
 E2-1

Service Integration Patterns for Invoking
Services from Business Processes

Carsten Hentrich

CSC Deutschland Solutions GmbH
Abraham-Lincoln-Park 1

65189 Wiesbaden, Germany
e-Mail: chentrich@csc.com

Uwe Zdun

Distributed Systems Group
Information Systems Institute

Vienna University of Technology
Argentinierstrasse 8/184-1

A-1040 Vienna, Austria
e-Mail: zdun@acm.org

In a process-driven and service-oriented architecture, services and business processes are
typically integrated by invoking services from the activities of the business processes.
The software architect and developer must decide how a service is invoked from a
business process. In this decision the requirements that result from the business process-
driven service orchestration concept must be considered, as well as the functional
architecture requirements of the business processes. We present a pattern language that
addresses these design issues and represents proven design knowledge for invoking
services from business processes.

Introduction

Service-oriented architectures (SOA) are an architectural concept in which all functions, or
services, are defined using a description language and have invokable, platform-independent
interfaces that are called to perform business processes [Channabasavaiah 2003 et al., Barry
2003]. Each service is the endpoint of a connection, which can be used to access the service, and
each interaction is independent of each and every other interaction. Communication among
services can involve simple invocations and data passing, or complex activities of two or more
services.

In a process-driven SOA the services describe the operations that can be performed in the
system. The process flow orchestrates the services via different activities. The operations
executed by activities in a process flow thus correspond to service invocations. The process flow
is executed by a process engine.

In this paper we address patterns that solve issues related to business requirements when
integrating services and business processes. The service perspective and the process perspective
generate an environment of conflicting forces that one has to deal with when bringing the two
views together. That means, the requirements of business processes must be reflected by the

 E2-2

services, which impacts design decisions of the services. On the other hand, service-orientation
and the concept of invoking services by activities in business processes also imply certain
requirements on the business process models. In this respect, we will address various types of
service invocations and functional architecture design of services to address requirements of
business processes and service-orientation in interdependence. The patterns do consciously not
address any related aspects such as security and performance issues of service invocations but
rather focus in the primary functional issues.

Pattern Language Overview

The patterns and pattern relationships for integrating services into business processes by
invoking services from process activities are shown in Figure 1. The SYNCHRONOUS SERVICE
ACTIVITY describes how to model a synchronous service invocation in a business process
activity. The FIRE AND FORGET ACTIVITY shows how to model a service invocation without any
expected output of the service. The ASYNCHRONOUS REPLY SERVICE and the MULTIPLE
ASYNCHRONOUS REPLIES SERVICE patterns address how to model service invocations with
asynchronous replies in a business process.

Furthermore, the ASYNCHRONOUS SUB-PROCESS SERVICE illustrates how to design a service
that only instantiates a sub-process – without waiting in the calling process for the termination of
the sub-process. The FIRE EVENT ACTIVITY pattern describes how to model activities that fire
certain events to be processed by external systems. The TERMINABLE DELIVERY pattern
addresses how to model time-bound dependencies of business processes on required states of
business objects.

There are a number of external patterns that play a role in the patterns introduced in this
paper. We present thumbnails for these patterns in an appendix at the end of the paper.

SYNCHRONOUS
SERVICE ACTIVITY

FIRE AND FORGET
SERVICE ACTIVITY

ASYNCHRONOUS
REPLY SERVICE

MULTIPLE
ASYNCHRONOUS
REPLIES SERVICE

FIRE EVENT ACTIVITY
ASYNCHRONOUS SUB-

PROCESS SERVICE

TERMINABLE DELIVERY
SERVICE

 waiting
for result

not desired

one reply
but asynchronous

multiple
asynchronous

replies

reply should be
captured

asynchronously

synchronous
acknowledgement

multiple replies
but asynchronous

synchronous
invocations
for request
and results

instantiate
sub-process

synchronously

instantiate
sub-process

with fire and forget

fire event
and forget

fire event
synchronously

invoke as
synchronous servicesynchronous

invocations
for request
and result

Figure 1: Pattern relationships

 E2-3

Table 1 gives an overview of the problem and solution statements of the patterns.

Pattern Problem Solution

SYNCHRONOUS
SERVICE ACTIVITY

Synchronous invocations of a service in a
process flow need to be modelled such
that the process is able to consider the
functional interface of the service and may
react on the possible results of the service.

Model a SYNCHRONOUS SERVICE
ACTIVITY that depicts the functional input
parameters of the associated service in its
input data objects and the functional
output parameters of the service in its
output data objects.

FIRE AND FORGET
SERVICE ACTIVITY

Service invocations from a process flow
need to be modelled that are not a
synchronous blocking call, but rather just
placing the service request without waiting
for any result to be returned from the
service.

Model a FIRE AND FORGET SERVICE
ACTIVITY that decouples the request for
execution of a service from the actual
execution of the service.

ASYNCHRONOUS
REPLY SERVICE

Service invocations must be modelled
from a process flow that are not
synchronous blocking calls, but rather just
place the service request and pick up the
service result later on in the process flow,
analogous to the well-known callback
principle.

Split the request for service execution and
the request for the corresponding result in
two SYNCHRONOUS SERVICE ACTIVITIES
and relate the two activities by a
CORRELATION IDENTIFIER [Hohpe et al.
2003] that is kept in a control data object.

MULTIPLE
ASYNCHRONOUS
REPLIES SERVICE

Service invocations need to be modelled
from a process flow that are not
synchronous blocking calla, but rather just
place the service request and pick up
multiple replies from the service later on
in the process flow.

Extend the ASYNCHRONOUS REPLY
SERVICE towards allowing multiple results
associated to events representing
completed intermediate actions or states of
the service.

FIRE EVENT ACTIVITY

Specific states of business processes must
be communicated to some unknown
target systems and/or functions of
systems unknown to the business process
need to be initiated by a process activity.

Interpret the states to be communicated
and the initiation of external functions as
events generated by process activities.
Model FIRE EVENT ACTIVITIES that
represent event sources, fire appropriate
events and depict all distinct states and
potential functions to be initiated by their
event space.

ASYNCHRONOUS SUB-
PROCESS SERVICE

Sub-processes need to be instantiated
asynchronously on a process engine
without direct support of the process
definition language.

Model an activity that invokes an
ASYNCHRONOUS SUB-PROCESS SERVICE
and which only functionally encapsulates
the instantiation of the sub-process on the
process engine but not the whole execution
of the sub-process.

TERMINABLE
DELIVERY SERVICE

The business process expects certain
conditions related to business objects to
be present by some defined deadline—
these conditions reflect the state of the
business objects. The process logic thus
needs to distinguish whether the business
objects related conditions are met in time
or not.

Model a TERMINABLE DELIVERY SERVICE
that is invoked by a SYNCHRONOUS
SERVICE ACTIVITY. The service checks a
desired condition with a given deadline of a
defined business object and delivers
whether the condition is true or false and
whether the deadline is reached or not.

Table 1: Problem/solution overview of the patterns

 E2-4

Synchronous Service Activity

Services must be invoked from a process flow.

Synchronous invocations of a service in a process flow need to be modelled such that the
process is able to consider the functional interface of the service and the data
dependencies to the service, and may react on the possible results of the service.

In a process-driven SOA, services are orchestrated via a process flow representing a business
process. That means services need to be invoked via a process flow. Following the WRAP
SERVICES AS ACTIVITY pattern [Hentrich-1 et al. 2006], services are logically related to activities in
a business process. A service thus represents the business function related to the corresponding
business process activity. However, a service has a functional interface, and in order to invoke a
service synchronously from the process flow the business process has to consider the functional
in- and output parameters of the service. That means there are data dependencies between the
process and the service, or rather more precisely the process activity and the associated service.

This data dependency can be observed on the business process level (also called macroflow) and
also on the more fine grained IT integration process level (also called microflow). No matter what
kind of service needs to be invoked (examples for different kinds of services are MACROFLOW
INTEGRATION SERVICE and BUSINESS-DRIVEN SERVICE; see [Hentrich-2 et al. 2006]), this data
dependency needs to be considered in order to invoke the service. This is a fundamental issue
that needs to be addressed in any type of process flow that synchronously invokes a service via a
process activity. Consequently, if a service is invoked synchronously and the possible results of
the service impact the control flow of the process, the results of the service need to be
considered as well.

Hence, both the data dependencies and the service results will influence the design of the
process model. As these are rather general issues, it is desirable to resolve them using a general
concept for modelling synchronous service invocations in process flows. Figure 2 illustrates the
problem.

Figure 2: How to invoke services from process flows synchronously?

 E2-5

Model the service invocation as a SYNCHRONOUS SERVICE ACTIVITY that maps the
functional input parameters of the associated service to its input data objects and the
functional output parameters of the service to its output data objects. The service is fed
with the input parameters from the input objects of the activity, and the output
parameters of the service are given back and stored in the output objects of the activity.
The process flow, which follows the invoking activity, implements the decision logic to
react on the results of the service based on the attributes of the output objects.

Within a process-driven SOA, process flows are executed on dedicated process engines. On
the macroflow business process level, those processes are executed on MACROFLOW ENGINES,
and on the microflow level, IT integration processes are running on MICROFLOW ENGINES (see
[Hentrich-2 et al. 2006] for details). In this context, processes are associated with control data, or
rather control data objects to carry the data elements for executing the processes. The decision
logic of the processes is based on attributes in these control data objects. The process activities
transform these objects by changing their attributes. This is achieved by giving the data objects as
input to an activity; the activity changes the contents of the attributes during execution, and sets a
new state of the objects as output of the activity. This concept–that processes transform the
process control data associated to them– is a general concept of process engines.

The control data object structures need to be designed to depict the requirements of the
processes. As a result, these requirements are gathered during the design of the processes
themselves, and the control data objects are designed in dependence to the processes in order to
capture all necessary requirements. When modelling the synchronous invocation of a service in a
process flow, the source for these requirements is the input and output parameters of the service
that needs to be invoked.

