
Modeling the Evolution of Aspect Configurations using
Model Transformations

Uwe Zdun, Mark Strembeck
Institute of Information Systems, New Media Lab

Vienna University of Economics, Austria

{uwe.zdun|mark.strembeck}@wu-wien.ac.at

ABSTRACT
In this paper we introduce an approach to address the evolution of
aspect configurations with model transformations. We use model
transformation diagrams (MTDs) to define valid behavioral model
states of a system as well as valid transitions between thosestates.
MTD transformations can be used to define evolutionary changes
in the weaving process of an aspect-oriented system. To allow for a
straightforward incorporation of aspects in UML models, weextend
UML2 activity diagrams with joinpoint start and end nodes. In this
paper, each model state in an MTD refers to an extended UML2
activity diagram.

1. INTRODUCTION
In recent years a number of approaches for UML-based model-

ing of aspects have been proposed. Some approaches are extend-
ing the UML using a UML profile (see e.g. [6, 2]), others perform
a meta-model extension, i.e. they extend the UML familiy of lan-
guages with new language elements (see e.g. [10, 4]). So far these
approaches focus on mapping the elements of aspect-oriented envi-
ronments (mainly the concepts are based on AspectJ [7]) to UML
modeling elements. That is, the focus is on representing aspects in
UML models.

The effects of applying aspects – i.e. how a model evolves if an
aspect is woven – have only been marginally in focus of aspect-
oriented modeling approaches so far. This concern, however, is im-
portant to be considered for a number of situations:

• In the early stages of system design we need to trans-
late requirements into classes and aspects. In particular,
we require some approach to show the evolution from a
non-aspect-orineted model to an aspect-oriented model, as
well as the interactions between the aspect-oriented and
non-aspect-oriented parts of the system.

• Often a number of different aspect configurations can be wo-
ven for one and the same system. That is, the aspects wo-
ven into the system can be changed either at compile-time,
load-time, or runtime – depending on the used aspect weaving
mechanism. For example, consider a logging aspect, which is
woven into the debugging environment only, but not into the
productive system. Here, the evolution options resulting from
the weaving time for the aspect configurations and their cor-
responding effects should be modeled as well.

• Often aspects have interdependencies or interactions among
each other, a concern which of course should be modeled.
For instance, consider a persistence aspect is allowed to be
woven, but only if a storage device aspect is woven as well.

To address these problems, this paper proposes an approach to
model the behavioral evolution of aspect configurations in software
systems using model transformation diagrams. In other words, we
use a model transformation to represent the aspect weaving step.
The model transformation diagrams are an extension to UML 2.0. In
particular, they model the aspect weaving dependencies viamodel
transformations between different UML Activity Diagrams.Here,
the Activity Diagrams show the behavior in the system with differ-
ent aspect configurations. To enable the modeling of aspect-related
behavior in Activity Diagrams we introduce a simple extension to
Activity Diagrams for representing the start and end of the join-
points of an aspect in the control flow.

2. THE APPROACH
In this section, we explain our model transformation diagrams,

and our extension to Activity Diagrams for representing thestart
and end of the joinpoints of aspects.

2.1 Model Transformation Diagrams
We have defined the Model Transformation Diagrams (MTD) as a

meta-model extension to the UML 2.0 standard (see Figure 11). To
define MTDs formally, we specify the new packageModelTrans-
formations. The graphical notation of our model transformation
diagrams is similar to UML2 interaction overview diagrams,how-
ever, the MTD semantics differ significantly. The UML2 interaction
overview diagrams are a variant of activity diagrams and describe
the flow of control between different nodes (see [9]). In contrast,
our MTDs are a variant of state machines. Model transformation
diagrams describe changes of specification of a software system.
These changes are modeled through transitions between different
diagrams. In this paper, we use only UML2 activity diagrams in
the MTDs, to model transformations of thebehavioral model state.
(Please note that in our full meta-model definition, there are also
structural model states, but these are not used in this paper.)

The main transition type used in MTDs aretransform transitions.
Transform transitions express that the source model state of the tran-
sition is transformed to the target model state of the transition. A
transition from one behavioral model state to another meansthat
the behavior of a certain system aspect is transformed, so that after
the transition, the system behavior conforms to the state specified
by the transition’s target. For instance, the example transitions in
Figure 2 show two model transformations between two activity di-
agrams: one adds a condition between the two activities, andthe
reverse transformations removes the condition. Figure 2 also con-
tains informal explanations for our notations. A formal meta-model

1Due to the page limit we do not include the full formal definition
including OCL constraints of the meta-model extension here, but
provide only the corresponding meta-model as an overview.

