

Patterns for Process-Oriented Integration in
Service-Oriented Architectures

Carsten Hentrich

CSC Deutschland Solutions GmbH
Abraham-Lincoln-Park 1

65189 Wiesbaden, Germany
e-Mail: chentrich@csc.com

Uwe Zdun

Distributed Systems Group
Information Systems Institute

Vienna University of Technology
Argentinierstrasse 8/184-1

A-1040 Vienna, Austria
e-Mail: zdun@acm.org

Service-oriented architectures are increasingly used in the context of business processes, but the proven
practices for the integration of services and processes are not well explained so far. For the integration
of services and processes many different concerns, ranging from technical to architectural to business-
related concerns, must be considered, and combinations of these concerns that are well working in a
given architecture are not obvious. In this paper we tackle this problem by presenting patterns for
process-oriented integration of services in a service-oriented architecture. The patterns follow a general
conceptual distinction into a macroflow and a microflow level, distinguishing long-running, business
processes from short-running, technical processes. The architectural pattern PROCESS-BASED
INTEGRATION ARCHITECTURE guides the design of a generic architecture based on this
distinction, and it is refined by a number of design patterns which depict individual design decisions
within the scope of this architectural pattern.

Introduction

Service-oriented architectures (SOA) are an architectural concept in which all functions, or
services, are defined using a description language and have invokable, platform-independent
interfaces that are called to perform business processes [Channabasavaiah 2003 et al., Barry
2003]. Each service is the endpoint of a connection, which can be used to access the service, and
each interaction is independent of each and every other interaction. Communication among
services can involve simple invocations and data passing, or complex activities of two or more
services.

Though built on similar principles, SOA is not the same as Web services, which is a collection
of technologies, such as SOAP and XML. SOA is more than a set of technologies and runs
independent of any specific technologies.

A SOA is typically organized as a layered architecture (see Figure 1), both on client and server
side [Zdun et al. 2006]. At the lowest layer, low-level communication issues are handled. On top
of this layer, a Remoting layer is responsible for all aspects of sending and receiving of remote

service invocations, including request creation, request transport, marshalling, request adaptation,
request invocation, etc. Above this layer comes a layer of service clients on the client side and a
layer of service providers on server side. The top-level layer is the Service Composition Layer at
which the service clients and providers from the layer beneath are used to implement higher-level
tasks, such as service orchestration, coordination, federation, and business processes based on
services.

S
er

vi
ce

 D
es

cr
ip

tio
n

Se
cu

rit
y

M
an

ag
em

en
t

R
em

ot
in

g
La

ye
r

Figure 1: SOA Layers

In this paper we view the SOA concept from the perspective of a Service Composition Layer
that is process-driven. That is, the Service Composition Layer introduces a process engine (or
workflow engine) which invokes the SOA services to realize individual activities in the process
(aka process steps, tasks in the process). The goal of decoupling processes and individual process
activities, realized as services, is to introduce a higher level of flexibility into the SOA: Pre-
defined services can flexibly be assembled in a process design tool. The technical processes
should reflect and perhaps optimize the business processes of the organization. Thus the flexible
assembly of services in processes enables developers to cope with required changes to the
organizational processes, while still maintaining a stable overall architecture.

In a process-driven SOA the services describe the operations that can be performed in the
system. The process flow orchestrates the services via different activities. The operations
executed by activities in a process flow thus correspond to service invocations. The process flow
is executed by the process engine. In SOAs different communication protocols and paradigms,
such as synchronous RPC, asynchronous RPC, messaging, publish/subscribe, etc. can be used
and are supported by SOA technologies, like Web Service frameworks or Enterprise Service Bus
implementations. For a process-driven SOA, it can generally be assumed, however, that mainly
asynchronous communication protocols and paradigms are used. This is because it cannot
generally be assumed that a business process blocks until a service invocation returns. In most
cases, in the meantime other sensible activities can be performed by the process. In addition,
there are many places in a process-driven SOA where invocations must be queued (e.g. legacy
systems that run in batch mode). It is typically not tolerable that central architectural components
of the process-driven SOA, such as a central dispatcher, block until an invocation returns. Hence,
synchronous service invocations are only used in exceptional cases, where they make sense.

In a process-aware system we distinguish two types of data: Process control data and the
business objects that are transformed via the process flow. An example of such a business object
is a customer order that is being processed via a process flow. The actual processing of that order
is controlled by process control data that depicts the routing rules, for instance. Each process
activity can be interpreted as a certain state of the business object.

With respect to the process flow, we can generally distinguish two kinds of processes: long-
running, higher-level business processes and short running, more technical processes. The distinction between
those two kinds of processes is an important conceptual decision that helps us to design process
activities at the right level of granularity. In addition, the technical properties of the two kinds of
processes are different. For instance, for long-running processes it is typically not appropriate to
use ACID transactions because it is infeasible to lock resources for the duration of the whole
process, while this might be perfectly feasible for more short running processes of only a few
service invocations. In the remainder of this paper we refer to the long-running, higher-level
business process using the term macroflow. We use the term microflow to refer to the short running,
more technical processes.

In order to create the link between an activity of a process and a service, process integration logic
is required. The process integration logic is typically realized using microflows.

Pattern Language Overview

The pattern language presented in this paper basically addresses the conceptual issues in the
Service Composition Layer, when following a process-driven approach to services composition.
Following the business process paradigm the Service Composition Layer is structured into four
sub-layers as presented in Figure 2. This refined structure will be reflected in the PROCESS-BASED
INTEGRATION ARCHITECTURE architectural pattern, and moreover, the more detailed patterns
that represent building blocks of the architecture will be described as design patterns in the
context of this architectural pattern.

Service Composition Layer

Macroflow Composition Layer

Macroflow Integration Layer

Dispatching Layer

Microflow Execution Layer

Client Application/Service Provider Layer

Figure 2: Process-driven refinement of the Service Composition Layer

The patterns and pattern relationships for designing a Service Composition Layer are shown
in Figure 3. The pattern MACRO-MICROFLOW sets the scene and lays out the conceptual basis to
the overall architecture. The PROCESS-BASED INTEGRATION ARCHITECTURE pattern describes
how to design an architecture based on four sub-layers for the Service Composition Layer, which
is following the MACRO-MICROFLOW conceptual pattern.

The remaining patterns in the pattern language provide detailed guidelines for the design of a
PROCESS-BASED INTEGRATION ARCHITECTURE. In Figure 3 these patterns are thus displayed
within the boundaries of the PROCESS-BASED INTEGRATION ARCHITECTURE pattern. Three of
the patterns do not (only) refer to the Service Composition Layer: The CONFIGURABLE ADAPTER
and BUSINESS-DRIVEN SERVICE patterns explain how to design the interfaces to the Client
Application/Service Provider Layer. For this reason, these two patterns refer to both the Service
Composition Layer and the Client Application/Service Provider Layer. As a consequence, the
CONFIGURABLE ADAPTER REPOSITORY which manages CONFIGURABLE ADAPTERS must also be
considered at both layers.

PROCESS-BASED INTEGRATION ARCHITECTURE

CONFIGURABLE ADAPTER
REPOSITORY

PROCES INTEGRATION
ADAPTER

manages

MACROFLOW INTEGRATION
SERVICE

RULE-BASED DISPATCHER

is realized with

forwards
requests

delegates requests

offers

is composed of

MICROFLOW ENGINE

BUSINESS-DRIVEN SERVICE

CONFIGURABLE ADAPTER

is realized with

manages

MACRO-MICROFLOW

conceptual foundation

is specialization of

MACROFLOW ENGINE

sends requests for
activity execution

enables interdependent
design of

is realized with

MICROFLOW EXECUTION
SERVICE

offers same
service interface

Figure 3: Pattern relationships overview

Table 1 gives an overview of the problem and solution statements of the patterns. There are
several important related patterns referenced in this paper, which are described in other papers,
as indicated by the corresponding references in the text. An overview table for these related
patterns is provided in the Appendix.

Pattern Problem Solution

MACRO-
MICROFLOW

How is it possible to conceptually structure
process models in a way that makes clear which
parts will be depicted on a process engine as
long running business process flows and which
parts of the process will be depicted inside of
higher-level business activities as rather short

Structure a process model into macroflow
and microflow.

Pattern Problem Solution
running technical flows?

PROCESS-BASED
INTEGRATION
ARCHITECTURE

Which architecture design concepts for process-
driven backend systems integration are
necessary, in order for the architecture to be
scalable, flexible, and maintainable?

Provide a multi-layered PROCESS-BASED
INTEGRATION ARCHITECTURE to connect
macroflow business processes and the
backend systems that need to be used in
those macroflows.

MACROFLOW
INTEGRATION
SERVICE

How can the functionality and implementation
of process activities at the macroflow level be
decoupled from the process logic that
orchestrates them, in order to achieve flexibility,
as far as the design and implementation of these
automatic functions are concerned?

The automatic functions required by
macroflow activities from external systems
are designed and exposed as dedicated
MACROFLOW INTEGRATION SERVICE
with well-defined service interfaces.

PROCESS
INTEGRATION
ADAPTER

How can interface and technology specifics of a
process engine be connected to a different
interface and technology of another system,
such that the two systems can communicate, as
far as requests for activity execution and the
corresponding responses are concerned? How
to design this connection in a loosely coupled
fashion?

Use a PROCESS INTEGRATION ADAPTER
that connects the specific interface and
technology of the process engine to an
integrated system.

RULE-BASED
DISPATCHER

How can it be dynamically decided what
component has to execute a (macroflow)
activity, in order to allow scalability and
functional structuring of the architecture, i.e.,
more generally speaking, how can location-
transparency, access-transparency, and
scalability-transparency be considered?

Use a RULE-BASED DISPATCHER that
picks up the (macroflow) activity
execution requests and dynamically
decides based on (business) rules, where
and when a (macroflow) activity has to be
executed.

CONFIGURABLE
ADAPTER

How can a system be connected to other
systems in a way that allows to easily
maintaining the connections, considering that
interfaces may change over time?

Implement a CONFIGURABLE ADAPTER to
another system that should be connected.

CONFIGURABLE
ADAPTER
REPOSITORY

How is it possible to manage adapters, such as
CONFIGURABLE ADAPTERS or PROCESS
INTEGRATION ADAPTERS, in a larger
architectural context such that changes to these
adapters can be easily implemented at runtime
and maintenance effects to connected systems
are kept minimal?

Use a central repository to manage the
adapters as components and design the
adapters as CONFIGURABLE ADAPTERS
such that they can be modified at runtime
without affecting the components or
systems sending requests to the adapters.

MICROFLOW
EXECUTION
SERVICE

How to expose a microflow as a coherent
function with defined input and output
parameters without having to consider the
technology specifics of the MICROFLOW
ENGINE being used, in order to decouple the
engine’s technology specifics from the actual
functionality that is has to offer to execute
concrete microflows?

Expose a microflow as a MICROFLOW
EXECUTION SERVICE that abstracts the
technology specific API of the
MICROFLOW ENGINE to a standardised
well-defined service interface and
encapsulates the functionality of the
microflow.

MACROFLOW
ENGINE

How is it possible to flexibly configure
macroflows in a dynamic environment where
business process changes are regular practice, in
order to reduce implementation time and effort
of these business process changes, as far as the
related IT issues are concerned that are involved
in these changes?

Delegate the macroflow aspects of the
business process definition and execution
to a dedicated MACROFLOW ENGINE that
executes the business processes described
in a business process modelling language.
The engine allows developers to configure
business processes by flexibly
orchestrating execution of macroflow

Pattern Problem Solution
activities and the related business
functions.

MICROFLOW
ENGINE

How is it possible to flexibly configure IT
systems integration processes in a dynamic
environment, where IT process changes are
regular practice, in order to reduce
implementation time and effort?

Delegate the microflow aspects of the
business process definition and execution
to a dedicated MICROFLOW ENGINE that
allows developers to configure microflows
by flexibly orchestrating execution of
microflow activities and the related
BUSINESS-DRIVEN SERVICES.

BUSINESS-
DRIVEN SERVICE

How can the requirements be engineered to
decide what services need to be defined, what
functionality is actually required, and thus what
services must be designed and implemented?

Design BUSINESS-DRIVEN SERVICES that
are defined according to a convergent top-
down and bottom-up engineering
approach, where high-level business goals
are mapped to to-be macroflow business
process models that fulfil these high-level
business goals and where more fine
grained business goals are mapped to
activities within these processes.

Table 1: Problem/solution overview of the patterns

MACRO-MICROFLOW

Business processes shall be implemented using process (workflow) technology.

Models of business processes must be developed considering the relationships and
interdependencies to technical concerns. If technical concerns are tangled in the
business process models, however, business analysts are forced to understand the
technical details, and the technical experts must cope with the business issues when they
are realizing technical solutions. This should be avoided. On the other hand, to create
executable process models, somehow the two independent views need to be integrated
into a coherent system.

When developing process models for process-aware information systems, it is necessary to
model the process flows from the business perspective, but also to consider IT-related concerns
of the process flow. For instance, from the business perspective, process flows are often long-
running flows, whereas from the technical perspective rather short-running (transactional) flows
need to be considered.

Often both types are mixed in practice and the different concerns are tried to be modelled in
one process flow. This practice often causes confusion as business analysts do not understand the
level of technical detail, and technical modellers do not have the expertise to understand the
business issues fully. Thus, these models tend to fail their primary purpose which is to
communicate the overall process/system.

Business processes, which mix the technical level and the business level, often include too
many technical details and are not decoupled from technology issues. Hence, the business
processes become inflexible and too complex to be managed from the business point of view.
Nevertheless, business concerns and IT-related concerns of business processes must be formally
linked, because the final result of business process modelling should be process models that can
be executed using process technology. This imposes modelling boundaries on the business
process models.

Structure a process model into two kinds of processes, macroflow and microflow. Strictly
separate the macroflow from the microflow, and use the microflow only for refinements
of the macroflow activities. The macroflow represents the long-running, interruptible
process flow which depicts the business-oriented process perspective. The microflow
represents the short-running transactional flow which depicts the IT-oriented process
perspective.

The MACRO-MICROFLOW pattern solves the conceptual problem how to relate business-
oriented processes (macroflow) and IT-oriented processes (microflow) by interpreting a
microflow as a refinement of a macroflow activity. A microflow represents a sub-process that
runs within a macroflow activity. A microflow model can be linked to one or many macroflow
activities. The consequence is that the types of relationships between macroflow and microflow
are defined. The resulting process models form a basis for implementation with process
technology, as they consider technical and business issues separately.

The microflow can be directly invoked as a sub-process that runs automatically, or it can
represent an activity flow that includes human interaction. As a result, two types of links between
a macroflow activity and a microflow do exist:

- Link to a microflow for an automatic activity (transaction): A short-running (transactional) IT
process defines a detailed process model of an automatic activity in a higher-level
business process. It represents an executed business function or transaction at the
business process level.

