
Patterns of Argument Passing

Uwe Zdun
Department of Information Systems

Vienna University of Economics, Austria
zdun@acm.org

Argument passing means passing values along with an invocation. Most programming
languages provide positional arguments as their ordinary argument passing mechanism.
Sometimes ordinary argument passing is not enough, for instance, because the number
of arguments or their types differ from invocation to invocation, or optional arguments
are needed, or the same arguments are passed through a chain of multiple receivers
and must vary flexibly. These issues can be resolved using ordinary argument pass-
ing mechanisms, but the solutions are usually cumbersome. In many systems, such
as programming languages, programming environments, frameworks, and middleware
systems, advanced argument passing solutions are provided to better address these is-
sues. In this paper we present four patterns applied in these advanced argument passing
solutions:    allow an operation to receive arbitrary numbers
of arguments,   let operations have arguments which can either
be provided in an invocation or not, -  allow arguments to
be passed in any order as name/value pairs, and   are special types
used for the purpose of argument passing.

Introduction

Argument passing is an integral part of all forms of invocations, for instance, performed inArgument
passing object-oriented and procedural systems. All systems that provide facilities for performing

invocations thus must provide some way to pass arguments (also called parameters) to oper-
ations. As a first example for such systems one might think of programming language imple-
mentations, such as interpreters, compilers, and virtual machines. But argument passing is
also relevant for any other kind of system that performs invocations on top of the facilities of-
fered by a programming language, such as middleware systems, aspect-oriented composition
frameworks, component frameworks, interactive shells of operating systems or programming
languages, enterprise integration frameworks, and so forth.

In this paper we present some patterns that provide advanced argument passing solutions.Intended
audience These patterns are important for developers of the systems named above, when they want

to provide some argument passing mechanism in a language or framework. In addition to
that, the patterns are also relevant for developers using these systems, because in some situa-
tions the ordinary (i.e. positional) argument passing mechanisms offered by the language or
framework do not cope well with a particular design problem. Then it is advisable to write
a little argument passing framework on top of the language or framework that supports the
respective pattern.

double max (double a, double b) {

 if (a > b)
 return a;
 return b;

}

operation signature

operation namereturn type formal arguments

operation body

Figure 1: Operation definition

To explain the patterns, we use the following terminology applicable to all kinds of languagesTerminology
and frameworks mentioned above: any kind of function, procedure, method, etc., be it local
or remote, is called an operation. Each operation has an operation signature. The signature
contains at least an operation name and a list of arguments. In typed environments the sig-
nature also contains types for each argument and a return type. An operation is “called” or
“invoked” using an invocation.

In the text below, we sometimes refer to “ordinary arguments”. With this term we mean the
typical, positional arguments offered by almost any procedural or object-oriented program-
ming language, such as C, C++, Java, Tcl, etc.

The arguments in the signature are called formal arguments because they act as placeholders
for argument values provided by the invocation. The concrete argument values provided by
an invocation are called actual arguments. Each actual argument is mapped to the formal
argument at the same position.

When the invocation takes place, each formal argument is filled with the value of the re-
spective actual argument. This can be done by copying the value of the actual argument into
the storage space of the operation (call-by-value), as opposed to providing only the address of
the storage space of the actual argument to the operation (call-by-reference). Another scheme
of argument passing is call-by-name, which refers to passing the (unevaluated) code of the
argument expression to the operation, and this code is evaluated each time the argument is
accessed in the operation. In dynamic languages call-by-name can be applied at runtime (ex-
amples are arguments evaluated using eval in Lisp or Tcl), or it can be performed statically
by compilers or preprocessors (e.g. C macros). There are a number of other, less popular
parameter passing schemes, such as call-by-value-return in Fortran, or copy-a-value-in and
copy-it-back.

The terms are illustrated using a Java method and invocation as an example in Figures 1 and
2.

double m = max (10, 2);

invocation

operation namereturn type actual arguments

Figure 2: Operation invocation

The following patterns are presented in this paper:Pattern
Language
Outline • A    provides an argument passing mechanism with a special

syntax, which allows the client to invoke the operation using any number of arguments
for this last argument. The actual arguments are put as a list into the last formal argu-
ment.

•   are an argument passing mechanism that uses a special syntax to
denote that one of the formal arguments is optional. A default value is provided, which
is used in case the client does not provide the   in an invocation.

• -  are an argument passing mechanism that allows clients
to provide arguments in an invocation as name/value pairs. Because each argument is
named, the arguments can be provided in any order, and the argument passing mecha-
nism automatically matches the correct actual arguments to the formal arguments.

• A   is a special object type that is used for argument passing. This
object type is used as an argument of the operation (often it is the only argument), and
the arguments to be passed to the operation are encapsulated in the  
(e.g. as instance variables).