The control data objects that are used as input for the activity associated to the service must
represent the input parameters of the service, as the input data for the service need to be
provided by the process. Vice versa, the output parameters of the service need to be represented
by attributes of the output control data objects of the activity. In that way, the activity can be
functionally mapped to the service interface at the level of data structures. How the actual
invocation is performed depends on the techniques provided by the process engine. For example,
the process engine might allow the developers to directly invoke a Web Service, or provides some
kinds of messaging mechanisms. In any case, the design issue to be solved is the data integration
between the process activity and the service, independent of any invocation mechanism. This
very design issue is solved by mapping the in- and output parameters of the service to the control
data objects used as input and output of the associated process activity.

A prerequisite for executing a SYNCHRONOUS SERVICE ACTIVITY is that the input data for the
service must be available in the input data objects of the corresponding process activity. This data
is gathered in terms of output data that has been provided by a prior service invocation or by
data that has been entered manually in a user interface. As a result, designs at the level of data
integration influence the process design, as all data prerequisites for the invocation must be
fulfilled by prior process activities.

Consequently, a service invocation in a process needs to be viewed in context with preceding
process activities. At the level of data integration often modelling gaps occur that need to be
addressed in the preceding process activities (these activities might need to be added, if they are
missing). For this reason, the level of data integration must be considered right when designing a
process flow containing service invocations.

Furthermore, when modelling a service invocation, it must not only be viewed in context with

 E2-6

preceding activities but also with succeeding activities, as the results of the service invocation will
usually be captured by decision logic in the process. Consider for instance the case that the
service reports an error—this error needs to be captured by the decision logic in the process and
the process needs to react on the error somehow.

The possible cases that influence the path during the process represented by the results of the
service invocation must be captured by decision logic of the process right after the invocation.
This is achieved by modelling decision nodes based on the attributes of the output data objects
that carry the service results. Figure 3 illustrates an example structure of a SYNCHRONOUS
SERVICE ACTIVITY.

Activity

Synchronous Service
Activity

input: ControlDataObject

Service.param = input.param

output.result = Service.result

Activity Activity

[output.result = value1]

output: ControlDataObject

[output.result = value2]

Data prerequisites for
service invocation must
be fulfilled

Service

Figure 3: Synchronous service invocation pattern

The control data objects for the processes need to be designed according to the requirements
of the invoked services, i.e., the parameters exchanged between a process activity and a service
must match. Data integrity should be provided through an integrated design approach for the
process and the invoked services. Thus, the process design is aligned with the functionality of
invoked services. Vice versa, services can be designed according to requirements of processes.

At the macroflow level, invoked services are very often MACROFLOW INTEGRATION
SERVICES, and, at the microflow level, we are usually dealing with invocations of BUSINESS-
DRIVEN SERVICES [Hentrich-2 et al. 2006]. For designing the control data objects, the GENERIC
PROCESS CONTROL STRUCTURE [Hentrich 2004] pattern can be applied to solve some key
versioning issues concerning the data structures. Generic attributes for handling input and output

 E2-7

parameters of services can be defined in the process control data objects that can be reused for
various service invocations.

To address error management in the process model, the TIMEOUT HANDLER [Köllmann et al.
2006] and the PROCESS BASED ERROR MANAGEMENT Patterns [Hentrich 2004] patterns are
helpful. The TIMEOUT HANDLER addresses how to deal with a timeout situation in case the
synchronous service situation does not return any result. The PROCESS BASED ERROR
MANAGEMENT pattern shows how to apply generic error management principles in process
design.

It is also a matter of service design, what parameters should be given as input and output.
Often it is desired to keep the process only concerned with the control aspects of the process but
not with the business data. In this case the control data only contains BUSINESS OBJECT
REFERENCES [Hentrich 2004]. That means, the actual service being invoked by the process
activity only takes a BUSINESS OBJECT REFERENCE as input parameter. The service itself gathers
the concrete data from the business object via the reference. Especially MACROFLOW
INTEGRATION SERVICES are often designed that way, as this type of service represents a façade
that hides the microflow and the corresponding logic for data gathering and transformation for
invoking the actual business application services in the backend. If the service reply should be
captured asynchronously then the ASYNCHRONOUS REPLY SERVICE pattern applies.

Some known uses of the pattern are:

- IBM WebSphere Process server has synchronous Web services invocation mechanisms
based on a architectural model called Service Component Architecture (SCA) which
makes use of this pattern. Also implementations based on MQ or JMS are possible, as
SCA abstracts from the actual protocol binding of services. BPEL is used as the flow
modelling language.

- IBM WebSphere MQ Workflow applies the pattern in its UPES concept to invoke
functions from external systems. The example below illustrates an implementation with
MQ Workflow. A proprietary flow notation called FDL is used for modelling the flows
and the service invocations from a flow model. It is the preceeding product of WebSphere
Process Server.

- The BEA Aqualogic component Fuego also applies the pattern in conjunction with
synchronous service invocations, based on Web services. BEA uses a proprietary notation
and language for modelling the flows and service invocations.

- The FileNet P8 Business Process Manager implements the pattern for invoking Web
services from a workflow. At this point in time, FileNet still uses a proprietary modelling
language for modelling the flow models. Due to the acquisition of FileNet by IBM it can
be expected that FileNet P8 will also move to the BPEL standard in the near future.

These known uses show that the pattern is reflected by many different standard tools and
technologies for Business Process Management and workflow. Numerous project
implementations exist that are based on these technologies. The SYNCHRONOUS SERVICE
ACTIVITY pattern is thus a rather basic pattern related to process-driven SOA.

Example

This example will demonstrate how the SYNCHRONOUS SERVICE ACTIVITY pattern can be
implemented. In order to show that the pattern is broadly applicable and not restricted to rather
modern SOA technology specifics, such as Web Services, the example will illustrate a more

 E2-8

traditional message-based service invocation with IBM WebSphere MQ Workflow.

MQ Workflow offers a mechanism for invoking services via XML-based message adapters.
The whole mechanism is encapsulated in a concept called User Defined Program Execution
Server (UPES). The basis of the UPES concept is the MQ Workflow XML messaging interface.
The UPES concept is all about communicating with external services via asynchronous XML
messages. Consequently, the UPES concept deals with invoking a service that a process activity
requires, receiving the result after the service execution has been completed, and further relating
the asynchronously incoming result back to the process activity instance that originally requested
execution of the service (as there may be hundreds or thousands of instances of the same process
activity).

Thus, a UPES is an XML adapter that represents an interface to one or many services. Figure
4 illustrates the process of communication between MQ Workflow and a service via a UPES.
Figure 4 gives an overview of the UPES mechanisms.

Figure 4: Communication with external services via UPES

1) First, the UPES must be defined and must be related to process activities of process
models. Thus, a UPES definition is part of the modelling stage and is included in the
final process definition. Basically, from the viewpoint of MQ Workflow a UPES
definition consists of nothing more but a message queue definition. An activity related
to the UPES thus knows in which queue the XML request must be put.

2) If the execution of a process instance comes to the point where an activity instance is
related to a UPES (as defined by the process template), then an XML request will
automatically be put in the queue that has been defined for the UPES.

3) The actual UPES implementation is an adapter that listens to the specific UPES queue.
It takes the XML message out of the queue, transforms it into a format that can be
understood by the service, and initiates execution of the service. The UPES
implementation represents a PROCESS INTEGRATION ADAPTER [Hentrich-2 et al. 2006]

4) If the service has finished execution, the UPES implementation will take the result,
transform it back into the XML format that can be understood by MQ Workflow and
will send the result back to MQ Workflow. MQ Workflow has one specific XML input
queue for communicating with UPESs.

5) MQ Workflow takes the return message out of the input queue, relates the result back
to the activity instance, and changes the state of the activity instance accordingly.

Modelling the process for this service invocation with WebSphere MQ Workflow is quite
straightforward. A control data object is defined to capture the input and output parameters of

 E2-9

the service. This control data object is the assigned as input and as output of the process activity
that invokes the service. The process activity is defined as a UPES activity that puts an XML
request message in a queue. The result is sent back by the UPES as a result XML message. The
request and the return messages are correlated via a CORRELATION IDENTIFIER [Hohpe et al.
2003].

Though the actual communication mechanism via the UPES is asynchronous, it represents a
SYNCHRONOUS SERVICE ACTIVITY from the process perspective. The reason why is from the
process perspective it is a synchronous communication—the process is waiting for the reply and
does not move on to the next step, i.e. it is a blocking service invocation. As a result, the decision
whether a communication is synchronous or asynchronous must be seen relative to the
perspective of the caller and in context of the architectural layer that is making the invocation.
For this reason, the SYNCHRONOUS SERVICE ACTIVITY pattern can be realized even with
asynchronous communication mechanisms at the lower abstraction levels.

The following XML fragments show the structure of the request and response messages—the
CORRELATION IDENTIFIER named ActImpCorrelID is highlighted in the XML. The XML example
also highlights that the request message contains the control data object with a customer ID, a
currency, and a credit amount that are used as the input parameter for the service. The service
being invoked is a credit check, which delivers, based on a customer ID, a currency, and a credit
amount, whether a customer is creditworthy for the requested credit amount.

