

 Internet Protocol Technology , Vol. x, No. x, xxxx 1

 Copyright © 2005 Inderscience Enterprises Ltd.

A Survey of Patterns for Service-Oriented
Architectures

Uwe Zdun
New Media Lab, Department of Information Systems
Vienna University of Economics and Business Administration
Augasse 2-6
1090 Vienna, Austria
e-Mail: zdun@acm.org

Carsten Hentrich
SerCon GmbH - IBM Business Consulting Services
c/o IBM Deutschland GmbH
Hechtsheimer Str. 2
55131 Mainz, Germany
e-Mail: chentric@de.ibm.com

Wil M.P. van der Aalst
Department of Information Systems
Faculty of Technology and Management
Eindhoven University of Technology
PO Box 513, NL-5600 MB Eindhoven, The Netherlands
e-Mail: w.m.p.v.d.aalst@tm.tue.nl

Abstract: Service-Oriented Architectures (SOA) are a promising means to
integrate heterogeneous systems, but virtually no technology -neutral approach
to holistically understand SOAs exists. We tackle this problem by introducing a
survey of technology -independent patterns that are relevant for SOAs, and are
working towards a formalised pattern-based reference architecture model to
describe SOA concepts.

Keywords: Patterns, Pattern Languages, SOA, Service-Oriented Architecture,
Reference Architecture

References to this paper should be made as follows: Zdun, U. and Hentrich, C.
and van der Aalst, W.M.P. (2005) ‘A Survey of Patterns for Service-Oriented
Architectures’, Internet Protocol Technology, Vol x, No x, pp.x—x

Biographical notes: Uwe Zdun is working currently as an assistant professor
in the Department of Information Systems at the Vienna University of
Economics and Business Administration. He received his Doctoral degree from
the University of Essen in 2002. His research interests include software
patterns, software architecture, scripting, object-orientation, AOP, and Web
engineering. Uwe has published in numerous conferences and journals, and is
co-author of Wiley’s Remoting Patterns book. He has participated in a number
of R. & D. projects and industrial projects. Uwe is (co-)author of the object-

 Uwe Zdun, Carsten Hentrich, Wil van der Aalst

oriented scripting language Extended Object Tcl (XOTcl), the Web object
system ActiWeb, and many other software systems. He acts as a reviewer in
journals and conferences. He has co-organized a number of workshops at
conferences such as EuroPLoP, CHI, and OOPSLA. Uwe serves as conference
chair for EuroPLoP 2005.

Carsten Hentrich is a senior consultant at the IBM IT consulting subsidiary
SerCon in Germany. He has seven years of professional management
consulting experience as a business consultant and software architect,
especially in the fields of business process management and workflow
management. He holds an MSc with Distinction in Software Engineering from
Oxford University and a degree in Computer Science from the University of
Applied Sciences in Wiesbaden, Germany. He is currently undertaking extra
occupational doctoral research on a part-time basis at Eindhoven University of
Technology.

Wil van der Aalst is a (full) professor at the Information Systems (IS)
department of the Faculty of Technology Management (TM) of Eindhoven
University of Technology (EUT). He is also an (adjoint) professor at the Centre
for Information Technology Innovation (CITI) of Queensland University of
Technology (QUT). His research and teaching interests include information
systems, workflow management, Petri nets, specification languages, and
simulation. Since March 2000, he is head of the IS department. Before he was
head of the Specification and Modeling of Information systems (SMIS)
research group of the Computing Science department of EUT.

1. Introduction
This paper aims at providing an architectural framework for Service-Oriented

Architectures (SOA) in form of a survey of patterns relevant for building SOAs. Though
built on similar principles, SOA is not the same as Web services, which indicates a
collection of technologies, such as SOAP and XML. SOA is more than a set of
technologies and runs independent of any specific technologies. A service-oriented
architecture is essentially a collection of services that are able to communicate with each
other [4]. Each service is the endpoint of a connection, which can be used to access the
service and interconnect different services. Communication among services can involve
only simple invocations and data passing, or complex coordinated activities of two or
more services. In this sense, service-oriented architectures are nothing new.

However, SOAs are not well-defined at the moment and there is not much
architectural guidance how to design a SOA – many definitions and guides are focused
on concrete technologies, not on the essential elements of the architecture. To overcome
this problem, we propose a reference architecture based on software patterns. Software
patterns provide reusable solutions to recurring design problems in a specific context [2,
8]. In this paper, we use software patterns because they abstract from concrete,
technology-dependent solutions and they provide timeless, proven solutions. The goal of
our pattern survey is to help in understanding the principles, key constituents, and key
structures of a SOA, apart from any concrete technology.

 A Survey of Patterns for Service-Oriented Architectures

We use the pattern-based approach to enable a broad, platform-independent view on
SOAs that still contains all relevant details about the technical realization alternatives.
The main contribution of this paper is to provide a holistic, architectural approach to
guide the design of SOAs.

To reach these goals we adapt software patterns from different sources that were
described originally in a number of different domains, such as remoting [32], messaging
[15], resource management [17], networked and concurrent objects [27], software
architecture [5], component integration [35], object-oriented design [13], e-business [1],
process-driven architectures [14], business objects [12], and workflow systems [31]. A
major contribution of our work is the domain-specific combination of these patterns – in
the SOA domain. We explain these patterns very briefly, where they appear first. For full
pattern descriptions please refer to the original pattern descriptions that are referenced.