- Link to a microflow for human interaction: In case an activity of a business process is
associated to a user interface, the IT process is a definition of the coherent process
flow that depicts the human interaction. This process flow is initiated if a human user
executes the business process activity.

The microflow level and the macroflow level distinguish conceptual process levels, and the
possible links between them must be explicitly considered. Ideally, modelling languages,
techniques, and tools should support this conceptual separation and allow the definition of links
between macroflow activities and microflows using the two types of links defined above. Figure 4
illustrates this conceptual separation of microflow and macroflow process levels using an
example. The figure shows a number of macroflow activities, and in the Macroflow Activities 2
and 3 more fine grained IT process models are linked. Activity 2 has a link of type “transaction”
and Activity 3 of type “human interaction”.

Figure 4: The process levels of microflow and macroflow

It is generally possible to have sub-processes at both the microflow and macroflow level.
Within a microflow for human interaction it is also possible to invoke further microflows for an
automatic activity (transaction) – a special type of sub-microflow within a microflow.

Figure 5 shows the conceptual model of microflow and macroflow more formally as an
exemplary meta-model for realizing MACRO-MICROFLOW. The model shows the different kinds
of macroflow and microflow as special process classifiers and the relationships between these
classifiers. The MACRO-MICROFLOW pattern generally provides a conceptual basis for the
development of meta-models as a foundation for model-driven software design – for instance
following a meta-model like the one shown in Figure 5.

Figure 5: Structural meta-model of macroflow and microflow

When microflow or macroflow work with business objects, the BUSINESS OBJECT REFERENCE
pattern [Hentrich 2004] will be used in the flows. The BUSINESS OBJECT REFERENCE pattern
provides a solution to referencing business objects that are stored in some container.

The MACRO-MICROFLOW pattern has the following benefits: Modelling can be performed in
several steps of refinement. First the higher level macroflow business process can be designed,
considering already that business process activities will further be refined by microflows. Vice
versa, if certain microflows already exist, the business process can be modelled accordingly, so
that these IT processes fit in as business process activities at the macroflow level. MACRO-
MICROFLOW thus implies interdependence between the two process levels.

Microflows and macroflows both have a defined input and output, i.e., a well-defined
functional interface. By linking these process levels using defined types of relations as described,
it is possible to navigate through the overall process, addressing the concerns of both domains –
business and IT – separately, while still keeping them in conjunction.

The MACRO-MICROFLOW pattern also has the following drawbacks: The conceptual
separation of the MACRO-MICROFLOW pattern must be understood and followed by modellers,
which requires additional discipline. Also, the functional interfaces between IT processes and
business processes must be understood and considered in the models. The pattern’s concepts
further require adjusting IT processes and business processes according to the concerns of both
domains – business and IT – in order to bring them together. The modelling effort is higher than
in usual business modelling, as more aspects are taken into consideration. Designing activities at
the right level of granularity in the business processes (macroflows) takes more time, as those
activities already describe the later process-aware information system. Modelling is set limitations
as IT processes and business processes must strictly fit together like pieces of a puzzle.

Some known uses of the pattern are:

- In IBM’s WebSphere technology the general concept introduced by the MACRO-
MICROFLOW pattern is reflected by different technologies and methodologies being
used to design and implement process-aware information systems. Actually, there are

different kinds of technologies and techniques for both types of flows. On the
macroflow level, workflow technologies are used that allow integration of people and
automated functions on the business process level. An example is IBM’s WebSphere
Process Choreographer, which is a workflow modelling component. The microflow
level is rather represented by transactional message flow technologies that are often
used in service-oriented approaches, for instance. Examples are the WebSphere
Business Integration Message Broker and also the WebSphere InterChange Server. At
the business process (macroflow) level, a service is invoked that is designed and
implemented in detail by a microflow that performs data transformation and routing
to a backend application. Moreover, aggregated services are often implemented at the
microflow level using these kinds of message flow technologies.

- GFT’s BPM Suite GFT Inspire [GFT 2007] provides a modeller component that uses
UML activity diagrams as a notation for modelling the macroflow. Microflows can be
modelled in various ways. First, there are so-called step activities, which allow the
technical modeller to model a number of sequential step actions that refine the
business activity. In the step actions, the details of the connection to other systems can
be specified in a special purpose dialog. This concept is especially used to invoke other
GFT products, like the document archive system or a form-based input. Alternatively,
the microflow can be implemented in Java snippets, which can be deployed to the
server (together with the business process). Finally, services can be invoked that can
integrate external microflow technologies, such as message brokers.

- JBoss’ jBPM [JBoss 2007] follows a slightly different model, as the core component is
a Java library and hence can be used in any Java environment. The jBPM library can
also be packaged and exposed as a stateless session EJB. JBoss offers a graph-based
designer for the macroflow process languages, and works with its own proprietary
language, jPDL. A BPEL extension is also offered. The microflow is implemented
through actions that are associated with events of the nodes and transitions in the
process graph. The actions are hidden from the graphical representation, so that
macroflow designers do not have to deal with them. The actions invoke Java code,
which implements the microflow. The microflows need not be defined directly in Java,
but can also be executed on external microflow technology, such as a message broker.

PROCESS-BASED INTEGRATION ARCHITECTURE

Process technology is used, and the basic process design concept follows the MACRO-
MICROFLOW pattern.

Process technology is used at the macroflow level, and backend systems need to be
integrated in the process flow. The connection between the macroflow level and the
backend systems needs to be flexible so that different process technologies can (re-)use
the connection to the backend systems. The architecture must be able to cope with
increased workload conditions, i.e., it must be scalable. Finally, the architecture must be
changeable and maintainable to be able to cope with both changes in the processes and
changes in the backends. All those challenges cannot be mastered without a clear
concept for the whole SOA. That is, if backend integration in a process-driven SOA is
performed per backend, it is highly unlikely that the overall solution is indeed flexible,
scalable, changeable, and maintainable.

To properly consider the qualities attributes flexibility, scalability, changeability, and
maintainability a number of issues must be addressed. First, there are technology specifics of the
process technology being used at the macroflow level. In principle, implementations of
macroflow activities represent reusable functions that are not restricted to one specific process
technology but which can rather be used with different types and implementations of process
engines. If the process technology is tightly coupled to implementations of activities, changes in
the process technology may potentially have larger impact on the corresponding activity
implementations which means a loss of flexibility.

Activities at the macroflow level are usually refined as microflows following the MACRO-
MICROFLOW pattern. Thus, one has to consider where and how these microflows are executed.
Aspects of scalability must be considered to cope with increasing workload. As requests for
activity execution are permanently initiated and business will usually go on day and night, we
additionally have to deal with the question: What further mechanisms are necessary to maintain
the whole architecture at runtime?

Figure 6: The problem of backend system integration

Changes to the microflow and macroflow should be easy and of low effort. Actual backend
system functionality will be invoked at the microflow level, and it is obviously an issue how this
can be achieved, as those backend systems are in principle independent and are subject to

individual changes themselves. The impact of these changes must be kept within acceptable
limits, in a way that those changes can be managed. Figure 6 illustrates the problem.

Provide a multi-layered PROCESS-BASED INTEGRATION ARCHITECTURE to connect
macroflows and the backend systems that need to be used in those macroflows. The
macroflows run in dedicated MACROFLOW ENGINES that can invoke MACROFLOW

INTEGRATION SERVICES realized by special PROCESS INTEGRATION ADAPTERS.
Microflows also run in dedicated MICROFLOW ENGINES. These engines offer
MICROFLOW EXECUTION SERVICES that can be invoked to start a specific microflow. The
PROCESS INTEGRATION ADAPTERS do not invoke the MICROFLOW EXECUTION SERVICES

directly, but use an intermediate RULE-BASED DISPATCHER to achieve scalability. Finally,
the microflows invoke BUSINESS-DRIVEN SERVICES that represent the backend systems
via CONFIGURABLE ADAPTERS.

The PROCESS-BASED INTEGRATION ARCHITECTURE pattern is an architectural pattern that
defines a specific configuration using a number of other patterns that explain more detailed
design solutions within its scope. In that sense, this architectural pattern explains the architectural
foundation of how the other patterns work together. Thus, this pattern mainly explains the
relationships between the sub-patterns in detail. For more detailed information on the sub-
patterns themselves, please refer to the corresponding pattern descriptions.

MACROFLOW INTEGRATION SERVICES are the connection between a macroflow activity of a
business process and BUSINESS-DRIVEN SERVICES in the backend. A MACROFLOW
INTEGRATION SERVICE can be invoked by an activity in a macroflow that runs on a MACROFLOW
ENGINE. The MACROFLOW INTEGRATION SERVICE represents the function that satisfies the
functional needs of the macroflow activity. Moreover, the MACROFLOW INTEGRATION SERVICE
encapsulates the whole and often complex logic for invoking BUSINESS-DRIVEN SERVICES in the
backend.

As those backend services can be developed and enhanced independently over time, they
stand for themselves and are primarily not dependent on a process model. A BUSINESS-DRIVEN
SERVICE thus hides the details and possible changes of a backend system and represents a
functional interface to a backend system. This interface of a BUSINESS-DRIVEN SERVICE is
independent of technology and interface requirements of macroflow processes.

Integration logic is required to establish the communication between the backend service and
the macroflow activity. This integration logic is realized using a microflow that runs on a
MICROFLOW ENGINE. Principally, the microflow is based on message routing and message
transformation patterns, such as those described in [Hohpe et al. 2003]. The business objects
relevant to microflows and macroflows essentially form the CANONICAL DATA MODEL [Hohpe
et al. 2003] for storing process relevant business data. The BUSINESS OBJECT REFERENCE
[Hentrich 2004] pattern is used to keep the references to the business objects in the process flow.

In larger architectures there might be several MICROFLOW ENGINES and MACROFLOW
ENGINES involved that need to be connected. It is desirable to have a flexible concept for
process integration services that can be adapted according to changing workload. This is the task
of the RULE-BASED DISPATCHER: It exposes an enterprise-wide standard interface for capturing
requests of macroflow activities. For each MACROFLOW ENGINE, a PROCESS INTEGRATION
ADAPTER is required, to transform the interface and technology specifics of the MACROFLOW
ENGINE into the interface of the RULE-BASED DISPATCHER. The RULE-BASED DISPATCHER is
responsible for distributing the process integration service requests to various MICROFLOW
ENGINES. These engines execute integration logic that is functionally encapsulated by the

MICROFLOW EXECUTION SERVICES. The MICROFLOW ENGINE coordinates the integration
activities and invokes the BUSINESS-DRIVEN SERVICES in the backend.

The RULE-BASED DISPATCHER has the main purpose to ensure scalability and handle
distribution, according to current workload and business rules. Hence, the RULE-BASED
DISPATCHER is an optional component that might be superfluous and unnecessary overhead, if
only one or two engines with fixed relations are used and it can be assumed as a fact that no
more engines will be added.

The BUSINESS-DRIVEN SERVICES are exposed via CONFIGURABLE ADAPTERS that build the
technical connection to the business applications in the backend. Analogously, MACROFLOW
INTEGRATION SERVICES are provided by PROCESS INTEGRATION ADAPTERS. Both kinds of
adapters are typically managed in CONFIGURABLE ADAPTER REPOSITORIES – to achieve a central
management of the adapters for different process engines. Of course, the use of CONFIGURABLE
ADAPTER REPOSITORIES is optional and only needed if multiple process engines are used.

Figure 7 shows a simple example configuration for the PROCESS-BASED INTEGRATION
ARCHITECTURE pattern. It only shows a minimal configuration, with one MACROFLOW ENGINE
(e.g. a BPEL engine), one PROCESS INTEGRATION ADAPTER to map the business concerns into
the technical architecture, one simple MICROFLOW ENGINE (e.g. a message broker or even not a
“real” engine, but only hard wired service flows implemented in Java), and a number of business
applications that are integrated into the SOA using business application adapters.

Process Integration Architecture

Process
Integration

Adapter

Microflow Engine A

Business
Application
Adapter A

Business
Application
Adapter B

Business Application A

Business Application B

Macroflow Engine
Se

rv
ic

e
1

Se
rv

ic
e

2

Se
rv

ic
e

3

Se
rv

ic
e

4

Se
rv

ic
e

1

Se
rv

ic
e

2

Se
rv

ic
e

3

Se
rv

ic
e

4

Se
rv

ic
e

1

Se
rv

ic
e

2

Se
rv

ic
e

3

Figure 7: Simple, small-scale configuration of a Process-Based Integration Architecture

Figure 8 shows a larger-scale example configuration for the PROCESS-BASED INTEGRATION
ARCHITECTURE pattern in terms of a layered model and its boundaries. As a SOA evolves and
grows larger, a simple configuration, such as the one in Figure 7, can grow into such a larger
configuration. Here, also the optional patterns explained above are used, and multiple instances
of both MACROFLOW ENGINES and MICROFLOW ENGINES are present to support scalability.

S
er

vi
ce

 1

S
er

vi
ce

 2

S
er

vi
ce

 3

S
er

vi
ce

 4

S
er

vi
ce

 1

S
er

vi
ce

 2

S
er

vi
ce

 3

S
er

vi
ce

 4

S
er

vi
ce

 1

S
er

vi
ce

 2

S
er

vi
ce

 3

S
er

vi
ce

 1

S
er

vi
ce

 2

S
er

vi
ce

 3

Figure 8: Layers and boundaries of a Process-Based Integration Architecture

The collaborative process between the different layers of a PROCESS-BASED INTEGRATION
ARCHITECTURE is managed via exchanging service requests and responses. The CORRELATION
IDENTIFIER pattern [Hohpe et al. 2003] allows for relating requests and responses between the
different components involved: Each request is assigned a unique ID which is passed back in the
response. Thus, a MACROFLOW ENGINE may correlate a response to the original request.

The UML class diagram in Figure 9 illustrates this collaborative process in terms of a static
view of the relationships between the involved patterns depicting a CORRELATION IDENTIFIER as
an association type. Please refer to the sub-pattern descriptions for more detailed information on
the collaborative aspects between the individual patterns.

Figure 9: Collaboration using the Correlation Identifier pattern

A PROCESS-BASED INTEGRATION ARCHITECTURE is often implemented in the context of the
ENTERPRISE SERVICE BUS (ESB) pattern [Zdun et al. 2006].

Additionally, there are rather indirect relationships to the BUSINESS OBJECT REFERENCE
[Hentrich 2004] pattern, as business objects may be subject of microflows and macroflows and
may form a CANONICAL DATA MODEL [Hohpe et al. 2003] for storing process relevant business
data.