There are a number of related patterns, documented elsewhere, that play an important role forRelated
Patterns the patterns described in this paper. We want to explain some of these patterns briefly:

• An    [Zdu04b] converts types at runtime from one type to
another. There are two main variants of the pattern: one-to-one converters between
all supported types and converters utilizing a canonical format to/from which all sup-
ported types can be converted. An    is primarily used by
the patterns presented below for realizing type conversions.

• In a  [BMR+96] architecture all structural and behavioral aspects of a sys-
tem are stored into meta-objects and separated from the application logic components.
The latter can query the former in order to get information about the system structure.
In an argument passing architecture,  is especially used to introspect ordi-
nary operation signatures to perform a mapping between the arguments passed using
the patterns and ordinary invocations.

• The   pattern is a general pattern for passing arguments using a special
object type. Various special-purpose variants of this pattern have been described in the
literature before:   [VKZ04] are   used in dis-
tributed invocations;   [Zdu03, Zdu04a] are   used
in aspect-oriented composition frameworks and interceptor architectures; 
 [Nob97] is an object that contains all elements of an operation signature, for
instance, as variables;  [SR98] describes a generic data container; -
  [Kel03] are   used to encapsulate common data used
throughout the system;   [PL03] are   used to support
a dynamic set of arguments.

• A   [SR98] is a data structure that allows developers to associate names
with arbitrary values and objects. This structure is needed to represent a simple list of

- . The   pattern thus can be used to internally
implement the -  pattern.

Figure 3 shows an overview of the patterns described in this paper and the relationships ex-
plained above. The patterns described in this paper are rendered in black, the related patterns
in grey.

Automatic Type Converter

Variable Argument List Optional Arguments

Invocation Context

Context Object

Non-Positional Arguments

Message Context Open Arguments Encapsulate Context

alternative/context object can be used for internal realization

uses internally for type conversions

can realize

uses internally for
type conversions

uses internally for type conversions

Reflection

introspect signature of ordinary invocations

Anything

Property List

can be used for
internal realization

Arguments Object

variant of context object

can realize

Figure 3: Pattern map: Most important relationships of the patterns

Variable Argument List

You are writing operations to be invoked for instance in a programming language or in aContext
distributed system.

A particular operation needs to receive a varying number of arguments, and you do notProblem
know in advance how many arguments will be received. You only know that the argu-
ments to be received are all of the same type, and they can be treated in a uniform way.
Ordinary operation signatures, however, cannot retrieve arbitrary numbers of argu-
ments. Thus you have to apply tedious and error-prone workarounds for this situation,
such as abusing polymorphism (e.g. overloading) or passing the arguments in a helper
data structure.
Consider you want to process a list of objects, but do not know in advance how many argu-Forces
ments are in the list. For small numbers of objects, you can use overloading to be able to
invoke the operation with a varying number of arguments:
void processList(Object o1) {

//...

}

void processList(Object o1, Object o2) {

//...

}

void processList(Object o1, Object o2, Object o2) {

//...

}

Besides the problem that you have to write a huge number of unnecessary operations, you face
the problem that this approach does not scale well for possibly larger numbers of arguments:
consider you might receive lists with up to 1000 arguments. You would have to write 999
unnecessary operations.

An alternative solution for this problem is to bundle the arguments in a collection data struc-
ture (such as a list or an array). But this solution is quite complex because in each such
operation you have to process the arguments in the list, and for each invocation you have to
fill the data structure before you can perform the invocation.

A collection data structure requires the caller to put the appropriate arguments into the data
structure, which make the caller more complex. Note that the overloading solution sketched
above, in contrast, makes the callee more complex and error prone.

Another problem of using a collection data structure is that two kinds of invocations exist in
the system. Rather it would desirable that all invocations look the same.

Provide a special syntax for the    that might be added as the lastSolution
argument, or the only argument, to the argument lists of operations. Each argument in
the    is of the same type, which might be a generic type such as
string or void pointer. The language implementation (e.g. the compiler or interpreter)
or the framework implementation (e.g. the distributed object framework) provides a

functionality to process the   . Thus, from the developers per-
spective, all invocations of    operations look just like ordinary
invocations, except that they vary in their length. Also, provide an API to make the
arguments passed through a    accessible from within the opera-
tion.
The arguments of    must be distinguishable in the invocation fromDiscussion
other arguments. That’s the reason why    are usually realized as the
last argument in the operation. An alternative is to delimit them in the invocation, for instance
using a special character. But this would violate the goal that invocations with 
  should look the same as ordinary invocations.

In principle it is also possible to have    be placed in the middle of
ordinary arguments. This, however, is not advisable because in this case it is easy that bugs,
such as wrong number of arguments, are not detected.

Similarly, a simple, working solution is to allow only for one    per
operation. In principle it is also possible to have more    in one
operation, if the arguments can be distinguished by their type. Again, this might lead to
bugs that are hard to find, for instance, when one of the argument types can be automatically
converted to another one.

