
Concepts for Model-Driven Design and Evolution of
Domain-Specific Languages

Uwe Zdun
Department of Information Systems

Vienna University of Economics
Vienna, Austria

zdun@acm.org

ABSTRACT
Recently a number of concepts, such as software factories,
model-driven software development, and language-oriented
programming, advocate the use of model-driven domain-specific
languages to express domain models. In contrast to many tradi-
tional uses of domain-specific languages, this approach leverages
the systematic use of domain-specific languages. In this position
paper, we identify open issues in this approach, arising when the
domain-specific languages are complex or constantly evolving.
We introduce the concept of a domain-specific language product
line, which provides a common, tailorable language infrastructure
to enable the rapid, model-driven creation and evolution of
domain-specific languages. Moreover, we propose our vision to
use a domain-specific language product line as a conceptual glue
between the many concepts and approaches used inside a software
factory.

1. INTRODUCTION
Domain-specific languages (DSL) are usually little languages

that are particularly expressive in a certain problem domain. There
is a recent interest in using DSLs in approaches such as software
factories [11], model-driven software development (MDSD)
[17, 19], model-driven architecture [15], and language-oriented
programming [4] (see also [7]). These approaches use DSLs as
domain modeling languages, i.e. languages which represent the
abstractions familiar to the domain experts. A DSL either may
have a textual or graphical representation (concrete syntax). This
concrete syntax is mapped to a language model (abstract syntax),
which describes the modeling elements with which models in the
respective domain can be created. The semantics of the models
are usually defined by model transformation and code generation.
Consequently, the DSL itself is mainly defined using models (and
meta-models). In the following, we refer to this approach using the
term model-driven DSL.

Creating a model-driven DSL usually means to perform three
steps [7]:

1. A language model is defined to formally specify the abstract
syntax of the DSL. Often the language model is derived from
a formal meta-model, similar to the UML 2 meta-model.
Also other language models are possible: for instance, in
[11] context free grammars are discussed as an alternative,
but the meta-model approach is advocated. If a UML-like
meta-model is used, UML profiles with stereotypes, tagged
values, and constraints (e.g. in OCL) are used to formally
model the extensions to the UML needed for defining the
DSL.

2. A suitable concrete syntax is defined, e.g. graphical symbols

or a textual syntax, which is used by users of the DSL. Be-
cause the concrete syntax represents the concepts in the ab-
stract syntax, usually there is a correspondence between con-
crete and abstract syntax elements.

3. A generator translates the DSL into an executable represen-
tation. To do this, it must map the elements of the concrete
syntax to instances of the abstract syntax, confirming to the
formal language model of the DSL. From the abstract syn-
tax, code in the target programming language is generated.
Maybe different model transformation steps are happening
in between. This can be done using a variety of model trans-
formation and code generation techniques. In practice the
generator must be able to define the semantics of the DSL.

Let us consider an example; a visual DSL for a workflow de-
signer should be defined:

• Firstly, a UML 2 based language model is defined to repre-
sent the abstract syntax, which specifies how the various lan-
guage elements of the workflow DSL interact. This model
represents each language element as a class. That is, the
workflow DSL’s language model contains classes for work-
flow elements like tasks, transitions, joins, splits, etc. UML
relationships are used to model the potential interactions of
language elements. For instance, tasks can be connected to
each other using transitions, so there is an association be-
tween these two classes. Finally, UML stereotypes and OCL
constraints are defined to model those aspects of the work-
flow DSL that cannot be expressed in native UML. For in-
stance, an OCL constraint is provided so that an “end task”
is not allowed to have outgoing transitions. All workflow
DSL classes are stereotyped as “DSLElement” to indicate
the membership in a DSL to the generator.

• Secondly, as a concrete syntax, visual symbols are defined
for each of the language elements of the DSL. The abstract
syntax model in UML is annotated with tagged values indi-
cating the names of the visual elements, so that the generator
can map the concrete syntax elements to abstract syntax ele-
ments.

