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Abstract

In object-oriented composition, classes and class inarcé are applied to realize type relationships and reusable
building blocks. Unfortunately, these two goals might bet@dictory in many situations, leading to classes and in-
heritance hierarchies that are hard to reuse. Some apprescxist to remedy this problem, such as mixins, aspects,
roles, and meta-objects. However, in all these approacki@isations where the mixins, aspects, roles, or meta-tbjec
have complex interdependencies among each other are nidiabetd yet. In this paper, we propose transitive mixins as
an extension of the mixin concept. This approach providémple and reusable solution to define “mixins of mixins”.
Moreover, because mixins can be easily realized on top @asproles, and meta-objects, the same solution can also

be applied to those other approaches.

1 Introduction

In many object-oriented approaches, the (multiple-)itaece relationship and the type concept are modeled via the
same construct, the class. However, (multiple-)inhecéaprimarily aims at the reusability of classes, whereasasscl
primarily defines the type of its instances, the objects @se [8]). These two goals are often contradictory, as, on
the one hand, a unit of reuse should be small and flexibly ceaigde with arbitrary kinds of other classes, and, on the
other hand, an object’s type needs to be defined completelyemuires a fixed place in the class hierarchy. Mixins are
proposed as a way to solve this problem (see, e.qg. [3, 5, 2&1]). A mixin is a small unit of composition that is not

necessarily defined completely. It canrbhéedinto a given class hierarchy at arbitrary places.



An open issue in mixin-based composition is the compositibmultiple mixins in dependency to each other, i.e.
how to define “mixins of mixins”. As mixins can be used in arhit places of a class hierarchy, it is hard to define the
interdependencies between them in the context of composith a generic way.

Consider a simple example: an access control handler istamally composed with application logic classes in a
server. The access control handler depends on a numberef dtsses: for example the remote objects which have
to be protected, the users and/or roles whose access redoesbjects must be controlled, the permissions of each
particular user or role, and the context constraints fos¢hgermissioris As these classes are all together defining the
access control handler type, and each of them should belflecdmposable and reusable in many situations, it seems
to be a good choice to model each of them as a mixin. In a “flakinminodel, however, we are not able to model the
interdependencies among these mixins. Example problerasdn models are that conditional composition based on
runtime state is not possible, the composition order cabhaapecified, multiple roles of one type cannot have differen
instance-specific permissions, or all mixins would be aaplio the user or role instances. Instead, we would like to
be able to explicitly model a kind of “mixin of mixin” relatitship: a role mixin might only be configured for users,
a permission mixin only for roles, and a context constraimtimonly for permissions. In such cases, the problem
arises how these interdependencies among the classes gaopeely modeled while still retaining the reusable type
relationship offered by the mixin concept.

In this paper, we propose the transitive composition of molasses as a solution to this problem. In particular, in
our basic concept, which is callechnsitive mixin chainseach mixin can transitively have other mixins itself, todab
(and arbitrarily refine) mixin-based compositions. Thispvaultiple class hierarchies, expressing orthogonal eoms;
can be (dynamically) composed with the application logia imansitive fashion. Moreover, we also introduce the more
elaboratdransitive mixin delegatiomoncept. It allows each transitive mixin to have its own éabjspecific) state. These
concepts are defined in a generic way using Horn clauses tioS8&c

Our approach applies mixins as a simple basic concept faal#ea types. We used this approach because of the
generality of the mixin concept. Similar concepts are prege many recent adaptation techniques, including aspect-
oriented programming, meta-object protocols, roles, mgsinterceptors, interpreters, virtual machines, etat i) our
approach can also be implemented as an extension to thesetethniques, and hence we expect a wide applicability
of our concepts.

Section 4 presents a proof-of-concept implementation ofapproach that is based on XOTcl mixins [29, 30]. Sub-
sequently, in Section 5, we illustrate the practical usehef toncepts with two case studies, a persistence manager
component and a role-based access control framework. \Wenrthese details, because we feel that — even though the
concept in general and its use are quite simple and stramgiafd — the implementation details are not obvious. We il-

lustrate the general problems in implementing transitiveimtlasses by explaining the design challenges and aessi

The access control example will be discussed in detail iniGes.2.



of our implementation, as well as the corresponding caskefuOf course, many design challenges can be solved quite
differently in other implementations of our concepts. IrciBm 6 we evaluate our findings and Section 7 concludes the

paper.

2 Discussion of Related Work

In addition to the related work regarding the area of mixaséd composition [3, 5, 6, 26, 41], mentioned in the
previous section, various other extensions and implentientaoncepts for mixins have been proposed.

A number of approaches suggest to add mixins in a type saieefs@rk. For instance, Flatt, Krishnamurthi, and
Felleisen present a mixin approach for Java [11] that is ept@lly similar to mixin-based inheritance.

Van Hilst and Notkin describe an implementation techniqoerbles using C++ templates [40]. Here, roles are
composed using inheritance, and the superclass of a rghedified as a template argument. This approach can be seen
as a form of mixin classes that are statically composed @amposed before runtime).

Smaragdakis and Batory simplified and extended the ideal®fnixins into the mixin layers concept [35]. Mixin
layers group multiple mixin classes into a container cld$s parameter (superclass) of the outer mixin determines th
parameters (superclasses) of inner mixins. Thus, the appris more structured compared to Van Hilst's and Notkin's
approach, and it uses a more simple instantiation styleothn &pproaches, however, it can be challenging to undetstan
how the pieces compose together (mainly due to the use ofatesand other complex C++ language features).

Traits [34] support the reuse of method collections oveersswclasses. They are groups of methods that act as units
of reuse from which classes are composed. Thus, traits aeeumits of reuse consisting only of methods (similar to the
per-class mixins presented below).

In all mixin approaches, explained so far, mixins are notpsufed as explicit mixin entities, but rather seen as
pure extensions of the inheritance relationship. That mdaoth stateful composition of mixin roles and object-#jec
composition of mixins is not supported. Moreover, trarsitnixin composition is not supported in any of the approache
In this paper, we will extend those other mixin concepts fopsut each of these facets as an option that can be chosen
by the developer.

A number of more dynamic, object-oriented environmentshsas CLOS [3], Smalltalk [15], and Self [39], provide
both a programming environment and a runtime environmélatyang to influence the language behavior from within a
program. For this purpose, different language construgtsapported, such as computational reflection [25, 36]amet
object protocols (MOP) [19], meta-classes [12], dynam&sses, or delegation constructs [2]. With these constracts
given composition and even the composition mechanisnf ita@l be manipulated and adapted to a given context. The
above mentioned techniques provide a great expressiverpoulee developer. Yet, they also impose a high complexity.
To understand an expression, the current runtime defindfoilne environment has to be understood (including class

relationships, meta-objects and meta-classes, and exgdgfinitions of language elements). As there is no stahdar
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way to express interdependencies between class relapsnshanipulations of these interdependencies are ofted-ha
built. Thus, they look different in different applicatioasd are not easy to understand for the developer.

To limit the complexity, but still allow for powerful softwa adaptations, different approaches have been proposed.
A number of these approaches can be classified as aspeutedrigrogramming (AOP) [21] approaches. Aspectd [20],
for instance, allows to declaratively provide “pointcutshich are performing adaptations for a number of pre-defined
“joinpoints”. Joinpoints are specific, well-defined evemsthe control flow of the executed program. Aside from
AspectJ, there are many other aspect composition framewdikey have in common that they are easier to understand
and apply than meta-programming or reflection. Also theyigi®a runtime indirection layer [42], so that an aspect can
react on context changes at runtime. However, as these misofgfocus on static adaptation techniques, they cannot
be applied directly for runtime changes of the aspect cordigan. Therefore, a number of extensions offer dynamic
aspect composition. For instance, Prose [33] and Steamlépmodify the Java Virtual Machine to allow for dynamic
configuration of aspects.

JBoss AOP [7] introduces a simple notion of mixins into aneasriented programming framework. In particular,

a mixin class and a number of additional interfaces are atlledclass using byte-code manipulation. The mixin class
provides the implementation of the methods introducedgugie additional interfaces. At runtime, an instance of the
mixin class is created for each instance of the class thaténded with the respective mixin. JBoss AOP mixin classes
introduce methods that can be used by interceptor methotis f@ature resembles AspectJt’s inter-type declarations
[20].

The AOP approaches discussed above lack a clear solutiontépdependencies of aspects. Aspects of aspects can
be realized by a few research prototypes, such as Hyperf&fFBAOP [10]. In most AOP implementations, however,
it is difficult to compose aspects of other aspects, becawsagpects are most often composed in a linear chain with
a predefined order. Inter-aspect dependencies are thustudtel to model (i.e. only with complex workarounds), and
resulting solutions are complex and hard to understandh&mmore, when aspects have inter-dependencies among each
other, it is difficult to determine which aspects are appti@eavhich composition units in what order.

