sustainable architectures by combining flexibility and strictness in Object Teams.IEE Proceedings Software,

151(2), 2004.

[18] R. Johnson and B. Woolf. Type Object. In R. Martin, D. Riehle, and F. Buschmann, editors,Pattern Languages of Program

Design 3. Addison-Wesley, 1998.

[19] G. Kiczales, J. des Rivieres, and D. Bobrow.The Art of the Metaobject Protocol. MIT Press, 1991.

[20] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. Getting Started with AspectJ.Communications

of the ACM, 44(10), October 2001.

[21] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J. M. Loingtier, and J. Irwin. Aspect-Oriented Programming.

In Proc. of the European Conference on Object-Oriented Programming (ECOOP). Lecture Notes in Computer Science (LNCS)

1241, Springer-Verlag, June 1997.

[22] C. Koppen and M. Störzer. PCDiff: Attacking the Fragile Pointcut Problem. InProc. of the European Interactive Workshop

on Aspects in Software (EIWAS), September 2004.

33



[23] B. Kristensen. Object-Oriented Modeling with Roles. In Proc. of the International Conference on Object-Oriented Information

Systems. Springer-Verlag, 1996.

[24] B. Kristensen and K. Østerbye. Roles: Conceptual abstraction theory & practical language issues.Theory and Practice of

Object Systems, 2(3), 1996.

[25] P. Maes. Concepts and experiments in computational reflection.ACM SIGPLAN Notices, 22(12), 1987.

[26] D. Moon. Object-oriented programming with flavors. InProc. of the Conference on Object-Oriented Programming Systems,

Languages, and Applications (OOPSLA), volume 21 ofSIGPLAN Notices, Portland, November 1986.

[27] G. Neumann and M. Strembeck. Design and Implementationof a Flexible RBAC-Service in an Object-Oriented Scripting

Language. InProc. of the 8th ACM Conference on Computer and Communications Security (CCS), November 2001.

[28] G. Neumann and M. Strembeck. An Approach to Engineer andEnforce Context Constraints in an RBAC Environment. In

Proc. of the 8th ACM Symposium on Access Control Models and Technologies (SACMAT), June 2003.

[29] G. Neumann and U. Zdun. XOTcl, an Object-Oriented Scripting Language. InProceedings of Tcl2k: The 7th USENIX Tcl/Tk

Conference, February 2000.

[30] G. Neumann and U. Zdun. XOTcl Homepage. http://www.xotcl.org/, 2006.

[31] J. K. Ousterhout. Tcl: An embeddable Command Language.In Proc. of the 1990 Winter USENIX Conference, January 1990.

[32] B. Pernici. Objects with roles. InProc. of the Conference on Office Information Systems. ACM Press, 1990.

[33] A. Popovici, T. Gross, and G. Alonso. Just In Time Aspects: Efficient Dynamic Weaving for Java. InProc. of the International

Conference on Aspect-Oriented Software Development (AOSD). ACM Press, 2003.

[34] N. Schärli, S. Ducasse, O. Nierstrasz, and A. Black. Traits: Composable Units of Behavior. InProc. of the European

Conference on Object-Oriented Programming (ECOOP), Lecture Notes in Computer Science (LNCS) 2743. Springer Verlag,

July 2003.

[35] Y. Smaragdakis and D. Batory. Implementing Layered Designs with Mixin Layers. InProc. of the European Conference on

Object-Oriented Programming (ECOOP). Springer-Verlag, Lecture Notes in Computer Science (LNCS) 1445, 1998.

[36] B. Smith. Reflection and Semantics in Lisp. InProc. of the ACM SIGACT-SIGPLAN Symposium on Principles of Programming

Languages (POPL), January 1984.

[37] M. Strembeck and G. Neumann. An Integrated Approach to Engineer and Enforce Context Constraints in RBAC Environ-

ments.ACM Transactions on Information and System Security (TISSEC), 7(3), August 2004.

[38] P. Tarr. Hyper/J. http://www.research.ibm.com/hyperspace/HyperJ/HyperJ.htm, 2006.

[39] D. Ungar and R. B. Smith. Self: The Power of Simplicity. In Proc. of the Conference on Object Oriented Programming

Systems, Languages and Applications (OOPSLA), October 1987.

[40] M. VanHilst and D. Notkin. Using role components in implement collaboration-based designs. InProc. of the Conference on

Object-Oriented Programming Systems, Languages, and Applications (OOPSLA), 1996.

[41] D. Wetherall and C. J. Lindblad. Extending Tcl for Dynamic Object-Oriented Programming. InProc. of the USENIX Tcl/Tk

Workshop, July 1995.

[42] U. Zdun. Pattern language for the design of aspect languages and aspect composition frameworks.IEE Proceedings Software,

151(2), April 2004.

[43] U. Zdun. Using Split Objects for Maintenance and Reengineering Tasks. InProc. of the European Conference on Software

Maintenance and Reengineering (CSMR), March 2004.

34



[44] U. Zdun. Frag. http://frag.sourceforge.net/, 2006.

[45] U. Zdun. Tailorable Language for Behavioral Composition and Configuration of Software Components.Computer Languages,

Systems and Structures: An International Journal, 32(1), 2006.

[46] L. Zhao and T. Foster. Modeling Roles with Cascade.IEEE Software, 16(5), September/October 1999.

35