2. Basic Service Architecture
The basic concept of a service-oriented architecture (SOA) is quite trivial: a service is

offered using a remote interface that employs some kind of well-defined INTERFACE
DESCRIPTION1 [32]. The INTERFACE DESCRIPTION contains all interface details about
the service (i.e. the operation signatures and how these operations can be accessed
remotely). The service advertises itself at a central service, the lookup service.
Applications can therefore look up the advertised services by name or properties to find
details of how to interact with the service.

Lookup

Service Directory

Service Client

Service Provider

find service and
lookup service details

invoke service

publish service

Client Application

Server Application Backends

access "real" service
implementation

BackendsBackends

Figure 1: Lookup of services in a SOA
Figure 1 illustrates this basic architecture. A service provider offers a service to

service clients. Often the service is not realized fully by the service provider
implementation, but also by a number of backends, such as server applications (other
SOAs or middleware-based systems such as CORBA or RMI systems), ERP systems,
databases, legacy systems, and so forth. Flexible integration of heterogeneous backend
systems is a central goal of a SOA. Even though the use of backend systems is of course
optional, it is an important characteristic of SOAs.

A central role in this architecture plays the pattern LOOKUP [17, 32]: services are
published in a service directory, and clients can lookup services. Developers usually
assign logical OBJECT IDS [32] to services to identify them. Because OBJECT IDS are
valid only in the context of a specific server application, however, services in different
server applications might have the same OBJECT ID. An ABSOLUTE OBJECT

1 Note that we write pattern names in SMALLCAPS font.

 Uwe Zdun, Carsten Hentrich, Wil van der Aalst

REFERENCE [32] solves this problem by extending OBJECT IDS to include location
information, such as host name and port.

The LOOKUP pattern can be used to lookup the ABSOLUTE OBJECT REFERENCES of
a service. This is done by querying for properties (e.g. provided as key/value pairs) of the
service and other details about them, such as the INTERFACE DESCRIPTION of the
service, a location where the INTERFACE DESCRIPTION can be retrieved (downloaded),
or other metadata about the service. Note that the service client is often itself a service
provider, leading to the composition of multiple services.

3. Service Contracts
Central to our understanding of services is the notion that services reflect a contract

between the service provider and service clients. This view is shared by the authors of
other reference models for SOAs [7, 24]. The concept derives from the design-by-
contract concept [19], originally developed for software modules. In essences, service
contracts define the interaction between service client and service provider. The reason
for using the design-by-contract approach is that a service needs to be specified a step
further than simple remote interactions, such as RPC-based invocations in a middleware.
The elements of a service contract include the following information about a service:

• communication protocols

• message types, operations, operation parameters, and exceptions

• message formats, encodings, and payload protocols

• pre- and post-conditions, sequencing requirements, side-effects, etc.

• operational behavior, legal obligations, service-level agreements, etc.

• directory service

Not all of these contract elements can be expressed with today’s Web services

implementations easily. Communication channels and messages are usually described
with INTERFACE DESCRIPTIONS. The INTERFACE DESCRIPTION of a SOA needs to be
more sophisticated than the INTERFACE DESCRIPTIONS of (OO-)RPC distributed object
middleware, however, because it needs to be able to describe a wide variety of message
types, formats, encodings, payload, communication protocols, etc.

LOOKUP plays an important role in a SOA because it is used to locate or obtain the
INTERFACE DESCRIPTION and ABSOLUTE OBJECT REFERENCE of a service. In
addition, some lookup services provide more sophisticated information to describe the
service information that is missing in the INTERFACE DESCRIPTION, such as operational
behaviour, legal obligations, and service-level agreements. In other words, in addition to
the lookup of ABSOLUTE OBJECT REFERENCES, the SOA lookup service might offer
other elements of the service contract.

The SOA can also be extended with custom directories or repositories allowing for
LOOKUP of domain-specific service properties or metadata of services. These might be
accompanied by domain-specific schemas or ontologies, as for instance industry-specific
XML schemas like OFX [22] or MISMO [21]. A service contract is usually realized by a
mixture of explicit and implicit contract specifications. The above described elements are

 A Survey of Patterns for Service-Oriented Architectures

often described as explicit service contract specifications – most often provided in
electronic form. In principle all these elements can also be specified only implicitly or
non-electronically.

This would be very inconvenient for the technical specification elements because it
would be cumbersome, error-prone, and costly, if for instance, the ABSOLUTE OBJECT
REFERENCES would not be retrieved automatically but instead distributed by hand.
Hard-wiring ABSOLUTE OBJECT REFERENCES into a client is also not advisable because
this would contradict the principle of loose-coupling: a service client should be relatively
independent of the location where the service is executed. These technical service
contract elements should therefore be specified in some explicit, electronic form, ideally
accessible at runtime – for instance by using the LOOKUP pattern.

Some other service contract elements, however, are often specified only implicitly or
non-electronically. Examples are the documentation of the services behaviour and its
implied semantics, business agreements, quality of service (QoS) guarantees, legal
obligations, etc. These elements might also be needed in electronic form, when the
service client needs to monitor or verify the contract, or when the service provider needs
to verify or monitor the quality of the service. For instance, the client or server might
observe QoS characteristics of the service (using the pattern QOS OBSERVER [32]), or
check that specific business agreements are not violated. In general, monitoring and
verification can be implemented using INVOCATION INTERCEPTORS [32] or
OBSERVERS [13] for the service interface and adapter (described in the next section).

4. Service interface and adapter
Often a SOA is used within larger client and server applications, and the services are

just used for integration purposes. Then it is advisable to introduce a service interface to
the server application and a service adapter on the client side. Both are separated from the
rest of the application, and encapsulate all communication issues. This way the client and
server applications are isolated from changes in the service contract or the SOA in
general. Figure 2 illustrates this design.