The composition of roles has been studied in a number of appas. An object is allowed to possess or play
one or more roles. Typically, an object plays the roles wldoh associated with the class from which the object was
instantiated (see e.g. [1, 16, 32]). Some of these role agpes distinguish class and role hierarchies, as for iostan
[1, 16]. This way, roles are differentiated into role typesiaan be further specialized. This concept is similar toimix
class hierarchies but offers no concept for transitiverdgpendencies of roles.

Kristensen and @sterbye [23, 24] extend the earlier roleepts with the notion of “roles of roles”. This concept is
transitively applicable, however, it requires manual icasto a role’s context. For instance, if an instance of asasas
aroleR1, andRl1 itself has a roldR2, then the methods &1L andR2 are not directly available to clients of the instance of

C, but first this instance must be classifiecdRibor R2 respectively. A problem of this approach is that changedi¢ots



are necessary to acquire the mixin behavior, which, agamaleins unanticipated evolution and reuse.

Zhao and Foster propose to model roles using the Cascadempptb]. Cascade uses a tree structure to represent
roles. Each Cascade layer is a Composite pattern [13]. Bhrtlue repeated use of the Composite pattern on different
levels, the Cascade pattern achieves an explicit semaygcihg and ordering in whole-part relationships. Zhao'd a
Foster's approach can be used to model class interdepaadafdCascade layers, but manual forwarding through the
Cascade hierarchy is required.

In the Object Teams approach [17], role concepts are cordbiith concepts from AOP. Here, a Team is a class that
contains direct inner classes that each implement a rad¢arices of a base class will always be associated to instahce
the role classes in the team. A particular base class instzant be associated to multiple role objects in multiple seam
The concept allows for method bindings between a class andlis, which enable automated method forwarding in
both directions (so-called Callins and CallOuts).

Most approaches explained above provide some specialdgegronstruct, such as a dedicated mixin construct, meta-
object, role, or aspect. Even though the composition aghemare slightly different, they all can be applied to edten
or compose type relationships with the ordinary inheriahi@rarchy. We can distinguish the following differenchs:
some approaches, the composition can be changed at ruotinees do not provide this feature. Some approaches apply
the composition per individual instance (per-object) eotido it for classes (per-class). When the compositiongieh
it can retain the identity of the object onto which it is appli or there might be a separate compositional instanadlik
role or mixin instance) having its own (unique) identity. Mover, the details of how the composition is actually agpli
vary, e.g.: the ordering of the composition; the applicatid compositions before, after, or around the executionnof a
actual method invocation; the resolution of ambiguitiethim class graph.

In the approach presented in this paper, we aim to remedyadimpasition problems, identified in the related work
especially with regard to transitive mixin composition. eévthough the composition is realized in different ways, our
approach can be applied — with moderate effort — on top of mbtéte other approaches. In Section 6 we will compare

our approach to those other approaches.

3 Transitive Mixin Classes: Concepts

Our goal is to extend the mixin concept with support for tiwes mixins (“mixins of mixins”) — as a way to model
the interdependencies among different mixins. We haveahogixins as a conceptual foundation for our approach
because mixin implementations and approaches exist foy marironments, and the mixin concept can be realized in
or on top of many other adaptation techniques, includingetspriented programming, meta-object protocols, roles,
message interceptors, interpreters, virtual machines, Hius, there is a wide potential for a common applicabibity
our results.

In the remainder of this section we define the declarativeasics of two novel mixin conceptsransitive mixin
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chainsandtransitive mixin delegationWe present our concepts in a generic form, expressed via tlauses. The goal
is to express a general model that can be used with many ofpir@aches explained in the preceding section. Even
though there are slight differences in these approachestamsitive mixin approach can be implemented on top ofiothe
existing approaches, such as mixin, role, aspect, and M@maghes. It may, however, require some modifications of
concrete mixin implementations to fully realize our contsep

To make our approach as general as possible, we do not presah@especial language construct, such as a dedicated
mixin construct, meta-object, or aspect, must be used tdeimmgnt mixins. Instead, in our approach, a mixin must
just have the properties of an ordinary class. In our prdafemcept implementation explained below, we indeed use
ordinary classes for implementing mixins, however, thiagain no prerequisite. Of course it is also possible to usemo

advanced constructs to implement mixins, such as dedicabdd constructs, meta-objects, or aspects.
3.1 Basic Type Relationships

In this section, we provide declarative semantics tfansitive mixin chainsand transitive mixin delegation We
first define the basic type relationships that we presuppasthé following mixin concepts. Therefore, we define the

following facts describing basic object-oriented constsu

e Classes are specified via.class(C).

e Superclass relationships are specifiedsdgerclass(C, S). Itis not specified if a clas§' can have only a single

superclass$ or multiple superclasses, to cover single as well as maliigheritance.
e Instances of classes (i.e., objects) are definednd&ance_of (O, C).

e The methods provided by a particular cl@ssre specified vigrovides_method(C, M).

YV C :is_class(C) — provides_type(C, C) (D)

VC, T3S : superclass(C,S) A provides_type(S,T) — provides_type(C,T) 2

VO, T3C :instanceof (O, C) A provides_type(C,T) — is_of type(O,T) 3
VO,M 3T :is_of type(O,T) A provides-method(T, M) — can_invoke(O, M) 4)

Figure 1. Class and Superclass Relationship

Based on these facts, we define a set of clauses describatgpmships that are common in most object-oriented
languages (see Figure 1): each classlefines a (custom) type for its instances (Clause 1). In poesef a class

hierarchy, a clas€’ also provides all types defined by its superclasses (Claugen2objectO is said to be of a typ#&’,
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if this type T is provided by a clas€’, andO was instantiated fron®’ (Clause 3). This definition is sufficient for single
and multiple inheritance relationships alike. Clause 4raesfiwhich methods can be invoked on a particular object based

on the predicatess_type_of andprovides_method.

ASuperClass Facts describing the example:

is_class('ASuperClass’)

is_class('AClass’)

Z% superclass('AClass’, 'ASuperClass’)
superclass instance_of('anObject’, 'AClass’)

AClass

Deduced relations:

provides_type('ASuperClass’, 'ASuperClass’)
provides_type('AClass’, 'AClass’)

provides_type('AClass’, 'ASuperClass’)
anObject is_of_type('anObject’, 'AClass’)
is_of_type('anObject’, '"ASuperClass’)

Figure 2. Class and Superclass Relationship: Example

- - - -

instance_of

Figure 2 depicts a simple example including two clas8&yperClasandAClass and an instance gtClassnamed
anObject Furthermore, the figure shows the facts needed to destribexample and the relations that can be deduced

via the clauses defined in Figure 1.
3.2 Declarative Semantics of Mixins and Transitive Mixin Chains

As an extension to the basic relationships we now define thastcs of mixins. As motivated above, we simplify the
type semantics of existing mixin concepts, and, at the same thake them work in a transitive fashion. For this reason
we assume that a mixin is an ordinary class, supporting aelfr¢tationships defined in Figure 1. Again, we first define
some basic facts that are then used to define additional medated clauses: the fabtus_per_object_mizin(O, P)
specifies that an obje@ has a per-object mixi#®. And the facthas_per_class_mizin(C, P) defines that clas§' has

a per-class mixirP.

VO, T 3P : has_per_object_mizin(O, P) N\ provides_type(P,T) — is_of -type(O,T) 5)

VC,T AP : has_per_class-mixin(C, P) A\ provides_type(P,T) — provides_type(C,T) (6)

Figure 3. Mixin Relationships (1): Transitive Mixin Chains

Figure 3 specifies that per-object and per-class mixineMieeis_o f _type andprovides_type predicates defined in

Section 3.1:



e Per-object mixinsare classes that are applied as mixins for an individualabbjee. for an instance of a class

(see Clause 5). They extend the types of an object with (omeooe) per-object mixin classes. Figure 4 shows

an example of how an objeatnObject acquires two new type®OM 1 and POM 2 via the corresponding

per-object mixins.

e Per-class mixinsre classes that are applied as mixins for a class. Perqtiass are types for all direct and

indirect instances of this class (see Clause 6). Figure wslam example of hownObject as an instance of

AClass acquires two additional typeBC M _1 and PC M 2, if these classes are registered as per-class mixins for

ASuperClass.