The PROCESS-BASED INTEGRATION ARCHITECTURE pattern has the following benefits: It
enables a service-oriented and process-driven approach to architecture design. It offers a flexible
and scalable concept for integrating backend systems in a process flow, and, at the same time, it
explains how to integrate different kinds of MICROFLOW ENGINES and MACROFLOW ENGINES.
Hence, MICROFLOW ENGINES and MACROFLOW ENGINES can be treated as exchangeable
components. Thus, also the business applications, macroflows, and microflows can be
maintained as independent components as long as the service interfaces do not change. Load
balancing and prioritized or rule-based processing of requests via the RULE-BASED DISPATCHER
is supported. Many existing off-the-shelf engines can be used as components of a PROCESS-

BASED INTEGRATION ARCHITECTURE, which might reduce the necessary in-house development
effort.

The PROCESS-BASED INTEGRATION ARCHITECTURE pattern also has the following drawbacks:
Greater design effort might be necessary compared to simpler alternatives, because of the layered
model with corresponding loosely coupled interfaces. If only one MICROFLOW ENGINE and
MACROFLOW ENGINE is used which shall not be exchangeable, the RULE-BASED DISPATCHER
and the CONFIGURABLE ADAPTER REPOSITORY might be superfluous – it is thus possible to
customize the architectural concepts according to concrete situations and the architecture can be
extended, if necessary.

To buy (and customize) different off-the-shelf engines for MICROFLOW ENGINES,
MACROFLOW ENGINES, RULE-BASED DISPATCHER, etc. can be costly, just like inhouse-
development of these components. Hence, for small, simple process-driven SOAs, it should be
considered to start-off with a single process engine and follow the MACRO-MICROFLOW pattern
only conceptually. A PROCESS-BASED INTEGRATION ARCHITECTURE pattern can then still be
introduced later in time, when requirements for higher flexibility, scalability, changeability, and
maintainability arise.

Some known uses of the pattern are:

- In a supply chain management solution for a big automotive customer in Germany
this architectural pattern has been applied. WebSphere MQ Workflow has been used
as the MACROFLOW ENGINE. The integration adapters, the dispatching layer, and the
microflow execution level have been implemented in Java. The application services are
implemented using MQ messaging technology. In this realization of the pattern, a Java
architecture has been implemented to represent the RULE-BASED DISPATCHER, a
MICROFLOW ENGINE, and the application adapters. No off-the-shelf middleware has
been used.

- For a telecommunications customer in Germany, the pattern has been used in a larger
scale variant. The MICROFLW ENGINE has been implemented by an enterprise service
bus based on WebSphere Business Integration Message Broker. WebSphere MQ
Workflow has been used as the process engine at the macroflow layer. The off-the-
shelf MQ Workflow adapters provided by the message broker served as the PROCESS
INTEGRATION ADAPTER. The architecture has been laid out initially as to support
different instances of MQ Workflow engines to cope with growing workload using a
dispatcher represented as a routing flow that routes the messages received by the
adapter to another message broker instance. New message broker instances have been
created according to the growing workload.

- A simple variant of the pattern is implemented in IBM’s WebSphere Integration
Developer, which includes WebSphere Process Server, a process engine that
represents both the micro- and macroflow levels. It further offers an architectural
concept called Service Component Architecture (SCA) to wire up services, including
the corresponding adapters.

MACROFLOW INTEGRATION SERVICE

Macroflows that represent long-running business processes are executed on a dedicated
MACROFLOW ENGINE.

Automatic activities in macroflows must be executed by integrated systems. If the
integrated systems are directly called from the macroflow activities, the process logic is
tightly coupled with the implementation of these automatic functions. This means, that
technical details pollute the macroflow, and thus it is impossible to keep a clean business
function view in the macroflow. Also, it is not be possible to change the process logic
with low effort.

Usually, there are many activities that represent automatic functions in a business process at
the macroflow level. That is, these activities imply that something must be done by some external
systems. From the business process perspective, such activities are coherent and consistent
business functions and, for this reason, they are designed as automatic activities. In most cases
these functions should be reusable, which means that there may be many processes that require
one and the same function to be executed. These functions might be quite complex in their
implementation because there might be many systems involved to realize them in terms of a
whole microflow (see also MACRO-MICROFLOW pattern).

Figure 10: The problem of keeping the business function view in the macroflow

A MACROFLOW ENGINE only orchestrates the process activities and thus decouples the
process logic. It should not be depending on the physical location where a function is executed,
the systems that actually realize the function, or the function’s implementation details. Changes to
these details should be possible with low effort. This problem is illustrated in Figure 10.

The automatic functions required by macroflow activities from external systems are
designed and exposed as dedicated MACROFLOW INTEGRATION SERVICES with well-
defined service interfaces. These services integrate external systems in a way that suits
the functional requirements of the macroflow activity. That is, they are designed to
expose a specific business process’ view – needed by a macroflow – onto an external
system. The macroflow activity can thus be designed to contain only the functional
business view and invoke MACROFLOW INTEGRATION SERVICES for interaction with
external systems.

The functional requirements of the macroflow activity must be turned into a functional
specification with a well-defined interface in terms of a complete definition of input and output
parameters. The input parameters must match the available data in the corresponding macroflow
process or macroflow activity respectively. The definition of output parameters must also be
mapped to elements of the data structure in the process. In this context, as far as the process
control data structure design is concerned, the GENERIC PROCESS CONTROL STRUCTURE and the
BUSINESS OBJECT REFERENCE patterns should be considered [Hentrich 2004].

As a result, there is a data interdependency between the macroflow process and the service
interface definition, as it is necessary to map the input and output parameters to elements in the
process control data structure. However, the implementation of the service may vary as the
macroflow activity only considers the functional interface and does not have to care how the
service is implemented. Thus, the macroflow considers only aspects of business functionality.
This enables the use of a consistent approach from design of business functionality to
implementation. Moreover, requirements for services can be deduced from process
specifications. It is actually a process design issue to specify activities at a level of granularity that
is appropriate to shape reusable blocks of business functions in terms of services.

Figure 11: Macroflow activity invoking a service that represents the required business function

Figure 11 illustrates how a service can be invoked in a macroflow. The service corresponds to
the functionality of an automatic macroflow activity. It is also shown that input and output
parameters of the process control data must match the parameters in the service interface. Thus,
the service interface is designed according to information that can be provided by the process
control data structure. The parameters of the service match the available attributes in the process
control data structure.

The MACROFLOW INTEGRATION SERVICE itself is reusable across different macroflows and
may be invoked by many processes. Hence, no redundant functionality will be built. It is also
possible to scale the performance of the service implementation according to increased service
request workload, without affecting the macroflow business processes, because the macroflow
and the MACROFLOW INTEGRATION SERVICES are loosely coupled.

Technically, the functionality specified by the service is realized by a PROCESS INTEGRATION
ADAPTER that establishes the connection between a macroflow process engine and a service
provider. The service provides executes the desired service and communicates the result back to
the process engine.

The MACROFLOW INTEGRATION SERVICE pattern is related to the MACROFLOW ENGINE
pattern, as it deals explicitly with macroflow business processes. As the pattern also addresses
issues of designing process control data structures, the BUSINESS OBJECT REFERENCE and
GENERIC PROCESS CONTROL STRUCTURE patterns must be considered [Hentrich 2004].

The MACROFLOW INTEGRATION SERVICE pattern has the following benefits: Automatic
macroflow activities and the services are loosely coupled. The business process at the macroflow
level defines the functional requirements for services that fulfil the tasks of automatic activities.
The design and modelling of macroflow processes, as well as the implementation, remains at the
level of business functions. The MACROFLOW INTEGRATION SERVICE pattern thus enables a
consistent approach from process design to service identification and service specification.

Implementation of MACROFLOW INTEGRATION SERVICES may vary according to performance
requirements, for instance, while the interfaces to the macroflow stay stable. Defined and
implemented MACROFLOW INTEGRATION SERVICES are, in most cases, reusable building blocks.

The MACROFLOW INTEGRATION SERVICE pattern also has the following drawbacks: For each
new automatic macroflow activity a service must be defined that depicts the functional
requirements of the macroflow activity. This might not be a big drawback: because MACROFLOW
INTEGRATION SERVICES are reusable building blocks, often a suitable service implementation
already exists that fulfils these requirements, and thus this service can be reused.

The large amount of generated services from various automatic activities in business processes
needs to be managed in some way.

Some known uses of the pattern are:

- IBM’s WebSphere Integration Developer directly supports the pattern in its Service
Component Architecture (SCA) concept to wire up services with activities in a BPEL
process.

- In a workflow-based implementation of a customer enrolment business process for a
telecommunications company in Spain, the pattern has been applied to integrate
services in a workflow implemented with WebSphere MQ Workflow. The actual
services were realized via WebSphere MQ messages.

- In a business requirements analysis project for a telecommunications customer in
Germany the pattern has been applied to identify services from business processes.
The business processes have been modelled with BOC’s Adonis and the services have
been linked to process activities and were thus identified and modelled in a systematic
way. The pattern has enabled a systematic approach to design services from the
requirements given by business processes.

PROCESS INTEGRATION ADAPTER

A process engine is used together with other integrated systems.

Process engines and external systems, to be integrated in the processes, often have
different interfaces and technology specifics. However, the systems in a process-driven
SOA must be able to communicate with each other, and the connection should be
designed in a loosely coupled fashion. If loose coupling is not achieved, changes to
integrated external systems will have effects on the processes that run in process engines.
This generates unmanageable complexity and efforts for change implementation.

A process engine only acts as a coordinator of activities. Some of these activities are tasks that
need to be executed by some other system. For this reason, requests for activity execution and
the corresponding responses must be aligned with the target system that captures the requests,
takes over the task of activity execution, and generates a response. How can this communication
be achieved if the process engine and the target system have different interfaces and
technologies?

Furthermore, how can a response be related to an original request and how can a request be
transformed such that it is understood by a target interface and technology? Vice versa, how can
the response be generated from that target interface and technology be transformed backwards,
such that the response can be understood by the process engine? Another question is how can
we detect what kind of function is associated with a request, i.e., what function is requested to be
executed by the process activity? Figure 12 illustrates the problem.

Figure 12: Delegating activity execution requests to an integrated target system

Use a PROCESS INTEGRATION ADAPTER that connects the specific interface and
technology of the process engine to an integrated system. It transforms activity execution
requests into requests that can be understood by the target system’s interface and
technology, and transforms responses from the target system backwards to the interface
and technology of the process engine. CORRELATION IDENTIFIERS are used to relate
requests and responses.

The core principle of the solution of the PROCESS INTEGRATION ADAPTER pattern is the same
as in the classical ADAPTER pattern [Gamma et al. 1994]: An adapter connects to the interface
and technology of the process engine and the target system, and translates between the two
interfaces. The process engine acts as a sender in terms of sending out requests for activity
execution, which are received by the adapter.

An activity execution request must contain a CORRELATION IDENTIFIER [Hohpe et al. 2003].
The CORRELATION IDENTIFIER identifies the activity instance in the process engine that is
associated to the request, i.e., the activity instance that has sent the request. Additionally, the
request must contain an identifier for the desired function to be executed and input parameters,
such as BUSINESS OBJECT REFERENCES [Hentrich 2004], for instance. All these input data must
be defined and carried in the process control data, so that it is accessible to an activity instance.
As a result, this input data can be sent with the request.

The PROCESS INTEGRATION ADAPTER transforms the request into a format that can be
understood by the target system’s interface and technology. To achieve this transformation the
adapter must implement transformation rules for mapping an activity execution request including
all its data to the interface and request format of the target system. The request will be forwarded
to the target system after the transformation is performed.

If supported by the target system, the CORRELATION IDENTIFIER will also be used on the
target system’s side to relate the response of the target system back to the original request.
Consequently, the target system will have to send the CORRELATION IDENTIFIER back in its own
response so that the adapter can re-capture it. The response will also contain the result of the
execution of the desired function, which has been executed by the target system. If
CORRELATION IDENTIFIERS cannot be used with the target system, for instance, because it is a
legacy system that we cannot change, the PROCESS INTEGRATION ADAPTER must implement its
own mechanism to align requests and results.

After the adapter has received a response of the target system, the response is transformed
back into the format and technology used by the interface of the process engine. Again,
transformation rules apply to achieve the transformation. Finally, the generated response to the
original activity execution request, including the CORRELATION IDENTIFIER, is sent back to the
interface of the process engine. The process engine is thus able to relate the response to the
sending activity instance, and the process instance may proceed according to the result contained
in the response.

Figure 13: Conceptual structure of a process integration adapter

To make the PROCESS INTEGRATION ADAPTER maintainable at runtime, the COMPONENT
CONFIGURATOR pattern [Schmidt et al. 2000] should be applied. That means, it is possible to
initialise the adapter when it is put in use the first time and to suspend it at runtime, e.g., for
updating the transformation rules, while activity execution requests are constantly arriving. Later
on, after maintenance activities are finished, the adapter can resume its work and process all
requests that have arrived in the meantime. The PROCESS INTEGRATION ADAPTER also offers a
finalising function such that it finishes all ongoing activities properly and then terminates itself,
e.g., in case it shall be replaced by a different adapter implementation. The PROCESS
INTEGRATION ADAPTER is actually a specialization of the CONFIGURABLE ADAPTER pattern,
which focuses on this aspect of configurability. Figure 13 shows an example for the conceptual
structure.

Figure 14: Principle interaction sequence

In principle, receiving a request or response can work via push or pull mechanisms. Thus,
there are two general options of implementation, as far as this aspect is concerned. How the

requests and responses are sent and what kind of vehicle is used may vary as well. Often
message-oriented middleware is used as a communication platform. Figure 14 shows the typical
interaction.

As illustrated in Figure 13, the PROCESS INTEGRATION ADAPTER also has an attribute holding
the ID of the adapter, which is usually a unique name. As PROCESS INTEGRATION ADAPTERS can
be managed in a CONFIGURABLE ADAPTER REPOSITORY, this ID can be used to identify a
specific PROCESS INTEGRATION ADAPTER in a CONFIGURABLE ADAPTER REPOSITORY, for
instance.

In conjunction with a PROCESS-BASED INTEGRATION ARCHITECTURE the PROCESS
INTEGRATION ADAPTER pattern is used to connect a MACROFLOW ENGINE to an RULE-BASED
DISPATCHER. That means the target system is an RULE-BASED DISPATCHER in this case.
Moreover, a MACROFLOW INTEGRATION SERVICE is technically realized with the help of the
PROCESS INTEGRATION ADAPTER pattern, and a CONFIGURABLE ADAPTER REPOSITORY
manages a whole set of those integration adapters.