<WfMessage>
<WfMessageHeader>

<ResponseRequired>Yes</ResponseRequired>
</WfMessageHeader>
<ActivityImplInvoke>

<ActImplCorrelID>FFABCEDF0123456789FF</ActImplCorrelID>
<Starter>user1</Starter>
<ProgramID>

<ProcTemplID>84848484FEFEFEFE</ProcTemplID>
<ProgramName>FMCINTERNALNOOP</ProgramName>

</ProgramID>
 <ProgramInputData>

<_ACTIVITY>Invoke Credit Check Service</_ACTIVITY>
<_PROCESS>CreditRequest#123</_PROCESS>
<_PROCESS_MODEL>CreditRequest</_PROCESS_MODEL>
<ControlDataObject>

<CustomerID>4711</CustomerID>
<CreditAmount>10000</CreditAmount>
<Currency>Euro</Currency>

</ControlDataObject>
</ProgramInputData>

</ActivityImplInvoke>
<WfMessage>

The response XML provides the result of the credit check service. The result is contained in
the output parameter Risk and may have the values “Low”, “Medium” or “High”. The example
XML shows that the credit check result is “Low”.
<WfMessage>

<WfMessageHeader>
<ResponseRequired>No</ResponseRequired>

</WfMessageHeader>
<ActivityImplInvokeResponse>

<ActImplCorrelID>FFABCEDF0123456789FF</ActImplCorrelID>
<ProgramRC>0</ProgramRC>
<ProgramOutputData>

< ControlDataObject>
<Risk>Low</Risk>

 E2-10

</ControlDataObject>
</ProgramOutputData>

</ActivityImplInvokeResponse>
</WfMessage>

The process model for invoking the credit check service is shown in Figure 5. The process
model illustrates that the execution path differentiates whether a low, medium, or high risk has
been reported by the credit check service. Note that the notation used in Figure 5 is the
WebSphere MQ Workflow visual modelling language. The figure shows a screenshot taken from
the modelling tool thus illustrating the actual implementation. The actual language used by MQ
Workflow is Flowmark Definition Language (FDL) and the graphical models are translated
automatically in this language.

Figure 5: Invoking the credit check service

Figure 6 pictures how the control data object carrying the necessary attributes for invoking the
service is assigned as input and as well as output of the activity. The request message is generated
automatically by MQ Workflow. The response message of the service contains the risk assessed
by the service in the output object. Figure 6 shows the configuration that needs to done in the
modelling component of MQ Workflow.

 E2-11

Figure 6: Assigning the input and output control data object

 E2-12

Fire and Forget Service Activity

Services must be invoked from a process flow.

Service invocations from a process flow need to be modelled that are not a synchronous
blocking call, but rather just placing the service request without waiting for any result to
be returned from the service.

Depending on the functionality of a service, it is sometimes desired not to wait for the service
result. The service request only has to be placed at some point in time, but the process flow
needs to continue without considering the result of the service. Often this is the case if the
service execution takes a longer period of time, e.g. imagine a batch-oriented function
encapsulated in a service and the batch job only runs once a day.

Similar to the SYNCHRONOUS SERVICE ACTIVITY pattern, the data dependencies need to be
mapped to provide the right input data for the service by the process activity. For this reason, all
the issues identified in the SYNCHRONOUS SERVICE ACTIVITY pattern on providing the right
input data for the service by the process activity are the same in this special case. However, how
is it possible to invoke the service without waiting for the actual function associated to the service
to be executed and not to consider the result of the service at all?

Figure 7: Invoking a service without waiting for the result

Model the service invocation as a FIRE AND FORGET SERVICE ACTIVITY that decouples
the request for execution of a service from the actual execution of the service. Depict the
functional input parameters of the associated service request in the input data objects of
the invoking process activity. Thus, invoking the service, from the process activity point
of view, does actually only mean placing a request for service execution.

The solution separates the request from the execution of the service. This must be done at the
process design level and at the remote invocation level. At the remote invocation level, there are
two main variants that have both been described as remote invocation strategy patterns:

• An asynchronous execution of the service is performed that fires a request for service
execution but forgets about the actual execution. The respective remote invocation
strategy that needs to be used is described in the FIRE AND FORGET pattern [Voelter et

 E2-13

al. 2004].

• Alternatively, placing the request may also be understood as a service—a service that
does not execute actual business logic but only takes the request for executing business
logic. Possibly, this request should be acknowledged. In this case, the solution will be a
SYNCHRONOUS SERVICE ACTIVITY in which the service only receives a request for
execution and returns an acknowledgment of the receipt of the request. The respective
remote invocation strategy that needs to be used is described in the SYNC WITH
SERVER pattern [Voelter et al. 2004].

In the SYNC WITH SERVER variant, the result might also contain different options, e.g. request
acknowledged or not acknowledged. For instance, if the input values of the request are invalid,
the request might not be acknowledged but rather an error message is returned. In the pure FIRE
AND FORGET variant, in contrast, the request is only sent, and no acknowledgement or error is
returned. Hence, the SYNC WITH SERVER variant can be considered to be more reliable than pure
FIRE AND FORGET.

Figure 8 illustrates the structure of the SYNC WITH SERVER variant of FIRE AND FORGET
SERVICE ACTIVITY pattern. A service request is placed by invoking a service synchronously. This
service accepts a request for actual service execution and returns only an acknowledgement as its
output immediately.

Activity

Fire and Forget
Activity

input: ControlDataObject

Activity Activity

[output.request_acknowledged = No]
output: ControlDataObject

[output.request_acknowledged = Yes]

Data prerequisites for
placing service request
must be fulfilled

ServiceRequest.param = input.param

output.request_acknowledged = ServiceRequest.result

Service
Request

Figure 8: Placing a service request synchronously

 E2-14

The FIRE AND FORGET variant of the FIRE AND FORGET SERVICE ACTIVITY pattern is
illustrated in Figure 9. This variant forgets about the acknowledgment of the request and simply
places the request neglecting any possible return values. In this case, the process engine used
needs to support this mechanism, as the process activity needs to be able to place the request for
service execution and the process needs to proceed to the next step automatically. If the engine
only supports synchronous invocations, then the service must be designed accordingly, as
explained above. In all cases, the right input data must be provided, as already addressed by the
SYNCHRONOUS SERVICE ACTIVITY pattern.

Activity

Fire and Forget
Activity

input: ControlDataObject

Activity
output: ControlDataObject

Data prerequisites for
placing service request
must be fulfilled

ServiceRequest.param = input.param
Service
Request

Figure 9: Firing a request and forgetting about the result

The request of a service is decoupled from its execution from the perspective of the invoking
process activity. The result of the actual service invocation cannot be determined by the invoking
process and possible errors of the execution are not reported. This pattern should only be applied
in case the result of the execution is not relevant for further process steps. The process engine
used must technically support the two different variants of service invocation mentioned in this
pattern. In comparison to SYNCHRONOUS SERVICE ACTIVITY, both variants have the benefit that
the process flow can be directly continued without having to wait (block) for a result. In case of
the FIRE AND FORGET variant, not even an acknowledgement must be awaited, but for this
reason, this variant is less reliable than the SYNC WITH SERVER variant, and should only be used,
if best-effort-semantics are tolerable.

The SYNCHRONOUS SERVICE ACTIVITY provides a solution in case an acknowledgement of
the service request is necessary. If the result of a service request must be determined
asynchronously at a later point in time in the process (callback) then ONE REPLY
ASYNCHRONOUS SERVICE ACTIVITY is applied. If there is more than one reply from a service
request, then the MULTIPLE REPLIES ASYNCHRONOUS SERVICE ACTIVITY pattern must be used.

Some known uses of the pattern are:

 E2-15

- The known uses given for the SYNCHRONOUS SERVICE ACTIVITY do also apply here, as
this is in principle also a very basic pattern related to service invocation from processes.

- GFT’s BPM Suite GFT Inspire [GFT 2007] provides a modeller component that uses
UML activity diagrams as a notation for modelling the flows. Services can be invoked
asynchronously from the flows that can integrate external technologies, such as message
brokers.

- In a SOA project for a telecommunications customer, the pattern has been used to define
a modelling template for asynchronous service invocations, based on IBM’s WebSphere
Business Integration Message Broker.

- In a large project on architectural standards in bank in Germany the pattern has been used
to fire off service that result in CICS transactions where the process did not need to wait
until the actual transaction is finished. Many projects in this bank have been based on this
architectural standard.

Example

The SYNC WITH SERVER variant that places the service request synchronously is basically a service
design issue of decoupling the service request from its actual function and a variation of the
SYNCHRONOUS SERVICE ACTIVITY pattern—we will again take the example of the credit check
service presented in the SYNCHRONOUS SERVICE ACTIVITY pattern. The example will show how
sending the service request can be implemented with WebSphere MQ Workflow and the UPES
communication mechanism.

The only difference, compared to the example in the SYNCHRONOUS SERVICE ACTIVITY
pattern is that the return value will not be the actual calculated risk but only an acknowledgement
of the service request, as shown in the following XML structure.
<WfMessage>

<WfMessageHeader>
<ResponseRequired>No</ResponseRequired>

</WfMessageHeader>
<ActivityImplInvokeResponse>

<ActImplCorrelID>FFABCEDF0123456789FF</ActImplCorrelID>
<ProgramRC>0</ProgramRC>
<ProgramOutputData>

< ControlDataObject>
<RequestAcknowledged>Yes</RequestAcknowledged>

</ControlDataObject>
</ProgramOutputData>

</ActivityImplInvokeResponse>
</WfMessage>

Just analogous to the process model in the SYNCHRONOUS SERVICE ACTIVITY pattern, the
corresponding process model looks as pictured in Figure 10. The control data object will be
assigned as input and output of the process activity invoking the service and the control data
object needs to have an attribute defined to report whether the request has been acknowledged
or not. The process may than decide on the basis of the value of this attribute which path to go,
i.e. whether the request has been acknowledged or not.

 E2-16

Figure 10: Fire service request synchronously

The FIRE AND FORGET variant of this pattern is about firing a request without considering any
return value from the service. In order to apply this variant, the process engine used must also
support this unidirectional communication mechanism. MQ Workflow supports the
unidirectional communication directly by setting configuration parameters in the process model.
First of all the process model looks even simpler as there is no decision logic necessary after
sending the service request.

Figure 11: Simply firing the service request

The activity invoking the service must be defined as to expect no reply. This is done in MQ
Workflow by setting an asynchronous mode for the UPES communication in the process
activity. This is simply done by setting an attribute of the process activity.