Most mixin concepts can be used to realize at least one oihediationships, per-object mixins or per-class mixins,

and each of the two relationships can be used to “simulagbther. From a practical point of view, however, it makes

sense to define both relationships because they both o@mudntly in design situations. Simulating the one with the

other is tedious and error-prohe

PCM_2 M
ha{s_pe[_class_mixin
PCM_1 |V~
has_per_claés_mig(in ASuperClass
superclass
AClass
[
instance_of

POM_2 has_per_object_mixin \

D
POM_1  |qocccccccoooo | anObject
has_per_object_mixin

Facts describing the example:

is_class('ASuperClass’)

is_class('AClass’)

is_class('PCM_1")

is_class('PCM_2")

is_class(POM_1")

is_class('POM_2’)

superclass(’AClass’, 'ASuperClass’)
instance_of('anObject’, 'AClass’)
has_per_class_mixin(ASuperClass’, 'PCM_1")
has_per_class_mixin(ASuperClass’, 'PCM_2")
has_per_object_mixin('anObject’, 'POM_1")
has_per_object_mixin('anObject’, 'POM_2’)

Deduced relations:

provides_type('ASuperClass’, 'ASuperClass’)
provides_type('AClass’, 'AClass’)
provides_type('PCM_1', 'PCM_1")
provides_type('PCM_2’, 'PCM_2’)
provides_type(POM_1', 'POM_1’)
provides_type(POM_2’, 'POM_2’)
provides_type('ASuperClass’, 'PCM_1")
provides_type('ASuperClass’, 'PCM_2)
provides_type('AClass’, 'ASuperClass’)
provides_type('AClass’, 'PCM_1")
provides_type('AClass’, 'PCM_2’)
is_of_type('anObject’, 'AClass’)
is_of_type('anObject’, 'ASuperClass’)
is_of_type('anObject’, 'PCM_1")
is_of_type('anObject’, 'PCM_2")
is_of_type('anObject’, 'POM_1")
is_of_type('anObject’, 'POM_2)

Figure 4. Per-Class and Per-Object Mixins: Example

While the example in Figure 4 only illustrates non-tramsitmixins, the clauses provided in Figure 3 also describe

transitive mixin chains. Transitive mixin chains resuttrit mixin classes which themselves have one or more per-class

mixins, as illustrated in Figure 5. In particular, the exdenim Figure 5 shows a mixin clas8C M _2 which has itself

a per-class mixinil’Mix_1, andT Mix_1 again has a per-class mixiiMix_2. The transitive mixin chains concept

transitively applies per-class mixins registered on a metass for all corresponding objects. With regard to thergxa

2This problem has been observed in our early XOTcl case stuttiéially, our XOTcl prototype (see Section 4.1) did oslypport per-object

mixins. While this construct was very useful for some desiguations, in other design situations we frequently rao problems when we wanted

to apply a mixin for all instances of a class. Hence, we iniosdl the per-class mixin feature to avoid writing per-objain generation code

into the constructors of each of these classes.



in Figure 5 this means that the instaneeOb;ject acquires all types obtained by per-class mixins of one ahitans.

To realize a transitive mixin chain for a per-object mixine weed to define one or more per-class mixins for the
respective per-object mixin class. This is only possibleanse per-object mixins are assumed to be classes, and hence
per-class mixins can be defined on them. In other words, aities mixin chain, like the one depicted in Figure 5, may
also be attached to a class that is used as a per-object mixin.

The definitions given in this section introduce mixins assés that support transitive mixin chains, both on a per-
object and per-class basis. The result is a powerful andlsiogmcept for transitive mixin composition. This concegsh
an important characteristic that needs some more consimi@ras a mixin is itself a class of the object, the mixin eta
the identity of the object when it is applied. Thus, both pbject and per-class mixins extend the type relationship of
the object. Therefore, when a method defined on a mixin iskegtpthe instance to which this method is applied must be
the same object on which the original method call was invoRéae concept of transitive mixin chains is thus applicable
for all mixin implementations that allow to retain the idigyof the instance the mixin is registered for. In other ward
the identity of an object (that often can be referred to usidgnguage construct calle@! f ort hi s) does not change

when passing a message call to the mixin classes of the porrdimg object.

T™ix 2 Facts describing the example: Deduced relations:

— is_class('AClass’) provides_type('AClass’, 'AClass’)
> B is_class('PCM_1’) provides_type('PCM_1', 'PCM_1’)
has_per_class_mixin is_class(PCM_2) provides_type(PCM_2’, 'PCM_2")
N TMix 1 is_class('TMix_1") provides_type('TMix_1", "'TMix_1")
— is_class('TMix_2") provides_type('TMix_2’, 'TMix_2")
* PCM_1 instance_of(’anObject’, 'AClass’) provides_type('TMix_1’, 'TMix_2")
has_per_class_mixin A% has_per_class_mixin('AClass’, 'PCM_1") provides_type(PCM_2’, "'TMix_1’)
) PCM 2 has_per_class_mixin has_per_class_mixin(AClass’, 'PCM_2") provides_type(PCM_2’, "'TMix_2")
— v N has_per_class_mixin(PCM_2’, 'TMix_1") provides_type('AClass’, 'PCM_1’)
NN has_per_class_mixin(TMix_1’, 'TMix_2') provides_type('AClass’, 'PCM_2’)
has_per_class_mixin AClass provides_type('AClass’, "TMix_1)
provides_type('AClass’, 'TMix_2’)

4 is_of_type('anObject’, ’AClass’)

instance_of is_of_type('anObject’, 'PCM_1")

is_of_type('anObject’, 'PCM_2")

is_of_type('anObject’, 'TMix_1")
is_of_type('anObject’, 'TMix_2’)

Figure 5. Transitive Mixin Chains: Example

This is a particular strength of the transitive mixin chaoncept for many typical application scenarios of mixins
because it enables developers to transparently extendjact alsing mixins. That is, neither the object itself nor the
class the object was instantiated from need to be alteredtéme the object with the new behavior provided by the
mixin, it is sufficient to add a new (mixin) relation.

There are other composition scenarios (such as the ondlokxban the case study in Section 5.2), however, in which
the transitive mixin chain relationship is not suitable éapressing complex compositions of mixins because we mequi
the object identity to change, when a mixin is applied. Thsie also occurs for ordinary object-oriented composition

by inheritance: the inheritance relationship also retaiesobject identity. If the identity should or must change, i
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ordinary object-oriented approaches, delegation is agpiistead of inheritance. Analogously, in case of a mixasdal
composition we apply the concept of transitive mixin detega(explained in the following section) in such situason
In other words: transitive mixin delegation provides a aptcfor transitive mixin composition based on the concept of

delegation.

3.3 Declarative Semantics of Transitive Mixin Delegation

A typical example in which the identity of the object shoulthage when a mixin is applied are stateful roles modeled
as mixins. A stateful role can be seen as a collection of belavioradded to an objeqilus some additional per-role
state It should be possible to add different roles independeatig the developer of a certain class/object cannot foresee
all possible role extensions, therefore a mixin implemena role must somehow realize the per-role state.

Unfortunately, it is cumbersome to realize such stateflésavith (transitive) per-class mixins. In particular, we
would need to instantiate helper objects to hold the per-sthte, and there would be no common concept for such
helper objects. Thus, each developer of a stateful mixinlgvbave to realize this concern from scratch, which is likely
leading to code that is hard to reuse, understand, and nrainta

For this reason, we introduce the conceptrahsitive mixin delegationThis concept has similar type semantics as the
transitive mixin chains explained before, and additionéldefines how to automaticallgelegatethe mixin invocation

to an object holding the mixin’s state. The additional dextiae semantics is defined in Figure 6.

YO, M : can_invoke(O, M) — can_invoke(O, M, 0, M) @)

YO1,M1,02, M2 : delegate(O1, M1,02, M2) A can_invoke(O1, M1) A can_invoke(O2, M2) (8)
— can_invoke(O1, M1,02, M2)

YO, M1, P, M2 : has_per_object_mizin(O, P) A transitive_mizin_delegation(P, M1, M2) 9

— delegate(O, M1, P, M2)

Figure 6. Mixin Relationships (2): Transitive Mixin Delega  tion

The transitive mixin delegation relationship enables ajaito invoke additional methods via delegation (defined
on one or more of its mixins). First, we must define the gensgatantics of “invoking a method via delegation”. The
can_nvoke predicate (from Clause 4) is extended in Clause 7 and 8.cthenvoke predicate with four parameters
specified in Clause 7 defines that an object (first parameterjrvoke a method (fourth parameter) on another object
(third parameter) using a delegation that happens when foteavn methods (second parameter) is invoked. Clause 7
extends thean_invoke predicate from Clause 4 to the four parameter version. Neteise 8 defines how a delegated

invocation works: if a method/1 can be invoked on objec?1 and a method/2 can be invoked on obje¢?2, and the
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fact delegate(O1, M1,02, M2) is defined, then the obje€1 can invokeO2's M2 via its own method\/1. In other
words, M1 includes a delegation td/ 2. Again, the delegation can happen before, after, or arduméhiocation of\/1.