The PROCESS INTEGRATION ADAPTER pattern has the benefit that it offers a clear model for
the communication between a process engine and a target system.

The PROCESS INTEGRATION ADAPTER pattern also has the following drawbacks: In order to
use PROCESS INTEGRATION ADAPTERS, the process engine must have an interface for
communication with other systems. Transformation rules must be defined to transform requests
forward to the target interface and responses backwards to the process engine.

Some known uses of the pattern are:

- WebSphere MQ Workflow offers a technical concept called a User-Defined Program
Execution Server (UPES), which implements this pattern. The UPES concept is a
mechanism for invoking services via XML-based message adapters. Basis of the UPES
concept is the MQ Workflow XML messaging interface. The UPES concept is all
about communicating with external services via asynchronous XML messages.
Consequently, the UPES mechanism invokes a service that a process activity requires,
receives the result after the service execution has been completed, and further relates
the asynchronously incoming result back to the process activity instance that originally
requested execution of the service (as there may be hundreds or thousands of
instances of the same process activity).

- CSC offers within their e4 reference meta-architecture the concept of PROCESS
INTEGRATION ADAPTERS. For an insurance customer in the UK the e4 adapter
concept has been used to integrate FileNet P8 Business Process Manager with an
enterprise service bus based on WebSphere Business Integration Message broker.

- Within the Service Component Architecture (SCA) concept of IBM’s WebSphere
Integration Developer various PROCESS INTEGRATION ADAPTERS are offered off-the-
shelf, e.g., for WebSphere MQ, Web services, or JMS.

RULE-BASED DISPATCHER

Functional requests of automatic (macroflow) activities must be executed by backend systems.

As system architectures usually change over time, it is necessary to add, replace, or
change systems in the backend for executing process activities. In many process-driven
systems, this must be possible at runtime. That is, it must be dynamically decided at
runtime which component has to execute a (macroflow) activity. If the architecture does
not consider these dynamics, then modifications to the backend structures will be
difficult to implement at runtime. On the other hand, scalability and the functional
structuring might be negatively influenced by introducing more dynamics.

Let us consider the “larger” context and that architecture is subject to evolution and change. A
typical evolution scenario is that the architecture must cope with an increased workload for
automatic activity execution. Concerning evolution it is important to consider that the very
component that actually executes a macroflow activity might be subject to change. This
component might even get exchanged while the activity is executed. For instance, the component
might be moved to another physical location.

Concerning increased workload, a high scalability is required, and typically supported by
adding new instances of components that execute the additional requests. It must be dynamically
decided at runtime which component has to execute a macroflow execution request. In addition,
other concerns like priorities for execution of requests must be considered as well.

All these aspects actually point to well known issues in distributed architectures and can be
conceptually classified as dimensions of transparency [Emmerich 2000]: access transparency,
location transparency, migration transparency, replication transparency, concurrency
transparency, scalability transparency, performance transparency, and failure transparency. The
core problem is thus how to consider those dimensions of transparency appropriately in order to
keep the architecture flexible and scalable.

Figure 15: Transparency issues with macroflow activity execution

Use a RULE-BASED DISPATCHER that picks up the (macroflow) activity execution
requests and dynamically decides on basis of (business) rules, where and when a
(macroflow) activity has to be executed. After making the decision, the RULE-BASED

DISPATCHER forwards the requests to the corresponding functional unit (component).

In a PROCESS-BASED INTEGRATION ARCHITECTURE, the requests for macroflow activity
execution are sent by a PROCESS INTEGRATION ADAPTER. The RULE-BASED DISPATCHER is the
connected target system of the adapter (see PROCESS INTEGRATION ADAPTER pattern). The

dispatcher applies dispatching rules to the requests to determine when, e.g., according to
priorities, and where to forward the request. These dispatching rules are applied dynamically at
runtime and the rules can be changed.

To achieve flexible configuration of the dispatching rules, the dispatcher applies the
COMPONENT CONFIGURATOR pattern [Schmidt et al. 2000]. The requests, which must not be
forwarded immediately according to the rules, are put on a hold queue and are forwarded later
on. The dispatching rules are based on data in the requests, e.g., the request type, the function
associated to the request in terms of a MACROFLOW INTEGRATION SERVICE, or the priority of
the request. The rules are defined according to business requirements, and the request format
designer must consider these requirements to provide the right data in the requests to evaluate
the rules.

The dispatcher also has the task to pick up the request result from the component and send it
back to the adapter. Again it is possible to apply special rules in this context. As the
communication is usually achieved via messaging, a CORRELATION IDENTIFIER [Hohpe et al.
2003] is used to correlate the requests and responses.

<< interface >>
Configurable Component

+ init()
+ finalize()
+ suspend()
+ resume()
+ info()

Rule-Based Dispatcher

- getRequest()
- forwardRequest()
- getResponse()
- forwardResponse()

Dispatching Rules

1..*

1 +dispatchingRules

Configurable Adapter
1..*

Correlation
Identifier

send (activity)
request / receive

response 1..*

Correlation
Identifier

forward (activity) request /
receive response

while (NOT finalize AND NOT suspend) {
 getRequest()
 forwardRequest()
 getResponse()
 forwardResponse()
}

1
Component

1

Hold Queue

Process Integration
Adapter

Figure 16: Rule-based dispatcher exemplary design

In case the component to execute the macroflow activity request is a MICROFLOW ENGINE,
forwarding the request means invoking a MICROFLOW EXECUTION SERVICE. It is also possible
that the dispatcher does some additional message transformation to suit the (service) interface of
a component. However, this transformation logic should be kept as simple as possible, for the
purpose of separation of concerns, as transformation is rather the task of the PROCESS
INTEGRATION ADAPTER. Instead the functional interfaces of the components, which are used to
execute the requests, should be designed accordingly, to avoid additional transformations.

The RULE-BASED DISPATCHER pattern mediates service requests of the macroflow with
corresponding microflow services. It is an optional design element in a PROCESS-BASED
INTEGRATION ARCHITECTURE, where it is typically placed between a PROCESS INTEGRATION
ADAPTER and a MICROFLOW ENGINE that offers MICROFLOW EXECUTION SERVICES. The
RULE-BASED DISPATCHER applies the COMPONENT CONFIGURATOR [Schmidt et al. 2000]

pattern to be configurable at runtime, and the CORRELATION IDENTIFIER [Hohpe et al. 2003]
pattern is used to correlate service requests and responses.

The RULE-BASED DISPATCHER pattern has the following benefits: It supports the flexible
dispatch of requests based on configurable rules. These dispatching rules can be changed at
runtime by suspending the dispatcher and updating the rules. The workload can be managed by
scaling the architecture in terms of adding instances of components to execute the requests, and
all components can be changed independently.

The RULE-BASED DISPATCHER pattern also has the following drawbacks: A RULE-BASED
DISPATCHER might be superfluous in case one can be sure that no more than one component
will be used to execute the activity requests. To realize the pattern, additional specification and
design effort might be necessary for defining the language and format of the dispatching rules. A
central component like a RULE-BASED DISPATCHER is a single-point-of-failure. It might be a
bottleneck and hence have a negative influence on the performance of the whole system.

Some known uses of the pattern are:

- Using IBM’s WebSphere Business Integration Message Broker a RULE-BASED
DISPATCHER can be implemented with a message flow definition that represents the
dispatching logic. The dispatching rules are stored in a database and are accessed via a
database access node in the flow.

- The Service Container of the Mule Enterprise Service Bus [Mule 2007] offers support
for content-based and rule-based routing. Inbound and outbound message events, as
well as responses, can be routed according to declarative rules that can be dynamically
specified. A number of predefined routers are available (based on the patterns in
[Hohpe et al. 2003]). Pre-defined (or user-defined) filters, like a payload type filter or
an XPath filter, can be used to express the rules that control how routers behave.

- Apache ServiceMix [ServiceMix 2007] is an open source Enterprise Service Bus (ESB)
and SOA toolkit. It uses the rule-language Drools to provide rule-based routing inside
the ESB. The architecture is rather simple: A Drools component is exposed at some
service, interface, or operation endpoint in ServiceMix and it will be fired, when the
endpoint is invoked. The rule base is then in complete control over message
dispatching.

CONFIGURABLE ADAPTER

Systems, such as business applications, must communicate with other systems.

When different systems are interconnected and the individual systems evolve over time,
the system interfaces change. Often many systems are affected by an interface change,
and thus each change causes high maintenance efforts and costs. Many changes cannot
even be avoided because they are caused in external vendor systems.

Often the API of a business system changes with each new release of the system. If the
business system has to communicate with other systems, the functional interfaces of those
systems, as well as the supported requested formats and technological interfaces must be
connected to the business system. In many cases such integrated systems are independent
components that may change over time, and thus their interfaces may change as well. The effect
is multiplied if several systems are dependent on the interface of another system.

In this context of ongoing change and maintenance, the costs and efforts of changes should
be kept at a minimum level. The impact of changes and the related testing efforts must also be
kept within acceptable limits.

Sometimes it is possible to circumvent these problems by avoiding changes that influence
other systems. Such changes cannot be avoided, however, if the business applications under
considerations are systems of external vendors, like SAP, for instance, and changes that occur
with a new version must be taken into account. Migration to a new release is often forced as old
releases are not supported anymore, or the new functionality is simply required within the
business context.

Apart from migration to a new version, the problem also occurs if a business application shall
be replaced by a completely different system. In such cases, the technology and functional
interfaces of the new system are often highly different, causing a significant change impact.

Business
Application

Other System A

Other System B

Other System C

How to communicate
with other systems?

How can the
connections be

maintained?

Figure 17: How to communicate with other systems

Implement a CONFIGURABLE ADAPTER to another system that should get connected. The
adapter abstracts the specific interface (API) of that system. Make the adapter
configurable, by using asynchronous communication protocols and following the
COMPONENT CONFIGURATOR pattern, so that the adapter can be modified at runtime
without impacting the systems sending requests to the adapter.

To make the adapter configurable it must be loosely coupled to other systems, which is in first
place achieved by asynchronous communication protocols. As requests must be accepted at any

time, no matter whether an adapter is at work or temporally suspended, an asynchronous
connector should be used to receive the requests and to send the responses. That is, the
connector must be decoupled from the adapter to still accept requests in case an adapter is not
active.

Basically, asynchronous communication is only really required on requestor side, i.e., for
systems that access the adapter. The system, the adapter applies to, does not necessarily need to
be connected asynchronously. For instance, a connected system might only offers a synchronous
API, or the system is a database which is connected via synchronous SQL. That also means, the
connector may accept requests and queue them until they are processed by the adapter. Requests
and responses are related by applying the CORRELATION IDENTIFIER pattern [Hohpe et al. 2003].
That is, the adapter is responsible for putting the same correlation ID that is sent with the request
into its response, so that the connected system can relate the response to its respective request.

<< interface >>
Configurable Component

+ init()
+ finalize()
+ suspend()
+ resume()
+ info()

Configurable Adapter

- adapterID

Sytem

1

1

Connected
System

1

Correlation
Identifier

1..*

send request /
receive response

Connector
1

1

Asynchronous
Connector

11

+ getAdapterID()

Figure 18: Exemplary structure of the configurable adapter

The adapter design should follow the COMPONENT CONFIGURATOR [Schmidt et al. 2000]
pattern to configure the actual adapter. Examples of re-configuration are to replace an old
adapter with a different adapter, update an adapter with a new version or configuration, or
temporarily suspend the adapter from processing in case the connected system is currently under
maintenance. Figure 18 illustrates an example structure of a CONFIGURABLE ADAPTER.

A CONFIGURABLE ADAPTER is very useful for flexible integration of business applications
from external vendors. It also gets more popular to provide interconnectivity by supporting
generic adapters for common standards, such as XML and Web Services. That is the reason why
many vendors deliver such adapters off-the-shelf and provide open access to their APIs. As
standard adapters can be provided for most common standards or products, solutions following
the CONFIGURABLE ADAPTER pattern are usually reusable.

The BUSINESS-DRIVEN SERVICE pattern is typically realized using the CONFIGURABLE
ADAPTER pattern: In this pattern a business service is offered by a business application, which is
implemented via a CONFIGURABLE ADAPTER.

The PROCESS INTEGRATION ADAPTER is a specialisation of the CONFIGURABLE ADAPTER
pattern. It describes how to connect a process engine with some target system and process
requests from process activities being executed on that engine.

The CONFIGURABLE ADAPTER pattern has the following benefits: It enables the flexible
connection of one system to another. Because the adapters can be configured at runtime, new

versions of the adapter can be deployed in a controlled way without affecting the connected
systems.

The CONFIGURABLE ADAPTER pattern also has the following drawbacks: Potentially many
CONFIGURABLE ADAPTERS needs to be managed, if many systems exist where adapters for
different purposes, systems, or technologies are required. Hence, maintenance and deployment of
adapters might become problematic and must be done in a controlled way. The CONFIGURABLE
ADAPTER REPOSITORY offers a way to manage those adapters in a centralised and controlled way.

Some known uses of the pattern are:

- WebSphere InterChange Server offers a very large set of CONFIGURABLE ADAPTERS
for most common technologies and applications. Users can extend the set of adapters
with self-defined adapters.

- The transport providers of the Mule ESB [Mule 2007] provide CONFIGURABLE
ADAPTERS for transport protocols, repositories, messaging, services, and other
technologies in form of their connectors. A connector provides the implementation
for connecting to an external system. The connector sends requests to an external
receiver and manages listeners to receive responses from the external system. There
are pre-defined connectors for HTTP, POP3/SMTP, IMAP, Apache Axis Web
Services, JDBC, JMS, RMI, and many other technologies. Components can implement
a common component lifecycle with the following lifecycle interfaces: Initialisable,
Startable, Callable, Stoppable, and Disposable. The pre-defined connectors implement
only the Disposable and Initialisable interfaces.

- iWay’s Universal Adapter Suite [iWay 2007a] provides so-called intelligent, plug-and-
play adapters for over 250 information sources and broad connectivity to multiple
computing platforms and transport protocols. It provides a repository of adapters, an
special-purpose MICROFLOW ENGINE for assembling adapters called the Adapter
Manager, a graphical modelling tool for adapter assembly, and integration with the
MACROFLOW ENGINES and EAI frameworks of most big vendors.

CONFIGURABLE ADAPTER REPOSITORY

Various systems shall be connected via adapters in a larger architectural context.

Many systems require a larger number of adapters, such as CONFIGURABLE ADAPTERS or
PROCESS INTEGRATION ADAPTERS. To manage these adapters is an issue, often simply
because of the sheer mass of adapters that need to be maintained. In addition, when the
adapters evolve, new adapter versions need to be supported as well, meaning that
actually multiple versions of each adapter need to be maintained. This also introduces a
deployment issue: Usually connected systems should not be stopped for deploying a new
adapter or adapter version, instead it should get “seamlessly” deployed at runtime.