In type-safe environments, type-safety is an issue when using   . The
typical solution is to let all arguments in the    be of the same type.
Otherwise, it would be necessary to define how to handle the different types and maybe de-
limit them, meaning that    would have a pretty different appearance
in the signature than ordinary arguments (which is usually not wanted). If different types are
needed in a   , a super-type of these types can be used for defining
the    or, if this is not possible, a generic type, such as string, void*,
or Object. A    in an untyped environment is equivalent to using a
generic type in typed environments.

In summary, in most cases it is advisable to allow for only one    per
operation signature and enforce that this    is the last argument of the
operation signature. All arguments of the    are passed as the same
type.

Note that we require a way to retrieve the arguments in the    from
within the operation. Here,    arguments must be a bit different than
ordinary arguments, because in the one operation signature element that represents the -
   n arguments are hidden. Usually, an API or special syntax is provided,
which provides a way to (a) retrieve the list of variable arguments (e.g. as a list data structure)
and (b) find out how many variable arguments are passed through. Using this information,
the    can be processed using the operations of the list data structure.

   solve a prevalent concern in writing generic and reusable opera-Consequences
tions. They are an elegant solution because they are applied automatically and do not look
much different to ordinary invocations. Only the operation implementation must be written
in a slightly different style.

If    are not language-supported or framework-supported, some effort

to provide an implementation is required. A simple emulation (e.g. using a collection data
structure) is not much work, but one also has to write a little program generator to convert the
invocation to the    format.

A much simpler, but slower solution is to use strings (or other generic types) for argument
passing and an    to convert the invocations back and forth. An
invocation:

processList(3, 1, 2, 3);

would then become:

processList("3, 1, 2, 3");

This is not very desirable in the context of many programming language because again we
would end up with two different styles of invocations. Moreover, the solution is rather slow
because back and forth conversion to strings is required. But there are situations were this
solution is highly applicable. For instance, in string-based programming languages (such as
most scripting languages) there is no difference in the invocation styles. Or, in middleware
implementations the invocations are sent as a byte-array over the wire anyway. Thus, again,
there is no difference to all other invocations.

   can make overloading resolution more complex, ambiguous, or,
in some situations, even impossible. Thus usually it is advisable not to use overloading for an
argument that is realized as a   , or at least introduce an unambiguous
rule for overloading   .

Type-safety might be compromised, depending on the    implemen-
tation (compare the C/C++ and Java known uses below).

Some known uses of the pattern are:Known Uses

• In C and C++    are language-supported. In place of the last
argument you should place an ellipsis (“...”). C and C++ provide an API to process
the    (starting with va) as in the following example:

void processList(int n, ...) {

va_list ap;

va_start(ap, n);

printf("count = %d: ", n);

while (n-- > 0) {

int i = va_arg(ap, int);

printf("%d ", i);

}

printf("\n");

va_end(ap);

}

This operation can be used like any other operation:

processList(1, 1);

processList(3, 1, 2, 3);

Please note that functions that take a variable number of arguments (“varargs”) are
generally discouraged in C/C++ style guides (see e.g. [CEK+00]) because there is no
truly portable way to do varargs in C/C++. If varargs are needed, it is advisable to use
the library macros for declaring functions with   .

• In the scripting language Tcl (similar to other scripting languages) a special argument
args can be provided to an operation as the last argument. In this case, all of the actual
arguments starting at the one that would be assigned to args are combined into a list.
This combined value is assigned to the local variable args, which is an ordinary Tcl
list.

• Leela [Zdu04c] is a Web services framework that uses    for
generic argument passing between Web services. A Leela service is bound to a SOAP
endpoint, and this endpoint offers a string-based interface. This interface is mapped
to the Web service operation using  (see also the pattern 
 [Zdu03]).

• In Java, starting with version 5.0, Var-Args are provided. Java’s solution is similar to
the C solution. A major difference is that it is type-safe. For instance, we can specify
an operation for processing a String list:

public static void processList(String... args) {

for (String a : args) {

System.out.println(a + " ");

}

}

Java’s Var-Args can receive any argument type by using a more generic type, such as
Java’s Object, for instance.

• Many programming languages provide a    mechanism to
receive arguments from the command line. This design is due to the argument
passing interface of command shells, especially UNIX shells, which led to C/C++’s
“int main(int argc, char *argv[])” interface to programs. Most contemporary
programming languages support a similar interface, for instance, in Java, command
line arguments are mapped to a special String array that is the argument of the
operation “static void main(String[] args)”.

Optional Arguments

You are writing operations to be invoked for instance in a programming language or in aContext
distributed system.