Network

Service Provider

Server
Application

Client
Application

Service
Adapter

Service
Interface

Service Client

Contract

Figure 2: Service interface and adapter
Note that the service interface and adapter encapsulate service contracts described

before. The service adapter can be realized using the PROXY pattern [13, 5], which
generally describes how to realize a placeholder for an object or component. In this case
the service adapter is a remote PROXY to the service interface, which itself wraps the
server application. This wrapping architecture follows the pattern COMPONENT
WRAPPER [35], which generally describes how to integrate different kinds of
components.

 Uwe Zdun, Carsten Hentrich, Wil van der Aalst

An important task of the service interface and adapter are synchronization issues.
Services are sometimes message-oriented, sometimes they are RPC-oriented. For
realizing messages, sometimes reliable messaging protocols are used, sometimes
unreliable asynchronous RPC is used. Both client and server applications may have to
support many different service adapters and service interfaces, supporting different
models. Somewhere these different ways to access services need to be synchronized, or
mapped to asynchronous invocation models used in the client and server. On client side,
invocation asynchrony patterns (see [32]) or messaging patterns (see [15]) can be used.
Similarly, the service interface on server side must receive asynchronous messages,
perform the invocation (and perhaps wait synchronously for the result), and then send a
reply message to the client.

5. SOA layers

S
er

vi
ce

 D
es

cr
ip

ti
o

n

Communication Layer

R
em

o
ti

n
g

 L
ay

er

Adaptation Layer

Invocation Layer

Client Application/Service Provider Layer

Service Composition Layer
(Orchestration/Coordination/Federation/BPM)

S
ec

ur
ity

M
an

ag
in

g

Orthogonal Aspects Layers

Request Handling Layer

Figure 3: Client and server SOA layers
Now that we have described the overall architecture, let us take a look inside the

message processing architecture of a SOA. A SOA generally has a highly symmetrical
architecture on client side and server side, as it can (also) be found in many modern
distributed object middleware systems. In a SOA the following LAYERS [5] can be
identified (see also Figure 3):

• Service composition. The top-level layer of a SOA deals with the composition of
services and is optional. At this layer service orchestration, service coordination,
service federation, or business process management (BPM) functionalities are
implemented.

• Client application/service provider. This layer consists of clients that perform
invocations and the actual implementations of the services.

• Remoting. This layer implements the middleware functionalities of a SOA (for
instance a Web services framework). Usually, these details of the client side and the
server side are hidden in a BROKER architecture [5]: a BROKER hides and mediates
all communication between the objects or components of a system. The remoting
layer consists itself of three layers: invocation, adaptation, request handling. Beneath
the application layer, the patterns CLIENT PROXY [32], REQUESTOR [32], and
INVOKER [32] are responsible for marshaling/demarshaling and

 A Survey of Patterns for Service-Oriented Architectures

multiplexing/demultiplexing of invocations/replies. The adaptation layer, often
implemented using the pattern INVOCATION INTERCEPTOR [32], is responsible for
adapting invocations and replies in the message flow. The request handling layer
provides a CLIENT REQUEST HANDLER [32] and SERVER REQUEST HANDLER
[32]. These two patterns are responsible for the basic tasks of establishing
connections and message passing between client and server.

• Communication. The communication layer is responsible for defining the basic
message flow and managing the operating system resources, such as connections,
handles, or threads.

In addition to the basic layers that handle the message flow in a SOA, there are a

number of orthogonal extension tasks that must be implemented across a number of these
layers. Examples of such extensions are: management functionalities for services,
security of services, and the description of services, e.g. in service contracts.

6. Adaptation in the Remoting Layer
A characteristic property of SOAs is that they are highly adaptable in the remoting

layer:

• Possibly different communication protocols and styles must be supported, even at the
same time.

• As depicted in Figure 3 a number of orthogonal tasks might need to be configured
for service, such as management functionalities for services, security of services,
monitoring of service contracts, logging, etc.

• The service might not be implemented by the service object itself, but by a backend.
A heterogeneous set of backends should be supported.

In addition to these requirements, a SOA usually has to be able to be adapted at

runtime. Thus a highly dynamic and flexible architecture is required that supports
respective runtime variation points. Figure 4 shows the main variation points in a SOA’s
remoting layer, corresponding to the variation requirements. These are explained in more
detail in the remainder of this section.

 Uwe Zdun, Carsten Hentrich, Wil van der Aalst

Client Server

Invocation
Interceptor

Service
Client

Network

P
rotocol P

lug-In 1

P
rotocol P

lug-In 2

P
rotocol P

lug-In n
...

Server Request
Handler

P
rotocol P

lug-In 1

P
rotocol P

lug-In 2

P
rotocol P

lug-In n

...

Client Request
Handler

Communication
Protocol

Adaptation

Invocation
InterceptorInvocation
Interceptor

Requestor

Client
Proxy

Invocation
InterceptorInvocation
InterceptorInvocation
Interceptor

Invoker

Service
Provider Backend

Service
Client

Adaptation
Service

Provider
Adaptation

Message
Processing
Adaptation

Figure 4: Main variation points in a SOA’s remoting layer

6.1. Communication Protocol Adaptation
As mentioned above, on the lowest layer, the communication layer, we require a high

flexibility regarding the protocols used, because usually a SOA allows for a number of
communication protocols to be used. These communication protocols might require
different styles of communication, such as synchronous RPC, asynchronous RPC,
messaging, publish/subscribe, and others.