Adapters are important to connect systems that have incompatible interfaces. However, if
there are several systems being connected with each other via adapters, it is actually an issue to
deploy an adapter update or implement a new adapter, for instance, as those systems may keep
on sending requests to the adapters that must be processed. It is often not acceptable to stop all
the connected systems just to deploy an adapter modification.

Often it is also not acceptable that implementations of a new or modified adapters result in a
recompilation and redeployment of some larger parts of the components. The recompilation and
redeployment should be limited to the adapter that needs to be modified. Maintaining adapters
and controlling adapter functionality should be easy and of low effort. For instance, if a
connected system is temporarily disabled this should have minimum effect on the systems that
need to communicate with the disabled system.

Figure 19 illustrates that this problem especially occurs in larger architectural contexts, where
different systems have to communicate and larger sets of adapters exist. The problem does not
have such a great impact within the boundaries of one closed component or application, as the
whole component or application needs to be redeployed if changes are made.

System A

System B

System C

System D

System E

System F

How to manage the
adapters that
implement the

communication of the
systems?

How to maintain the
architecture easily?

Figure 19: Problems in managing adapter changes

Use a central repository to manage the adapters as components and design the adapters
as CONFIGURABLE ADAPTERS such that they can be modified at runtime without affecting
the components or systems sending requests to the adapters. The CONFIGURABLE

ADAPTER REPOSITORY manages the access to its adapters based on the configuration
state of the adapter. That is, for instance, requests sent to an adapter that is suspended
for maintenance are queued until the adapter is available again.

Adapters can be stored in a central repository that offers operations to add, retrieve, and
remove adapters, or even to search for adapters by given attributes. The adapters in the

repository are CONFIGURABLE ADAPTERS (or a specialization of this pattern, such as PROCESS
INTEGRATION ADAPTERS). That is, maintenance or deployment tasks are supported because each
single adapter can be stopped and restarted, new adapters can be deployed, and old adapters can
be removed via a centralised administration interface.

It is important that requests sent to adapters are processed asynchronously (see
CONFIGURABLE ADAPTER pattern) to bridge maintenance times when the adapters are modified.
The requests are queued while the adapter is suspended. The pending requests can be processed
when the adapter restarts work after maintenance, or after an adapter is replaced by a new
adapter. Figure 20 illustrates an example structure of a CONFIGURABLE ADAPTER REPOSITORY.

Figure 20: Exemplary structure of a configurable adapter repository

The CONFIGURABLE ADAPTER REPOSITORY pattern has the following benefits: The pattern
addresses the flexible management of adapters (at runtime). Following the pattern, changes to
adapters can be implemented rather quickly and easily.

The CONFIGURABLE ADAPTER REPOSITORY pattern also has the following drawbacks: The
pattern requires changing the adapters because an administration interface is necessary for
maintaining the adapters. If an adapter is suspended for a long time or if the amount of requests
sent to a suspended adapter is very high, then the request queue may contain large amounts of
requests that take a long time to be processed or the requests may even have timed out. The
workload of requests and the amount of requests that an adapter can process must be in balance.
Middleware is required to queue the requests.

Some known uses of the pattern are:

- WebSphere InterChange Server offers a CONFIGURABLE ADAPTER REPOSITORY
where the pre-defined large set of CONFIGURABLE ADAPTERS, as well as self-defined
adapters, can be added, for instance.

- The connectors of transport providers of the Mule ESB [Mule 2007] are, like all other
components in Mule, managed either by the Mule container or an external container
like Pico or Spring. The container manages the lifecycle of the connectors using the
component lifecycle interfaces, which the components can optionally implement. Thus
the container acts as a CONFIGURABLE ADAPTER REPOSITORY for the connectors.

- iWay’s Universal Adapter Suite [iWay 2007a] provides a repository of adapters in the
Adapter Manager [iWay 2007b]. The graphical modeller of iWay, the Adapter
Designer, is used to define document flows for adapters. The Adapter Designer can be
used to maintain and publish flows stored in any Adapter Manager repository. The
adapters in the repository can be deployed to the Adapter Manager, which is the
MICROFLOW ENGINE used for executing the Adapter flows.

MICROFLOW EXECUTION SERVICE

Microflows are exposed to macroflows (and other microflows) following the MACRO-
MICROFLOW pattern.

A microflow is a function that actually represents a service. Consequently, the microflow
should be exposed as a coherent function with defined input and output parameters. This
might be difficult because developers have to consider the technology specifics of the
MICROFLOW ENGINE being used. The engine’s technology specifics might be hard to
decouple from the actual functionality that it offers to execute concrete microflows. In
addition, different microflows in a PROCESS INTEGRATION ARCHITECTURE typically
require common functionality that is not offered by the MICROFLOW ENGINE. This
common functionality should not be reimplemented for each microflow.

A MICROFLOW ENGINE usually offers some kind of API to access the engine and initiate the
execution of a microflow model. This API depends on the technology specifics of the engine
being used. However, as it is necessary in a PROCESS INTEGRATION ARCHITECTURE to make the
functionality represented by microflows accessible to arbitrary systems that require the
functionality, the MICROFLOW ENGINE’S external interface should remain independent of these
technology specifics.

In the context of a PROCESS INTEGRATION ARCHITECTURE, microflows might include some
activities which many microflows generally have in common. For instance, the BUSINESS OBJECT
REFERENCE pattern suggests that the business objects containing the business data are principally
stored in a repository outside the process engine. To orchestrate and invoke backend services in a
microflow, business data is used as parameters of these backend services. Thus fetching the
business data is a typical standard functionality. The question is what this general functionality in
microflows is and whether it can be captured somehow. The goal is to build it only once and re-
use it as a common framework.

Figure 21: Three principle questions regarding microflow

Additionally, MACROFLOW INTEGRATION SERVICES represent functions requested by activities
in a macroflow. As a microflow is a refinement of a macroflow activity, there must be some kind
of relationship between a MACROFLOW INTEGRATION SERVICE and a microflow. The
relationship must be defined in a way that offers enough flexibility as far as accessibility,
scalability, and configuration issues are concerned. The problem is illustrated in Figure 21.

Expose a microflow as a MICROFLOW EXECUTION SERVICE that abstracts the technology
specific API of the MICROFLOW ENGINE to a standardised well-defined service interface
and encapsulates the functionality of the microflow. Define the interface of this service
according to a particular MACROFLOW INTEGRATION SERVICE, as there is a one-to-one
relationship between the two services that corresponds to the activity the microflow is
related to. Each microflow typically invokes standard functions to access the data of
business objects, transform this data according to the interface requirements of invoked
BUSINESS-DRIVEN SERVICES, and write possible results back to business objects.

For each microflow model, design a service that encapsulates the functionality of the
microflow model and has the required input and output parameters in its service interface. This
type of service is called MICROFLOW EXECUTION SERVICE.

A MACROFLOW INTEGRATION SERVICE corresponds to an activity in a macroflow. In case this
activity represents an automatic business function that is executed by backed systems, there is a
one-to-one relationship to a MICROFLOW EXECUTION SERVICE that encapsulates the
corresponding microflow of the macroflow activity. The interfaces of these two related services
must be aligned because they actually represent the same function at different levels of
integration and in relation to different architectural components. Ideally, the service interfaces
match exactly. But transformations can also be performed by a RULE-BASED DISPATCHER (or
some other intermediary component) that works as a link between the two services. Any kind of
unnecessary transformation, however, will make the dispatcher more complex and should be
avoided, if possible.

If a MICROFLOW EXECUTION SERVICE is invoked, the microflow that is encapsulated by the
MICROFLOW INTEGRATION SERVICE will be executed on a MICROFLOW ENGINE. To achieve
this, the microflow model that corresponds to the service must be identified and can then be
executed by the engine. The API of the engine usually identifies the model by a unique name. To
abstract the technology specific API of the engine, the MICROFLOW EXECUTION SERVICE
connects to a MICROFLOW ENGINE via a CONFIGURABLE ADAPTER. Figure 22 shows an example
structure of a MICROFLOW EXECUTION SERVICE.

Figure 22: Exemplary structure of a Microflow Execution Service

Microflow models often orchestrate service invocations of BUSINESS-DRIVEN SERVICES.
BUSINESS-DRIVEN SERVICES use business objects that are stored in a container outside a process
engine, following the BUSINESS OBJECT REFERENCE pattern [Hentrich 2004]. In this context, five
typical, reoccurring steps can be identified in microflow models:

1. To invoke a BUSINESS-DRIVEN SERVICE, business data is required, which must be
retrieved from business objects that are accessed via their BUSINESS OBJECT
REFERENCES.

2. Some kind of transformation must be performed to invoke a service, as the service
interface may not match the structure of business objects.

3. The actual service invocation is (perhaps optionally) performed.

4. The result of the service invocation is transformed into a business object.

5. The business object is saved back into a container outside the engine to keep the
result.

Not necessarily all these five steps occur, but if they occur, they will occur in this order. Some
steps may be left out. For instance, in case the service interface directly understands the format of
the business objects, no transformation is needed. Or, if there is read access only to business
objects they will not be saved. In any case, the MICROFLOW EXECUTION SERVICE pattern
implementation should offer the common functionality of these steps such that microflow
models can reuse the implementations of these steps.

The MICROFLOW EXECUTION SERVICE pattern has the following benefits: Microflows can be
flexibly invoked as services. The design of the interfaces of MICROFLOW EXECUTION SERVICES
corresponds to the design of the interfaces of MACROFLOW INTEGRATION SERVICES; hence
understandability of the overall architecture is supported. The services are decoupled from their
implementation, and it is possible to change the engine that implements the services. The
technology specifics of the MICROFLOW ENGINE are hidden.

The MICROFLOW EXECUTION SERVICE pattern also has the following drawbacks: The
technology specific API of a MICROFLOW ENGINE must be abstracted and additional effort
might be necessary to implement a service-oriented view on the MICROFLOW ENGINE.

Some known uses of the pattern are:

- iWay’s Adapter Manager [iWay 2007b] is an engine that allows clients to access
adapter-specific microflows via various protocols, such as TCP, SOAP, TIBCO, JMS,
MQ, etc. A listener is provided, which invokes the adapter flow representing the
microflow.

- Within WebSphere Business Integration Developer a microflow can be exposed as a
service via the Service Component Architecture (SCA) concept. SCA supports Web
services, JMS, or MQ bindings of the services.

- In a SOA project for a telecommunications customer, the pattern has been used to
expose service orchestration flows implemented with WebSphere Business Integration
Message Broker at the service bus.

- In an insurance company in Switzerland the pattern is used in the company’s global
SOA standard as to expose complex service orchestration flows as services based on
BEA Aqualogic.

MACROFLOW ENGINE

The macroflow concept is used to represent long-running business processes.

Business processes need to adapt, for instance, due to changed market conditions or
business optimization initiatives. In a dynamic business environment where business
process changes are regular practice, the IT systems must cope with the pace of business
process changes. This cannot be reached, if the business processes are statically
implemented in IT systems, and long and costly development cycles are needed for
changing the business process implementations. Thus, to provide organisationally
flexible business processes, macroflows must be easily configurable to reduce
implementation time and effort of these business process changes.

Changes to business are reflected by changes in the corresponding business processes. Today
a lot of IT systems support business processes, and the required changes often involve significant
changes in IT systems with high costs and long timelines. In a dynamic business environment,
these costs and long timelines are often not acceptable, as conditions might have already changed
when old requirements are implemented and new requirements have already popped up. The
time to react on change requirements is simply too long and the involved costs are too high.

One of the major reasons for this problem is that business process logic is statically
implemented in IT systems, i.e., in the program code of these systems. The required changes thus
imply to change program code in various systems. Often a lot of different skills are required to
achieve this, as the systems are implemented on varying platforms with different technology and
applying different programming paradigms and languages. The heterogeneity of systems and the
different concepts of these systems also imply difficulties to the end-users, who have to learn the
adaptations of the changed systems. Often the desired business process, as it was originally
designed, cannot be realized due to limitations given by existing systems and/or because of the
high efforts required to implement the changes.

Figure 23: Fragmentation of business processes

The complexity generated by this heterogeneity and the interdependencies between the
systems let projects fail even before they have started, as the involved risks and the costs may be
higher than the estimated benefit of the business process change. Thus incremental evolution
cannot be achieved. As a result, IT has gained the reputation of just being a cost driver but not a
business enabler anymore. This is very often the reason why no significant and innovative
changes are made, but solving prevalent problems is postponed as long as possible and changes
are reduced to the most important maintenance activities. The reason is that regular business
process changes have not yet been conceptually considered enough in IT.

Additionally, often a fragmentation of business processes in conjunction with IT systems that
support them occurs, if business process logic is statically implemented in IT systems. This
happens because the IT systems are not designed according to the higher-level business
processes’ structure, but instead the IT systems make certain assumptions about the business
processes’ structure. Business process changes often lead to situations, where the technological
assumptions turn out to be invalid, and as quick changes of the IT are not possible, a
fragmentation (or structural gap) between the business process models and the IT systems
occurs. Figure 23 illustrates the problem.

Extract the statically implemented business process logic from systems, and model the
business processes in a business process modelling language. Delegate the macroflow
aspects of the business process definition and execution to a dedicated MACROFLOW

ENGINE that executes the business processes described in the business process
modelling language. The engine allows developers to configure business processes by
flexibly orchestrating the execution of macroflow activities and the related business
functions.

As organisational inflexibility results from business process fragmentation and static
implementation of business process fragments in IT systems that are hard to change, the business
process logic is extracted from IT systems. Control of the business processes is delegated to a
dedicated component, the MACROFLOW ENGINE. This component allows developers to
configure the business process logic by easily changing the business process definitions and
executing the defined business processes. This implies that applications will be understood as
modules that offer business functions (services) and can be orchestrated by business process
logic. The MACROFLOW ENGINE realizes the following distinct features of macroflow definition
and execution:

- Supports full-automatic and semi-automatic macroflow activities with human
interaction.

- Offers an API to access the functionality of the engine, i.e., processing of automatic
and semi-automatic tasks.

- Offers functions for macroflow definition.

- Offers functions for long-running macroflow execution.

- Concentrates on orchestration issues of macroflow activities but not on the
implementation of these activities; the actual implementation of macroflow activities is
delegated to functionality of other systems that the engine communicates with.

Various concepts are used to achieve the orchestration of macroflow activities in a
MACROFLOW ENGINE. Examples are:

- Strictly structured process flow, e.g., in terms of directed graphs with conditional paths

- Flexibly structured flow of activities, e.g., by defined pre- and post-conditions of
macroflow activities

Macroflow definitions can be made changeable by applying a process definition language.
Macroflows are in this case modelled in the process definition language and are imported in the
engine that executes the models. Changes occur via modified models of macroflows.