Sometimes one operation can be defined for a varying number of arguments. This sit-Problem
uation can in principle be solved using   . But consider the situ-
ation is slightly different to the problem solved by   : you know
the possible arguments in advance, and the number of arguments is manageable. The
arguments might be of different types (or kinds in untyped languages); that is, they
cannot or should not be treated uniformly.
Constructors are operations that should be able to receive differing numbers of argumentsForces
because different clients want to configure different values. All unspecified values should be
filled with default values. Consider the following Java code as an example:
class Person {

Name name;

Address homeAddress;

Address workAddress;

...

Person(Name _name, Address _homeAddress, Address _workAddress) {

name = _name;

homeAddress = _homeAddress;

workAddress = _workAddress;

}

Person(Name _name) {

this(_name, null, null);

}

...

}

In this example, the variables homeAddress and workAddress are optional and have null as
a default value. To realize this concern, the Person constructor needs to be defined twice,
just to pass the default values to the operation that really does the work. Usually, there are
more such constructors, and we need to provide similar forwarders in subclasses as well. For
instance, to provide the option that the work address is optional, another constructor has to
be added.

The solution in the example uses Java’s method overloading which works by realizing a
concern using multiple operations with different signatures and possibly chaining them with
invocations among each other (as in the example above). This is a heavy-weight solution
for the simple problem of realizing an optional default value. For each optional argument,
and each possible combination of optional arguments, we need to provide one additional
operation. The result is a lot of unnecessary lines of code, reducing the readability of the
program.

Another problem is that we cannot provide all possible combinations of arguments because
Java’s overloading mechanism selects methods only on basis of the signature of the operation.

Sometimes the types of arguments conflict, for instance, in the above example we cannot
provide default values for both homeAddress and workAddress, because the two operation
signatures:

Person(Name _name, Address _homeAddress);

and:

Person(Name _name, Address _workAddress);

are conflicting. The compiler cannot distinguish between them because they have the same
types in their signature.

Note that it is not elegant to use    in this and similar examples. The
arguments of constructors are named and typed. With a    you would
have to pass all the arguments using a generic type, and then obtain the individual arguments
using their position in the   . This approach makes it hard to handle
changes in argument lists.

Introduce a special syntax for operation signatures to mark some arguments as Solution
. For each   provide a default value. Provide a language-
support or framework-support for selecting or passing arguments to operations who
have  . It is important that there are no syntactic ambiguities which
actual argument belongs to which formal argument.
  require default values because without them it would be undefined howDiscussion
to handle an invocation in which an   is omitted. Default values can be
provided in different fashions:

• They can simply be provided in the operation signature, where the optional argument
is defined.

• They can be looked up at runtime and added to the actual invocation by the language
implementation or framework. To use this variant is advisable if the default values
should be modifiable after the program has been compiled or started. For example, the
default values can be defined in a configuration file or an external repository.

• They can be defined programmatically: some code handles the situation when an -
  is not provided by an invocation.

• They can be implicitly defined, for instance, by some convention. For example, if
there is an “empty” value or system-wide default value, this value can be chosen by the
language or framework if no value for the   is given. If there is an
old value (e.g. from previous invocations), also the old value can be used as the default
value.

The   pattern is often combined with other patterns. A  -
  is implicitly an   that defaults to “empty”. When the 

 pattern is combined with   , it is important that the or-
der of the two patterns in argument lists is clearly defined, so that there are no ambiguities.
-  are often  , meaning that an omitted -
  is treated as being optional. A   implementation might
also provide support for  .

  provide a look and feel similar to ordinary invocations. They can beConsequences
applied automatically. In the operation signature, a special syntax is required for defining an
argument as being optional and for defining or retrieving the default value. Usually invocation
and operation bodies do not have to be adapted to be used with  .

In compiled languages, the default values cannot be changed at runtime. For a change of a
default value a recompilation is necessary.

Some known uses of the pattern are:Known Uses

• In a C++ operation definition, the trailing formal arguments can have a default value
(denoted using “=”). The default value is usually a constant. An example is the fol-
lowing operation signature, which receives two int arguments, the second one being
optional with the default value 5:

void foo(int i, int j = 5);

• Many scripting languages support   for operations. In Tcl [Ous94],
for instance,   can be defined as pairs of argument name and de-
fault value.   need not be specified in an operation invocation.
However, there must be enough actual arguments for all the formal arguments are not
 , and there must not be any extra actual arguments. For instance,
the following log procedure has an optional argument out channel, which is per de-
fault configured to the standard output:

proc log {log_msg {out_channel stdout}} {

...

}

If the last formal argument has the name args, it is treated as a  
. In this case, all of the actual arguments starting at the one that would be assigned
to args are passed as a   . That is, it is not possible that there
are ambiguities between the   and the arguments for the 
 .