• Thirdly, the code generation to the target programming
language Java is defined. Each concrete syntax element
is mapped to an instance of the respective abstract syntax
class, and it is checked that no constraint is violated.
Predefined hand-crafted Java code and generator templates
define the semantics of the DSL’s abstract syntax elements.
The generator composes the generated Java code and the
hand-crafted Java code using the generation instructions in



the generator templates (e.g. following the patterns from
[20]).

Traditionally, DSLs are often defined in an ad hoc fashion. Ex-
amples are small, declarative languages for domain abstractions
as they have been developed in many research projects, little lan-
guages in the Unix world, domain-specific language extensions to
Lisp defined using Lisp macros, and domain-specific language ex-
tensions in many scripting languages. The model-driven DSL ap-
proach, in contrast, introduces a systematic process to define DSLs.
Also, it reuses the generator infrastructure and the predefined meta-
models for the definition of DSLs. Finally, the approach provides
a clear concept to combine object-oriented models with DSL con-
cepts.

There are, however, a few problems, when the model-driven
DSL approach is applied for creating more complex DSLs, mul-
tiple DSLs are needed, or the DSLs need to be constantly evolved.
First of all, the UML-like meta-models are not really designed for
creating languages, and thus many UML stereotypes and OCL con-
straints are needed, which are rather cumbersome to use. Language
evolution of the DSL means to modify all the artifacts mentioned
above, which hinders constant language evolution. If more than
one DSL is needed, the reuse between the language realizations
is rather limited. For instance, it would be helpful to reuse ab-
stractions for complex language-related tasks, like complex parsing
solutions or control structures in the language (like loops, blocks,
exception handling, etc). Finally, there are languages used within
the model generator (e.g. the generator templates’ language in the
example above), and there is no reason why these languages should
not be defined like all other DSLs. So far only some of these issues
have been brought up as research issues in the MDSD literature
[21], but no integral solution has been proposed.

In this paper, we propose an approach to extend the concepts of
model-driven DSLs to overcome the problems mentioned above.
In particular, the goal is to offer concepts to develop DSLs using
a DSL product line. That is, the DSLs themselves are developed
using the same processes and principles like all other products in a
product line or software factory. We achieve this goal by combin-
ing the concepts of model-driven DSLs with our earlier research
work on language engineering of tailorable languages (see [26]).
This work essentially integrates concepts of tools suitable for rapid
language development (such as interpreters, dynamic languages,
homoiconic languages, macro languages, etc.) with concepts from
object-oriented design, meta programming, language integration,
and language embedding. A tailorable language provides a lan-
guage infrastructure that can be used to realize all the concepts of
model-driven DSLs and combines them with rapid language devel-
opment to overcome the problems sketched above. In this paper, we
sketch how a tailorable language can be used to create and evolve
DSLs as products of a DSL product line.

Please note that this position paper reports on a work in progress.
All concepts discussed in Section 2 have been developed as proto-
types and used in a few projects (industry and research projects).
The integral view proposed in this paper (see especially Section 3),
however, has not yet been applied on a broader scale. Also, there is
still a need for further integrative concepts and the development of
prototypes (see Section 4 for a discussion of future work).

2. DSL PRODUCT LINES
In this section, we describe the elements of our concepts of DSL

product lines. Please note that the concepts described in the Sub-
sections 2.1-2.3 are in our view mandatory, whereas the concepts in
Subsections 2.4-2.6 are highly valuable but optional. In Subsection

2.7 we present an example configuration of a DSL product line.

2.1 DSL language infrastructure and target
programming language

Product lines distinguish common assets provided by the product
line to all products, and variable assets, which are product-specific
variations that are bound to predefined variation points in the com-
mon assets. We use the term DSL language infrastructure to refer
to the common implementation assets of a DSL product line, i.e.
those components that are reused across all DSLs derived as prod-
ucts from the DSL product line. For instance, in our work we use
an interpreter and the common parts of the language model as com-
ponents in the language infrastructure, but depending on the imple-
mentation other kinds of components like compilers, byte-code en-
gineering libraries, parsers, etc. might also be part of the language
infrastructure.