A macroflow definition consists of macroflow steps. The steps transform data that is used to
control the orchestrations of macroflow activities and invoke a business function of an IT
system, where the function can either be:

- Completely automatic

- Semi-automatic representing a human interacting with a system

For this reason, a macroflow step is assigned to a resource, where a resource can be some
virtual actor like an IT system acting in a certain role, or a human actor who interacts with an IT
system. As far as a human actor is concerned, constraints may be applied to make the macroflow
step only accessible to a defined set of users, e.g., by roles and rights that a user must have in
order to be able to process a macroflow step. However, these issues rather relate to concepts of a
concrete MACROFLOW ENGINE implementation.

The macroflow step thus always invokes a business function, whether the business function is
executed with support of a human being or whether it is completely automatic. Figure 24 shows
an exemplary, general structure of a MACROFLOW ENGINE.

Figure 24: Exemplary structure of a Macroflow Engine

The MACROFLOW INTEGRATION SERVICE pattern represents a service-oriented approach to
designing full-automatic business functions and invoking them in macroflows that are executed
on a MACROFLOW ENGINE. To invoke these services, the PROCESS INTEGRATION ADAPTER
connects the MACROFLOW ENGINE in the context of a PROCESS-BASED INTEGRATION
ARCHITECTURE und establishes communication with backend systems via the API of the engine.

The MACROFLOW ENGINE pattern has the following benefits: The business process logic is
architecturally decoupled from the IT systems. Business process definitions can be flexibly
changed and the corresponding processes in IT systems can be adapted more easily.
Organisational flexibility is conceptually supported by applying the business process paradigm to
IT architecture. Hence, an IT strategy to organisational flexibility is supported.

The MACROFLOW ENGINE pattern also has the following drawbacks: Efforts must be invested
to extract the business process logic out of existing systems implementations and to modify the
architecture. The approach has best effects if applied as long terms approaches to architecture
design and application development. Short term goals may not justify the efforts involved.

Some known uses of the pattern are:

- IBM’s WebSphere Process Choreographer is the workflow modelling component of
WebSphere Studio Application Developer Studio, Integration Edition, which provides
a MACROFLOW ENGINE. The workflow model is specified in BPEL.

- In the latest WebSphere product suite edition, the two products WebSphere Process
Choreographer and WebSphere InterChange Server have been integrated into one
product which is called WebSphere Process Server. Consequently, this new version
offers both, a MACROFLOW ENGINE and a MICROFLOW ENGINE.

- GFT’s BPM Suite Inspire [GFT 2007] provides a designer for macroflows that is
based on UML activity diagrams. The business processes can be deployed to an
application server that implements the MACROFLOW ENGINE for running the business
processes. The engine also offers an administrator interface for monitoring and
management of the processes.

- JBoss’ jBPM [JBoss 2007] is an open-source MACROFLOW ENGINE for graph-based
business process models that can be expressed either in jPDL or BPEL as modelling
languages.

- ActiveBPEL [Active Endpoints 2007] is an open-source BPEL engine that acts as a
MACROFLOW ENGINE for business processes modelled in BPEL.

MICROFLOW ENGINE

The microflow concept is used to represent short-running, technical processes.

In a dynamic environment, where IT process changes are regular practice, it takes
considerable time and effort to realize and change technical IT integration processes, if
the microflow details are statically implemented. But, to provide organisationally flexible
IT integration processes, microflows must be configurable, and changes must be quickly
implemented. Furthermore, the IT integration processes must be conceptually aligned to
the business processes they realize to make the process-driven SOA as a whole
understandable and flexible.

Modifications in business processes often result in changes to the IT-related integration
processes (represented as microflows). As a consequence, in dynamic environments where
business process changes are regular practice, the corresponding changes to IT integration
processes must be achieved with minimum effort, in terms of time and budget. For instance, if
the communication structures are statically implemented by point-to-point connections between
systems, it is very hard to realize a desired process change. This is because the whole architecture
is highly coupled and thus a single change requirement often results in modifications in many
systems. Hence, changes imply a high effort, and high risks are involved. These issues are related
to integration concepts that follow the idea of a messaging backbone that enables point-to-point
communication by exchanging messages.

The concept of an integration hub solves some of the technical issues and improves flexibility
by offering centralized management of the connections. However, still a variety of different and
heterogeneous interfaces, protocols, and technologies needs to be managed, and there is still no
direct relationship to the business processes. The issues being solved rather remain on a technical
level, and the solutions are not business-driven.

Figure 25: Integration concepts

A more business process driven approach to IT systems integration is thus required, which,
on the one hand, focuses on the technical IT system integration issues but which, on the other
hand, also bridges to the higher level business process view.

Apply the business process paradigm directly to IT integration process design and
implementation by decoupling the integration logic. Delegate the microflow aspects of
the business process definition and execution to a dedicated MICROFLOW ENGINE that

supports configuration of microflows by flexibly orchestrating the execution of microflow
activities and the related BUSINESS-DRIVEN SERVICES.

According to the MACRO-MICROFLOW pattern the more technical IT integration processes
relate to the microflow level. Microflows are thus special types of processes that are conceptually
related to business process reflected at the macroflow level. To achieve organisational flexibility
at the microflow level, integration logic is delegated to a dedicated component, the MICROFLOW
ENGINE. This component allows developers to configure the integration logic by easily changing
the integration process definitions and executing the defined integration processes. This implies
that connected systems will be understood as modules that offer functions (services) to be
orchestrated by integration process logic.

As the component represents the microflow aspects of business process, certain features are
supported that are representative for microflow definition and execution:

- Supports full-automatic transaction safe integration processes only.

- Support of technology and/or application adapters, e.g. ODBC, JDBC, XML, Web
service, SAP, Siebel.

- Offers an API to access the functionality of the engine.

- Offers functions for microflow definition.

- Offers functions for short-running transactional microflow execution.

- Concentrates on orchestration issues of microflow activities but not on
implementation of these activities; the actual implementation of microflow activities is
delegated to functionality of integrated systems the engine communicates with.

Figure 26: Structure of a Microflow Engine

The basic feature of a MICROFLOW ENGINE is execution of defined microflow integration
process logic by orchestrating microflow activities. Analogous to the MACROFLOW ENGINE, the

concepts to achieve that orchestration may vary. The engine fulfils the tasks of executing
integration logic and for defining it in a manner that can be flexibly changed.

Just as in the MACROFLOW ENGINE pattern, microflow definitions are changeable by applying
the concept of a process definition language. A microflow definition consists of microflow
activities. Each step transforms data that is used to control the orchestrations of microflow
activities and invokes a function of an IT system. Such invocations are performed automatically
and in a transaction-safe way. Within the SOA context this function is actually represented as a
BUSINESS-DRIVEN SERVICE. Figure 26 shows the general structure of a MICROFLOW ENGINE.

To invoke these services, CONFIGURABLE ADAPTERS can be used to connect the MICROFLOW
ENGINE with other systems in the context of a PROCESS-BASED INTEGRATION ARCHITECTURE.
Often there are CONFIGURABLE ADAPTERS delivered off-the-shelf for most common
technologies and applications with a MICROFLOW ENGINE middleware.

The MICROFLOW ENGINE pattern has the following benefits: The IT system’s integration logic
is architecturally decoupled. Integration processes can be flexibly changed. Organisational
flexibility is conceptually supported by applying the business process paradigm to IT architecture,
and thus an IT strategy to organisational flexibility is supported. Business processes are directly
represented in the IT.

The MICROFLOW ENGINE pattern also has the drawback that the conceptual separation of
integration logic might involve additional efforts, which might be too much, for small-scale
problems.

Some known uses of the pattern are:

- The WebSphere Business Integration Message Broker and also the WebSphere
InterChange Server both do represent MICROFLOW ENGINES. Both middleware
products can also be used in conjunction.

- Often the WebSphere Business Integration Message Broker is used for simpler
functions, e.g., to implement a PROCESS INTEGRATION ADAPTER, to offer
MACROFLOW INTEGRATION SERVICES, and a RULE-BASED DISPATCHER, as this
product has strong features concerning off-the-shelf adapters, message routing,
and transformation.

- WebSphere InterChange Server has very strong features if used as a MICROFLOW
ENGINE, as it offers transaction safe integration process execution. Process
definition is done via a GUI and the product also offers a very large set of
CONFIGURABLE ADAPTERS for most common technologies and applications. It
also implements a CONFIGURABLE ADAPTER REPOSITORY where also self-defined
adapters can be added, for instance.

- webMethods’ Integration Server (now integrated in the Fabric BPM suite)
[webMethods 2007] provides a MICROFLOW ENGINE that supports various data
transfer and Web services standards, including JSP, XML, XSLT, SOAP, and WSDL.
Its offers a graphical modeller for microflows that models the microflow in a number
of sequential steps (including loop steps and branching), as well as a data mapping
modeller.

- iWay’s Universal Adapter Suite [iWay 2007a] provides an Adapter Manager [iWay
2007b] for its intelligent, plug-and-play adapters. The Adapter Manager is a
component that runs either stand-alone or in an EJB container and executes adapter
flows. The basic adapter flow is: It transforms an application-specific request of a

client into iWay’s proprietary XML format, invokes an agent that might invoke an
adapter or perform other tasks, and transforms the XML-based response into the
application specific response format. The Adapter Manager provides a graphical
modelling tool for assembling the adapters, the Adapter Designer. It allows developers
to specify special-purpose microflows for a number of adapter-specific tasks, such as
various transformations, routing through so-called agents, encryption/decryption,
decisions, etc. Multiple agents, transformations, and decisions can be combined in one
flow. The Adapter Manager hence provides a special-purpose MICROFLOW ENGINE
focussing on adapter assembly.

BUSINESS-DRIVEN SERVICE

Services must be designed within the context of a service-oriented architecture approach.

In a SOA, the business goals must be properly mapped to services. This is difficult
because on the one hand business goals must be broken down into requirements for
services. On the other hand, we must also consider existing applications, technical
resources, and off-the-shelf vendor products, when designing the services. We need a
clear decision what services must be designed and implemented, considering the
constant evolution of services.

In the service-oriented architecture (SOA) context it is rather difficult to decide what services
are actually required to satisfy the business goals. Actually, it is even worse as the problem starts
one step earlier: It is necessary to break down high-level strategic business goals into more fine-
grained goals that must then be transformed into requirements for the services. For this reason,
the problem is at first hand to decide on a de-composition of business goals and provide a
rationale for this structure.

On the other hand, we are usually dealing with an existing IT infrastructure, and it is necessary
to offer available application functionality as services. These applications imply limitations on the
functionality, as an application will deliver only a certain set of functions that can be offered as
services. The existing functionality must also be related to the strategic business goals to have a
basis for the decision what existing functionality is ready to use. That means a priori it is not
obvious whether this existing functionality is sufficient to support the business goals or whether
additional functionality must be developed within single applications. It must be decided what
functionality of what application must be extended and whether this is possible at all with an
acceptable effort.

Figure 27: How to design services of applications that relate to business goals?

As far as off-the-shelf vendor products are concerned these issues consequently influence
evaluation of vendor products and also the decision what product best suits the requirements,
i.e., the selection of right products within the IT strategy context. The best strategic decision

might be to replace some of the existing applications, migrate to new versions, or leave some of
the existing systems in their current state of functionality.

The decision process to decide on the requirements of services that need to be defined is a
non-trivial process that has to consider evolutionary aspects of the business. An engineering
approach is required to define and break down business goals, and map them to requirements of
services. The approach should further allow for planning the definition and design of these
services. It should also consider the evolution of the business, as the business goals might change
over time.

Design BUSINESS-DRIVEN SERVICES that are defined according to a convergent top-down
and bottom-up engineering approach, where high-level business goals are mapped to to-
be macroflow business process models that fulfil these high-level business goals and
where more fine grained business goals are mapped to activities within these processes.
Those macroflow business process activities are further refined by engineered microflows
that merge bottom-up and top-down engineered application services.

The high-level business goals being defined by strategic management can be mapped to to-be
models of business processes. Following the MACRO-MICROFLOW pattern as a conceptual
foundation to structure business processes, it is possible to design the to-be macroflow business
processes that represent these high-level business goals. After that it is possible to derive
MACROFLOW INTEGRATION SERVICES that need to be refined by microflow models. The design
of these microflows is done by mapping existing application functions to services as follows:

- Existing services are modified, or

- new services that are missing are designed to fulfil the requirements of the
MACROFLOW INTEGRATION SERVICES, or

- existing services are orchestrated in microflow models to realize a composed service
that fulfils the requirements.

The result is a set of BUSINESS-DRIVEN SERVICES that are invoked and orchestrated in
microflows, which fulfil the requirements of MACROFLOW INTEGRATION SERVICES.

It might turn out that the implementation of the to-be macroflow business processes implies
unacceptable effort or exceeds the limits of the project budget and/or timeframe. A typical
reason is that too many difficult modifications to existing services are necessary. Also, too much
effort might be required for implementing new BUSINESS-DRIVEN SERVICES. In such cases, it
might be necessary to adapt the to-be macroflows and thus the high-level business goals to stay
within acceptable limits of the project budget and timeframe. Then a migration plan needs to be
developed to achieve the original business goals and evolve the originally desired to-be
macroflow business processes via several stages and/or projects.

That means, one should possibly plan for a few iterations until all interdependent elements of
the various models match: the high-level business goals, the to-be macroflow business process
models, the MACROFLOW INTEGRATION SERVICES, the microflows, and the BUSINESS-DRIVEN
SERVICES. As far as architecture management is concerned, procedures and tools are very useful
to manage these dependencies and the changes being initiated.

A BUSINESS-DRIVEN SERVICE in a microflow might be a composed service, where the
BUSINESS-DRIVEN SERVICE invokes a set of more fine grained services (that possibly invoke even
more fine grained services). This de-compositional structure should be considered as rather static
and not subject to regular changes. If the orchestration of the more fine grained services needs to

be configurable, the orchestration will usually be modelled as a sub-microflow. Configurability is
thus the design criterion to decide whether to have a static de-composition or a configurable de-
composition via sub-microflows.

The MICROFLOW EXECUTION SERVICE exposes a microflow as a service and is thus
composed of BUSINESS-DRIVEN SERVICES that are orchestrated in the microflow.

Figure 28 summarizes this interdependent and convergent top-down and bottom-up driven
approach to identifying and designing BUSINESS-DRIVEN SERVICES.