• In the GUI toolkit TK [Ous94], constructors of widgets provide access to the widget
options, such as background, width, colors, texts, etc., as  , which
represent either empty values (like an empty text) or values that are often chosen (e.g.
the color of the surrounding widget). A TK widget can therefore be initiated with only
a very few lines of code because only those options that differ from the defaults must be
provided. For example, the following code instantiates a button widget and configures
it with the label “Hello” and a callback command that prints “Hello, World!” to the
standard output:

button .hello -text Hello -command {puts stdout "Hello, World!"}

The operation configure allows TK programs to access the widget options. Thus
configure is an operation with -  in which each argument is
an   and its value defaults to the current setting of the widget. This
way only those options of a widget to be changed must be specified in a configure
invocation. For example, we can configure a red background for the button widget:

.hello configure -background red

• The GNU Program Argument Syntax Conventions [GNU05] recommend guidelines for
command line argument passing. To specify an argument as an  , a
so-called long option, it is written as --name=value. This syntax enables a long option
to accept an argument that is itself optional. Many UNIX tools and configure scripts
follow this convention. For example, many configure scripts offer a number of options,
such as --prefix and --exec-prefix (those are used for configuring the installation
path). These arguments can optionally be appended to configure invocations:

./configure --prefix=/usr --exec-prefix=/usr

If the options are omitted, they have a default value, such as /usr/local.

Non-Positional Arguments

Named Actual Arguments, Named ParametersAlias

You perform invocations, for instance, in a programming language or in a distributed system.Context

You need to pass arguments along with an invocation. You are faced with one of theProblem
following two problems: firstly, at the time when you design the operation which receives
the arguments, you do not know how many arguments need to be passed. Different
invocations of the operation require a different number of arguments. Secondly, some
invocations require a large number of arguments. These invocations are hard to read
because one must remember the meaning of each argument in order to understand
the meaning of the whole invocation. Matters become even worse when both problems
occur together, i.e. there is a large number of arguments and some of them are 
.
Consider the following invocation:Forces
ship.move(12, 23, 40);

This very simple invocation can only be understood with the specification of the operation
move in the back of the mind. Developers usually have to deal with a lot of such operations
at the same time, and thus it is impossible to remember the meaning of all arguments of all
operations. To understand a program, one has to continuously look at the operation specifi-
cations.

This example illustrates the problem of readability that many ordinary invocations might
have, once a certain number of arguments is exceeded.

Another important problem is that of extensibility. Programming languages like Java offer
overloading to extend operations, such as move in the example above. This way we can over-
load an operation, and provide multiple realization of the operation. For instance, we can
provide one move implementation that receives three integers as arguments (as above), and
one move implementation that receives an object of type ThrustVector. But as overloading
depends on the type system, we can only define overloaded operations with a different num-
ber of arguments and/or different types of arguments. We are not able to provide a second
realization of move that also receives three integers.

From time to time, we make little semantic mistakes when invoking such operations with or-
dinary operations. For instance, we might twist two arguments in an invocation. Most of the
time the compiler finds such mistakes because different types are needed, or our application
code complains because the values provided are not meaningful. But sometimes such mis-
takes stay undetected because the twisted arguments are of the same type and the provided
values are meaningful. For instance, in the above example, a little mistake like:

ship.move(40, 12, 23);

might stay undetected. Such mistakes might produce hard to find bugs.

The pattern   [Hen00a, Hen00b] provides a possible solution to this problem. A
  is realized by a lightweight class that has value semantics, and is typically, but
not always, immutable. If we make all values of the example operation  , we
could write the invocation as follows:

ship.move(Left(12), Right(23), Thrust(40));

Together with overloading,   provide a well defined interface for ship move-
ments, which is typed and supports multiple combinations of arguments. Using  -
, however, requires us to change the operation signature. This might not be possible
for third-party code, and thus we need to write a   wrapper for each extended
third-party operation. The   solution does only work well for small numbers
of possible arguments, because operation overloading means writing additional operations
for each possible combination of arguments. Also, types can only be used to distinguish
arguments as long as they are different (consider two Thrust arguments, for instance).

Provide an interface to pass -  along with an invocation. EachSolution
-  consists of an argument name plus an argument value. The
argument name can be matched to the respective arguments of the operation. Thus
it is no longer necessary to provide the arguments in a strict order, but any order is
applicable. Usually -  are  .
Non-positional arguments provide each argument as a name/value pair. We need some syntaxDiscussion
to distinguish names from values. For instance, we can start each argument name with a dash
“-”. Then we can write the above invocation example in a form like:

ship.move -left 12 -right 23 -thrust 40;

Of course, this form does not conform to the syntax of ordinary arguments of the program-
ming language anymore. Thus we must implement some support for dealing with -
  invocations:

• We can provide program generator (preprocessor) which parses the program text, finds
the -  invocations, and checks that they conform to the ar-
guments required by the operation. The preprocessor substitutes the -
 invocations with ordinary argument invocations.