Variation at the communication layer is usually handled via PROTOCOL PLUG-INS
[32]. PROTOCOL PLUG-INS extend the CLIENT REQUEST HANDLER and SERVER
REQUEST HANDLER with support for multiple, exchangeable communication protocols.
They provide a common interface to allow them to be configured from the higher layers.

6.2. Adaptation of Message Processing
There is a distinct adaptation layer in the SOA architecture, shown in Figure 3. This

adaptation layer is often realized by the INVOCATION INTERCEPTOR pattern.
INVOCATION INTERCEPTORS are automatically triggered before and after request and
reply messages pass the INVOKER or REQUESTOR. The interceptor intercepts the
message at these spots and can add services to the invocation.

Adapting the message processing is necessary to handle various control tasks, like
management and logging, or pervasive tasks, like security. These tasks need to be
flexibly configurable. In addition, in a SOA, there might be multiple payload formats
with different marshalling rules. Thus there should be some way to handle these flexibly
as well. This is often done using custom MARSHALLERS [32] configured as
INVOCATION INTERCEPTORS.

Usually, the same INVOCATION INTERCEPTOR architecture can be used on client
and server side. For many tasks, we need to pass additional information between client
and server. For instance, for an authentication interceptor on the server side we require

 A Survey of Patterns for Service-Oriented Architectures

additional information to be supplied by the client side: the security credentials (such as
user name and password). These can be provided by an INVOCATION INTERCEPTOR on
client side. However, how to transport this information from client to server? This is the
task of the pattern INVOCATION CONTEXT [32]: the INVOCATION CONTEXT bundles
contextual information in an extensible data structure that is transferred between client
and remote object with every remote invocation.

6.3. Service provider adaptation
The service provider is the remote object realizing the service. Often the service

provider does not realize the service functionality solely, but instead uses one or more
backends. When a SOA is used for integration tasks, it should support multiple backend
types. The goal of providing support for service provider adaptation in a SOA is that only
the service interfaces are exposed and service internals are hidden from the service client.
This way it is possible to provide integration of any kind of backend with one common
service provider model.

Service provider adaptation needs to be supported by the remote objects realizing the
service, as well as by the INVOKER that is used for invoking them. A common realization
of service provider adaptation is to provide one INVOKER type for each backend type,
and make INVOKERS flexibly exchangeable (e.g. using deployment descriptors).
INVOKERS used in this way realize the pattern COMPONENT WRAPPER [35], which
generally describes how to wrap an external component using a first-class object of the
programming language. Use of COMPONENT WRAPPERS gives the application a central,
white-box access point to the component. Here, the component access can be customized
without interfering with the client or the component implementation. Because all
components are integrated in the same way, a variation point for white-box extension by
component’s clients is provided for each component in a system.

Service providers and INVOKERS need to be tightly integrated with the LIFECYCLE
MANAGER [32], which provides a central place for lifecycle management in the SOA.
This is because it is important that the INVOKER selects the best-suited lifecycle strategy
pattern for the service. Some services might be implemented as STATIC INSTANCES
[32], who live from application startup to its termination. For most systems that access a
backend, however, it advisable to use PER-REQUEST INSTANCES [32], who live only as
long as a single invocation. When session state needs to be maintained between
invocations, CLIENT-DEPENDENT INSTANCES [32] should be used. The CLIENT
DEPENDENT INSTANCE must implement a session model and a LEASING model [17]
compatible with the model of the backend. The LIFECYCLE MANAGER should also
handle resource management tasks, such as POOLING [17] or LAZY ACQUISITION [17].

6.4. Service client adaptation
Service clients should also be adapted, but the goal of service client adaptation is

different than on the server side: here independence of service realization and loose
coupling are important. As explained above, service client adaptation is mainly reached
by LOOKUP of services and well-defined INTERFACE DESCRIPTIONS. Other aspects of
service client adaptation are the flexible (e.g. on-the-fly) generation of CLIENT PROXIES
or the direct use of REQUESTORS to construct invocations on-the-fly. Finally the client
must be adapted to how the result is sent back (if there is any). Here, usually synchronous
blocking, or one of the client invocation asynchrony patterns, described in [32], is used.

 Uwe Zdun, Carsten Hentrich, Wil van der Aalst

(these are: FIRE AND FORGET , SYNC WITH SERVER, POLL OBJECT , and RESULT
CALLBACK).

7. SOA and Business Processes
If we leverage the idea of a SOA and introduce the decoupling of process control

logic by a service orchestration layer, we will end up with a process-driven concept for
SOA. In fact, decoupling process logic implies another level of organizational flexibility.
Actually, this is the very point where the perspectives of technical architecture and
organizational architecture tend to merge via the process paradigm. From a business
perspective, Process Engineering aims at optimizing the business processes of an
organization. It is changes to those business processes that need to be implemented
quickly, in order to cope with a dynamic business environment. The latest definitions of
the term Business Process Management (BPM) illustrate that workflow technology has
become an important conceptual artefact that brings the formerly separate worlds of
organizational and technical design into an interdependent context [23]. Conceptually,
Business Process Management implies, on a technical level, the design of technological
platforms that allow organizational flexibility.