Above, we have distinguished the DSLs and the target program-
ming language. It might be non-obvious why we cannot either use
an extension of the target programming language as a language in-
frastructure for the DSLs or, alternatively, the language infrastruc-
ture itself as the target programming language. In many projects,
the target programming language is given by outer influences. For
instance, in many of our recent projects Java or C were used, mostly
because of business decisions or for reasons of legacy software in-
tegration. We believe such requirements are quite typical. These
languages, however, do not directly support the rapid definition of
domain-specific language extensions; therefore, DSLs are usually
defined on top of more powerful language infrastructures: in the
examples above we have mentioned model-driven environments for
model-driven DSLs, and scripting languages and Lisp macros for
traditional DSLs. These more powerful language infrastructures,
in turn, are selected only in seldom cases as target programming
languages. Please note that our concepts are also applicable in case
the language infrastructure and target programming language are
identical, but because this does happen only rarely, we make the
distinction here.

One important property of the language infrastructure is embed-
dability in the target programming language. “Embeddable” means
that the embedded language infrastructure is used like a library
of the embedding language; i.e. the embedding language controls
the embedded language infrastructure. Operations in the embed-
ded language infrastructure can be invoked from the embedding
language, and the embedded language can call back into the em-
bedding language. Please note that many existing languages sup-
port embeddability, and thus concepts and implementations can be
reused. For instance, most scripting language, such as Tcl, Python,
Ruby, and Perl, are embeddable in C/C++, some of them also in
Java. There are many other languages written in Java. The Java
Native Interface supports embedding C programs in Java. In other
words, the problem of language embedding is well understood, and
many successful examples of embeddable languages exist, which
can be reused.

2.2 Kinds of DSLs
To be able to use one language infrastructure for all DSLs in a

DSL product line, we first must delimit the kinds of DSLs that are
in focus of this paper. We distinguish two kinds of DSLs needed in
a model-driven DSL approach:

• DSLs for the application domain, as they are proposed in
software factory concepts [11] and MDSD approaches [17,
19] alike. For instance, the workflow DSL in the example in
the previous section is a DSLs for the application domain.



• DSLs for the domain of code generation and model transfor-
mation, e.g. template languages, model transformation lan-
guages, glue languages, etc. used inside of the generation ar-
chitecture, offering no application domain related language
elements. For instance, the generator templates in the exam-
ple in the previous section provide a DSL for code genera-
tion.

The reason why we add the domain of code generation and model
transformation to the targeted DSLs is that we want to reach the
goal that the same language infrastructure can be used for all lan-
guages used in models, transformations, and applications. In other
approaches, such as [17, 19], a special template language is used
for models and transformations, and the DSLs for the application
domain are developed from scratch using models and code genera-
tion. Both kinds of languages have different language concepts, and
the developers must learn all the different languages. Our goal is to
provide one tailorable language concept as part of the language in-
frastructure instead, from which all abstract syntaxes of DSLs can
be derived. Thus all languages have similar syntactic concepts (i.e.
they are easier to learn for developers), and, at the same time, com-
mon implementations, e.g. for parsing and common control struc-
tures, can be reused across all DSLs.

DSLs for the domain of code generation and model transforma-
tion are always translated into the target programming language
at generation time. This is often also the case for DSLs for the
application domain, but there are also DSLs for the application do-
main which are interpreted at runtime. Just consider the workflow
DSL used as an example above: its concrete syntax is visible to
the user, and thus its language infrastructure plus all DSL-specific
extensions need to be deployed with the product.

We can thus distinguish two kinds of DSLs for the application
domain:

• A DSL used only for modeling purposes before generation-
time. The generator transforms the code in this DSL to code
in the target programming language.