• A more simple way to realize -  invocations is to use a string-
based syntax. That is, all operations receiving -  receive
only one string as an argument in which the -  are encoded,
such as:

ship.move("-left 12 -right 23 -thrust 40");

This syntax is simple, but we need to parse the string, type-convert the arguments (using
an   ), and map them to the ordinary arguments. Runtime
string parsing is slower than invocations injected by a program generator.

• We can provide a special kind of   which holds - -
. That is, the   must be able to store a dynamic length table or
list of name/value pairs, and the values must be of a generic type. Thus type conver-
sion might get more simple than in the string-based variant, and the solution is more
efficient than string parsing. The  , however, requires a different syn-
tax than ordinary invocations. Thus in most cases   should rather be
used internally to implement -  and stay hidden from the
developer.

• Finally, it is also possible that a programming language provides support for -
 . Alternatively, some programming languages can be extended
with support for - . All other variants, described before,
required a -  framework – on top of a positional arguments
implementation – for supporting the pattern.

When -  are implemented on top of positional arguments, we need
some converter that is invoked between the invocation and the execution of the operation. The
converter must transform the -  into positional arguments. That is,
it needs to map the named actual arguments to names of the formal, positional arguments. To
do so, the converter must know about the name and type of each positional argument, so that
it can map the -  in the correct way. This knowledge can either be
provided to the converter (e.g. at compile time or load time), or  can be used by
the converter to acquire the information at runtime.

The converter is also responsible for applying type conversions if they are necessary (e.g.
using the    pattern), and must raise exceptions in case of type
violations. Note that the converter must also check for overloaded operations and other kinds
of operation polymorphism, if supported by the programming language, and decide on basis
of the provided -  which operation implementation needs to be
invoked.

In the “programming language support” variant, the language implementation (compiler,
interpreter, virtual machine, etc.) realizes the converter. In the “program genera-
tor/preprocessor” variant, the generator generates the conversion code. In the other variants,
“string-based syntax” and “ ”, the developer might have to manually trigger
the converter. For instance, the first lines in the invoked operation might query the arguments,
or the invoking code must trigger conversion, such as:

system.invokeWithNonPosArgs("ship.move -left 12 -right 23 -thrust 40");

The converter internally needs to hold and perhaps pass around the name-value pairs. The
pattern   [SR98] provides a data structure that allows names to be associated
with arbitrary other values or objects. It is thus ideally suited as an implementation technique
to internally represent the -  before they are mapped to the invoca-
tion. A hash table data structure is an (efficient) means to implement the   data
structure (this solution is used by many scripting languages such as Perl or Tcl).

The pattern  [SR98] is an alternative for  , where   is not
sufficient. It is a generic data container for one (primitive) value of any kind or an associative

array of these values. The pattern thus can also be used to implement - -
. Finally, the   pattern can be used (only internally) to hold and pass
around the - .
All -  for which we can assume a default value are usually -
 . For instance, in the example we might want to move the ship without
changing the course, or just change the course, or just change the course in one direction.
Using -  with   we can assume the old value
as default for all values not specified and then do invocations like:

ship.move -thrust 30;

...

ship.move -left 15 -right 23;

...

ship.move -thrust 10 -right 15;

The biggest advantage of -  is that they enhance readability and un-Consequences
derstandability of long argument lists. They can also be used on top of positional arguments,
meaning that they can be used to enhance the documentation of invocations in a framework,
without having to change the positional signature of a (given) target operation (see the SOAP
example below for an example of distributed invocations).

Extensibility is also enhanced because overloading extensions of an operation can be based
on the selection with an identifier (the argument name) and not only using the type of the
argument. The combination with the   pattern supports the extensibility of
-  and enhances the changeability, when extensions are introduced:
developers can define default values for extensions to a given operation. That is, invocations
using the old version without the extension are still valid and do not need to be changed.

-  reduce the risk of mistakes during argument passing because the
developer has to name the argument to which a value belongs.

A drawback of -  is that they are more verbose than positional
arguments. That is, a program with -  has more lines of code.
This drawback does not necessarily occur, when   are used together
with -  and default values can be used. Consider an operation
with 20 options, and you want to change only one of them. - 
with   allow you to specify only the name and the value of that one
argument: the result is an invocation with two extra words for arguments. An operation with
positional arguments that changes all 20 options would require 18 words more than that (plus
invocations to query the old values of the arguments not to be changed).

If the system or language does not yet support -  and you want to
introduce them, depending on your solution, different changes to the system need to be made.
For instance, you might have to introduce a converter, and the converter introduces a slight
performance decrease. In some solutions, discussed above, the signature or implementation
of the operations must be changed. Other solutions (like the language-based or generator-
based variants) require more efforts for implementing them. The efforts and drawbacks of the
individual solutions need to compared to the benefits of - .
If positional arguments are supported as well, two styles of invocation are present. The syntax

for both variants should be distinctive, so that developers can see at first glance, which kind
of invocation is used or required by an operation.