The business demand of such platforms has been identified by the management
sciences as well [26]. The design of these platforms is already strongly demanded by
many industries, as the time to react on organizational change requirements is becoming
shorter and shorter. The IT of an organization is the key enabling factor, as far as this
aspect is concerned, because organizationally inflexible technology implies cost intense
implementation of organizational changes. As many enterprises are shifting to process-
oriented organizations, IT platforms have to consider this process approach conceptually.
It can be expected that process-orientation and its effects become even more important in
the future, because organizations will build flexible process-driven networks that form
virtual companies via process-oriented technology [18]. For this reason, it is important to
address the link between business processes and SOA.

7.1. A High-Level Pattern Perspective
At the most abstract pattern perspective, there are several important patterns that

follow a process-oriented approach. Those patterns can be identified as the MANAGED
COLLABORATION, MANAGED PUBLIC PROCESSES, MANAGED PUBLIC AND
PRIVATE PROCESSES, and EXPOSED BUSINESS SERVICES [1]. Mapped to SOA these
patterns address variations of service orchestration within an enterprise or across
enterprise boundaries. However, they represent design guidelines at a high level where
principle collaborative decisions are made at the business level – these patterns help on
the actual decision what collaborative patterns are appropriate for a certain business
problem and thus help finding appropriate patterns of service collaboration.

Concerning integration of SOA and business processes there are several important
integration patterns, such as ROUTER, BROKER, and MANAGED PROCESS [1]. These are
general patterns that are, in combination, suitable for bridging the two views of SOA and
business processes. The following sections will elaborate on this in more detail.

 A Survey of Patterns for Service-Oriented Architectures

7.2. Integrating Services and Processes
Fundamentally, a process-aware information system can be shaped by five

perspectives: data (or information), resource (or organization), control flow (or process),
task (or function), and operation (or application) [34, 16]. This view can be mapped to
the SOA approach: services are a specialization of the general operation perspective. The
process control flow orchestrates the services via different process steps, the tasks. The
operations executed by tasks in a control flow correspond to service invocations. The
following paragraphs will illustrate how these perspectives need to be addressed at the
Service Composition Layer in a SOA.

As far as the data perspective is concerned, it is necessary to distinguish between
process control data and the business objects that are transformed via the process flow.
An example of such a business object could be a customer order that is being processed
via a process flow. The actual processing of that order is controlled by control data that
depicts the routing rules, for instance. Each process step can be interpreted as a certain
state of the business object. In a SOA this means that service orchestration will also have
to deal with control data and business objects being transformed and passed from one
orchestration step to the next one.

The control flow perspective is captured by a process engine. Generally, today’s
process engines follow two possible paradigms. The traditional paradigm is a strictly
structured process flow that dictates a strict ordering of activities, as implemented by
engines like IBM’s WebSphere MQ Workflow or Staffware. The flexibly structured
paradigm is rather innovative and does not dictate a strict ordering of activities,
exceptions are rather the rule. An example of that approach is the product FLOWer from
Pallas Athena [3].

In order to create the link between an activity of a process and a service, integration
logic is required (represented by a process flow). We classify this type of integration
logic as process integration logic. For this reason, we distinguish between two general
types of process flow: macroflow representing the higher-level business process, and
microflow addressing the process flow within a macroflow activity. The distinction
between micro- and macroflow is a conceptual decision in order to be able to design
process steps at the right level of granularity when designing at the long running business
process level (macroflow) or the short running, more technical level (microflow). This
conceptual decision is thus important for separating the business problems from the more
technical/application problem space.

Concerning the microflow level, the BROKER and ROUTER patterns are important in
order to model communication between a process-step and services at an endpoint at a
technical level. The request for service invocation sent by the process-step must be routed
to the right endpoint, which is done by a BROKER.

Accordingly, in message-oriented communication between a process engine and a
service, various messaging patterns like MESSAGE ROUTER, MESSAGE TRANSLATOR,
and their specializations like CONTENT-BASED ROUTER, DYNAMIC ROUTER,
ENVELOPE WRAPPER, CONTENT ENRICHER are important, to name just a few [15].
Those patterns are used to route requests of service invocations sent by a process-step to
the right endpoint, route the corresponding responses backwards, and perform data
transformation. Figure 5 shows the corresponding meta-model with the roles of services
in a process-aware system.

 Uwe Zdun, Carsten Hentrich, Wil van der Aalst

Macroflow

Data

Resource

Task

Operation

Microflow

uses

Control Data

Business
Object

invokes

fulfilstransforms

Service

invokes

fulfilstransforms

control flow
(strictly or flexibly structured)

Figure 5: Meta-model showing the link between SOA and workflow processes

7.3. Process Service Levels
On the one hand a process flow orchestrates the service invocations, but on the other

hand a business process may be exposed itself as a service. Thus, a process has a well
defined service INTERFACE DESCRIPTION. This applies to the microflow and macroflow
level.

Figure 6 correspondingly illustrates several levels of service invocation, which can be
classified as follows:

• a business process service represents a business process being exposed as a service

• a process integration service depicts process integration logic at the microflow level

• a business application service is a service that is offering functionality of a business
application

The control flow design, both at microflow and macroflow level, usually follows

(some of) the workflow patterns [31, 30, 29]. These workflow patterns address business
requirements related to basic control flow, workflow structure, synchronisation,
branching, cancellation, and multiple instantiation.

Moreover, other control flow patterns apply that can be named as ACTIVITY
INTERRUPT, PROCESS INTERRUPT TRANSITION, and PROCESS BASED ERROR
MANAGEMENT [14]. Those patterns address problems that appear during process
modelling when taking a broader architectural perspective. Managing errors returned by
an invoked service via the process flow is addressed by the PROCESS BASED ERROR
MANAGEMENT pattern. Terminating a process in a controlled way is addressed by the
PROCESS INTERRUPT TRANSITION pattern, and interrupting the processing of an
activity without the loss of data is addressed by the ACTIVITY INTERRUPT pattern.