• A DSL that is deployed and used for domain-specific model-
ing in the runtime system of a product; the DSL must be in-
terpreted and mapped to implementations of abstract syntax
elements at runtime. The implementations of abstract syn-
tax elements are generated by the generator from the abstract
syntax specification.

2.3 On the role of interpretation
An integral approach for building DSLs should be able to sup-

port all kinds of DSLs introduced in the previous section. An im-
portant insight is that this is only possible when the DSL language
infrastructure supports some kind of interpreter, because without
runtime interpretation it is not possible to build DSLs which are
deployed and used at runtime. Please note, even when using the
purely model-driven DSL approach sketched in Section 1, in fact, a
simple, hand-crafted interpreter for the workflow DSL is generated
and deployed to the product.

Of course, it is possible to use only hand-crafted interpreters and
only for that purpose. We argue against this practice for two rea-
sons: firstly, hand-crafting interpreters is tedious and the result-
ing interpreters are usually much less powerful than existing inter-
preters. Thus, instead, we propose to reuse an existing interpreter
as part of the language infrastructure. Secondly, an interpreter is
also a useful tool to create and evolve the DSLs which are only
used at generation time. Finally, if the same interpreter is used as a
language infrastructure for all DSLs, we ensure a consistent syntax
across all DSLs.

That means, for DSLs which are deployed and used at runtime,
the interpreter is used as an execution environment for the DSL
code, and maps the DSL invocations to the abstract syntax of the
language. This mapping is performed using the split object ap-
proach, introduced in Section 2.5. For the DSLs that are interpreted
at generation time, the interpreter is used as a special-purpose gen-
erator, which creates other models and/or code in the target pro-
gramming language. The generated models and code are composed
with the models and code generated by other generators.

2.4 A tailorable language as a foundation for
a DSL product line

An important aspect has not been discussed so far: if one lan-
guage infrastructure should be the foundation of a variety of differ-
ent DSLs, how can this language infrastructure effectively support
all different language concepts and at the same time allow for rapid
creation and evolution of DSLs?

As a solution to this problem we propose to use the tailorable
language concept (see also [26]) as a foundation. Language tai-
lorability means that a language is designed to by adapted to new
language concepts. We propose to define a dynamically interpreted
language that is flexibly adaptable (tailorable) to the context in
which it is used. The language representation (syntax) and the in-
terpretation of that language (its semantics) can be tailored to each
of the required DSLs, but the general language infrastructure can
be reused for all DSLs. The goal is to be able to rapidly design and
change (i.e. evolve) language concepts for the DSLs, even though
different DSLs might have quite diverse syntaxes and semantics.
Moreover, the mapping to the target programming language’s con-
cepts is equally important.

As argued above, we propose to make an existing, interpreted
language tailorable, in order to be able to reuse its interpreter.
A second important language characteristic is that the language
should be able to evaluate data, provided in the language, as
code. Such languages are called homoiconic languages [13]. This
language property is illustrated by the simple example in Lisp
below, in which we first assign to a a program fragment which
assigns 1 to b. Later we evaluate the program fragment that a
refers to using eval. The consequence is that the code in a is
executed and b is set to 1.
(setf a ’(setf b 1))
; ...
; some time later
; ...
(eval a)

Besides the Lisp family of languages, many other languages are
homoiconic, including Tcl, Perl, Prolog, and Smalltalk. This lan-
guage property enables us to change the language meaning and rep-
resentation rapidly (at runtime if necessary), and lets us experiment
with languages easily.

In addition, we require a language with a dynamic object system
to tailor the language to the DSL concepts. In a dynamic object
system all relationships of an object, including class and superclass
relationships, might possibly be changed at any time. Together with
the homoiconic property, we are able to redefine the language’s
syntax and semantics to the needs of the DSL. In our prototype
of a tailorable language, Frag [25], one object can have multiple,
dynamic classes, which can be composed as mixins [3]. Many other
dynamic programming techniques, such as dynamic aspects [2, 1],
meta-objects [14], or meta-classes [6], can be used equivalently to
add behavior to classes dynamically and transparently. Moreover,
a number of patterns are described to implement dynamic object
systems in more static languages, such as Object System Layer [9]
or Type Object [12].