Some known uses of the pattern are:Known Uses

• The SOAP protocol [BEK+00], used for Web services communication, uses -
 . For instance, an invocation of an operation GetPrice with
one argument Itemmight look as follows:

<soap:Body>

<m:GetPrice xmlns:m="http://www.w3schools.com/prices">

<m:Item>Apples</m:Item>

</m:GetPrice>

</soap:Body>

In SOAP the response message also contains - .
Web services frameworks implemented in languages that do not support -
  must map SOAP’s -  to the
positional arguments of the programming language. For instance, the Web services
framework Apache Axis [Apa04] contains an    which maps
the -  delivered in SOAP messages to Java invocations, and
vice versa.

• The GUI toolkit TK provides -  for configuring the TK wid-
gets. Each widget has a huge number of options. Most of the time it is enough for
a Widget instance to configure only a few of these options. For both readability and
extensibility reasons, it is not a good choice to perform the configuration of the widget
options using operations and operation overloading, as used by many other GUI toolk-
its. For instance, a button widget with -  can be created like
this:

button .b -text Hello! -command {puts hello}

We can also send any of the possible widget arguments as - 
to the widget for reconfiguration. For instance, we can change the font like this:

.b configure -font {Times 16}

The advantage of -  are that we can choose any of the 32
widget options in TK 8.4 for a button in any order and that we can directly see which
option is configured in which way. TK constantly evolves. For instance, in TK 8.0
the button widget had only 28 options. Nevertheless TK 8.0 scripts usually work with-
out changes, compatibility operations, or other measures, because the -
 are combined with  .

• OpenACS [GA99] is a toolkit for building scalable, community-oriented Web appli-
cations on top of a Web server. It uses the Tcl scripting language as a means for
developers to add user-defined operations and call them from Web pages (or Web page

templates). One means to support flexible operations are so-called ad proc opera-
tions. These operations can be declared with regular positional arguments, or with
- . In addition, when -  are used,
it is possible to specify which ones are required, optional, and boolean. Optional argu-
ments require a default value. They are an implementation of the  
pattern. An example is:

ad_proc -public auth::authenticate {

{-username:required}

{-domain ""}

{-password:required}

} {...} {...}

In this operation signature, the arguments username and password are required, the
domain argument is an  , which defaults to an empty string.

• XOTcl [NZ00] is an object-oriented Tcl variant which supports - -
 for all its operations. Its model is similar to that of the OpenACS framework.

Context Object

You are invoking operations, for instance, in a programming language or distributed objectContext
system.

You want to deliver complex or varying information to an operation. For instance, thereProblem
is a huge number of arguments, the number of arguments varies from invocation to
invocation, or there are  . So ordinary, positional arguments are not
really working well here. In addition to passing the information to the operation, you
need to process the information in some way. For instance, you might have to transform
them into a different format (e.g. marshal them to transport them over a network).
Or the same information is passed through multiple operations and each one can add or
remove some information. The arguments might be of different types (or kinds) and thus
cannot be treated uniformly. So the patterns    or -
 do not resolve all concerns either.
Consider information that is passed through multiple operations, and each operation can addForces
or remove arbitrary information. For instance, this situation is typical for realizations of the
patterns    [GHJV94],   [VKZ04], and 
  [BMR+96, SG96]. Using ordinary, positional arguments is cumbersome here
because each operation would have to know the signature of its successor to be able to invoke
it. Thus the modifiability of this architecture would be limited: the operations could not be
assembled in arbitrary order.

A    could help to avoid this problem because all operations would
just receive the    and thus have the same signature. The operations
could be assembled in any order. But, as a drawback, each operation would have to process
the    before the arguments could be accessed or changed. This means
a slight performance overhead. Also, it should be possible to reuse the code for processing
the list in different operations because likely most of them will process the list in more or
less the same way – which is not supported directly by the    pattern.
   only support arguments of the same kind. If there are different
types, for instance, conversion to and from a generic format would be necessary.

If just a variable number of named arguments is needed, -  might
resolve the problem. If the arguments or the processing requirements are more complex,
however, this won’t work well either, because -  do not support
complex processing instructions.

Pass the arguments in a special object type, a  . This object providesSolution
all arguments as instance variables. The class of the object defines the structure of the
  and the operations required to process the arguments. Using ordinary
inheritance, more special   can be derived.
A   must be instantiated and filled with values (e.g. with the actual argumentsDiscussion
to be passed to an operation). A typical example looks as follows:
Context c = new Context();

c.setValue("left", new Integer(12));

c.setValue("right", new Integer(23));

c.setValue("thrust", new Integer(40));

o1.invokeOperation(c);

In the operation receiving the invocation the arguments must be accessed via the 
’ API. For instance, an access to a value might look as follows:

Integer left = (Integer) c.getValue("left");

The API in this example uses key/value-pairs. This, however, is just an example, 
 can use any kind of data structure. For instance, the same example could be realized
using a special ship   that receives the values as instance variables, such as:

ShipContext sc = new ShipContext();

sc.left = 12;

sc.right = 23;

sc.thrust = 40;

o1.invokeOperation(sc);

A   is an alternative to the patterns   ,  -
, and - .   is more generic than these pat-
terns. This is because each of the other pattern’s solutions can be realized using a 
. However, in the concrete solutions applied by these patterns, the patterns provide
more support than a solution using a generic  . In particular, the patterns usu-
ally allow for invocations and argument access that looks no different to ordinary invocations
and argument access.