 A Survey of Patterns for Service-Oriented Architectures

Business Process
Service

Business Process Level
(Macroflow)

invoke

Process Integration Level
(Microflow)

Process
Integration Service

Business Application
Service

invoke

Figure 6: Levels of process service invocation
As previously mentioned, business objects are manipulated via the process steps

which are represented by services. In this context the ENTITY pattern [12] is important,
as those business objects actually represent entities in a REPOSITORY [12], in which the
business objects depict a CANONICAL DATA MODEL [15] for storing process relevant
business data. As many process engines struggle with changes to control data at runtime
the GENERIC PROCESS CONTROL STRUCTURE pattern must be considered [14], which
illustrates the design of a control data structure that is unlikely to change.

Furthermore, business objects can concurrently be modified by different process
instances, and for this reason, BUSINESS OBJECT REFERENCES must be part of the
control data [14]. Those BUSINESS OBJECT REFERENCES are pointers to business
objects in a REPOSITORY and the concrete business objects can thus be accessed
concurrently via these references. Again, these patterns apply to the macroflow and
microflow level.

7.4. Enterprise Service Bus (ESB)
The ENTERPRISE SERVICE BUS is based on a MESSAGE BUS [15] and is an

architectural pattern that integrates concepts of SOA, EAI, and workflow management.
Within this architectural pattern, various components connect to a service bus via their
service interfaces. In order to connect those components to the bus, service ADAPTERS
[13] are necessary. The service bus handles service requests and generally represents a
message-based ROUTER and/or BROKER [1]. Service requests are routed to appropriate
components connected to the bus, where services are invoked. As a result, an ESB can act
as a CONTENT-BASED ROUTER, MESSAGE FILTER, DYNAMIC ROUTER,
AGGREGATOR, or MESSAGE BROKER to name a few message routing patterns [15].

 Uwe Zdun, Carsten Hentrich, Wil van der Aalst

Additionally, message transformation patterns like NORMALIZER, ENVELOPE
WRAPPER, or CONTENT ENRICHER are applied by the bus in order to integrate different
service interfaces. Often a REPOSITORY of business objects is connected to the service
bus.

In some cases the service bus and the microflow engine are implemented by the same
component, e.g. a message integration middleware like IBM’s WebSphere Business
Integration Message Broker or Microsoft BizTalk, for instance. That means the service
bus itself implements process integration services. Within an ESB microflows and
macroflows are represented as a PROCESS MANAGER [15].

Thus, the service bus is connected to the whole internal service infrastructure and all
services communicate via the bus. Access to those services is classified by different
service types. For this reason, it is possible to LOOKUP services by their service type, e.g.
process services, information services, interaction services, partner services, etc. Figure 7
shows the ESB as an architectural pattern. For example, the ENTERPRISE SERVICE BUS
pattern is implemented by IBM’s Business Integration Reference Architecture consisting
of products from the WebSphere family. The Service Provider Delivery Environment
(SPDE) architecture is an implementation of this reference architecture for the
Telecommunications industry.

Business Application Services

Enterprise Service Bus (ESB)

Service Interface

Business
Application

Service Interface

Business
Application

Service Interface

Business Object
Repository

Service Interface

Macroflow Engine

Service Interface

Process Services Information Services Interaction Services Partner Services

classified access to services

internal service infrastructure

Microflow Engine

Infrastructure
Services

Figure 7: Enterprise Service Bus

7.5. Process Integration Services
Process integration services are the connection between a macroflow activity of a

business process and a service interface in the backend. As those backend services can be
developed and enhanced independently over time, they stand for themselves and are
primarily not dependent on a process model. However, if a backend service is invoked by
a macroflow activity, the result of the service invocation may be stored in a business
object, and control data, based on the service result, containing the BUSINESS OBJECT
REFERENCE [14], must be passed to the calling macroflow activity. Thus, integration

 A Survey of Patterns for Service-Oriented Architectures

logic is required to establish the communication between the backend service and the
macroflow activity; i.e. it is used for routing and data transformation. Basically, that
communication is based on the previously mentioned message routing patterns. The
business objects relevant to microflows and macroflows form the CANONICAL DATA
MODEL for storing process relevant business data. From an architectural perspective it is
necessary to have a flexible concept for process integration services that can be adapted
according to changing workload.

In larger architectures there might be several process engines involved for microflows
and macroflows that need to be connected. For each macroflow engine a process
integration service ADAPTER [13] is required. A MESSAGE DISPATCHER [15] is
responsible for distributing process integration service requests to different microflow
engines, where the integration logic is executed by a PROCESS MANAGER [15]
represented by the microflow engine. The PROCESS MANAGER coordinates the
integration steps and invokes the business services in the backend. A REPOSITORY of
process integration adapters contains all available adapters. This REPOSITORY and the
dispatcher are CONFIGURABLE COMPONENTS [27], thus administration and
configuration is possible during runtime. The request and responses are related to a
specific macroflow activity by an ASYNCHRONOUS COMPLETION TOKEN [27] (or
CORRELATION IDENTIFIER [15]). Figure 8 illustrates this process integration
architecture.

Often there is only one macroflow and microflow engine. In that case the dispatcher
might be superfluous. Some products like IBM WebSphere InterChange Server, for
instance, already include adapters for different process engines off the shelf. Thus, such
products depict the process integration adapter repository, the dispatcher, and the
microflow execution services in one single component.