To define transitive mixin delegation, we assume the additidact transitive_mizin_delegation(P, M1, M2).
This fact means that a transitive mixin delegation is defifoedh particular per-object mixi®, between methods/ 1
and M 2. If an objectO has a clas®’ registered as a per-object mixin, ah@nsitive_mixin_delegation is defined for
P’s methodsM 1 and M 2, then a delegation (defined via tHelegate predicate) between the methdd1, invokable on
O, and the method/2, invokable onP, can be deduced. This relation is expressed in Clause 9, Rassassumed to
be a per-object mixin of the obje€l because we want to perform an object-specific extensioniramar mixin concept
per-object mixins are used to model object-specific extarss{see Section 3.2).

In Clause 8 we assumean_invoke(O1,M1) and can_invoke(O2,M2). For transitive mixin delegation
can_invoke(O1, M1) is trivially fulfilled because the objead from Clause 9 of course can invoke its own method
M1. The second part from Clause &n_invoke(0O2, M2), means that — in Clause 9 — the per-object mixintself
can invoke a method/2. This is a central assumption made by the concept of traasitiixin delegation:mixins
themselves must be able to receive method invocatioraher words, a mixin must either be an object itself, anitst
be represented by some (proxy) object. In the mixin defingiprovided above, mixins were assumed to be classes,
however (see Section 3.2). Thus, we require classes thakecaive method invocations.

There are many ways to realize this assumption. In our podaBncept implementation described below (see Section
4) we use the concept of class objectsclass objects an object representing the class at runtime while additlp
containing a per-class state (that can also be used toeeapier-mixin state). Class objects, however, are not stgxgbor
by all mainstream programming languages. Thus, in suchtsitus we use some other object to hold the per-mixin state.
One simple solution are helper objects for holding a mixaté&te. This solution is equally powerful, but less eleghant
class objects, because it requires some additional cenaahgement facility for the helper objects. As an alteveati
we can “simulate” the class object approach: For exampbeethre many patterns describing how to implement dynamic
object systems where classes act as objects, such as OpgetnSLayer [14] or Type Object [18]. These patterns can
be realized in almost any object-oriented programming uagg. Our approach, however, does not assume any of these
implementation variants, the only assumption made by oncept is that mixins are themselves able to receive method
invocations.

The consequence of the semantics of transitive mixin détegédefined in Figure 6) is that per-object mixins can be
used to express stateful composition of mixins (like statefles for instance) and all its direct and indirect redaghips
(i.e. ordinary type relationships and other mixin relasibips). To illustrate this feature, consider the exampégyidim
in Figure 7. In this example, an objeetObject has a per-object mixid/iz_1 providing a method M ethod1. For this
method a transitive mixin delegation to a methoW ethod2 is defined which is dispatched on the class hierarchy the

mixin object was instantiated from (here the method is defmeClass_1). Moreover, the mixin class/iz_1 has itself
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Facts describing the example:

is_class('AClass’)
is_class('Mix_1")
is_class('Mix_2")
is_class('Class_1’)
is_class('Class_2’)

Class_2 Class_1 AClass instance_of('anObject’, 'AClass’)
instance_of('Mix_1’, 'Class_1")

aMethod3 aMethod2 instance_of('Mix_2’, 'Class_2)

A [} A provides_method('Mix_1’, 'aMethod1’)

! E 1 provides_method('Mix_2’, 'aMethod2’)
instanlce of 1 | provides_method('Class_1’, 'aMethod2’)

instance_of instance_of provides_method('Class_2’, 'aMethod3’)
! has_per_object_mixin('anObject’, 'Mix_1")
has_per_object_mixin('Mix_1", 'Mix_2")

. transitive_mixin_delegation('Mix_1’, 'aMethodl’, 'aMethod?2’)
Mix_2 Mix_1 transitive_mixin_delegation('Mix_2’, 'aMethod2’, 'aMethod3’)
anObject
aMe‘thodZ *-------------- aMethcldl <-------------- Deduced relations:
2 h biect mixi A h biect mixi
\ as_per_object_mixin . as_per_object_mixin provides_type(AClass’, 'AClass))
\ \
\ \ can_invoke('anObject’, 'aMethod1’)
\ \ can_invoke('Mix_1’, 'aMethod?2’)
\ : Wi 7 ;
. L . . can_invoke('Mix_2’, 'aMethod3’)
\ transitive_mixin_delegation(Mix_1, aMethod1, aMethod?2) i can_invoke(‘anObject’, 'aMethod?’, *anObject’, *aMethod1’)
\ g— ’ ] il

\ can_invoke('Mix_1’, 'aMethod?2’, 'Mix_1’, 'aMethod?2’)
can_invoke('Mix_2’, 'aMethod3’, 'Mix_2’, 'aMethod3’)
. = . . delegate('anObject’, 'aMethodl’, 'Mix_1’, 'aMethod2’)
transitive_mixin_delegation(Mix_2, aMethod2, aMethod3) i delegate('Mix_1', 'aMethod2’, "Mix_2', 'aMethod3")
can_invoke('anObject’, 'aMethod?’, 'Mix_1’, 'aMethod2’)
can_invoke('Mix_1’, 'aMethod?2’, 'Mix_2’, 'aMethod3’)
can_invoke('aObject’, 'aMethodl’, 'Mix_2’, 'aMethod3’)

Figure 7. Example for transitive mixin delegation

a per-object mixinMiz_2, which has a transitive mixin delegation framd/ethod2 to aMethod3 (here the method is
provided byClass_2). As a consequence, three delegated invocations can beeateéranObject (using the clauses

defined in Figure 1, Figure 3, and Figure 6):

¢ Delegation fromuM ethodl to aM ethod2: An invocation ofaM ethodl on anObject is automatically delegated
to aMethod2 on the objectMixz_1 (Mix_1 is an instance of'lass_1 and can therefore invokeM ethod2 pro-
vided byClass_1).

e Delegation fromuMethod2 to aM ethod3: An invocation ofaMethod2 on Miz_1 is automatically delegated to

aMethod3 on the objectMix_2 (Mix_2 is an instance of'lass_2 and can invoke: M ethod3).

e Transitive delegation fromMethodl to aMethod3: An invocation ofaM ethodl onanObject is automatically
delegated t@ M ethod3 on the mixinMixz_2. This transitive delegation is conducted vid/ethod2 that can be
invoked by Mix_1 (see Figure 7). The state of the mixins is introduced throtnghobject-specific delegation

between the mixins. Each mixin is implemented as a claseblagad hence it has its own mixin-specific state.

12



3.4 Adecision tree for the modeling of mixin composition

Above we have introduced two novel concepts for modelingimisterdependencies, transitive mixin chains and
transitive mixin delegation, as well as a number of variadidor the application of these concepts (per-object vs. per
class; directly applied vs. transitively applied). Now vedé a look at the “big picture” and illustrate when which of
these variants is applicable. To assist developers in amsydic decision, Figure 8 provides a decision tree whenptyap

which of the concepts.

Type Relationship

— N

define type for instances define flexibly reusable type

Class Relationship/ o

composition with object or class composition with a mixin

Directly-Applied Transitive
Mixin Classes Mixin Classes
- \ . / .
should be applied should be applied object identity object identity
per-object per-class should be retained should change
Per-Object Mixin Per-Class Mixin Transmvg Mixin Transitive M'X'n
Chains Delegation
should be applied should be applied
per-object per-class

Per-Class Mixin Per-Class Mixin
on Per-Object Mixin on Per-Class Mixin

Figure 8. Decision tree for mixin composition

The class primarily defines the type of its instances. Helacalefining ordinary types the standard class relationship
(instance_of) or ordinary inheritancesfuperclass) should be used.

In turn, if flexible reusability of classes is the goal, a mixilass should be applied. Thus, if an ordinary object or
class is to be extended, we use directly-applied mixin esPer-object mixins are used for object-specific extessio
that apply to an individual object only, and per-class méxior class-specific extensions that apply for all instarufes
particular class.

We also use mixin classes for refining mixin compositions.thiis case, however, we apply them transitively (see
Figure 8). We have to further decide whether the object ideshould be retained or not (i.e. whether stateless or

stateful mixins are needed). If the object identity shouddrétained, we apply transitive mixin chains, otherwise we
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choose transitive mixin delegation (see Figure 8).

As transitive mixin delegation is always object-speciftaeiquires the usage of per-object mixins. Transitive mixin
chains are always class-specific and are thus applied adgssr-mixins. There is, however, the choice whether an
object-specific mixin relationship should be extended-(dass mixin on a per-object mixin), or if a class-specifiximi
relationship is to be extended (per-class mixin on a pessctaixin). The options are summarized in the decision tree

depicted in Figure 8.