 E2-17

Figure 12: Setting the activity to an asynchronous mode

 E2-18

Asynchronous Reply Service

Services must be invoked from a process flow.

Service invocations from a process flow need to be modelled that are not synchronous
blocking calls, but rather event-based. That is, the service invocation just places the
service request and picks up the service result later on in the process flow, analogous to
the well-known callback concept.

Sometimes the FIRE AND FORGET SERVICE ACTIVITY pattern is not sufficient as there will be
some reply that must be picked up at a later point in time. The process should place a service
request, do some other activities in the meantime, and then pick up the result of the previously
initiated request at a later point in time. That is, some kind of asynchronous mechanism is
required, which only places the service request and the result of the request will be picked up
asynchronously at a later point in time. The problem is how to pick up the result later on in the
process flow and how to relate a result to a request that has been previously made?

Consider many invocations of the same service have been placed, e.g. by different process
instances of the same process that are running in parallel. That means, if a specific process
instance wants to pick up a result of one of those invocations, the result must be somehow
related to the right request. This relationship is necessary in order not to pick up a result that has
been made by another process instance. How can this relationship be realised?

Figure 13: How to realize the callback concept for service invocations in a process flow?

Split the request for service execution and the request for the corresponding result into
two SYNCHRONOUS SERVICE ACTIVITIES and relate the two activities by a CORRELATION

IDENTIFIER [Hohpe et al. 2003] that is kept in a control data object. This CORRELATION

IDENTIFIER is the output of the first service request, is temporarily saved in a request
repository, and is then – later in time – used as an input for the second request that
represents picking up the result.

Designing two separate SYNCHRONOUS SERVICE ACTIVITIES enables the separation of the
actual service request from picking up the result. The first SYNCHRONOUS SERVICE ACTIVITY
represents the actual service request and the second one represents a service invocation that picks
up the result. However, to relate a service request and a result, it is necessary to provide a

 E2-19

CORRELATION IDENTIFIER which is generated by the first service. That means, the first service,
representing the request, must create a CORRELATION IDENTIFIER that is provided as the output
of the service. The identifier is then stored in a control data object of the process and is thus
carried along the process activities that may follow.

When invoking the second service to pick up the result, the CORRELATION IDENTIFIER is
given as input to the service. The service is thus able to identify the result to the request and to
give the right result back to the invoker. For this reason, the request service and the service to pick up
the result have a common functional basis.

The first service registers the requests which are stored in a REPOSITORY [Evans 2004] with
their CORRELATION IDENTIFIER that is generated by the service and passed back to the invoker.
Then the actual function associated to the service will be executed and the result will also be
stored in the REPOSITORY related to the request identified by the CORRELATION IDENTIFIER.

The second service to pick up a result looks into the REPOSITORY to determine the right result
based on the CORRELATION IDENTIFIER which has been given as input to the service. If a result
is stored in the REPOSITORY for the specific CORRELATION IDENTIFIER then this result is passed
back to the invoker. If there is no result stored, then a corresponding error message will be
returned. Two possible cases must be distinguished: the CORRELATION IDENTIFIER provided by
the service is invalid, i.e. it does not exist in the REPOSITORY, or there is no result yet but the
CORRELATION IDENTIFIER is valid. Depending what case applies, a corresponding result message
will be returned.

Service Provider

Request Service

Repository

Service Request

Service Result

Correlation
Identifier

0..1

1

0..n

1

Activity

Place Service Request
Activity

Activity

send request

correlation identifier

Result ServiceGet Result of Request
Activity

correlation identifier

result

Activity

Target System

1

1

1

1

Figure 14: Structure of one reply asynchronous service

 E2-20

Figure 14 shows the structure of the pattern and how the two services are invoked in
sequence with other activities between them. Figure 14 also illustrates the functional architecture
that is used to maintain the relationship between a request service and a result service via a
CORRELATION IDENTIFIER. The following sequence diagrams illustrate in more detail the
behaviour that happens when a process instances invokes the two services. The first sequence
diagram in Figure 15 shows how the service request is placed. The sequence diagram depicts how
the actual function associated to the service request is invoked asynchronously while the activity
placing the request already terminates and the process moves on to the next activity. This is
indicated by destroying the process activity object placing the request after the service request has
been sent.

Service ProviderProcess Instance

: Request Service: Place Service
Request : Repository : Target System

invoke (input-Params)

: One Reply
Asynchronous

Service

add request (correlation ID)

correlation ID
invoke function (input-Params)

result

create
correlation ID

new request (correlation ID, input-Params)

: Control Data
Object

store (correlation ID)

add result (correlation ID, result)

Figure 15: Placing a service request

 E2-21

The second sequence diagram in Figure 16 shows how the result is determined for a request
that has been placed before the situation shown in Figure 15 has happend. The diagram illustrates
how the result of the service is retrieved from the repository and sent back to the process activity.
The right result is determined by providing the correlation ID that has been stored in the control
data object.

Figure 16: Getting the service reply asynchronously

The ASYNCHRONOUS REPLY SERVICE pattern provides a solution to designing an
asynchronous reply on the process design, service design, and functional architecture level. Thus,
applying the pattern results not only on the process modelling level but has further architectural
consequences that imply additional effort. In particular, a suitable remote invocation strategy
must be selected. This is necessary for dealing with situations in which the result service does not
deliver a result yet, for instance, because the function associated to the service is not yet
completed. There are two main options:

• The process can be actively triggered by a RESULT CALLBACK [Voelter et al. 2004]
service invocation that “actively” informs the process about the availability of the
result. That is, a real callback is sent as a service invocation to the process.

• Or the process design follows the POLL OBJECT pattern[Voelter et al. 2004]: The
process loops the activity invoking the result service (it “polls” it) until the result is
available.

In both cases it might be necessary to implement a timeout, e.g. to deal with network failures
or other remoting errors.

 E2-22

Once the result is received, the request entry in the request repository should be deleted. The
repository possibly needs to implement some cleanup activity, e.g. in case results are not
questioned. Some additional logic might be necessary to identify such dead entries in the
repository and deleting them, or possible to indicate errors.

As the ASYNCHRONOUS REPLY SERVICE pattern applies the SYNCHRONOUS SERVICE
ACTIVITY pattern, the related patterns of SYNCHRONOUS SERVICE ACTIVITY do apply as well to
this pattern. Moreover, the request service and the result service mentioned can be realized as
MACROFLOW INTEGRATION SERVICES [Hentrich-2 et al. 2006]. The functional architecture part
can be realized applying the PROCESS INTEGRATION ADAPTER [Hentrich-2 et al. 2006]. That
means, the relationship to the target system can be realized by a PROCESS INTEGRATION
ADAPTER that also implements the repository and the management of the relationship between
requests and responses.

In many cases the ASYNCHRONOUS REPLY SERVICE pattern must be considered in a larger
architectural context concerning several architectural components. For instance, ASYNCHRONOUS
REPLY SERVICES are typically used in larger PROCESS-BASED INTEGRATION ARCHITECTURES
[HENTRICH-2 ET AL. 2006] where a similar process-logic like the one shown in the sequence
diagrams above is implemented as a microflow, and where the repository and the target system
are also flexibly accessed as loosely coupled components via BUSINESS-DRIVEN SERVICES
[Hentrich-2 et al. 2006]. In this case, the messages related to the service provider part, as depicted
in the sequence diagrams, will be service invocations that are orchestrated in a microflow.

Some known uses of the pattern are:

- In principle, the pattern is supported by the process technologies given as known uses in
the SYNCHRONOUS SERVICE ACTIVITY pattern as basic support for synchronous services
is required. Provided that this support is given the pattern can be implemented.

- In a project in the automobile industry the pattern has been applied to kick-off batch
processes from business processes. The batch job runs over night, while in the meantime
other process steps have been executed. The result of the batch-job is picked up by the
process the following day assuming that the job must be completed overnight.

- In projects related to transaction banking the pattern applies to a similar scenario, where
larger or complex transactions are initiated from a business process. The pattern has been
defined as a modelling template in an architectural standard of a bank in Germany for
those kinds of services related to larger transactions. The technologies used have been an
OS/390 based WebSphere MQ Workflow installation in conjunction with a CICS based
transaction server.

Example

We will illustrate an implementation with WebSphere MQ Workflow and extend the example of
the FIRE AND FORGET SERVICE ACTIVITY pattern towards an asynchronous reply. Imagine the
credit check service is provided by an external organisation and it takes about 24 hours to get a
result. In this case it actually makes sense to apply the ASYNCHRONOUS REPLY SERVICE pattern
and do some other activities in between in order not to waste time. Undoubtedly, this only makes
sense if there are sensible business activities possible in the meantime. In this example it is
sufficient that the actual result of the service is available at a later point in the process and that it
is possible to do further activities without having the result.

First of all, the process model needs to have two activities of service invocations. The first
service is placing the request and the second service is picking up the result. The process model

 E2-23

will look as pictured in Figure 17.

Figure 17: Process model example for one reply asynchronous service

The first service to place the request will have to give back the correlation ID that will be used
as an input parameter in the second service invocation. The request XML of the first service is as
straightforward as already shown in the SYNCHRONOUS SERVICE ACTIVITY pattern, but the
response XML of the first service will be different, as it does not only contain the
acknowledgement of the request but also the correlation ID.
<WfMessage>

<WfMessageHeader>
<ResponseRequired>No</ResponseRequired>

</WfMessageHeader>
<ActivityImplInvokeResponse>

<ActImplCorrelID>FFABCEDF0123456789FF</ActImplCorrelID>
<ProgramRC>0</ProgramRC>
<ProgramOutputData>

< ControlDataObject>
<RequestAcknowledged>Yes</RequestAcknowledged>
<CorrelationID>XYAZ4711</CorrelationID>

</ControlDataObject>
</ProgramOutputData>

</ActivityImplInvokeResponse>
</WfMessage>

The second service invocation requires the correlation ID as input parameter. For this reason,
the request XML of the second service will look as shown below. The response XML of the
second service will be the same as shown in the SYNCHRONOUS SERVICE ACTIVITY pattern. It
becomes clear how the single service from the SYNCHRONOUS SERVICE ACTIVITY pattern is split
up into two services that are asynchronously linked by a correlation ID.