Business Process
Services

Process Integration
Adapter Repository

Dispatcher Microflow Execution
Services

Business Application
Services

Process
Integration
Adapter A

Process
Integration
Adapter B

Process
Integration
Adapter C

Microflow Engine A Service Interface A

Service Interface B

Service Interface C

Business
Applications

Application A

Application B

Macroflow Engine A

Macroflow Engine B

Macroflow Engine C

Microflow Engine B

Figure 8: Process integration architecture pattern

8. Composing SOAs
In the enterprise scope, often multiple SOAs and other (distributed) systems need to

be composed to work together. A simple way to reach this goal has already been
discussed: we can wrap another system just like the wrapping of backends discussed
before (see Figure 9). The backend does not need to be a legacy system or another non-
SOA participant: the backend can be another service as well. This way, service

 Uwe Zdun, Carsten Hentrich, Wil van der Aalst

composition can be realized architecturally using a distributed variant of the pattern
COMPONENT WRAPPER [35].

In case the server cannot be adapted, the wrapper needs to be provided in the client to
adapt to an interface provided by a server.

Client Server Wrapper
Backend/

Legacy
System

Figure 9: Backend Wrapper Style
A general alternative to a client-based or server-based backend wrapper, is a gateway.

A gateway is an intermediary component, outside of client and server. It can be used to
translate non-SOA invocations into SOA messages, and vice versa. It can also be used for
extra tasks, such as routing, mapping RPC invocations to asynchronous messages
(queuing up invocations), mapping asynchronous messages to RPC invocations (de-
queuing invocations), temporarily storing messages, logging, etc.

The LOCATION FORWARDER [32] pattern is used to forward invocations to a remote
object in another server application, e.g. for remote objects that the INVOKER cannot
resolve locally. The LOCATION FORWARDER looks up the actual location of the remote
object based on its OBJECT ID. The result of this lookup is an ABSOLUTE OBJECT
REFERENCE of another remote object. The LOCATION FORWARDER has two options:
either it sends the client-side distributed object middleware an update notification about
the new location, so that the client can retry the invocation on the new location, or it
transparently forwards the invocation to the new location. The LOCATION FORWARDER
can be used as part of a SOA service to connect to other services or backends (in
combination with the backend wrapper style). Alternatively, it can be used on a gateway,
e.g. to realize routing or fault tolerance measures.

Sometimes a number of different frontends need to access one service. One special
variant of multiple frontends is that there is more than one service offered, and each of
the frontends is a different channel, such as a Web services invocation channel, Web
presentations channel, CORBA channel, proprietary protocol channel, etc. If all these
channels need to be served by the same services, then it will be advisable to introduce a
SERVICE ABSTRACTION LAYER [33]. A SERVICE ABSTRACTION LAYER is an extra
layer to the application logic tier containing the logic to receive and delegate requests. A
schematic example is depicted in Figure 10.

 A Survey of Patterns for Service-Oriented Architectures

Service
Frontend
Channel 1

Frontend

Frontend

Frontend
Channel 2

Frontend
Channel 3

S
er

vi
ce

 A
bs

tr
ac

tio
n

La
ye

r

Service

Service

Figure 10: Service Abstraction Layer

9. Related Work
A number of authors provide technology-dependent views on SOAs. For instance,

Dodani summarizes and evaluates the current best practices and technologies [9].
Because this view is highly dependent on current practices, it does not serve our goal to
better understand and explain the general concepts of a SOA. Therefore, we have chosen
a pattern-based approach, which concentrates more on timeless aspects than technology
specifics.

Other authors provide specific surveys of composition methods in the area of Web
services. Rao and Su, for instance, describe methods for automated Web service
composition [25]. Dustdar and Schreiner discuss required technologies to perform service
composition and composition strategies, based on currently existing composition
platforms [11, 10]. These works present good overviews of the first implementations of
these technologies, but again they are technology-dependent and focus only on the
specific aspect of service composition. Dustdar and Schreiner also identify gaps, where
essential future research work in the area of service composition is needed. Such
approaches can be used as a useful supplement to our work that describes how the
pattern-based concepts can be realized with today’s Web services technology, and where
there are still gaps that need to be closed in the future.

Many companies offer reference architectures for their platforms that are used to
realize SOAs. For instance, Sun’s application services reference architecture [28]
presents a hardware and software platform-dependent reference architecture for Web
services based SOAs. Microsoft’s enterprise development reference architecture [20]
provides similar architectural guidance, based on Microsoft platforms. In contrast to these
architectures, we use patterns to abstract from specific platforms.

Many consulting companies offer platform-independent reference architectures for
SOAs. Some are rather focusing on the technical realization with Web services and best
practices (see for instance [6]). In contrast, we provide a broad view of SOA
architectures, which is detailed with software patterns. Other reference architectures, such
as that of the company 7irene [7], offer rather a conceptual view: here the SOA
application layer and its services are seen as a conceptual bridge between the business
layer and the technology layer. By using software patterns as building blocks for the
reference architecture, our architecture is more detailed regarding the technical
realization alternatives, and thus less abstract in its building blocks.

 Uwe Zdun, Carsten Hentrich, Wil van der Aalst

10. Conclusion
This paper contributes to the understanding of service-oriented architectures by

mapping them to the conceptual space of patterns from various domains. The patters are
successful solutions that have proven their value in numerous architectures – this is a
prerequisite to qualify as a pattern according to Alexander’s pattern definition [2].
Therefore, our goal was to survey and explain the “timeless” concepts in SOAs, apart
from technology details. The pattern-based approach helps us not only in understanding
SOAs better, but as patterns are solution guidelines, the patterns are also useful as SOA
design guidelines.