High-Level Strategic Business Goals

To-Be Business Processes

Top-down
driven

Business goals are mapped to
to-be business processes

Macroflow models of to-be
business processes are created

Activities in macroflow models are mapped
to MACROFLOW INTEGRATION SERVICES

Microflow models are derived from
MACROFLOW INTEGRATION SERVICES

Activities in microflow models are mapped
to BUSINESS-DRIVEN SERVICES

Sub-microflows

Sub-macroflows

Statically de-
composed

Bottom-up
driven

Identified BUSINESS-DRIVEN SERVICES are
orchestrated in microflows

Microflow models are depicted as
MACROFLOW INTEGRATION SERVICES

MICROFLOW INTEGRATION SERVICES are
invoked by macroflow models

Macroflow models relate to /influence
to-be business processes

To-be business processes relate to/influence
high-level strategic business goals

Macroflow Models of To-Be Business Processes

MACROFLOW INTEGRATION SERVICES

BUSINESS-DRIVEN SERVICES

Microflow Models

Figure 28: Convergent approach to designing services

The BUSINESS-DRIVEN SERVICE pattern has the following benefits: The pattern links services
of business applications to high-level business goals. Identification and design of services is
guided by a traceable convergent engineering approach – the pattern implies a methodology to
design the services. Decisions on configurability of services are already included in the very early
phase of service identification. Limitations of project budget and timeline are considered when
creating a service model by considering the efforts to realize the services. Existing application
functionality is considered to be offered as services and can be related to business processes.

The BUSINESS-DRIVEN SERVICE pattern also has the drawback that the convergent approach
may imply several iterations that need to be planned in order to match the macroflow and
microflow process models with the service model.

Some known uses of the pattern are:

- In IBM’s WebSphere technology, the BUSINESS-DRIVEN SERVICES to be invoked
during microflows that run on WebSphere Process Server are usually implemented as
Web Services. However, service realisations using MQ messages or other supported
technologies are also possible, if required.

- BOC [BOC 2007] offers an integration of its business modelling tool Adonis with
Oracle’s BPEL process manager, following an approach as advocated by the
BUSINESS-DRIVEN SERVICES pattern. In this approach, Adonis provides modelling
support for business processes and organizational structures, mainly from a pure
business perspective. The BPEL process manager provides the engine for
implementing the business processes and transactions. The process for transferring
the design from the business to the BPEL process manager technology is automated.
Transferring the technical representation back into the business representation
(bottom-up) must be done manually. Also, lower-level microflow aspects (“below the
BPEL process models”) are not covered by BOC’s approach.

- In IBM’s Service-Oriented Architecture and Modelling (SOMA) method [Arsanjani
2004], the pattern is applied postulating a convergent top-down and bottom-up driven
service modelling style.

- In a large programme in an insurance company the pattern has been applied to design
a methodology for process-centric services analysis and design based on ARIS [IDS
2006].

Example of a Java Implementation of the Pattern Language

In following example, the patterns have been implemented in the context of a Java backend
framework for process based services integration. Subject of this framework is the execution of
automatic activities that integrate services. The framework consists of four elements which will
be implemented in this example as architectural components:

- Job Generator Engine – transforms messages sent by process engines (MQ Workflow
UPES messages in this case) into an enterprise wide standard job-definition format.
The job-generator decouples the process engines (in this case MQ Workflow) from
actual activity implementations. This component implements the PROCESS
INTEGRATION ADAPTER and MACROFLOW INTEGRATION SERVICE patterns.
WebSphere MQ Workflow implements the MACROFLOW ENGINE pattern.

- Job Dispatcher Engine – is responsible for prioritised distribution of generated jobs to
different distributed components that are responsible for executing the jobs.
Moreover, the dispatcher is responsible for sending the job results delivered from
those components back to the job-generator engine. This component implements the
RULE-BASED DISPATCHER.

- Activity Execution Engine – is responsible for executing generated jobs that represent
activity implementations related to business services integration. This component
implements the MICROFLOW ENGINE and the MICROFLOW EXECUTION SERVICE
patterns.

- Business Service Interface Repository – offers standardised interfaces to integrated business
services. This component implements the CONFIGURABLE ADAPTER REPOSITORY and
the CONFIGURABLE ADAPTER patterns. The actual services have been designed
according to the BUSINESS-DRIVEN SERVICE pattern.

The integration mechanism for the MQ Workflow will be the UPES concept. All four
architectural components realize the UPES implementation in the context of MQ workflow.

Figure 29 : Process based business services integration overview

Job Generator
Engine

Job Generator
Engine

Job
Dispatcher

Engine

Job
Dispatcher

Engine

Activity Execution
Engine

Activity Execution
Engine

Generator AGenerator A

Generator BGenerator B

Generator CGenerator C

Activity
Impl. 1

Activity
Impl. 1

Activity
Impl. 2

Activity
Impl. 2

Activity
Impl. 3

Activity
Impl. 3

Activity
Impl. 4

Activity
Impl. 4

Activity
Impl. 5

Activity
Impl. 5

Business
Service

Interfaces

Business
Service

Interfaces

Service
Impl.

Service
Impl.

UPES A

UPES B

UPES C

Service
Interface 1
Service

Interface 1

Service
Interface 2
Service

Interface 2

Service
Interface 3
Service

Interface 3

The components are connected via asynchronous messaging mechanisms. However, as far as
business services invocation and integration is concerned, the architecture considers both,
synchronous and asynchronous business services. In order for the architecture to be scalable and
flexible, there will be a one-to-many relationship between all five components (the four service
integration components plus MQ Workflow).

Job Generator Engine

Job Dispatcher Engine

Activity Execution Engine

Business Service Interface Repository

Process Engine (MQ Workflow)
1..*

1

1

1..*

1

1..*

1..*

1

Figure 30: Relationships of components

The Job Generator Engine

The UPES mechanism realizes among other things the ASYNCHRONOUS COMPLETION TOKEN
[Schmidt et al. 2000] pattern. The CORRELATION IDENTIFIER [Hohpe et al. 2003] pattern
describes basically the same concept in the asynchronous messaging context. The MQ Workflow
specific Activity Implementation Correlation ID, which is an element of all exchanged UPES
XML messages, is the completion token that is used to correlate a return message back to an
activity instance. Moreover, the completion token is used to connect all architectural
components, i.e. Job Generator Engine, Job Dispatcher Engine, Activity Execution Engine, and
the Business Service Interface Repository (only in case of asynchronous business services), as the
tokens will be passed from one component to the next one and will also be returned back until
they arrive again at the process engine.

A UPES is basically just a message queue definition from the point of view of MQ Workflow.
An activity instance will send a request message to that message queue, and the message can thus
be processed by an external component. The return message will be sent by that external
component to a defined input queue. MQ Workflow takes the messages out of that input queue
and relates the return message back to an activity instance by the Activity Implementation
Correlation ID. That is, the completion token and the process flow can carry on to the next
activity, as defined by the process model.

The Job Generator Engine is the backend interface to the process engine (MQ Workflow) and
thus implements the PROCESS INTEGRATION ADAPTER and MACROFLOW INTEGRATION
SERVICE patterns. The task of the Job Generator Engine is to decouple the message format of
the process engine from a standardised message format used for job definitions. Thus, an
incoming request in a UPES queue will be transformed into a standardised job definition message
format and will be forwarded to a Job Dispatcher Engine, representing a RULE-BASED
DISPATCHER, which is responsible for further processing the jobs. For this reason, the Job
Generator Engine decouples the product specific process integration logic from job-based

integration logic. The Job Generator Engine contains a set of Job Generators, implementing
MACROFLOW INTEGRATION SERVICES, being based on an MQ Workflow PROCESS
INTEGRATION ADAPTER, which listen to input queues (UPES). The job generators are
responsible for taking the messages out of the queues, transforming them into the job definition
format, completing the message with some additional information, and forwarding the jobs to the
dispatcher.

Thus, parallel processing of messages in different queues is possible. If a job has been
processed, the result will be reported back to the Job Generator by the Job Dispatcher Engine in
a corresponding job-result queue. The Job Generator will transform the job-result into a return
message for the process engine and will put the message in the input queue of the process engine.
Eventually, each Job Generator listens to two queues and writes to two other queues. The
following UML model illustrates the structure of the Job Generator Engine.

+get() : String
+put(in request : String)

«interface»
JobGeneratorInputQueue

+put(in reply : String)
+get() : String

«interface»
ProcessEngineInputQueue

ConcreteJobGenerator

-listens

1

1

«completion token»-sends

1..*

1

«completion token»

+get() : String
+put(in jobResult : String)

«interface»
JobGeneratorReplyQueue

+put(in job : String)
+get() : String

«interface»
JobDispatcherQueue

ConcreteJobGeneratorEngine

-sends

1..*

1
«completion token»

-listens

1
1

«completion token»

-contains1

0..*

JobGeneratorConfigurator

1

-configures 1

job generator
calls put() only

job generator
calls get() only

job generator
calls get() only

job generator
calls put() only

+getGeneratorID() : String
#requestToJob(in request : String) : String
#jobResultToReply(in jobResult : String) : String

-generatorID : String
JobGenerator

+init()
+finalise()
+suspend()
+resume()
+info() : String
+isActive() : Boolean

«interface»
ConfigurableComponent

+add(in generator : JobGenerator)
+get(in generatorID : String) : JobGenerator
+remove(in generatorID : String)

«interface»
JobGeneratorEngine

MQ Workflow UPES Queue

MQ Workflow Input Queue

Figure 31: Job generator engine

Basically, the Job Generator Engine is a repository of Job Generators. Once a Job Generator

is started by calling its init method, it will start to listen to queues and thus to process the
incoming messages. The forward and backward transformation of messages will be implemented
by a Concrete Job Generator in the methods requestToJob (forward transformation into the job
definition format) and jobResultToReply (backward transformation from job definition format to

UPES XML format). Most of the development projects that have used this architectural
framework implementation within the overall programme have used XML definitions and
corresponding messages for the job definition format. The following sequence diagrams illustrate
the forward and backward transformation of messages.

 : ::JobGenerator : ::JobGeneratorInputQueue : ::JobDispatcherQueue

get()

requestToJob(request:String)

put(job:String)

 Figure 32: Request forward transformation into job definition format

 : ::JobGenerator : ::JobGeneratorReplyQueue : ::ProcessEngineInputQueue

get()

jobResultToReply(jobResult:String)

put(reply:String)

Figure 33: Job result backward transformation into a reply

The get operation, the message transformation, and the put operation must be understood as
one transaction. As far as this aspect is concerned, WebSphere MQ (MQ Series) can be used as
the transaction coordinator. Thus, transaction security is ensured via WebSphere MQ.

The Job Dispatcher Engine

To dispatch and finally execute a job, the job definition must at least contain two additional
pieces of information (compared to the original request from the process engine) that must be
added by the Job Generator: the Activity Execution Engine that is responsible for processing the
job and the Activity Implementation that actually executes the job within the Activity Execution
Engine. The Job Generator will add this information to the job definition by putting the input
queue name of the corresponding Activity Execution Engine that implements a MICROFLOW
ENGINE, and the identifier of the Activity Implementation into the job definition message. The

Job Dispatcher Engine represents a RULE-BASED DISPATCHER and will thus simply read the jobs
from the input queue and forward them to the Activity Execution Engine that is defined in the
job. Additionally, the dispatcher will add the name of its reply queue to the job definition before
forwarding the message.

If an Activity Execution Engine has finished execution of a job, it will send a job-result
message back to the dispatcher. The reply queue of the dispatcher has previously been
dynamically added to the job definition by the dispatcher. The dispatcher will take that response
message and forward the reply to the Job Generator that is defined in the job definition.

+get() : String
+put(in jobResult : String)

«interface»
JobGeneratorReplyQueue

+put(in job : String)
+get() : String

«interface»
JobDispatcherQueue

JobDispatcherEngine

-listens

1
1

«completion token»

-sends

1

1..*

«completion token»

+put(in job : String)
+get() : String

«interface»
ActivityExecutionQueue

Administration Client

1

1

-sends

1

1..*
«completion token»

+put(in jobResult : String)
+get() : String

«interface»
DispatcherReplyQueue

-listens

1 1

«completion token»

calls
put()
only

calls
get()
only

calls
get()
only

calls
put()
only

+init()
+finalise()
+suspend()
+resume()
+info() : String

«interface»
JobDispatcherEngine

Figure 34: Job dispatcher engine

The following sequence diagrams illustrate how the Job Dispatcher Engine distributes the jobs
to different Activity Execution Engines and how the job-results are re-dispatched back to the Job
Generator Engine. Obviously, the basic functionality is principally very similar to the Job
Generator Engine. Analogous to the Job Generator Engine, the interdependent get and put
operations are implemented as transactions.

 : ::JobDispatcherEngine : ::JobDispatcherQueue : ::ActivityExecutionQueue

get()

put(job:String)

Figure 35: Forwarding a job

 : ::JobDispatcherEngine : ::DispatcherReplyQueue : ::JobGeneratorReplyQueue

get()

put(jobResult:String)

Figure 36: Forwarding a job-result back

The Activity Execution Engine

The Activity Execution Engine implements a MICROFLOW ENGINE and is responsible for
executing and managing activity implementations, i.e. business logic that is related to automatic
activities in business process models. Thus, a concrete Activity Implementation that actually
represents a MICROFLOW EXECUTION SERVICE will call business services and will set the process
control data as specified by the process logic (the referenced process-activity), depending on the
results of the service calls. The results of the called business services will be reported back to the
process instance via the process control data that will be sent in the job-result. This reporting
procedure of the job-result goes backwards via the Job Dispatcher Engine, to the Job Generator
Engine, and finally to the process engine (MQ Workflow). Thus job-results move backwards the
same path that they have arrived at an Activity Execution Engine but they move in reverse order.

An Activity Execution Engine has an input queue where the jobs are delivered to be executed
by the engine. The engine then retrieves the Activity Implementation that is associated to the job
from a repository (the job definition contains the identifier of the Activity Implementation).
Once an Activity Implementation is retrieved from the repository, the input data that are also
included in the job definition will be passed to the Activity Implementation. Ultimately, the
Activity Implementation will be executed and its execution will be controlled. If an Activity
Implementation has finished execution of a job, the job-result that is delivered as output by an
Activity Implementation will be put in the reply queue of the corresponding dispatcher engine
(the queue identifier is also included in the job definition). Conclusively, many Activity

Implementations will be executed in parallel by the Activity Execution Engine. For this reason,
an Activity Implementation is executable as a thread in the Activity Execution Engine.

A concrete Activity Implementation will invoke certain business services. It might be
necessary to access business objects associated to the process instance in order to do this, as
those objects may provide the necessary data for invoking a service, e.g. customer details like
name, address, account numbers, etc. As an Activity Implementation has received the process
control data as input, it will have access to references of the corresponding business objects of
the process instance.