Reflection allows us to query the runtime state of the object sys-
tem at any time. We require two kinds of reflective properties in
our tailorable language:

• Structural reflection (introspection): If we are able to change
the language meaning and structure (at runtime), an impor-
tant goal is to be able to find out the current composition of
the objects and classes at any time. Therefore, we need to
offer introspection options for each language element. Ex-
amples are introspection options for type relationships, su-
perclass relationships, associations, and aggregations. This
feature is used as a “memory” of how the object system is tai-
lored. Any other structural reflection technique can be used
equivalently.

• Control flow reflection: Structural reflection is only one part
of the current context of an object. The second part is the be-
havior or control flow context in which the object is invoked.
The behavior context is in many interpreted languages han-
dled by a callstack. Thus, the callstack should be fully ac-
cessible from within the language. This way we can find out,
for instance, which component has called which other com-
ponent. This feature is used to allow for conditional com-
position and configuration behavior on basis of the current
control flow. Any other techniques that allows for access to
the current control flow of the invocations can be used equiv-
alently. For instance, some AOP approaches allow us to in-
tercept the control flow.

We call a language (and its architecture) supporting the prop-
erties sketched above a tailorable language. These language fea-
tures are useful to create and evolve DSLs. To illustrate this let us
consider an example: a DSL for method transformations that can
operate on models written in other DSLs (see [23] for a detailed
description of this DSL which is an extension of our prototype lan-
guage Frag [25]). In this DSL the interpreter can use structural
reflection to find and introspect all method implementations. We
can use the homoiconic language property to redefine method def-
initions at runtime. Structural reflection is also used to quantify
over class and method names. For instance, wildcards like “*”
can be used in the introspection options. This way we can spec-
ify method transformations like: “transform all methods having the
name Connection*”. Control flow reflection is useful to adapt the
code that is introduced by method transformations. This way, we
are able to achieve similar quantifications over objects as offered
by the joinpoint language in AOP approaches.

In summary, tailorability enables us to rapidly adapt a language
to support new language features and reuse many functionalities
of the language infrastructure. Even though using a tailorable lan-
guage is not mandatory for developing a DSL product line, it sig-
nificantly eases the creation and evolution of DSLs.

2.5 Language bindings by generated split ob-
jects

Above we have proposed to embed the language infrastructure
of the DSL product line in the target programming language. A
consequence of embedding the DSLs is that we need bindings be-
tween the code in the language infrastructure of the DSL product
line and the target programming language. We propose to gener-
ate these bindings. The first questions that arises is: where are the
best binding points? Here, we propose to use the abstract syntax
of the DSLs as a starting point. Our idea is to reflect each abstract
syntax element of a DSL in the target programming language, and
make both representations of the abstract syntax element be able to
communicate with each other.

We use the Split Object pattern [22, 24] to realize this goal: a
split object is an object that exists in two languages, but is treated
like a single instance. This way we intercept invocations that are
not implemented in the DSL, and forward them automatically into
the target programming language. To realize this feature we use
a dynamic dispatcher in the tailorable language (DSL), and a pro-
gram generator in the target programming language. In our proto-
types, we use aspect-oriented programming with AspectJ to inter-
cept invocations in Java, and the generator SWIG [18] to integrate
split objects for C/C++. Any other technique that is capable of in-
tercepting all invocations to an object can also be used to realize
the Split Object pattern (see [22]).