Package ModelTransformations

State
(from BehaviorStateMachines)

Vertex
(from BehaviorStateMachines)

ModelTransformationStateMachine

Region
(from BehaviorStateMachines)

+stateMachine 0..1

+region1.. *

0..1

* +subvertex

+container

Transition
(from BehaviorStateMachines)

+source

+outgoing1
*

+target

+incoming1
*

+container

0..1

* +transition

FinalState
(from BehaviorStateMachines)PseudoState

(from BehaviorStateMachines)

kind: PseudoStateKind

«enumeration»
PseudoStateKind

(from BehaviorStateMachines)

initial
deepHistory
shallowHistory
join
fork
junction
choice
entryPoint
exitPoint
terminate

StateMachine
(from BehaviorStateMachines)

StructuralModelState

ModelState

BehavioralModelState

ModelStateUse

Action
(from BasicActions)

+argument

0..1

*

+refersTo

1*

0..1

* +class

Class
(from Kernel)

0..1

* +activity

Activity
(from FundamentalActivities)

InstanceSpecification
(from Kernel)

0..1

* +instance

Figure 1: Meta-model for Message Transformation Diagrams (MTD)

ad SystemBehaviorB

Activity
A

Activity
B

mtd MyExampleMTD

ad

«transform»

«transform»

SystemBehaviorB

MTD Identifier Token MTD Name Identifier Token for
activity diagrams Diagram name

MTD state machine
MTD state

MTD transform transitions

Diagram describing a valid
behavioral system state

Activity
A

[condition2]

[condition1]

Activity
B

Figure 2: Informal overview for the elements of MTDs

extensions for the MTDs can be found in [11].
In the first place, MTDs are a means to depict possible model

transformations. The idea, presented in this paper, is to apply the
transform transitions in the MTDs to model aspect weaving rela-
tionships. This way different behavioral model states showmodels
of the behavior of the system in different aspect configurations. The
transform transitions then show the possible (“legal”) weaving steps
between these model states.

2.2 Extending Activity Diagrams with Join-
point Start and End Activities

In our approach, we model the behavior of aspects as part of the
activity diagrams describing the system’s behavior. That is, we show
scenarios of the aspect in action. However, it is necessary to distin-
guish the aspect-oriented and non-aspect-oriented parts of the activ-
ity diagram. Moreover, in case more then one aspect is used, we
need to distinguish different the aspects modeled in the same activ-
ity diagram.. Otherwise we would not be able to properly model
aspect interactions.

NODE TYPE NOTATION Explanation & Reference

JoinpointStart

JoinpointStart is an Activity that can be used
in an Activity Diagram to indicate that the
aspect "AspectName" has intercepted the
control flow at this point. All subsequent steps
in the Activity Diagram until a JoinpointEnd
Activity with "AspectName" is reached are
handled by the aspect "AspectName".

Optionally, a Joinpoint Start node can have a
tagged value "pointcut" that indicates the name
of a pointcut designating this joinpoint.

See Activity from FundamentalActivities.

JoinpointEnd AspectName

AspectName

JoinpointEnd is an Activity that can be used
in an Activity Diagram to indicate that the
interception of the control flow by the aspect
"AspectName" has ended.

See Activity from FundamentalActivities.

Figure 3: Definition of two Activities for start and end of joi n-
points in Activity Diagrams

Order

Create
Order

Fill
Order

Order

Receive
Order

ad Order Creation

Figure 4: Activity Diagram for order creation

To address this problem, we introduce two new Activities as sub-
classes of the UML2 Activity meta-class (from FundamentalActiv-
ities, see [9]). JoinpointStart is an Activity that can be used in an
Activity Diagram to indicate that the aspect referred to via“Aspect-
Name” has intercepted the control flow at this point. All steps in an
Activity Diagram between a JoinpointStart and the corresponding
JoinpointEnd Activity (referred to via the same “AspectName”) are
handled by the respective “AspectName” aspect. In additionit is
possible for another aspect to intercept the control flow in between.
In other words: JoinpointEnd is an Activity that can be used in an
Activity Diagram to indicate that the interception of the control flow

by the aspect “AspectName” has ended. Optionally, JoinpointStart
Activities can have a tagged value “pointcut” that indicates the name
of a pointcut designating this joinpoint. Figure 3 summarizes the
definitions.

3. EXAMPLE: ORDER HANDLING
In this section, we consider an example from the early stagesof

designing an order handling system. In a first step, we designa sim-
ple activity for order creation according to the following short sce-
nario description: when an order is received, an order object needs
to be created and then the order object is filled with values. This
simple control flow is shown in the activity diagram “Order Cre-
ation” in Figure 4.