The implementations of interfaces to business services will be kept in repositories in order to
decouple them from the Activity Execution Engine. A concrete Activity Implementation will
thus get access to the required business service interfaces via access to a Business Service
Interface Repository.

+put(in job : String)
+get() : String

«interface»
ActivityExecutionQueue

+put(in jobResult : String)
+get() : String

«interface»
DispatcherReplyQueue

ConcreteActivityExecutionEngine

-contains 1
0..*

1

-listens1«completion token»

+add(in ai : ActivityImplementation)
+remove(in id : String)
+get(in id : String) : ActivityImplementation

ActivityImplementationRepository

+init()
+finalise()
+suspend()
+resume()
+info() : String
+isActive() : Boolean

«interface»
ConfigurableComponent

#getServiceInterface(in serviceID : String) : BusinessServiceInterface
+setArguments(in arguments : String[])
+getId() : String
+clone() : ActivityImplementation
+asyncResult(in executionResult : String)
+getReplyInfo() : String
+getJobResult() : String

-id : String
-arguments : String[]

«thread»
ActivityImplementation

-sends

1..*

1

«completion token» -executes

0..1
0..*

1

1

get activity implementation

ConcreteActivityImplementation

ConfigurationClient

AdministrationClient

1
1

1

1

+put(in serviceResult : String)
+get() : String

«interface»
ActivityExecutionReplyQueue

-listens

1

1

«completion token»

calls
get()
only

calls
get()
only

calls
put()
only

0..*

1

BSInterfaceRepositoryFinder

BusinessServiceInterface

BusinessObjectInterface

1

1

business objects

public ActivityImplementation get(String id) {
 //find ActivityImplementation by id
 ActivityImplementation impl = find_by_id(id);
 return impl.clone();
}

#createArguments(in job : String) : String[]
#startThread(in ai : ActivityImplementation)
+init()
+suspend()
+resume()
+finalise()
+info() : String

ActivityExecutionEngine

Figure 37: Activity execution engine

A concrete ActvitiyExecutionEngine will get the jobs from the ActivityExecutionQueue by calling its
get method. As already mentioned, the job definition contains the ActivityImplementation identifier
for executing the job. Therefore, the engine will retrieve the appropriate ActivityImplementation
from the ActivityImplementationRepository by calling the get method of the repository and by passing
the ID of the ActivityImplementation as a parameter of the method call. As illustrated in the
diagram, this get method will search for the ActivityImplementation object and will return a clone of
the object in the repository. By using this technique, it is easily possible to execute several
instances of the same ActivityImplementation and to configure objects in the repository in parallel.

The ActivityExecutionEngine will generate the arguments for executing the ActivityImplementation
from the job definition by calling its createArguments method. Thereafter, the engine will call the
getReplyInfo method in order to determine whether the ActivityImplementation will receive
asynchronous results from business services. The string delivered by getReplyInfo provides
information how many asynchronous results are expected, as an ActivityImplementation may invoke
several asynchronous service calls.

In order to set the input data for the ActivityImplementation, the method setArguments will be
called with the previously generated arguments. Finally, the ActivityExecutionEngine will start the
ActivityImplementation as a thread within the engine by calling its startThread method.
Asynchronous replies from Business Service Interfaces will be collected by the engine from the
ActivityExecutionReplyQueue. The following sequence diagram illustrates the process of initialising
and starting an ActivityImplementation.

 : ::ActivityExecutionEngine : ::ActivityExecutionQueue

get()

 : ::ActivityImplementationReposi
tory

get(id:String)

«thread»
 : ::ActivityImplementation

clone()

createArguments(job:String)

getReplyInfo()

setArguments(arguments:String[])

startThread(ai:ActivityImplementation)

Figure 38: Initialising an activity implementation

After an ActivityImplementation has been initialised and started, the subsequent flow of method
calls depends whether there are asynchronous replies from business services or not. Ultimately,
the engine will collect the job-result from the thread by calling the getJobResult method after the
thread has finished. The following sequence diagram illustrates the message flow.

 : ::ActivityExecutionEngine
«thread»

 : ::ActivityImplementation : ::DispatcherReplyQueue

getJobResult()

put(jobResult:String)

 Figure 39: Informing the job dispatcher engine about a job-result

If there are asynchronous replies from business services, the ActivityExecutionEngine will be
responsible for collecting those results and informing the corresponding ActivityImplementation
thread that a service result has arrived. The ActivityImplementation is responsible for incorporating
that service result in the overall job-result. The relationship between an ActivityImplementation
instance and an asynchronous reply from a business service is achieved by the completion token,
which will be part of the service’s reply message. Those reply messages are delivered in the
ActivityExecutionReplyQueue. In case of asynchronous replies, the ActivityExecutionEngine must
consequently manage these relationships and inform the appropriate thread about an incoming
result.

-findExpectedResponse(in completionToken : String) : ExpectedAsynchronousResponse
ConcreteActivityExecutionEngine

+getToken() : String
+getActivityImpl() : ActivityImplementation
+decrement()

-expectedResponses : int
-completionToken : String

ExpectedAsynchronousResponse

«thread»
ActivityImplementation

0..1 1

-manages1

0..*

public void decrement() {
 if(expectedResponses > 0) {
 expectedResponses = expectedResponses - 1;
 }
}

Figure 40: Managing asynchronous responses

Apart from the relationships between completion tokens and ActivityImplementation instances,
the engine has to remember how many asynchronous responses are expected. This information
has been obtained from the getReplyInfo method of the ActivityImplementation instance.
Conclusively, it is possible to manage those incoming responses by keeping the relationships of

the completion tokens, the number of expected responses, and the corresponding
ActivityImplementation instances in a list. An ActivityImplementation can eventually be informed about
a service result by calling its asyncResult method. Finally, the decrement method must be called in
order to register the service result as accepted. The following sequence diagram illustrates the
flow of method calls.

 : ::ConcreteActivityExecutionEng
ine : ::ExpectedAsynchronousResponse

«thread»
 : ::ActivityImplementation

get()

 : ::ActivityExecutionReplyQueue

findExpectedResponse(completionToken:String)

the completion token will
be part of the service result

message

getActivityImpl()

asyncResult(executionResult:String)

decrement()

Figure 41: Informing an activity about an asynchronous service result

The necessary initialisation of an ActivityImplementation, i.e. retrieving the required Business
Service Integration Interfaces from the Business Service Interface Repository and creating a
BusinessObjectInterface object is implemented in the init method of the ActivityImplementation. The
Business Service Interface Repository will be accessed via a repository finder.

The Business Services Interface Repository

The Business Services Interface Repository component is a CONFIGURABLE ADAPTER
REPOSITORY of standardised interface implementations realizing CONFIGURABLE ADAPTERS to
various synchronous and asynchronous BUSINESS-DRIVEN SERVICES. The repository will be
accessed via a repository finder as the location of the repository might change.

In principle, a Business Service Interface represents a CONFIGURABLE ADAPTER to a
BUSINESS-DRIVEN SERVICE and just declares a standardised invoke method for a service. A
concrete implementation of this interface will actually integrate the business service. If the service
is asynchronous the reply will be sent to a defined reply queue, which will be read by the
corresponding Activity Execution Engine. The name of the reply queue can be passed as a
parameter of the invoke method. If a Business Service Interface shall be retrieved from the
repository, the repository will return a clone of the interface.

+init()
+finalise()
+suspend()
+resume()
+info() : String
+isActive() : Boolean

«interface»
ConfigurableComponent

#sendAsynchronousResult(in serviceResult : String)
+getServiceId() : String
+isSynchronous() : Boolean
+invoke(in params : String[]) : String
+clone() : BusinessServiceInterface

-serviceID : String
-replyQueue : String

BusinessServiceInterface

+put(in serviceResult : String)
+get() : String

«interface»
ActivityExecutionReplyQueue

1

-sends

1

«completion token»

ConcreteServiceInterface

ConcreteBusinessServiceInterfaceRepository

-contains1

0..*

ConfiguratorClient

1

1

+add(in bsi : BusinessServiceInterface)
+get(in serviceID : String) : BusinessServiceInterface
+remove(in serviceID : String)

«interface»
BusinessServiceInterfaceRepository

calls put()
in case of an
asynchronous

service

+find() : BusinessServiceInterfaceRepository
BSInterfaceRepositoryFinder

BusinessServiceImplementation

1..*

-invokes

0..*

public BusinessServiceInterface get(String serviceID) {
 //find BusinessServiceInterface by serviceID
 BusinessServiceInterface bsi = find_by_id(serviceID);
 return bsi.clone();
}

Figure 42: Business service interface repository

The class BSInterfaceRepositoryFinder implements a repository finder. Furthermore, the abstract
class BusinessServiceInterface declares the standard interface for business services including the invoke
method. If the service interface is synchronous, then the invoke method will deliver the service
result. If the service interface is asynchronous, the concrete implementation of the Business
Service Interface will put the service result in the ActivityExecutionReplyQueue. In order to achieve
this, the concrete interface implementation generates an internal thread to capture the
asynchronous service result and forward it to the ActivityExecutionReplyQueue.

Conclusion

In this paper we have documented the fundamental patterns needed for an architecture that
composes and orchestrates services at the process level. The individual patterns can be used on
their own to address certain concerns in a process-driven SOA design, but the general
architecture following the PROCESS-BASED INTEGRATION ARCHITECTURE pattern – in first place
– aims at larger architectures. The pattern language as a whole focuses on separating business
concerns cleanly from technical concerns, in macroflows and microflows. All integration
concerns are handled via services, and macroflows and microflows are used for flexible
composition and orchestration of the services.

Acknowledgements

We like to thank Andy Longshaw, our EuroPLoP 2006 shepherd, for his useful comments.
We also like to thank the participants of the EuroPLoP 2006 writers’ workshop for their
valuable feedback.

References

[Active Endpoints 2007] Active Endpoints. ActiveBPEL Open Source Engine. http://www.active-

endpoints.com/active-bpel-engine-overview.htm, 2007.

[Arsanjani 2004] A. Arsanjani. Service-oriented modeling and architecture - How to identify, specify,
and realize services for your SOA. IBM developerWorks http://www-
128.ibm.com/developerworks/webservices/library/ws-soa-design1/ , Nov. 2004.

[Barry 2003] D. K. Barry. Web Services and Service-oriented Architectures, Morgan Kaufmann
Publishers, 2003

[BOC 2007] BOC GmbH. ADONIS integration with Oracle BPEL Process Management.
http://boc-eu.com/documents/events/bpel_en.pdf, 2007.

[Channabasavaiah 2003 et al.] K. Channabasavaiah, K. Holley, and E.M. Tuggle. Migrating to Service-oriented
architecture – part 1, http://www-106.ibm.com/developerworks/webservices/
library/ws-migratesoa/, IBM developerWorks, 2003

[Emmerich 2000] W. Emmerich. Engineering Distributed Objects. Wiley & Sons, 2000.

[Gamma et al. 1994] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1994.

[GFT 2007] GFT. GFT Inspire Business Process Management. http://www.gft.com/
gft_international/en/gft_international/Leistungen_Produkte/Software/Business_Pr
ocess_Managementsoftware.html, 2007.

[Hentrich 2004] C. Hentrich. Six patterns for process-driven architectures. In Proceedings of the 9th
Conference on Pattern Languages of Programs (EuroPLoP 2004), 2004.

[Hohpe et al. 2003] G. Hohpe and B. Woolf. Enterprise Integration Patterns. Addison-Wesley, 2003.

[IDS 2006] IDS Scheer. Aris Platform. http://www.ids-scheer.de/germany/products/53956,
2006.

[iWay 2007a] iWay Software. iWay Adapter Technologies. http://www.iwaysoftware.jp/
products/integrationsolution/adapter_manager.html, 2007.

[iWay 2007b] iWay Software. iWay Adapter Manager Technology Brief. http://
www.iwaysoftware.jp/products/integrationsolution/adapter_manager.html, 2007.

[JBoss 2007] JBoss. JBoss jBPM. http://www.jboss.com/products/jbpm, 2007.

[Mule 2007] Mule Project. Mule open source ESB (Enterprise Service Bus) and integration
platform. http://mule.mulesource.org/, 2007.

[Schmidt et al. 2000] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Patterns for Concurrent and
Distributed Objects. Pattern-Oriented Software Architecture. J.Wiley and Sons Ltd.,
2000.

[ServiceMix 2007] Apache ServiceMix Project. Apache ServiceMix. http://www.servicemix.org/, 2007.

[webMethods 2007] webMethods. webMethods Fabric 7. http://www.webmethods.com/products/fabric,
2007

[Zdun et al. 2006] U. Zdun, C. Hentrich, and W.M.P. van der Aalst. A Survey of Patterns for Service-
Oriented Architectures, Internet Protocol Technology, Inderscience, 2006.

Appendix: Overview of Referenced Related Patterns

There are several important related patterns referenced in this paper, which are described in other
papers, as indicated by the corresponding references in the text. Table 2 gives a brief introduction
to them in form of thumbnails of these patterns. For detailed descriptions of these patterns
please refer to the referenced articles.

Pattern Problem Solution

GENERIC PROCESS
CONTROL STRUCTURE

[Hentrich 2004]

How can data inconsistencies be
avoided in long running process
instances in the context of dynamic sub-
process instantiation?

Use a generic process control data
structure that is only subject to semantic
change but not structural change.

BUSINESS OBJECT
REFERENCE

[Hentrich 2004]

How can the management of business
objects be achieved in a business
process, as far as concurrent access and
changes to these business objects is
concerned?

Only store references to business objects
in the process control data structure and
keep the actual business objects in an
external container.

ENTERPRISE SERVICE BUS

[Zdun et al. 2006]

How is it possible in a large business
architecture to integrate various
applications and backends in a
comprehensive, flexible, and consistent
way?

Unify the access to applications and
backends using services and service
adapters, and use message-oriented,
event-driven communication between
these services to enable flexible
integration.

CORRELATION IDENTIFIER

[Hohpe et al. 2003]

How does a requestor that has received
a response know to which original
request the response is referring?

Each response message should contain a
CORRELATION IDENTIFIER, a unique
identifier that indicates which request
message this response is for.

CANONICAL DATA MODEL

[Hohpe et al. 2003]

How to minimize dependencies when
integrating applications that use
different data formats?

Design a CANONICAL DATA MODEL that
is independent from any specific
application. Require each application to
produce and consume messages in this
common format.

COMPONENT
CONFIGURATOR

[Schmidt et al. 2000]

How to allow an application to link and
unlink its component implementations
at runtime without having to modify,
recompile, or relink the application
statically?

Use COMPONENT CONFIGURATORS as
central components for reifying the
runtime dependencies of configurable
components. These configurable
components offer an interface to change
their configuration at runtime.

Table 2: Thumbnails of referenced patterns