Object

JavaClass

«class»

MHPButton

Java

create() dispatcher()

dispatcher()
create()

UML/Java modelFrag

«lookup via reflection»

«invoke via reflection»
«class»

MHPButton«splitObject»

Figure 1: Split object structure example

Please note that the tailorability property of the DSL is impor-
tant for language integration via split objects. Split object classes
in the DSL and the target programming language mimic each others
class hierarchy. Moreover, a correspondence of class structures and
class names between the two languages of a split object class hier-
archy enables generation of split objects as glues between the DSL
and other models. To be able to do this, the DSL must be able to
represent the class and object concepts of the target programming
language: we tailor the DSL to support the features and constraints
of the target programming language’s class and object concepts.

Let us consider an example from [26]: a DSL is used for con-
figuring GUI elements for the MHP. The MHP specification [5]
is a generic set of APIs for digital content broadcast applications,
interaction via a return channel, and internet access on an MHP
terminal. Typical MHP terminals are for instance digital set-top
boxes, integrated digital TV sets, and multimedia PCs. To provide
for configurability of the user interface, we define a DSL which is
mapped to the model of the platform and thus to the resulting Java
classes.

Figure 1 shows a split object MHPButton, which is an abstract
syntax element of the DSL defined as an extension of Frag [25].
The Frag class has a counterpart in Java, also named MHPButton.
When an invocation cannot be dispatched for the DSL class, the
Java class MHPButton is automatically looked up via Java Reflec-
tion, because the Frag class MHPButton has the class JavaClass
as a class and Java as a superclass. These two classes are pro-
vided by Frag’s Java split object framework. All methods that are
not found for the Frag half of the split object are automatically for-



warded to the Java half by the dispatcher method, which is au-
tomatically invoked. The invocations to the Frag method create
are forwarded to the respective Java constructor, and automatically
a split object half is created in Java for each Frag object derived
from MHPButton. All details of forwarding invocations, such as
type conversion, are automatically performed in the background.

2.6 Generating other artifacts
In our concept, the interpreter is used as a generator for

language-related models, model transformations, and their im-
plementations. Split objects are generated as bindings between
DSLs and other models (and their generated implementations).
Sometimes other generation tasks are required.

For instance, the language models for abstract syntaxes are in
our work mostly defined in a textual form because this enable rapid
changes to the language models. But sometimes graphical repre-
sentations are needed as well (e.g. for documentation purposes). In
these cases we generate the graphical model representations using
automatic graph drawing algorithms from textual model represen-
tations (as described in [16]).

2.7 Example: Generation architecture config-
uration

Figure 2 shows an example of a generation architecture config-
uration with interpreters. The goal is to create Java code. The
main Java models are represented in UML and transformed via a
UML-to-Java generator to Java classes. The outputs of this gen-
erator are used by the DSL interpreter and generator. In addition,
hand-crafted Java code (combined with the generated Java classes
following the patterns from [20]) is added by the developers.

There are three DSLs: two are from the domain of code gen-
eration and model transformation (template language and model
transformation language), and one is a DSL from the application
domain. The latter is the only DSL that is deployed to the product,
the two former DSLs are used only inside the generator architec-
ture.

In addition to the generated and hand-crafted Java code, the DSL
interpreter produces split object bindings between the application
domain DSL and the Java classes, a deployable interpreter for the
application domain DSL, the deployable application domain DSL
code (embedded in Java), and glue code to lets everything work
smoothly together.

Finally, the DSLs’ language models, describing the abstract syn-
tax, are sent to an UML figure generator (like [16]) to produce
UML diagrams for documenting the predefined DSL models with
UML 2.

3. USING THE CONCEPTS IN SOFTWARE
FACTORIES

Software factories [11] were one of the approaches which we
have identified in Section 1 as an approach that could benefit
from DSL product lines. The software factory concept proposes
the automated creation of software and the integration of ap-
proaches from various disciplines, such as model-driven software
development (MDSD), software product lines, software archi-
tecture, patterns, aspect-oriented software development (AOSD),
component-based software development (CBSD), service-oriented
architectures (SOA), and others. More precisely, a software factory
uses MDSD to create a software product line in which the other
named concepts are combined.