 E2-24

<WfMessage>
<WfMessageHeader>

<ResponseRequired>Yes</ResponseRequired>
</WfMessageHeader>
<ActivityImplInvoke>

<ActImplCorrelID>FFABCEDF0123456789FF</ActImplCorrelID>
<Starter>user1</Starter>
<ProgramID>

<ProcTemplID>84848484FEFEFEFE</ProcTemplID>
<ProgramName>FMCINTERNALNOOP</ProgramName>

</ProgramID>
 <ProgramInputData>

<_ACTIVITY>Get Credit Check Result</_ACTIVITY>
<_PROCESS>CreditRequest#123</_PROCESS>
<_PROCESS_MODEL>CreditRequest</_PROCESS_MODEL>
<ControlDataObject>

<CorrelationID>XYAZ4711</CorrelationID>
</ControlDataObject>

</ProgramInputData>
</ActivityImplInvoke>

<WfMessage>

 E2-25

Multiple Asynchronous Replies Service

Services must be invoked from a process flow.

Service invocations from a process flow need to be modelled that are not synchronous
blocking calls but rather just place the service request. Multiple replies need to be picked
up from the service later on in the process flow.

Sometimes even the ASYNCHRONOUS REPLY SERVICE pattern is not sufficient, because there
is not only one response from the service but there are multiple possible responses that must be
considered. For instance, some services deliver some kind of intermediate results that represent
progressing status of the function or task assigned to the service. Often these intermediate results
need to be considered from the process point of view. That means, the process may only move
on until a certain step after the original service request has been placed and it will only proceed if
the previous service invocation has reached a certain intermediate stage that is reported as a
status response from the service to the process instance.

Figure 18: How to realize multiple replies?

The service thus sends several replies which influence the process flow, as each response may
have certain results that imply decision nodes in the process. That means, the service may itself
be a business process, where intermediate responses report certain states or results of activities in
this process. Depending on a state or completed activity of the service, the business process
needs to react correspondingly. For example, this can be observed in case the service is a facade
of a whole business process running in an external organisation (business process outsourcing)
and the service reports several intermediate states of this external business process. The internal
business process logic needs to react on the states or completed activities of the external business
process.

An example is an ordering process of supplier parts in the automotive industry, where the
order is fulfilled by an external supplier. The order may have different states according to the
results of completed activities in the outsourced business process, e.g. order accepted or not
accepted, procurement finished, shipment date set, shipment initiated, shipment completed, etc.
The internal supply chain business process of the automotive company may thus logistically
coordinate the procurement of parts ordered from several suppliers, based on the reported states.
Figure 19 shows the principle issue of how to synchronize a business process and the process
hidden behind the service facade if there are multiple replies to the initial service request.

 E2-26

Business Process

Service Façade
(external business process)

Activity

Activity

Activity

[Condition B]

Activity
[Condition A]

Service Request

State 1

State 2

Activity

Activity
State 3

Activity

Activity

Activity

[Condition 2]

Wait for State 1

[Condition 1]

Wait for State 2

Activity

Activity
Wait for State 3

[Condition 3] [Condition 4]

Figure 19: Synchronizing the business process by multiple asynchronous replies

Extend the ASYNCHRONOUS REPLY SERVICE towards allowing multiple results associated
to events representing completed intermediate actions or states of the service. Thus, the
result service delivers results based on expected events that are given as input to the
result service.

The ASYNCHRONOUS REPLY SERVICE offers nearly all functionality required. The only issue is
that it is restricted to only one reply being returned asynchronously by the service. For this
reason, the pattern is extended to allow multiple results by introducing the concept of an event.
The result service allows requesting a result that is associated to a defined event representing a
completed intermediate activity or state of the service. The repository stores multiple results to
the same correlation ID, where each result is related an event. Events are unique within the space
of the correlation ID, i.e. an event may occur only once for a correlation ID. When invoking the
result service, the correlation ID and the desired event will be given as input parameters to the
service. That way a result can be uniquely identified and is related to an intermediate state of the
service. Alternatively, a dedicated result service can be offered for each possible event. The

 E2-27

general structure of the pattern, representing an extension of the ASYNCHRONOUS REPLY
SERVICE is pictured in Figure 20.

Service Provider

invoke(in input-Params) : Correlation Identifier

Request Service

Repository

Service Request

Service Result

Correlation
Identifier

0..n

1

0..n

1

Activity

Place Service Request

Activity

invoke(Input-Params)

correlation ID

invoke(in id: Correlation Identifier, in e : Event = null)

Result Service
Get Result of Request

invoke(correlation ID, event)

result

Activity

Target System

1

1

1..n

1

Event

1
1

Figure 20: Structure of the multiple asynchronous replies service pattern

The sequence diagram for placing the service request is the same as presented in the
ASYNCHRONOUS REPLY SERVICE pattern. If there is a dedicated result service for each possible
event, then it is not necessary to provide the event as an input parameter when invoking the
result service. In this case the dedicated result service will be implicitly related to a special event.
The sequence diagram for invoking a result service is shown in Figure 21. The only difference in
this sequence diagram, compared to the corresponding sequence diagram of the ASYNCHRONOUS
REPLY SERVICE, is that the event is considered as an input parameter. In order to provide the
event information as an input parameter, there must be an attribute that carries the event
information in the control data object of the process.

 E2-28

Service ProviderProcess Instance

: Result Service: Get Result of
Request : Repository

invoke (correlation ID, event=null)

: One Reply
Asynchronous

Service

get result (correlation ID, event)

result

result

get result (correlation ID, event)

result

: Control Data
Object

get correlation ID

correlation ID

Figure 21: Invoking the result service with an event parameter

The consequences of the MULTIPLE ASYNCHRONOUS REPLIES SERVICE pattern are basically
the same as in ASYNCHRONOUS REPLY SERVICE as the MULTIPLE ASYNCHRONOUS REPLIES
SERVICE pattern is an extension of it. The only slight difference is that this pattern provides as
solution to multiple replies instead of only one reply. Also, the related patterns are the same as in
ASYNCHRONOUS REPLY SERVICE.

Some known uses of the pattern are:

- In principle, the pattern is supported by the process technologies given as known uses in
the SYNCHRONOUS SERVICE ACTIVITY pattern as basic support for synchronous services
is required. Provided that this support is given the pattern can be implemented.

- The pattern has been used in projects in various industries such as telecommunications
and automotive to implement loosely coupled coordination of different independent
departments and even external organisations. The progress of the processes in the
different units has been coordinated by exchanging intermediate states according to the
pattern. For instance, in a telecommunications project in Spain the pattern has been used
to communicate with an external cable provider to report on progress of an installations
process.

- IBM’s order management and invoicing solution Webshop is designed to offer a service
interface based on Web services that allows querying intermediate states of an order.

 E2-29

These services can be invoked from any workflow tool that integrates Webshop according
to the pattern.

Example

We will extend the credit check example from the ASYNCHRONOUS REPLY SERVICE pattern. We
assume that the credit check service is still provided by an external organisation and that it takes
about 24 hours to complete. However, this time we assume that there is one intermediate
completion of an activity reported. This intermediate state provides information whether the
requester is on a blacklist or not. Thus, we will not know the final risk factor but we will get
information whether the candidate is on a black list or not. Depending on this information the
business process may already take some other steps that can be done before the final result is
delivered by the service.

The process model will now have to show three service invocations. The first invocation
represents the original service request. The second invocation checks whether the requestor is on
the blacklist and the third invocation retrieves the final risk factor. The process model
implemented with WebSphere MQ Workflow will look as pictured in Figure 22.

 E2-30

Figure 22: Getting intermediate results asynchronously

From this process model point of view it looks at the first sight as if there are three
independent service invocations. However, the invocations are all linked together at a deeper
conceptual level by the correlation ID and moreover by the functional architecture of the
services. The XML structures of the service placing the request will not be different to the
structures illustrated in the example of the ASYNCHRONOUS REPLY SERVICE pattern. The two
result services need to consider the event information. For this reason, the input XML of the
blacklist check service will look like this:
<WfMessage>

<WfMessageHeader>
<ResponseRequired>Yes</ResponseRequired>

</WfMessageHeader>
<ActivityImplInvoke>

<ActImplCorrelID>FFABCEDF0123456789FF</ActImplCorrelID>

 E2-31

<Starter>user1</Starter>
<ProgramID>

<ProcTemplID>84848484FEFEFEFE</ProcTemplID>
<ProgramName>FMCINTERNALNOOP</ProgramName>

</ProgramID>
 <ProgramInputData>

<_ACTIVITY>Check Blacklist</_ACTIVITY>
<_PROCESS>CreditRequest#123</_PROCESS>
<_PROCESS_MODEL>CreditRequest</_PROCESS_MODEL>
<ControlDataObject>

<CorrelationID>XYAZ4711</CorrelationID>
<Event>Blacklist</Event>

</ControlDataObject>
</ProgramInputData>

</ActivityImplInvoke>
<WfMessage>

The output XML will deliver the result of the blacklist check. In order to report this result to
the process instance, the control data object will need an attribute to carry that information. That
way the decision logic can be defined according to the result of the blacklist check (see also
Figure 22). The result XML from the service sent to MQ Workflow is shown below.
<WfMessage>

<WfMessageHeader>
<ResponseRequired>No</ResponseRequired>

</WfMessageHeader>
<ActivityImplInvokeResponse>

<ActImplCorrelID>FFABCEDF0123456789FF</ActImplCorrelID>
<ProgramRC>0</ProgramRC>
<ProgramOutputData>

< ControlDataObject>
<Blacklist>Yes</Blacklist>

</ControlDataObject>
</ProgramOutputData>

</ActivityImplInvokeResponse>
</WfMessage>

The second service result invocation finally queries for the final event that reports the risk
factor. For this reason, the input XML needs to specify that the questioned event is the calculated
risk value. It will also show the same correlation ID like the blacklist service.
<WfMessage>

<WfMessageHeader>
<ResponseRequired>Yes</ResponseRequired>

</WfMessageHeader>
<ActivityImplInvoke>

<ActImplCorrelID>FFABCEDF0123456789FF</ActImplCorrelID>
<Starter>user1</Starter>
<ProgramID>

<ProcTemplID>84848484FEFEFEFE</ProcTemplID>
<ProgramName>FMCINTERNALNOOP</ProgramName>

</ProgramID>
 <ProgramInputData>

<_ACTIVITY>Get Credit Check Result</_ACTIVITY>
<_PROCESS>CreditRequest#123</_PROCESS>
<_PROCESS_MODEL>CreditRequest</_PROCESS_MODEL>
<ControlDataObject>

<CorrelationID>XYAZ4711</CorrelationID>
<Event>RiskFactor</Event>

</ControlDataObject>
</ProgramInputData>

</ActivityImplInvoke>
<WfMessage>

 E2-32

Fire Event Activity

Business processes are executed on a process engine.