4 Proof-Of-Concept Implementation: Transitive Mixins in X OTcl

As discussed in Section 1 and Section 2, many variationseafiiiin concept exist. Most of them can, in principle, be
used to implement the concept of transitive mixin classeteasribed in Section 3. In our examples we use XOTcl mixin
classes for illustration and as a proof-of-concept impletation. In this section, we provide the essential impletaton
details, because we found them to be non-obvious and stilssary for a successful realization of the concepts. Our
implementation is close to the concepts defined in Sectiadd@vever, other implementations based on other existing
frameworks (like existing mixin implementations or AOPrfraworks, see Section 2) may of course choose other ways
to implement these concepts. For instance, we follow thiéndiion of per-object and per-class mixins. Most other
realizations of mixin concepts do not support both variafitsus, one of the two has to be simulated using the other,

before the concepts presented in Section 3 can be fullyzeszili
4.1 Proof-of-concept implementation and XOTcl details

For our proof-of-concept implementation we have used aeathjriented extension of the scripting language Tcl
[31], called XOTcl (eXtended Object Tcl) [29]. XOTcl is a @ary that that can be dynamically loaded into every
Tcl compatible environment such &€l sh or wi sh and is embeddable in C programs. As a Tcl extension, all Tcl
commands [31] are directly accessible in XOTcl. XOTcl ismgeurce and publicly available from [30].

The code for our proof-of-concept implementation, desatibelow, is implemented in C (about 3000 lines of code
of the XOTcl C implementation are relevant for the mixin amansitive mixin implementations). In this paper, we
will, however, not explain the details of the C reference lienpentation, rather we describe transitive XOTcl mixind an
their application in software development situations —apkerefer to [30] for the XOTcl source code and a language
reference.

Moreover, to show the generality of our results, we have darsecond implementation of our concepts in a Java
extension, called Frag [44, 45]. Basically, this implenatioh extends the Java-library Jacl [9] with the same mixin
concepts as XOTcl. Here, AspectJ [20] is used to connectythardic mixin-based object system to existing Java classes

(see [43] for details). We will not explain the details of taecause the XOTcl implementation of the transitive mixin
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concepts is more advanced and from a user-level view bothesyesimilar. Only the internal implementation details of
the XOTcl C implementation and the Frag implementationedifi he source code of the Frag reference implementation
can be obtained from [44].

XOTcl is based on the object system of OTcl [41]. This objgstam enables us to define objects, classes, and meta-
classes. Here, classes are special objects with the puppas&naging other objects. In this context, “managing” ngean
that a class controls the creation and destruction of itmirt®s and that it contains a repository of methods acdessib
for the instances. Every object may be enhanced with okjeetific methods.

XOTecl supports single and multiple inheritance. All retatships in XOTcl, including class and superclass relation-
ships, are completely dynamic. Furthermore, XOTcl offensch introspection mechanism which allows to inquire
nearly all characteristics of XOTcl objects and classesiatime.

Through the superclass-relation classes are arrangednecaat] acyclic graph. XOTcl defines a linearized precedenc
order for class and mixin hierarchies to avoid potentialficts during the name resolution (for details see Secti@).4.

In XOTcl every object (and class) may contain other objestsclasses). Objects can be aggregated dynamically by

another object at runtime. An aggregation constitutes tgdaelationship between the corresponding objects.
4.2 XOTcl Mixin Classes

XOTcl mixin classes are a dynamic message interceptiomigah based on the general mixin concept. They allow to
define extension classes in addition to the inheritanceatuby of the target object a mixin is registered for. For roeth
resolution, mixin classes are searched prior to searchHiegobject’s class itself (and the corresponding inherganc
hierarchy). XOTcl supports both, per-object mixins (POMj)ger-class mixins (PCM), following the generic semantics
defined in Section 3.

In XOTcl any “ordinary” class can be registered as a mixinisTdesign is chosen because developers should not have
to learn new features of advanced constructs (such as aspesta-classes, or meta-objects) to use mixins. Additigha
this also eases the composition of any existing (e.g. théndyp classes, because — provided that there are no name
conflicts on the classes — the classes can be composed as mikiout modification.

The predefined nst mi xi n® method accepts a list of classes to be registered as per+oiams, whereas the prede-
finedm xi n method registers classes as per-object mixins.

XOTcl mixins may be dynamically added and removed at any.tifokeep track of these dynamic relationshipsf, o
i nstmi xi n andi nf o mi xi n provide introspection functions for mixins. Thus, at ramé one can always determine

the current mixins of an object or class.

*instmixin” is a short form of “instance mixin”, meaning tha corresponding mixin is applied for all instances of thesslthe mixin was

registered for. XOTcl uses a similar naming convention fetmods: a method applying to all instances of a class isctélstproc”.
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4.3 Method Resolution Order of Class and Mixin Hierarchies h XOTcl

The concepts introduced in Section 3 allow for the definitadrtype extensions for an object using mixins. An
important implementation facet, when realizing these epts; is how mixins affect the method resolution order deffine
by the corresponding object-oriented language — i.e., whethods of which classes are dispatched in what order. In
general, many solutions are possible and it is advisablsé¢causolution that follows the method resolution rules of the
respective object-oriented language as close as possiliteas developers can apply mixins in a natural way without
having to learn semantics that are significantly differeaif the rest of the language.

In XOTcl, the method resolution order is given by a simpl@érization of the class and mixin hierarchies that apply
for a certain object. Here, linearization means that dapdis in the method resolution order are eliminated. First, w
illustrate this for ordinary class hierarchies and subsatjy for mixin classes.

Conceptually, all methods in XOTcl are mixin methods, magnthat they can mix-in the next, same-named
method on the class-graph. Let us consider an example: urd-ig, a methodMet hod is dispatched, first on the
objectanObj ect 4, then on its class (hereAd ass), and finally on each of the corresponding superclasses:(her
ASuper d ass). Each method nameet hod that is found somewhere in this method resolution orderéseted. An
XOTcl code skeleton for this situation looks as follows:

Cl ass ASuper d ass

ASuper Cl ass instproc aMet hod args {
### code of aMethod

}

Cl ass AC ass -supercl ass ASuper d ass
ACl ass instproc aMethod args {
### code of aMet hod

}

ACl ass create anObject; # instantiation of anChject

anObj ect aMet hod; # met hod invocation of aMethod

We can model before, after, and around behavior of a methibdsiag the placement of theext command within
the source code. That means, code after the invocatioexaf is executedafter the invocation of the next same-named
method (as shown in the example below), and code before #mutan ofnext is executedbeforethe invocation of

the next same-named method. Before and after code is imptesh@s a variant adround behavior (as also provided

“4In XOTecl objects might have object-specific methods which &pecialty of the XOTcl object system. For completenessstvey “methods
defined on the particular object” in the method resolutiateoidiagrams (see also Figure 10), but this language festac relevant for realizing

the concepts presented in this paper.
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ASuperClass

aMethod

A

superclass
1

AClass

aMethod
7y

instance-of
1

Figure 9. Method resolution order for an invocation

in CLOS [3] or AspectJ [20] for example). When omittingxt , the originally called method is the only method that is
executed — i.e. the method call is not forwarded along thénotktesolution order. The following code is a skeleton of
an XOTcl method withext :

ACl ass instproc aMethod args {

### instructions before "next’ (mght be omtted)

### invocation of 'next’ (mght be omtted)
next

### instructions after 'next’ (mght be onmtted)

XOTcl's per-object and per-class mixins use text command to forward messages to the mixin chain that is
registered for a particular object and to finally pass it t® tbriginal” class hierarchy the object was instantiatemhfr
For instance, we can define two claseem 1 andPOM2 (POM.1 andPOM 2 are ordinary classes):
Class POM 1
POM 1 instproc aMethod args {...}

Cl ass POM 2
POM 2 instproc aMethod args {...}

In XOTcl, any class may be assigned the role to act as a migissglsimply by registration as a mixin class). For
instance, we can register these classes as per-objectsfixithe objecanObj ect . This means that only this particular

object is extended with the functionality of the two mixirasses:

anObj ect mixin {POM 1 POM 2}

In contrast to a per-object mixin (as motivated above), actess mixin operates on all instances of a class and

all instances of its subclasses. For example, the followakgcation registers two ordinary classeéM1 and PCM2
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dynamically for all instances ofSuper Cl ass (which means that they are also applied #orObj ect which is an

instance ofACl ass — see Figure 10):

ASuperC ass instm xin {PCM_1 PCM 2}

Method resolution order

Methods defined on associated Methods defined on associated Methods defined on Methods defined on the object’s
Per-Object Mixins (POMSs) Per-Class Mixins (PCMs) the particular Object Class / Class Hierarchy

Figure 10. Method resolution order in XOTcl

To avoid conflicts, XOTcl applies an unambiguous methodlutiem order: before the class hierarchy of an object is
searched, XOTcl searches the mixins that are registeratifgparticular object. Moreover, per-object mixins arelégu
before per-class mixins (see Figures 10 and 11). Subsetu#m mixins, the object’s own heritage is searched in the
following order: object, class, and superclasses (mixiesapplied in the same order). All classes (mixins and orglina
classes) in the method resolution order are linearizedeant class may only appear once on a method resolution order

because duplicates are eliminated. If a class can be reasbexithan once, the last occurrence in the linearized list is

used.
PCM_2
aMethod ..
PCM_1 per—&lass—mjxin
aMethod DAl Tl
per-class-mixin ASuperClass
superlclass
AClass
4
instance-of
POM_2 :

per-object-mixin !

aMethod € mmmem e mmeee oo
anObject
POM_1 €

aMethod per-object-mixin

Method resolution order >

Per-Object Mixins 3 Per-Class Mixins 3 Object 3 Class / Class Hierarchy
POM_1 POM_2 PCM_1 PCM_2 anObject AClass ASuperClass
Figure 11. Method resolution order with per-object and per- class mixins

Each time this method resolution order is used in a methodceon, the method resolution order is searched for
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the first implementation of the respective method. Thisipaldr implementation is then invoked by XOTcl's message
dispatcher. Moreover, if this implementation invokesxt , the next occurrence of this particular method is searched a
mixed into the current invocation, and so on.