Order

Create
Order

Fill
Order

Order

Receive
Order

[order rejected]

[order accepted]

ad Order Creation & Order Check

Order Check

Order Check

Order Check

Figure 5: Activity Diagram for combining order creation wit h
order checking

Next, we design other fundamental activities of order handling.
During the ongoing design work, we realize that in some customer
systems which should be used with the order handling system,a
check is required, whether the order can be accepted or not. This
check is not only relevant for order creation, but it must also be per-
formed before an order is changed or re-submitted. Thus “Order
Check” is a cross-cutting concern in our system and should bemod-
eled as an aspect. To do so, we need to intercept the control flow
between the Receive Order and Create Order activities. Similarly,
we need to extend other activity diagrams that have joinpoints be-
longing to this aspect. The pointcuts for the correspondingaspect
can be derived in later design stages by looking at all occurrences
of the aspect’s joinpoints and by defining proper (cross-cutting) des-
ignations for these points in the control flow. The woven aspect is
shown in the Activity Diagram “Order Creation & Order Check”in
Figure 5.

A second aspect that cross-cuts many order handling activities is
“Order Persistence”. This aspect needs to intercept the control flow
after the order is filled in, and must call the Make PersistentActivity.
The woven aspect is shown in the Activity Diagram “Order Creation
& Order Persistence” in Figure 6.

For this aspect we need to consider one special case, though.If
the aspect “Order Check” is configured, all rejected orders should be
logged in the persistence store. That is, the two aspects have an in-

Order

Create
Order

Fill
Order

Order

Receive
Order

ad Order Creation & Order Persistence

Order Persistence

Order Persistence

Make
Persistent

Figure 6: Activity Diagram for combining order creation wit h
persistence

terdependency among each other. Because both aspects are optional
extensions, we need to model this interaction in a separate Activity
Diagram “Order Creation & Order Check & Order Persistence” in
Figure 7. Here, we can see that the “Order Persistence” aspect is
cross-cutting the activities in this diagram. If the aspectis used, a
rejected order log entry object is created, and the Make Persistent
Activity is called.

Finally, we need to model the possible weaving-time aspect evo-
lutions for this system. We use an MTD to show the possible weav-
ing configurations for the two optional aspects described above. The
diagram in Figure 8 shows that in any case the basic “Order Cre-
ation” diagram is the starting point for weaving. The aspectweaver
can either weave order persistence, order checking, or no aspect.
If one of the two aspects is chosen, the other aspect can optionally
be woven as well. In this case, the behavioral state of the system
is transformed to the Activity Diagram “Order Creation & Order
Check & Order Persistence”, so that the aspect interaction is mod-
eled as well.

Please note that in this example we have shown the aspect weav-
ing process independently of the concrete weaving time. Ourap-
proach is capable to model aspect weaving at compile-time, load-
time, or runtime. Though, the MTD needs to be changed slightly
if runtime weaving is supported. Runtime weaving would mean
that we could turn off the aspects again. That is, we would intro-
duce backward transformations between the model state nodes (the
“mrefs” in the figure) to model runtime weaving properly.

4. RELATED WORK
Aldawud et al. [1] present a number of steps they apply to model

aspect-oriented systems. In particular, they model the static system
structure via class diagrams. System behavior, including aspects
and crosscutting, is modeled with UML statecharts. Their approach,
however, is not able to depict evolutionary changes resulting from
(static or dynamic) weaving of aspects which is one of the main
benefits of MTDs.

Gray et al. [3] describe an elaborated approach to support aspect-
oriented domain modeling which has partially similar objectives
to our approach. For each modeling domain they define domain-

Order

Create
Order

Fill
Order

Order

Receive
Order

[order rejected]

[order accepted]

Order Check

Order Check

Order Persistence

Order Persistence

Make
Persistent

Order Persistence

Rejected
Order

Log Entry

Order Persistence

Make
Persistent

ad Order Creation & Order Check & Order Persistence

Order Check

Figure 7: Activity Diagram for combining order creation wit h
persistence and order checking

specific weavers which operate on the abstraction layer of models
(not source code). To specify these weavers they defined the embed-
ded constraint language (ECL) as an extension to the OMG object
constraint language (OCL). The ECL is used to specify transfor-
mations between models and to specify strategies that definehow
a concern is applied in a certain model context. ECL operateson
XML files which are used to store the corresponding models and
Gray et al. implemented a tool to generate C++ source code from
ECL specifications.

Barros and Gomes [2] use UML2 activity diagrams to model
crosscutting in aspect-oriented development. They define anew
composition operation they call “activity addition” via anUML pro-
file. Activity additions are used for weaving a crosscuttingconcern
in a model. In particular, they define two stereotypes to markcertain
nodes in activity diagrams that define the so called interface nodes
which are then used to merge two or more activity diagrams, and
the so called subtraction nodes which define what nodes need to be
removed from a given activity diagram.