Specific states of business processes must be communicated to some unknown target
systems and/or functions of systems unknown to the business process need to be
initiated by a process activity.

A business process in execution (a business process instance) is a component with its own
data space. However, the process stands in logical relation with other components, i.e. systems
outside the process engine or other process instances. During the execution of business processes
sometimes states are generated that need to be communicated to the space outside a process
instance, e.g. to inform other systems about the completion of certain business activities.
Moreover, sometimes the execution of functions needs to be initiated by a process but the
process has no knowledge what component will execute that function. In both cases the process
has no knowledge about the target system.

For this reason, this situation cannot simply be solved by invoking a service of a target system,
as the target system that offers the service is not known. The process does now know how the
function is going to be fulfilled and by what system. For instance, in case the process needs to
communicate a state it might even be that the state is relevant to many other systems and not
only to one system. Still the process does not know what systems require this information and
the consequences created from that state in these systems. Furthermore it might be that the
constellation of target systems is subject to regular change or that the systems are outside the
influential space of the organisation hosting the process instance, e.g. in case the systems are
placed in a restricted security area or are hosted by external organisations.

In all these cases, the business process must actually not know anything about the target
systems and the business process design must not be dependent on them. As a result the business
process must simply be able to publish some state information or to initiate functions by a
process activity without knowing what target systems will take care of it.

Figure 23: How to communicate with unknown target systems?

 E2-33

Interpret the states to be communicated and the initiation of external functions as events
generated by process activities. Model FIRE EVENT ACTIVITIES that represent event
sources. These activities fire appropriate events, when they are reached in the process
flow. Target systems subscribe to the events as event listeners and are responsible for
processing the events.

Each process activity must have an implementation, i.e. some component that realizes the
function of the activity. In the case of a FIRE EVENT ACTIVITY, the activity implementation
represents an event source. Like any other process activity, the FIRE EVENT ACTIVITY delegates
the execution of the function associated to it to its implementation. The function associated to a
FIRE EVENT ACTIVITY is to create events. More precisely, its function is to create the specific
events associated to a specific FIRE EVENT ACTIVITY in a business process. For this reason,
different FIRE EVENT ACTIVITIES in a business process may create different events, as they
potentially represent different event sources.

An event source notifies event listeners that have registered themselves to the event source
about occurring events. The event listeners process the events they are notified about. An event
listener is thus an OBSERVER [Gamma et al. 1994] of an event source. Any possible target system
may implement an event listener. That way, the target systems are responsible to process the
events, but the business process does not need to know them explicitly or have knowledge about
what they do with the events. From a business point of view, logically some contract might be
associated to an event, i.e. there may be specific requirements associated to the event on how to
process it. If such requirements exist, the observer of the event is also responsible for considering
them. However, whether such requirements exist or not depends on the specific business
context.

How the FIRE EVENT ACTIVITY delegates the execution of its function to its implementation
may vary. Generally, any technology offered to invoke a function by a process activity can be
used. Figure 24 illustrates the a structure of a FIRE EVENT ACTIVITY.

Figure 24: Structure of a fire event activity

 E2-34

A business process is able to communicate with unknown target systems by applying this
pattern. The target systems may change without affecting the business process design or
implementation. Another business process may also be a target system. In that way the pattern
can be used to allow basically independent business process instances to communicate with each
other. The pattern implies a functional architecture that represents additional implementation
effort.

The invocation of the function realized by the implementation of the process activity that fires
the event can be designed as a SYNCHRONOUS SERVICE ACTIVITY or a FIRE AND FORGET
SERVICE ACTIVITY. If the events fired by a process activity have implications on other business
processes that wait for these events to occur, then the EVENT-BASED ACTIVITY pattern applies
[Köllmann et al. 2006].

Some known uses of the pattern are:

- In principle, the pattern is supported by the process technologies given as known uses in
the SYNCHRONOUS SERVICE ACTIVITY pattern as basic support for synchronous services
is required. Provided that this support is given the pattern can be implemented.

- In real project situations it often appears that processes are interrelated. For instance, in
order management processes as we find them in the telecoms industry, there are usually
parts of larger orders being processed in separate business processes. At a certain point in
time these partial orders need to be consolidated. In order to achieve this each partial
order process implements FIRE EVENT ACTIVITIES to communicate that a partial order
has passed a certain state, e.g. the partial order is fulfilled. A coordinating process collects
all the events and coordinates the progress of the overall order.

- In the insurance business we find similar scenarios in claims handling. Larger claims
contain sub-claims and the processing of some complex claims takes up to several years.
Each sub-claim thus runs as a single process and the overall claim also needs to be
coordinated. This is also achieved by implementing FIRE EVENT ACTIVITIES in the sub-
claims processes to achieve loose coupling of the interrelated claims processes.

- IBM’s WebSphere Process Server offers direct technology support of the pattern by
offering event generation and even event handling features in its tooling. BEA Fuego also
offers such event generation and event handling features.

Example

A typical example is a process that cancels a complex order, e.g. in a telecoms company. Consider
that an order may contain various products being ordered, especially if it is a business customer
that places the order. Each product might have its own ordering business process and fulfilment
process which is further orchestrated by some umbrella business process that coordinates the
overall order. What happens if the customer cancels the whole order, while the order is still in
fulfilment? In this case, it does not make sense to go on with the order fulfilment. But how do
the order fulfilment processes of each single requested product recognize that the whole order
has been cancelled?

The cancellation is a separate business process, which is independent from the ongoing order
processes. In this case the cancellation process does also not know whether there are ongoing
ordering processes. It might be that the fulfilment processes have also already executed business
activities in external organisations, e.g. a cable provider, by invoking services of these external
partners. Thus, the cancellation of the order should result in rolling back these business activities
and also stop all ongoing order fulfilment business processes. As the business processes do

 E2-35

basically develop independently and should be loosely coupled, the FIRE EVENT ACTIVITY
pattern is used to publish the cancellation event. Any partner system or business process
interested in this event can capture it and react correspondingly.

The order fulfilment business processes contain EVENT-BASED ACTIVITIES [Köllmann et al.
2006] that implement event listeners, react on this event and stop the fulfilment processes in a
controlled way. Another event listener informs external business partners about the cancellation.
This way the cancellation process is loosely coupled with the external world. However, the
business logic, caused by the raised event, can still be executed without the cancellation process
knowing about any system involved in this event. Each system that listens to the event is
responsible for processing the event (separation of concerns). The cancellation process is not
responsible for it, as it is not able to decide on all the consequences that may result out of the
cancellation event. As a result, the complexity generated out of this parallelism becomes
manageable by applying the FIRE EVENT ACTIVITY pattern.

 E2-36

Asynchronous Sub-Process Service

Business processes are modelled with sub-processes and are executed on a process engine.

From a logical business perspective one can observe two types of sub-process
relationships. The first is basically like a functional de-composition and the second is
more like an asynchronous invocation where the calling process does not wait until the
sub-process has finished execution. Unfortunately, this second variant is usually not
directly supported by process engines. It is thus an issue to depict this business
requirement without having direct conceptual support from the process engine.

A sub-process is just an encapsulation of business activities that have some value in terms of
reusability or that represent a coherent complex logical unit of work. When invoking a sub-
process in another process, the normal behaviour of a process engine is defined as follows: step
into the sub-process, step through all activities of the sub-process, and then return to the
invoking process and continue with the remaining activities after the sub-process invocation.
Hence, sub-processes are basically a functional de-composition. In some cases this behaviour is
not wanted. It is required that the calling process should not wait until the sub-process has
finished its execution, but instead it should directly continue with its own activities after sub-
process invocation.

When business modellers create business process models they often implicitly assume that
kind of asynchronous sub-process relationship. It is rather like initiating another process than
having it fully enclosed in the calling process. As a result, when depicting these business
processes on a process engine and more formal models of the processes need to be created, it is
actually an issue how to model this asynchronous sub-process relationship, if the process
modelling constructs of the process engine do not support it.

Model an activity that invokes an ASYNCHRONOUS SUB-PROCESS SERVICE. This service
only functionally encapsulates the instantiation of the sub-process on the process engine
but not the whole execution of the sub-process.

Instead of modelling a sub-process via the process modelling language of the process engine, a
SYNCHRONOUS SERVICE ACTIVITY or a FIRE AND FORGET SERVICE ACTIVITY is modelled that
invokes a service that just instantiates the desired business process. The name/identifier of the
process to be instantiated and the input parameters are provided as inputs to the
ASYNCHRONOUS SUB-PROCESS SERVICE by the activity. For this reason, the control data object
that is provided as input to the SYNCHRONOUS SERVICE ACTIVITY or the FIRE AND FORGET
SERVICE ACTIVITY must contain attributes to represent these parameters.