The registration lists of mixin classes are “order-sewsttii.e. the order of the mixin classes determines the tiegul
method resolution order. Figure 11 depicts the method uéisol order for an invocation of a method calleblet hod on
an objectanObj ect (using the example mixin registrations from above). Theing®OM1, POM2, PCM.1, andPCM2

can be reached fromnbj ect , as well as its clasaCl ass and the superclagsSuper d ass.
4.4 Transitive Mixin Chains in XOTcl

As explained in Section 3, transitive mixin chains can bdiagpo define a mixin composition. For example, consider
a situation where we would like to configure the compositibra per-class mixirPrCM2 with a facet implemented in
a classTM x_1°, while the original composition of mixins should stay uratied. MoreoverTM x_1 itself should be

refined by another mixifM x_2 (see Figure 12).

TMix_2
aMethod
‘\
per-class-mixin TMix 1
aMethod
‘\
per-class-mixin PCM 2
aMethod
V\\
PCM_1 ) -
per-class-mixin
aMethod w N
per-class-mixip AClass
| aMethod
4
instarﬁce-of
anObject
Method resolution order >
Per-Object Mixins } Per-Class Mixins ; Object ; Class / Class Hierarchy

‘ ‘
— > PCM >> TMix >> TMix >> PCM > anOI)]e(> AClass ‘

Figure 12. Example of transitive per-class mixins

In XOTecl this is solved by adding the corresponding per<lasxins to the method resolution order of the affected

object. This means that all per-class mixins of the mixislftéand their superclasses) are searched before the method

SWe use “TMix” as an abbreviation for “transitive mixin” inithexample.
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resolution order proceeds to the next mixin, resulting imaasitive mixin chainsee also Figure 12). This scheme is
applied recursively, because mixins might themselves pavelass mixins, which again might have per-class mixins,
and so on.

In a transitive mixin chain the original target object of athw invocation — in XOTcl referred to al f — does
not change. This means that a referrabtd f from any mixin contained in a specific transitive mixin chagfers to
the target object of the original method invocation (for theample shown in Figure 12el f would always refer to
anbj ect).

Figure 12 also shows the method resolution order resultiomg fiaMet hod invocation to an objecnObj ect which
has two mixins PCM.1 and PCM 2) registered as per-class mixins on its clas$ ass. Moreover, the per-class mixin

PCM2 has itself a per-class mixiiM x_1, andTM x_1 is again extended with another per-class mikih x 2.

4.5 Transitive Mixin Delegation in XOTcl

To realize transitive mixin delegation, per-object mixare used. As explained in Section 3, transitive mixin delega
tion is applied when theel f reference should change in case a per-object mixin is applie XOTcl, this is solved
by delegating the mixin invocation to the class object ofréspective per-object mixin. Classes in XOTcl are objects
with all object-specific characteristics (see also [29]hu3, at runtime, a class can be treated as an instance (aa. as
individual object). Class objects are defined using a spggie of class, a so-called meta-class. In XOTcl, all olgect

need to have a class. A meta-class is a special kind of clagsenhstances are (ordinary) classes.

Mix2_Meta Mix1_Meta AClass

A A A
instance_of ! !

| |nstaqce_of instance_of

Mix_2 er-object-mixin Mix_1 er-object-mixin
4?____1 _____ D_(l___ j_’____l _____ D_('___ anObject

Figure 13. Per-object mixins which are themselves configure d using per-object mixins

Meta-classes (see also [12]) are only one of many possilnieepis to define the properties of classes. Other concepts
that might be used equivalently are meta-object protoddi®Rs) [19], aspect-oriented programming [21], or patterns
like Object System Layer [14] or Type Object [18]. To fullyaleze the concept of transitive mixin delegation, we still
need to enable the transitive application of the mixin datieq relationship for the respective target object. Fetance,
in Figure 13, the per-object mixin relationship of a claéx2 to a clasaM x1 refers to the corresponding targétx 1

only, and not to the objeetnhj ect . Thus, in the example in Figure 13, an invocatioratabj ect is intercepted and
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automatically forwarded t¥ x1, however it is not transitively sent td x2.

We solve this problem using a simple and automatically gerddelegator methadThis delegator method realizes
the transitive_mizin_delegation relationship as defined in Section 3.3. The resulting délegdoehavior is defined
by the meta-class.

Figure 14 depicts the method resolution order resultingnftbe object-specific transitive mixin delegation in more
detail. In order to forward a call afMet hod invoked onanChj ect from classM x_1 to its per-object mixirM x_2 (or
to another transitive mixin), we need to invoke a corresjpagdhethod inM x_1 which is again forwarded along its own
linearized method resolution order. Therefore, each mikass M x_1, ...,M x_n) implements alelegator methodor
aMet hod (or for any other method which should be forwarded duringritethod resolution usingext ). This delegator
method simply forwards the call to the meta-class (whichl@mgnts the respective method).

To realize this concept in XOTcl we define, in a first step, aaxatss (in XOTcl this is done by specifyii@j ass as
superclass) and implemeaft/t hod on this class:

Class M x1_Meta -superclass O ass

M x1_Meta instproc aMethod args {
### code of aMethod

The methods implemented on a meta-class define the methplisade on all individual classes that are instantiated
from this meta-class. We automatically generate a delegagthod on the mixin classes (i.e. the meta-class’ instnce
for each method of the meta-class that should be (tranlsitievailable to the objects which are associated with the
respective mixin classes at runtime. Typically this is daméhe constructor of the meta-class. The following code
shippet contains a meta-class constructor {thiet method) of theM x1_Met a class that generates a delegator method
aMet hod:

M x1 Meta instproc init args {
next

[sel f] instproc aMethod args {

eval [self class] aMethod $args

return [next]

When instantiatingl x1_Met a the[sel f] callin[sel f] instproc aMethod args is replaced with the name
of the newM x_1Met a instance (see also Figure 14). Within the delegator methedisel f cl ass] call is replaced at

runtime with the name of the mixin class instance. That meahenaMet hod is invoked oranChj ect , the invocation
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Mixn_Meta Mixn-1_Meta Mix2_Meta Mix1_Meta
aMethod aMethod aMethod aMethod
4 A A A 4
instance-of instance-of ins:tance-of instance-of instance-of
Mix_n per-object-mixin Mix_n-1 pom pom Mix_2 per-object-mixin Mix_1 per-object-mixin
aMethod [~ 77T aMethod T . aMethod |~ 77T aMethod D
Method resolution order for "anObject" ——>
POMs | PCMs | Object | Class/ Class Hierarchy
Mix_1 - anObject AClass
HE
\ Method resolution order for "Mix_1" > \\‘
transitive ; T T '
mixin delegation POMs ; PCMs ! Object ! Class/ Class Hierarchy ".
T mix 2 Mix_1 Mix1_Meta /
HE N
transitive ‘\
mixin de\egation ".
RN
“. Method resolution order for "Mix_n-1" —— ‘\
transitive ; 7 7 K
mixin deleg~amon POMs ; PCMs ! Object ! Class/ Class Hierarchy H
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Lo Method resolution order for "Mix_n" ——> T
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Figure 14. Method resolution order for transitive mixin del
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is intercepted by the delegator methodMrx _1 which then invokes the implementation phx_1's class that is defined
in M x1_Meta.

At this point, the scheme described above gets automatiapjplied in a transitive fashion: before the invocation of
aMet hod is executed fomM x_1, all per-object mixins oM x_1 are invoked. As the same scheme is executell cn2,
M x_3, and so on (see Figure 14), a callafet hod on anObj ect automatically invokes all (direct and transitive)
per-object mixins associated widmCbj ect .