Jezequel et al. [5] represent crosscutting behavior using con-
tract and aspect models in UML. They model contracts using UML
stereotypes, and represents aspects using parameterized collabora-
tions equipped with transformation rules expressed with OCL con-
straints. OCL is used in the transformations for navigatinginstances
of the UML meta-model.

Han et al. [4] present an approach to support modeling of AspectJ
language features to narrow the gap between implementations based
on AspectJ and the corresponding models. Mahoney and Elrad [8]
describe a way to use statecharts and virtual finite state machines
to model platform specific behavior as crosscutting concerns. They
especially plan to evaluate the effectiveness of their approach in a

Order Creation

mref

Order Creation &
Order Check &
Order Persistence

mref

Order Creation &
Order Check

mref

Order Creation &
Order Persistence

mref

[no aspects]

[weave order persistence]

[weave order check]

«transform»

«transform» [weave order check]

[weave order persistence]

«transform»

«transform»

[no more aspects]

[no more aspects]

[no more aspects]

mtd Order Creation with Aspects

Figure 8: MTD for order creation with its aspects

model driven development context. Tkatchenko and Kiczales[10]
present an approach to model crosscutting concerns. They extend
the UML with a joint point model, advice and inter-type declara-
tions, and role bindings. Moreover, they provide a weaver toprocess
the corresponding extensions.

5. CONCLUSION
In this paper, we briefly presented an approach to model the evo-

lution of aspect configurations via model transformations.In par-
ticular, we defined model transformation diagrams (MTDs) asan
UML2 extension. In essence, MTDs are state machines which are
applied to model the evolution of software systems. Each state in
an MTD refers to a model that defines a valid structural or behav-
ioral specification of the corresponding system. Transitions between
those states describe valid transformations between thosemodels.
In this paper, however, we focused on the specification of behav-
ioral system facets to model the evolution of aspect configurations.
Therefore, we additionally introduced Joinpoint start andend ac-
tivities that allow for a clear separation of the aspect-oriented and
non-aspect-oriented parts of a system specification, as well as the
modeling of crosscutting aspects. In our future work, we will pro-
vide tool support for MTDs both on the modeling level and source
code level. In addition to behavioral states, we also use structural
model states in MTDs to model the evolution of structural aspect
models.

6. REFERENCES
[1] O. Aldawud, A. Bader, and T. Elrad. Weaving with

Statecharts. InProc. of the Workshop on Aspect Oriented
Modeling with UML, April 2002.

[2] J. Barros and L. Gomes. Towards the Support for
Crosscutting Concerns in Activity Diagrams: a Graphical
Approach. InProc. of the AOSD Modeling with UML
Workshop, October 2003.

[3] J. Gray, T. Bapty, S. Neema, D. Schmidt, A. Gokhale, and
B. Natarajan. An Approach for Supporting Aspect-Oriented
Domain Modeling. InProc. of the 2nd International
Conference on Generative Programming and Component
Engineering (GPCE),, September 2003.

[4] Y. Han, G. Kniesel, and A. Cremers. Towards Visual AspectJ
by a Meta Model and Modeling Notation. InProc. of the

International Workshop on Aspect-Oriented Modeling, March
2005.

[5] J. Jezequel, N. Plouzeau, T. Weis, and K. Geihs. From
contracts to aspects in uml designs. In O. Aldawud, G. Booch,
S. Clarke, T. Elrad, W. Harrison, M. Kande, and
A. Strohmeier, editors,Aspect-Oriented Modeling with UML,
Enschede, The Netherlands, April 2002.
http://lglwww.epfl.ch/workshops/aosd-uml/index.html.

[6] M. M. Kande, J. Kienzle, and A. Strohmeier. From AOP to
UML – A Bottom-Up Approach. InProc. of the Workshop on
Aspect Oriented Modeling with UML, April 2002.

[7] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Griswold. Getting started with AspectJ.
Communications of the ACM, 44(10):59–65, Oct 2001.

[8] M. Mahoney and T. Elrad. Modeling Platform Specific
Attributes of a System as Crosscutting Concerns using
Aspect-Oriented Statecharts and Virtual Finite State
Machines . InProc. of the International Workshop on
Aspect-Oriented Modeling, March 2005.

[9] The Object Management Group. Unified Modeling Language:
Superstructure.
http://www.omg.org/technology/documents/formal/uml.htm,
August 2005. Version 2.0, formal/05-07-04, Object
Management Group.

[10] M. Tkatchenko and G. Kiczales. Uniform Support for
Modeling Crosscutting Structure. InProc. of the International
Workshop on Aspect-Oriented Modeling, March 2005.

[11] U. Zdun and M. Strembeck. Modeling composition in
dynamic programming environments with model
transformations. In5th International Symposium on Software
Composition, Vienna, Austria, March 2006. LCNS,
Springer-Verlag.