The integral approach taken by software factories leads to
another important motivation for using our DSL product line

approach. One important aspect to software factories is that the
concept reduces the complexity and increases the changeability by
combining approaches from different disciplines. But this creates
a new kind of complexity: developers must master all the different
concepts used in a software factory, such as (different kinds of)
components, patterns, aspects, services, models, generators, etc.
Often multiple paths for integrating these artifacts into one product
line exist. We argue an explicit, intuitive, and easy-to-use concept
for developing DSLs in terms of a DSL product line can be used to
design DSLs for integration of these concepts. The DSL product
line’s language infrastructure provides one integrated DSL concept
with which all other concepts can be glued and configured. In
other words, a DSL product line, following our concepts, could be
used as a “conceptual glue” between the different kinds of models
and artifacts.

The consistent use of a DSL product line throughout the software
factory solves a number of other issues: for instance, the common
architectural foundation can be used to provide traceability between
the different glued artifacts (e.g. as a central indirection, the inter-
preters of the DSLs can record relevant trace links). Also, other
model representations, e.g. for documentation purposes, can easily
be built.

4. CONCLUSION
In this position paper, we have combined our earlier research

work on tailorable languages (see [26]), split objects (see [24]), and
the use of high-level languages in product line architectures (see
[10, 8]) with the concepts of model-driven development of DSLs.
Our approach offers the consistent use of one language framework
for all kinds of DSLs in a DSL product line identified in Section
2.2. Our approach allows for a more rapid design and evolution
of domain-specific languages, without sacrificing the benefits of
model-driven DSLs. Finally, our approach enables the reuse of
language-related generation code, integration models, and power-
ful language-manipulation features offered by the interpreter.

So far, we have implemented all concepts described in Section
2 as prototypes and defined a number of DSLs using the concepts
in different projects. Our plan is to further develop and integrate
the concepts and prototypes. In Section 3, we proposed to use the
DSL product line as a conceptual glue that reduces the conceptual
complexity of a software factory. This, however, is still work in
progress.

Even though our concept entails some novel concepts and some
novel combinations of concepts, most of the technological com-
ponents are broadly available. For instance, there are many lan-
guages that can easily be extended to serve as a tailorable language,
many interpreters offer generative features, existing generators can
be used to generate split object bindings (like SWIG [18]) or UML
model visualizations (like [16]), and so on. Our concepts require
the developer to combine the most suitable tools to a DSL product
line. The concepts can be applied with any model-driven approach,
but they make especially sense in the context of a larger product
lines or software factories, because the time and effort for creating
and evolving a DSL language infrastructure should not be under-
estimated, but it is likely to be small in comparison to the whole
product line or software factory.

5. REFERENCES
[1] C. Bockisch, M. Haupt, M. Mezini, and K. Ostermann.

Virtual machine support for dynamic join points. In
Proceedings of the Third International Conference on
Aspect-Oriented Software Development (AOSD’04),
Lancaster, UK, March 2004. ACM Press.



DSL Interpreter + 
Generator

Application Domain
DSL

Template Language
DSL

Model Transformation
DSL

UML Model
(from modelling tool)

[optional]
Domain-Specific
Editor tool output

[optional]
Template language
editor tool output

[optional]
Transformation language

editor tool output

Split Object
Bindings

Tailored Interpreter for
Application Domain DSL

Application Domain
DSL with Bindings

Java Code 
(from models, DSLs, and

hand-crafted Java)

Glue Code
(in Java and DSL)

[optional]
Hand-crafted Java 

code

UML-to-Java
Generator

UML Figure
Generator

UML Model 
of Application 
Domain Model

Figure 2: Example of a generation architecture configuration

[2] J. Boner and A. Vasseur. AspectWerkz.
http://aspectwerkz.codehaus.org, 2004.