In this paper, we have surveyed the essential patterns in the SOA domain. These
patterns are the foundation of a pattern-based reference architecture, which combines
general architectural knowledge and expertise about SOAs with specific requirements to
generate particular solutions in this domain. The patterns enhance the reference
architecture concept with technically detailed but yet technology-neutral solutions. In this
paper, we have only informally described the cornerstones of a SOA reference
architecture by informally describing the essential patterns and their relationships. As
future work, we plan to further formalize the pattern relations and complete the pattern
language in order to obtain a more formal model of a reference architecture. Thus, we
will use the pattern survey described in this paper as a guideline for further detailed and
more formal analysis following a model-driven architecture approach.

References
[1] J. Adams, S. Koushik, G. Vasuveda, and G. Calambos. Patterns for e-Business - A Strategy

for Reuse. IBM Press, 2001.
[2] C. Alexander, S. Ishikawa, and M. Silverstein. The Timeless Way of Building. Oxford Univ.

Press, 1979.
[3] Pallas Athena. Case Handling with FLOWer: Beyond workflow. Pallas Athena BV,

Apeldoorn, The Netherlands, 2002.
[4] D. K. Barry. Web Services and Service-oriented Architectures, Morgan Kaufmann Publishers,

2003.
[5] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-oriented Software

Architecture - A System of Patterns. J. Wiley and Sons Ltd., 1996.
[6] M. Champion. Towards a reference architecture for Web services. http://

www.idealliance.org/papers/dx_xml03/papers/04-01-01/04-01-01.pdf, 2004.
[7] J. Cheesman and G. Ntinolazos. The SOA reference model. http://www.7irene.com/

7iSOA.html, 2004.
[8] J. O. Coplien. A pattern definition. http://hillside.net/patterns/definition.html, 2004.
[9] M. Dodani. Where’s the SOA Beef? Journal of Object Technology, 3(10):41–46, 2004.
[10] S. Dustdar and W. Schreiner. A survey on web services composition. Technical Report TUV-

1841-2004-15, Technical University of Vienna, 2004.
[11] S. Dustdar and W. Schreiner. A Survey on Web services Composition. International Journal of

Web and Grid Services, 1(1), 2005.
[12] E. Evans. Domain-Driven Design - Tackling Complexity in the Heart of Software. Addison-

Wesley, 2004.
[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1994.

 A Survey of Patterns for Service-Oriented Architectures

[14] C. Hentrich. Six patterns for process-driven architectures. In Proceedings of the 9th
Conference on Pattern Languages of Programs (EuroPLoP 2004), 2004.

[15] G. Hohpe and B. Woolf. Enterprise Integration Patterns. Addison-Wesley, 2003.
[16] S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architecture, and

Implementation. International Thomson Computer Press, London, UK, 1996.
[17] M. Kircher and P. Jain. Pattern-Oriented Software Architecture, Volume 3: Patterns for

Resource Management. J. Wiley and Sons Ltd., 2004.
[18] P. McHugh. Beyond Business Process Reengineering - Towards the Holonic Enterprise. Wiley

& Sons, 1995.
[19] B. Meyer. Object-Oriented Software Construction. Prentice Hall, 2nd edition, 1997.
[20] Microsoft. Enterprise development reference architecture (EDRA) version 1.0 community

edition. http://www.microsoft.com/resources/practices/default.mspx, 2004.
[21] MISMO. Mortgage industry standards maintenance organization. http://www.mismo.org,

2004.
[22] OFX Consortium. Open finanical exchange. http://www.ofx.net, 2004.
[23] C. Prior. Workflow and Process Management. Maestro BPE Pty Ltd, 2003.
[24] Progess. Progress openedge release 10. http://www.progress.com/products/index.ssp, 2004.
[25] J. Rao and X. Su. A survey of automated web service composition methods. In Proceedings of

the First International Workshop on Semantic Web Services and Web Process Composition,
SWSWPC 2004, San Diego, California, USA, 2004. Springer-Verlag.

[26] C. Sauer and L. Wilcocks. Establishing the Business of the Future: The Role of Organisational
Architecture and Information Technologies. European Management Journal, 21, 2003.

[27] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Patterns for Concurrent and
Distributed Objects. Pattern-Oriented Software Architecture. J.Wiley and Sons Ltd., 2000.

[28] Sun. Sun reference architectures. http://www.sun.com/service/refarch/, 2004.
[29] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Advanced

workflow patterns. In 7th International Conference on Cooperative Information Systems
(CoopIS 2000), volume 1901 of Lecture Notes in Computer Science, pages 18– 29. Springer-
Verlag, Berlin, 2000.

[30] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros. Workflow Patterns. BETA
Working Paper Series, WP 47, 2000.

[31] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros. Workflow Patterns.
Distributed and Parallel Databases, 14:5–51, 2003.

[32] M. Voelter, M. Kircher, and U. Zdun. Remoting Patterns. Pattern Series. John Wiley and
Sons, 2004.

[33] O. Vogel. Service abstraction layer. In Proceedings of EuroPlop 2001, Irsee, Germany, July
2001.

[34] W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods, and
Systems. MIT press, Cambridge, MA, 2002.

[35] U. Zdun. Some patterns of component and language integration. In Proceedings of EuroPlop
2004, Irsee, Germany, July 2004.