The only result that the ASYNCHRONOUS SUB-PROCESS SERVICE might provide is an
acknowledgement that to the invoking process that indicates whether the creation was successful
or not. The service wraps the API of the process engine and creates the process instance via the
API. A structure of an ASYNCHRONOUS SUB-PROCESS SERVICE is shown in Figure 25.

 E2-37

Figure 25: Structure of an asynchronous sub-process service

Asynchronous instantiation of sub-processes is possible without direct support of the process
modelling language of the process engine. The process engine must have an API that allows to
creating a process instance of a defined process with defined input parameters.

Apart from the SYNCHRONOUS SERVICE ACTIVITY and the FIRE AND FORGET SERVICE
ACTIVITY patterns to realize the ASYNCHRONOUS SUB-PROCESS SERVICE that have been
mentioned already, there are some other patterns related to this pattern. In order to provide a
more loosely coupled relationship between the service and the API of the process engine or to
provide more flexible ways of instantiating processes, the pattern can also be realised using the
FIRE EVENT ACTIVITY pattern and the EVENT-BASED PROCESS ADAPTER [Köllmann et al. 2006].

The FIRE EVENT ACTIVITY is used to fire an event that represents the request for instantiation
of a process. The EVENT-BASED PROCESS ADAPTER is an event listener that picks up the event
and creates the requested process instance. This way another level of functional flexibility is
provided, as the service request and the process instantiation are more loosely coupled. As a
result, both these patterns in combination represent a conceptual functional architecture pattern
for ASYNCHRONOUS SUB-PROCESSES.

Some known uses of the pattern are:

- In a large programme in an insurance company in the UK the pattern has been applied to
offer a service provided on a service bus to instantiate asynchronous processes. This
service can be called flexibly by business processes to instantiate various processes
asynchronously. FileNet P8 Business Process Manager has been used as a process engine.
That way it has been possible to invoke another FileNet workflow from a FileNet
workflow asynchronously. As a result, the pattern has become an essential part of the
architectural standard of the programme. WebSphere Business Integration Message
Broker has been used for implementation of the service bus and service has been offered
as a Web service.

- In a larger project in the automobile business the pattern has been used to offer
asynchronous instantiation of processes based on WebSphere MQ Workflow. The service
has been offered as an MQ Series based messaging interface. The pattern has been applied
based on the same technology and principles in other projects such as telecoms and
banking. Actually, these MQ based implementations can be found even before SOA has
become a broader known term. There are other implementations that use the same
principles in other industries such as banking and telecoms. The same pattern applies

 E2-38

when modern Web services technology is used.

Example

WebSphere MQ Workflow provides a Java API that can be used to instantiate a process via an
ASYNCHRONOUS SUB-PROCESS SERVICE. The service can be invoked with WebSphere MQ
Workflow just according to the example in the SYNCHRONOUS SERVICE ACTIVITY pattern. Thus,
the process-ID and the input parameters are provided in an XML message. The service itself can
be realized as a Java program that listens to the queue, picks up the XML message, instantiates
the process via the Java API of MQ Workflow, and sends a return message based on the result of
the instantiation. The Java implementation to create the process instance is quite simple.
import com.ibm.workflow.api.ExecutionService;
import com.ibm.workflow.api.FmcException;
import com.ibm.workflow.api.ProcessTemplate;

import java.util.Vector;

private ExecutionService service;

...

final class WorkflowSessionMQWF
{

 ...

 public void createProcess(String processName,
 ProcessInputDataMQWF inputData)
 throws WorkflowExceptionMQWF
 {
 ProcessTemplate[] template = null;
 try {
 String temp = "NAME='"+processName+"'";
 template = this.service.queryProcessTemplates(temp, "NAME",
 new Integer(1));
 if(template.length == 0){
 throw new WorkflowExceptionMQWF(
 WorkflowExceptionMQWF.NO_TEMPLATE_EXCEPTION);
 }
 if(inputData == null){
 throw new WorkflowExceptionMQWF(
 WorkflowExceptionMQWF.NO_INPUTDATA_EXCEPTION);
 }
 template[0].createAndStartInstance2(processName, "", "",
 inputData.getContainer(), false);
 } catch (FmcException e) {
 throw new WorkflowExceptionMQWF(e);
 }
 }

 ...

}

The implementation shows basically an application of the API of MQ Workflow to instantiate
a process. The Java code shows that the process is identified by a unique name, representing the
process-ID as defined in the pattern. The process name is given to the createProcess method as an
input parameter. Other input parameters are passed in an object of type ProcessInputData. This

 E2-39

data represents the actual input parameters of the process.

First the appropriate process definition is queried as identified by the process name. This is
done invoking the queryProcessTemplates method of the ExecutionService class, which is part of the
API. If there is no process definition (process template) found for this name then an exception is
thrown. After that, an instance of the process definition is created by calling the
createAndStartInstance2 method of the ProcessTemplate class.

 E2-40

Terminable Delivery Service

Business processes are executed on a process engine.

Often the flow logic of a business process is dependent on certain states of business
objects. The business process expects certain conditions related to business objects to be
present by some defined deadline—these conditions reflect the state of the business
objects. The process logic thus needs to distinguish whether the business objects related
conditions are met in time or not.

Business objects are manipulated via business processes. The business objects are created,
updated, or deleted. Often business objects, or rather a certain state of business objects, influence
the control flow of business processes. That means, the business processes are dependent on
certain conditions related to the business objects. For this reason, business objects are used for
synchronizing the execution of business processes.

Consider a business process that creates a customer business object and another business
process that is executed in parallel and which may only proceed beyond a certain activity if the
customer business object has been created. That way the activities of different business processes
are coordinated by the common customer business object. Usually, the coordination is also time
bound, i.e. the conditions associated to those business objects have deadlines, representing the
latest point in time when the condition must be true in order for the dependent process to
proceed normally.

Model a TERMINABLE DELIVERY SERVICE that is invoked by a SYNCHRONOUS SERVICE

ACTIVITY. The service checks a desired condition with a given deadline of a defined
business object. It delivers a result that indicates whether the condition is true or false
and whether the deadline is reached or not. If the condition is false and the deadline is
not reached, then invoke the service again by modelling a loop in the business process.

The TERMINABLE DELIVERY SERVICE takes a business object ID, a condition that specifies
the desired state of the business object, and deadline for the delivery of the state as input
parameters. The output of the service provides information whether the condition is true or false
for the required business object and whether the deadline is passed or not. The business objects
needs to be available in a CENTRAL BUSINESS OBJECT POOL [Hentrich-1 et al. 2006]. The service
retrieves the business object identified by its ID from the CENTRAL BUSINESS OBJECT POOL and
checks whether the condition is true for the business object and whether the deadline is reached.
The service reports both results of the checks back to the invoking activity.

The process model distinguishes three business events. First, the condition is true and the
deadline is not reached. Second, the condition is false and the deadline is passed. Third, the
condition is false but the deadline is not reached, which leads to another invocation of the service
after some time has elapsed to check again. Logically, a fourth case is also possible which is that
the deadline is passed and the condition is true. However, the time intervals should be designed
that way as to avoid this fourth case, as is actually not a valid business event. Figure 26 shows a
structures of a TERMINABLE DELIVERY SERVICE .

 E2-41

Activity

Check Terminal Delivery

Delivered In Time

invoke(object-ID, deadline, condition)

+invoke(in object-ID, in deadline, in condition, out delivered : Boolean)
- checkObject(in o : Business Object, in condition) : Boolean
- checkDeadline(in deadline) : Boolean

Terminable Delivery Service

+find(in object-ID) : Business Object

Central Business Object Pool

1

0..n-pool

delivered, inTime
[output.delivered=false
and output.inTime=true]

Input : Control Data Object

output : Control Data Object

invoke(in object-ID, in deadline, in condition, out delivered, out inTime)
{
 delivered = false;
 inTime = false;
 Business Object bo = pool.find(object-ID);
 if (checkObject(bo, condition)) delivered = true;
 if (checkDeadline(deadline)) inTime = true;
}

Wait

[output.delivered=true and
output.inTime=true]

Not Delivered In Time

[output.delivered=false and
output.inTime=false]

Delivered Too Late

[output.delivered=true and
output.inTime=false]

Figure 26: Structure of the terminable delivery service

It might be hard to design one generic service that checks all possible conditions for all types
of business objects. In reality often multiple dedicated services need to be designed that check for
fixed conditions on a certain type of business object associated to the service.

Some known uses of the pattern are:

- IBM WebSphere Process Server offers off-the-shelf features to query for certain states in a
database. The Information Aggregator component currently allows doing inline SQL
queries from a process. This way it is possible to query for a certain state and to react in
the process accordingly. BPEL offers looping functions to re-run the query if the deadline
is not exceeded.

- The BEA tool Fuego which is based on BEA Aqualogic offers very similar database
features to easily implement the pattern. This is another example of a broader technology
support of the pattern.

- In Enterprise Content Management processes in the insurance and telecommunications
business the pattern has been used to implement waiting positions in processes for
documents that have been requested. The forthcoming example will illustrate this in more
detail. Similar implementations can also be found in banking, for instance. Many of the
document based processes show implementations of the pattern.

Example

An example of a business requirement for this pattern is the expected arrival of documents. One
can imagine a business process that processes a customer order. At a certain stage during the

 E2-42

order fulfilment process, the signed contract of the customer is necessary. The signature of a
contract is usually time-bound. The customer is asked to send the signed contract back within 14
days, for instance. If the signed contract does not arrive within this time interval, then the order
fulfilment process must not proceed normally. Thus, the decision logic of the business process is
dependent on the event of the document arrival in conjunction with a certain deadline. The
document must not only just arrive it must also be properly signed by the customer. This reflects
the problem that there are certain time limits associated to desired states of business objects and
the decision logic of the business process must consider this somehow.