Even though this recursive scheme might look quite comptdits glance, the use of this mechanism is relatively

simple (see the case study in Section 5.2 for instance). @helaper only has to define the delegator method template.

E E AClass

EI aMethod
S8 58 55 ?

SR LS S

Mix_n Mix_2 Mix_1
. . . . . - anObject
aMethod per-object-mixin aMethod per-object-mixin aMethod per-object-mixin
________________________________ <-perobectmixn A
Figure 15. Method resolution order for transitive mixin del egation with multiple mixin hierarchies

Figure 15 shows an example of the typical developer persgemh transitive mixin delegation. A number of arbitrary
class hierarchies can be composed, and all inter-clasarbigr composition issues are automatically handled using
transitive mixin delegation in conjunction with thext mechanism. In particular, this means the programmer iaselg
from implementing a method/mixin lookup procedure on henofigure 15 shows a characteristic example of a resulting
method resolution order. In this example,a¥et hod invocation is forwarded fronM x_1 to the last mixin class in the
transitive mixin chain (hereml x_n). Subsequently, the respective invocation follows thehm@tesolution order shown

in Figure 15 before it finally reachesvet hod provided througladl ass.

5 Case Studies

5.1 Transitive Mixin Chains: Configuring a Persistent Storege

In XOTcl, every object can be made persistent using a simple ly essence, this persistence property is added using
a mixin class. For instance, the following code adds the repgesistence strategy to an object (here “eager” means
that changes of variable values are directly written in® fiersistence store. XOTcl also implements a lazy persisten

strategy):
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anObj ect m xi n Persi st ent Eager

Using a per-class mixin we can add the same functionality ¢class. Thus, the persistence mixin is applied for all

instances of that class, for instance:

ACl ass instm xin Persistent Eager

However, in this situation we face the problem that the gégsice relationship needs to be further configured and
refined: the persistence storage type has to be chosen addtionalities need to be accessed. In XOTcl, multiple
storage types are supported (a GDBM database, an SDBM datadanemory storage, and a plain file storage). All
these storages can be accessed using a unified storagadaterf

Thus, to access these storages fram@bj ect or instances oACl ass (which have the persistence logic mixed in
using the per-class mixin oACl ass), we only require the additional storage functionaliti€Bhis configuration is a
stateless configuration that just adds the storage typevtmeh@hat is, even though there might be multiple objectd an
classes that are made persistent, usually all objects ast@uvritten into the same (type of) persistence store. lh suc
cases, it is tedious to configure each object and class owits mstead, we can use the transitive mixin chain feature

and configure th@er si st ent Eager strategy with a certain storage type:

Per si st ent Eager instm xin StorageGdbm

Now all objects are made persistent (using the eager syfadegl are written into a GDBM persistence store.
A strength of this approach is that it is still possible talfigr configure and refine persistence for individual objécts
needed by an application. We can for instance configure tharixin compositions above individually, by registering

persistence as a second mixin.

anObj ect m xin StorageGdbm

ACl ass instmxin StorageMem

The central benefit of using transitive mixin chains for sence storage configuration is the increased flexibility
without compromising reuse or simplicity. Just consider ¢éight example configurations in Figure 16, which all can be
easily configured, without changes to any of the respectasses (these eight examples are shown for demonstration
purposes and do not show all possible configurations). feréifit design situations, each of these configurations snake

sense:
1. One specific object is made persistent with the eageegiatising the GDBM storage.

2. One specific object is made persistent with the eageeglaand all objects associated with the eager strategy are

written to a GDBM storage.
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3. Allinstances of a class are made persistent with the esiggegy using the GDBM storage.

4. All instances of a class are made persistent with the edigtegy, and all objects written eagerly are written to a

GDBM storage.

5. One specific object is made persistent with the eageregiraand all instances of that class, if they are made

persistent, are written to the GDBM storage.

6. All instances of a class are made persistent with the esigggegy. The storage is configured object-specifically:

for the example object GDBM is chosen.

7. Allinstances of a class are made persistent and writtéimet@&DBM storage. All instances written to the GDBM

storage are written eagerly.

8. One specific object is made persistent and written to th&@KaBtorage. All instances written to the GDBM

storage are written eagerly.

Using transitive mixin chains the definition of other petsige configurations simply results in a different mixin
registration, whereas in many other approaches, some & tragiants would mean that internal changes are required to
some of the classes. This is just a simple example with twansibealizing one concern, persistence, configured on one
object and one class. The transitive mixin chain works dgueell for more behavioral concerns realized by a bigger
number of mixins and applied for more complex hierarchieslagses and on arbitrary numbers of objects.

In the persistence example, ordering of the mixin classes dot matter. If the order of mixin classes matters (i.e.,
with respect to the example: whetheer si st enceEager or St or ageGDBMis applied first), then not all example
configurations are exchangeable, because they yield @iff@rders of the two mixins. In general, it is a strength &f th

transitive mixin chain approach that ordering can be cdietidoy the developer, if this is required.
5.2 Transitive Mixin Delegation: Implementing the xoRBAC component

XORBAC [27, 28] is a software component that provides a balsed access control (RBAC) service. xoRBAC is
implemented in XOTcl and, among other things, uses perebbjixins to implement theheckAccess method which
renders XxoRBAC access control decisions. We have applesttahsitive mixin delegation feature of XOTcl to facilieat
the implementation of role-, permission-, and constrinkup procedures.

Figure 17 depicts the high-level relations between xoRBAfRcs: permissions are assigned to roles, roles are
assigned to subjects, and roles may be arranged in a rotertty (a directed acyclic graph). Furthermore, xoRBAC
allows for the definition of context constraints [37]. A cert constraint specifies a number of conditions that must hol
simultaneously to grant a certain access request. On thiennemtation level, we use per-object mixins to associate

subjects with roles, roles with permissions, and permissigith context constraints.
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Figure 17. High-level relations between xoRBAC objects
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An example for the method resolution order ofleeckAccess call is shown in Figure 18. Her@ger mi ssi onl is
assigned to ol el, andr ol el is assigned tgubj ect 1. Moreover,per m ssi on1l is linked to two context constraints
constraint1l andconstrai nt 2. Regarding theeheckAccess method, the instances &l e and Per ni ssi on
(andCont ext Const r ai nt ) form a Chain of Responsibility [13]. Thus,checkAccess call is passed via the method
resolution order until @er i ssi on object declares itself responsible and grants the accgasseby returning r ue.

If, however, the respective permission is associated withar more context constraints (as in Figure 18 for exam{iie),
permission must check its context constraints first. Inotterds, to grant a certain access request it is not suffiéant
a subject to own a corresponding permission, but, at the sameall context constraints associated with this perioiss

must be fulfilled.

Transitive mixin delegatioh Transitive mixin delegatioh
/ ’ /
, /
| subjectl | | rolel / | permissionl | /7 |constraintl constraint2
/
/ ’ /
checkAccess ; /
> pom interception / /

checkAccess ; !

pom interception

N —
checkAccess

pom interception

checkAccess

1 checkAccess

1
false « | false

1
) false
false
-————— — — L

Figure 19. Sequence diagram of a checkAccess call for the ret urn of false

We chose transitive mixin delegation to associate contersitaints with permissions, permissions with roles, and
roles with subjects. The source code for the automatic géioer of thecheckAccess delegator method foRol e
objects is shown below. An access request is representekeblyiple (Subject, Operation, Object) which again is
represented through thlea1 op ob parameters passed to tbeeckAccess method (the source code of the respective
delegator method folPer i ssi on objects is quite similar, while context constraints, in trast, returnf al se if the

constraint is violated and forward the call usimgxt instead of returning r ue if the constraint is fulfilled).
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Role instproc init args {
next
[sel f] instproc checkAccess {su op ob} {
if {[[self class] checkAccess $su $op $ob]} {
return 1
} else {

return [ next]

Figure 19 shows a sequence diagram for the returhadke (checkAccess returnsf al se if the corresponding
access request cannot be granted). The sequence diagramprtwides an alternative view of the action and event
sequence resulting fromcheckAccess call (see also Figure 18).

Transitive mixin delegation offers a number of advantagethis case. One of the most important benefits is that the
unambiguous method resolution order of tieeck Access method always includes all roles, permissions, and context
constraints which are registered as per-object mixins goeaific Subj ect (directly as well as transitively). Thereby,
X0RBAC does not need to implement separate lookup-methardsles, permissions, or context constraints. Rather, a
checkAccess method invocation follows the method resolution order ttoeatically visit all roles, permissions, and

context constraints which are (potentially) relevant t® tlorresponding access request.