[3] G. Bracha and W. Cook. Mixin-based inheritance. In Proc. of
the Joint ACM Conf. on Object-Oriented Programming,
Systems, Languages and Applications and the European
Conference on Object-Oriented Programming
(OOPSLA/ECOOP’90), volume 25 of SIGPLAN Notices,
pages 303–311, October 1990.

[4] S. Dmitriev. Language oriented programming: The next
programming paradigm. Onboard Magazine,
http://www.onboard.jetbrains.com/is1/articles/04/10/lop/
index.html, October 2004.

[5] ETSI. MHP specification 1.0.1. ETSI standard TS101-812,
October 2001.

[6] I. Forman and S. Danforth. Putting Metaclasses to Work – A
new Dimension to Object-Oriented Programming.
Addison-Wesley, 1999.

[7] M. Fowler. Language workbenches: The killer-app for
domain specific languages? http://www.martinfowler.com/
articles/languageWorkbench.html, June 2005.

[8] M. Goedicke, C. Koellmann, and U. Zdun. Designing
runtime variation points in product line architectures: Three
cases. Science of Computer Programming, 53(3):353–380,
2004.

[9] M. Goedicke, G. Neumann, and U. Zdun. Object system
layer. In Proceedings of 5th European Conference on Pattern
Languages of Programs (EuroPlop 2000), Irsee, Germany,
July 2000.

[10] M. Goedicke and U. Zdun. Piecemeal legacy migrating with
an architectural pattern language: A case study. Journal of
Software Maintenance and Evolution: Research and
Practice, 14(1):1–30, 2002.

[11] J. Greenfield and K. Short. Software Factories: Assembling
Applications with Patterns, Frameworks, Models & Tools. J.
Wiley and Sons Ltd., 2004.

[12] R. Johnson and B. Woolf. Type object. In R. C. Martin,
D. Riehle, and F. Buschmann, editors, Pattern Languages of
Program Design 3. Addison-Wesley, 1998.

[13] A. Kay. The Reactive Engine. PhD thesis, University of
Utah, 1969.

[14] G. Kiczales, J. des Rivieres, and D. Bobrow. The Art of the
Metaobject Protocol. MIT Press, 1991.

[15] OMG. MDA Guide Version 1.0.1. Technical report, Object
Management Group, 2003.

[16] D. Spinellis. On the declarative specification of models.
IEEE Software, 20(2):96–95, 2003.

[17] T. Stahl and M. Voelter. Modellgetriebene Software
Entwicklung. D.Punkt, 2005.

[18] Swig Project. Simplified wrapper and interface generator.
http://www.swig.org/, 2003.

[19] M. Voelter. Model-driven software development tutorial.
http://www.voelter.de/services/mdsd-tutorial.html, 2005.

[20] M. Voelter and J. Bettin. Patterns for model-driven
software-development. In Proceedings of 9th European
Conference on Pattern Languages of Programs (EuroPlop
2004), Irsee, Germany, July 2004.

[21] H. Wada. Modeling turnpike: a model-driven framework for
domain-specific software development. In ACM/IEEE 8th
International Conference on Model Driven Engineering
Languages and Systems – Doctoral Symposium, Montego
Bay, Jamaica, Oct 2005.

[22] U. Zdun. Some patterns of component and language
integration. In Proceedings of 9th European Conference on
Pattern Languages of Programs (EuroPLoP 2004), Irsee,
Germany, July 2004.

[23] U. Zdun. Supporting incremental and experimental software
evolution by runtime method transformations. Science of
Computer Programming, 52(1–3):131–163, 2004.

[24] U. Zdun. Using split objects for maintenance and
reengineering tasks. In 8th European Conference on
Software Maintenance and Reengineering (CSMR’04), pages
105–114, Tampere, Finland, Mar 2004.

[25] U. Zdun. Frag. http://frag.sourceforge.net/, 2005.
[26] U. Zdun. Tailorable language for behavioral composition and

configuration of software components. Computer Languages,
Systems and Structures: An International Journal, Elsevier
(accepted for publication), 2005.