Thus, if the signed contract arrives this will imply a change on a business object. The state of
the business object will change as to reflect the arrival of the documents. The documents might
be stored as associated objects to the customer object. The service will thus check for the
appropriate state, which might simply be indicated by a corresponding status attribute of the
customer object, or rather some aggregated business objects as the customer might have several
open orders. The object ID provided to the service references the open order and the service
checks for the status. If the status indicates that the contract associated to the order has been
signed, the service will report this information accordingly to the process.

Conclusion

In this paper we have introduced a small pattern language for service integration in process-
driven and service-oriented architectures. The patterns capture various types of service
invocation: synchronous, fire and forget, and asynchronous invocation with one or multiple
replies. The patterns illustrate how these types of service invocation need to be reflected in
process models in order to integrate processes with services. Moreover, functional architecture
implications are also captured by the patterns. That means the patterns do not only just deal with
the integration of services and processes but they also deal with functional architectural design
issues of the services.

The patterns reflect solutions for general business requirements that can be found in SOA
engagements. The language presented in this paper is thus another building block in developing a
comprehensive pattern language for process-driven and service oriented architectures, which we
started to develop in our previous papers [Hentrich 2004, Hentrich-1 et al 2006, Hentrich-2 et al.
2006, Köllmann et al. 2006, Zdun et al. 2006].

References

[Barry 2003] D. K. Barry. Web Services and Service-oriented Architectures, Morgan Kaufmann
Publishers, 2003

[Channabasavaiah 2003 et al.] K. Channabasavaiah, K. Holley, and E.M. Tuggle. Migrating to Service-oriented
architecture – part 1, http://www-106.ibm.com/developerworks/webservices/
library/ws-migratesoa/, IBM developerWorks, 2003

[Evans 2004] E. Evans. Domain-Driven Design – Tackling Complexity in the Heart of Software”,
Addison-Wesley, 2004.

[Gamma et al. 1994] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1994.

[GFT 2007] GFT. GFT Inspire Business Process Management. http://www.gft.com/
gft_international/en/gft_international/Leistungen_Produkte/Software/Business_Pr
ocess_Managementsoftware.html, 2007.

 E2-43

[Hentrich 2004] C. Hentrich. Six patterns for process-driven architectures. In Proceedings of the 9th
Conference on Pattern Languages of Programs (EuroPLoP 2004), 2004.

[Hentrich-1 et al. 2006] C. Hentrich, U. Zdun. Patterns for Business Object Model Integration in Process-
Driven and Service-Oriented Architectures, Conference on Pattern Languages of
Programs (PLoP), Portland, Oregon, 2006.

[Hentrich-2 et al. 2006] C. Hentrich, U. Zdun. Patterns for Process-Oriented Integration in Service-Oriented
Architectures, In Proceedings of the 11th Conference on Pattern Languages of
Programs, (EuroPLoP 2006), 2006.

[Hohpe et al. 2003] G. Hohpe and B. Woolf. Enterprise Integration Patterns. Addison-Wesley, 2003.

[Köllmann et al. 2006] T. Köllmann, C. Hentrich. Synchronization Patterns for Process-Driven and Service-
Oriented Architectures, In Proceedings of the 11th Conference on Pattern Languages
of Programs, (EuroPLoP 2006), 2006.

[Voelter et al. 2004] M. Voelter, M. Kircher, and U. Zdun. Remoting Patterns - Foundations of
Enterprise, Internet, and Realtime Distributed Object Middleware. Wiley Series in
Software Design Patterns. J. Wiley & Sons, October 2004.

[Zdun et al. 2006] U. Zdun, C. Hentrich, and W.M.P. van der Aalst. A Survey of Patterns for Service-
Oriented Architectures, Internet Protocol Technology, Inderscience, 2006.

Appendix: Overview of Referenced Related Patterns

There are several important related patterns referenced in this paper, which are described in other
papers, as indicated by the corresponding references in the text. Table 2 gives an overview of
thumbnails of these patterns in order to provide a brief introduction to them for the reader. For
detailed descriptions of these patterns please refer to the referenced articles.

Pattern Problem Solution Category

BUSINESS OBJECT
REFERENCE

[Hentrich 2004]

How can management of
business objects be achieved in
a business process, as far as
concurrent access and changes
to these business objects is
concerned?

Only store references to
business objects in the
process control data structure
and keep the actual business
objects in an external
container.

Architecture

BUSINESS-DRIVEN
SERVICE

[Hentrich-2 et al. 2006]

How can the requirements be
engineered to decide what
services need to be defined,
what functionality is actually
required, and thus what services
must be designed and
implemented?

Design BUSINESS-DRIVEN
SERVICES that are defined
according to a convergent
top-down and bottom-up
engineering approach, where
high-level business goals are
mapped to to-be macroflow
business process models that
fulfil these high-level business
goals and where more fine
grained business goals are
mapped to activities within
these processes.

Functional
Architecture

CENTRAL BUSINESS
OBJECT POOL

[Hentrich-1 et al. 2006]

Business processes are very
often interdependent in their
flow logic, such that a running
process may generate
circumstances that have effects
on other processes being
executed in parallel.

Keep the business objects in a
central pool such that they
can be accessed in parallel by
all processes of the process
domain.

Technical
Architecture

 E2-44

Pattern Problem Solution Category

CORRELATION
IDENTIFIER

[Hohpe et al. 2003]

How does a requestor that has
received a response know to
which original request the
response is referring?

Each response message
should contain a
CORRELATION IDENTIFIER, a
unique identifier that indicates
which request message this
response is for.

Technical
Architecture

EVENT-BASED ACTIVITY

[Köllmann et al. 2006]

How can events that occur
outside the space of a process
instance be handled in the
process flow?

Model an event-based activity
that waits for events to occur
and that terminates if they do
so.

Event
Synchronization

EVENT-BASED PROCESS
ADAPTER

[Köllmann et al. 2006]

How can process instances be
created on a process engine on
the basis of occurring events?

Use an event-based process
adapter that instantiates
processes if corresponding
events occur.

Event
Synchronization

GENERIC PROCESS
CONTROL STRUCTURE

[Hentrich 2004]

How can data inconsistencies
be avoided in long running
process instances in the context
of dynamic sub-process
instantiation?

Use a generic process control
data structure that is only
subject to semantic change
but not structural change.

Interface

MACROFLOW ENGINE

[Hentrich-2 et al. 2006]

How is it possible to flexibly
configure macroflows in a
dynamic environment where
business process changes are
regular practice, in order to
reduce implementation time
and effort of these business
process changes, as far as the
related IT issues are concerned
that are involved in these
changes?

Delegate the macroflow
aspects of the business
process definition and
execution to a dedicated
MACROFLOW ENGINE that
allows developers to configure
business processes by flexibly
orchestrating execution of
macroflow activities and the
related business functions.

Technical
Architecture

MACROFLOW
INTEGRATION SERVICE

[Hentrich-2 et al. 2006]

How can the functionality and
implementation of process
activities at the macroflow level
be decoupled from the process
logic that orchestrates them, in
order to achieve flexibility, as
far as the design and
implementation of these
automatic functions are
concerned?

The automatic functions
required by macroflow
activities from external
systems are designed and
exposed as dedicated
MACROFLOW INTEGRATION
SERVICE with well-defined
service interfaces.

Functional
Architecture

MICROFLOW ENGINE

[Hentrich-2 et al. 2006]

How is it possible to flexibly
configure IT systems
integration processes in a
dynamic environment, where
IT process changes are regular
practice, in order to reduce
implementation time and
effort?

Delegate the microflow
aspects of the business
process definition and
execution to a dedicated
MICROFLOW ENGINE that
allows developers to configure
microflows by flexibly
orchestrating execution of
microflow activities and the
related BUSINESS-DRIVEN
SERVICES.

Technical
Architecture

 E2-45

Pattern Problem Solution Category

PROCESS BASED ERROR
MANAGEMENT

[Hentrich 2004]

How can errors that are
reported by integrated
applications in activities in a
process flow be handled and
managed?

Define special fields for error
handling in the process
control data structure and
embed an activity in an error
handling control flow.

Process Modelling

PROCESS INTEGRATION
ADAPTER

[Hentrich-2 et al. 2006]

How can interface and
technology specifics of a
process engine be connected to
a different interface and
technology of another system,
such that the two systems can
communicate, as far as requests
for activity execution and the
corresponding responses are
concerned? How to design this
connection in a loosely coupled
fashion?

Use a PROCESS INTEGRATION
ADAPTER that connects the
specific interface and
technology of the process
engine to an integrated
system.

Technical
Architecture

PROCESS-BASED
INTEGRATION
ARCHITECTURE

[Hentrich-2 et al. 2006]

What architecture design
concepts for process-driven
backend systems integration are
necessary, in order for the
architecture to be scalable,
flexible, and maintainable?

Provide a multi-layered
PROCESS-BASED
INTEGRATION
ARCHITECTURE to connect
macroflow business processes
and the backend systems that
need to be used in those
macroflows.

Technical
Architecture

REPOSITORY

[Evans 2004]

Exposure of technical
infrastructure and database
access mechanisms complicates
the client.

Delegate all object storage
and access to a REPOSITORY.

Technical
Architecture

TIMEOUT HANDLER

[Köllmann et al. 2006]

How can timeouts of process
activities be managed in a
process?

Model a timeout handler that
defines behavior in the
process model in case a
timeout has occurred.

Process Control
Flow
Synchronization

WRAP SERVICES AS
ACTIVITY

[Hentrich-1 et al. 2006]

Existing interfaces of external
systems often do not reflect the
requirements of a process-
oriented SOA. Loose coupling
– a main goal of any SOA – for
instance is often not well
supported because the external
system only offers stateful
interfaces.

For each domain entity in the
external systems define one
stateless SERVICE on top of
the existing interfaces of the
external system. A special
SERVICE activity type is
defined in the process engine
that wraps invocations to
external services.

Functional
Architecture

Table 2: Thumbnails of referenced patterns