6 Evaluation

Our approach has a number of unique properties, comparduetother approaches discussed in Section 2. The
main contribution of our approach is a clear concept for thaditive composition of mixins. This way we can express
extensions to a class, superclass, or mixin using one arghthe reusable programming technique: the transitive mixin
class. From a conceptual point of view, mixin roles [40] andimlayers [35] are heading to a similar direction as they
also provide some additional composition mechanism usiagrtixin concept. However, the realization using static C++
templates is completely different and not well suited fgpressing dynamic mixin interdependencies.

Even though some approaches, such as AOP and role concaptexgress class interdependencies quite well, it is
usually difficult to apply these concepts transitively —elifor instance “an aspect of an aspect”. Aspects of aspeets ar
only realized by a few prototypes, such as Hyper/J or EAOP.@pproach especially adds a clear precedence order that
helps to easier understand aspect interdependenciesp@stagan be used to realize mixins, our concepts for traasit
mixin composition can also be used as a concept to add fkdtysio the other AOP approaches.

In a similar way, our approach can be used to extend role gimaeith the notion of transitivity. Kristensen and

Dsterbye [23, 24] have proposed a notion of “roles of rolesfoke. Nevertheless, as explained in Section 2, in their ap-
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proach changes to clients are necessary to acquire the bekiavior. Our approach, in contrast, transparently coegos
transitive mixins. Thus, our approach is more suited fomticgpated evolution and reuse.

A similar problem occurs in Zhao's and Foster's approach:[#6anual forwarding through the Cascade hierarchy
is required to compose Cascade layers (see also Sectiora2higve the same effect as offered by our transitive mixin
concepts. In our concept, automatic composition via thé-periitive and a linear precedence order are supported.

Object Teams [17] support automated method forwarding fethmd bindings between a class and its roles. That
is, regarding transparent composition support, this cphiecloser to our transitive mixins than the mentioned role
approaches. However, Object Teams do not support tramsales.

Our approach introduces one and the same construct foit dinectransitive composition: the mixin class. Many of
the related approaches introduce different constructsifgin (or, for example, aspect/role/meta-object) andsldsus,
in our approach, developers only have to learn a single kagegdeature to perform all kinds of composition. Only a
few additional (implementation-dependent) facets haveetanderstood. Any class can be used as a mixin class through
registration — without further modification of that classhig is supported by an automatic forwarding mechanism that
also handles type conversions and argument passing trantigathemethod resolution ordefThis results in a simple,
unambiguous ordering scheme.

In AOP approaches, like AspectJ or JBoss AOP, mixins ofteedrte be introduced as inter-type declarations. In
contrast, our approach directly applies mixins as messaigeceptors (see also Section 4). As virtually all aspect
composition frameworks support some kind of message iaptoc (see [42] for a discussion) and some automatic
forwarding mechanism (such as AspectJ’s “proceed” [20]ifistance), mixin classes can be realized using most AOP
approaches with moderate efforts.

A major compaosition problem in many AOP approaches is theadled fragile pointcut problem [22]. Many point-
cuts have dependencies into the base program. Hence sihmoiges like renaming a method in the base program can
break the pointcut. This problem is only a minor problem inm ptototype, because we use explicit mixin registra-
tion on classes. Hence there is a direct relation betweemtkimn class and the base program that it extends. Only
changes to base class hames or method names that are itedrbgghe mixin can potentially be the cause of a fragile
mixin composition. In most cases, such a change directlgesman error (and can thereby easily be detected). If AOP
approaches are used to implement our approach, howevgilefointcuts might cause massive debugging problems,
because transitive mixin composition leads to complex@speerdependencies which might get hard to understand and
trace if arbitrary pointcuts can be used. Our solution inkray prototype [44, 45], which uses AspectJ to compose Frag
mixin classes with Java base classes, is to use only simygéicie pointcuts that are limited to the expressive powkr o
mixin registration (see [43] for details). To ensure thas thmitation is not violated by developers, it is advisabdeuse
a program generator to automatically create the pointcuts.

In contrast to the model used in more dynamic object-oreépt@/ironments, such as CLOS, Smalltalk, or Self, as well
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as in programming techniques such as reflection, MOP, or-ulatses, transitive mixins provide a first-class entity fo
expressing the interdependencies of mixins. Method iri@as .on mixins are always resolved in an unambiguous, linea
method resolution order — instead of a complex graph of mbjacts or other delegators with different responsileiiti
Our mixins provide a very simple interface allowing for refgation and introspection of mixins only. Thus, compared
to more complex approaches such as MOPs they are very simple.

When configuring elements of an object-oriented softwamdesy, it is often not enough to provide configuration
options on a per-class level. Many object-oriented adiptaechniques, however, perform adaptations on a pesclas
level only, making it cumbersome to apply these techniqoeslbject-specific composition. On the other hand, when
class-specific composition is required, having only an abgpecific configuration option is tedious as well. Thus, ou
approach supports both variants: it can be applied usinglgect and per-class mixins.

Some of the approaches discussed in Section 2 are staticos@iiop techniques meaning that the core composition
mechanism cannot be used for dynamic composition. ForinstaAOP approaches, like AspectJ or JBBoss AOP, focus on
static adaptation techniques. Therefore, in contrast t@pproach, they cannot be directly applied for runtime gesn
of the aspect configuration. There are some workaroundsesethroblems (for instance, aspects that can be turned on
and off using hi sJoi nPoi nt in AspectJ), but these are hand-built solutions that areptinized for performance and
without further composition support. This problem is resal by dynamic AOP approaches. Our concept of transitive
mixins can be applied in both a static as well as in a dynansigifen, yet our examples (and prototype implementation)
are focused on dynamic mixin configuration. The dynamic APpreaches are closer to the examples in this paper than
more static approaches like Aspect]. To implement our quraoen top of an AOP framework, it is thus advisable to
reuse a dynamic AOP framework if possible, because thisvalfor the reuse of existing dynamic aspect composition
means.

A sub-problem of dynamic composition is the dynamic ordgohaspects, which might be needed in some application
scenarios. Mixin classes are dynamically composed andrttex can be provided at runtime as a mixin list. Our mixin
class concepts can also be used as a simple and intuitiveoia¢ foundation to add dynamics to static approaches.

Nevertheless, our approach is not limited to languages avidomments that support mixins. The mixin concept is a
rather simple extension of the basic object-oriented tygeept and similar concepts can be found in many other adap-
tation techniques, such as aspect-oriented programmiet®-object protocols, roles, message interceptors pratars,
virtual machines, etc. Therefore, our approach can be eghjpih top of those other approaches and usually reuse large
parts of their implementation.

In our proof-of-concept implementation we describe theaayit mixin classes of XOTcl. If dynamic composition is
not required (i.e. if compile time or load time approaches sufficient), the concepts presented in this paper can also
be implemented using static mixin approaches. All impletagon approaches for static mixins support some of the

properties of transitive mixin classes. Essentially, tpliament our concepts using one of these approaches, itésnec

31



sary to generate delegator methods to simulate the tremsitext ” behavior and automatic forwarding (including type
conversions, parameter adaptation, etc.). For progragptaimguages without support for dynamic method generation,
such as Java, many code generators exist that ease this task.

Even though our approach is easy to use and simple from aapen& perspective, the internal use of meta-classes
and interceptors is far from being simple (as the discussidBection 4 indicates). Thus, implementing our approach
completely from scratch for another programming languagtamework requires some effort that might be too much
an effort for a small project.

Runtime composition techniques always impose an overhetatns of runtime performance (for dynamic indirec-
tions). Even though XOTcl message interceptors are opgidiiar performance, they should not be applied for problems
that do not require dynamic adaptations. Here, static igales usually have a superior performance. However, this is

of course, only a potential drawback of our prototype impatation, not of the transitive mixin concepts in general.

7 Conclusion

In this paper, we have presented a practical approach tolmugim interdependencies. By applying mixin classes
transitively, we are able to use the concept of mixin classatefine composition relationships of ordinary classes and
mixins. Problems similar to the problem to define “mixins dkims” are present in many other composition approaches
as well — such as in aspect-oriented programming, metecbiptocols, roles, message interceptors etc. Hence,
there is a broad applicability of the transitive mixin apgehb. The mixin concept is a rather simple extension to the
basic type concepts of object-oriented languages, andisswitell suited to explore the problems of class relatiorship
and interdependencies generally and conceptually — apart the implementation details of the other composition
approaches. We did two proof-of-concept implementati®@T cl and Frag, which are both available as open source.

Moreover, our mixin concepts have been successfully agjiea number of projects (including the two case studies
presented in this paper). As future work, we plan to implentlea concepts as an extension of an existing AOP frame-
work. In this paper, we focused on the extension of programyrfiameworks or languages by transitive mixin classes.
As further work we also plan to provide modeling support toe toncepts presented in this paper, for instance using a

UML 2 extension.
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