There are some style guides that advise the use of  . For instance, an “old” C
programming guide says: “if a function takes more than four parameters, pack them together
in a struct and pass the struct instead”.   can be seen as the object-oriented
successor of this guideline. In general, however,   are especially used in
infrastructure software. That is, they are often not visible to the developer, but only used
internally. Examples are:

• Implementations of the patterns   ,  , and
-  in interpreters, compilers, or program generators can pass
the arguments within their implementation using  .

• Distributed object systems need to be pass the distributed invocation through the lay-
ers of the distributed object system using a  . At the client side, an
invocation gets step-by-step transformed into a byte-array to be sent over the wire. At
the server side, the invocation of the remote object is created step-by-step from the
incoming message. Again the invocation needs to be passed through multiple entities.
Besides invocation information, extra context information must be transmitted, such
as security information (like passwords) or transaction contexts. This special variant
of the   pattern for distributed object frameworks is called 
 and is described in the book Remoting Patterns [VKZ04].

• Aspect-oriented software composition framework need to intercept invocations and in-
direct them to aspect implementations. This is most often done with  
(see [Zdu04a]). The pattern language in [Zdu03] describes a pattern for such 


1. The pattern is a special variant of  .

In all three examples the   are hidden from developers and are used inside of
a framework used by the developer. An    is usually applied by the
  implementation to transparently convert generic types, used for instance in
a distributed message, to the specific types defined by the user operation, so that the use does
not have to care for type conversion.

Besides the two variants of   mentioned above,  
[VKZ04] and   [Zdu03, Zdu04a], there are more   variants
documented in the pattern literature:

•   [Nob97] is an object that contains all elements of an operation sig-
nature, for instance, as variables. The   is passed to the operations
with that signature instead of the arguments. The pattern is used in object-oriented
languages as well as in procedural languages (e.g. a C struct can be used to encap-
sulate argument variables).   is a very simple variant to realize a
 . It is advisable to use this variant, if fixed operation signatures should
be simplified (or unified).

•  [SR98] is a generic data structure that can hold any predefined primitive
type, as well as associative arrays of the primitive types. Using these associative arrays,
complex   can be built (the arrays can contain arrays). Note that the
  implementation in the  pattern is scattered among multiple
implementation objects. It is advisable to use this variant, if a generic data container
that can be packed with arbitrary fields and values to be passed along a call chain (e.g.
as in the patterns   ,  , and  
) is needed.

•   [Kel03] is a   that encapsulates common data
used throughout the system. This pattern is used to pass the execution context for a
component or a number of components as an object. The execution context can, for
instance, contain external configuration data. Thus the   pattern
describes one particular use case of the   pattern. Henney presents a
pattern language for realizing  , consisting of four patterns: -
  ,   , - -
, and -   (see [Hen05]). These patterns are generally
useful to implement  .

•   [PL03] are   that support a dynamic set of argu-
ments.

  provides a generalization of these individual patterns.

The   encapsulates the arguments of an operation in an object and makes themConsequences
1In [Zdu03, Zdu04a] this pattern in called  . To avoid confusion with the same-named

pattern from the book Remoting Patterns, we henceforth use the pattern name  .

exchangeable. If a number of operations are invoked using the same  , data
copying can be avoided: all consecutive operations work using the same  
and pass it on to the next operation after they have finished their work. The  
couples the data structures (arguments) and the operations that are needed to process these
arguments.   are extensible using ordinary object-oriented inheritance.

The downside of using   is that invocations do not look like ordinary in-
vocations, but much more code for instantiating and filling the   is needed.
This reduces the readability of the code. Thus   are not transparent to the
developer using them. Also, the operation receiving the   is different to an
operation using ordinary arguments. For these reasons,   are often used in
infrastructure software, where they are hidden from the developer.

Note that there are some situations, where a global, well known space is a simple alternative to
 , which avoids passing the   through the whole application
(an example is the environment provided to CGI programs by a web server). This alternative
can easily be abused. Likewise, a danger of using   is that they can be
abused for tasks that are similar to those of  [GHJV94]. They should only be
used for modular chains of invocations. A   that references all elements of
a system and is used like a global data structure is dangerous because it strongly couples
different architectural elements, meaning that the individual architectural elements cannot be
understood, loaded, or tested on their own anymore.

Some known uses of the pattern are:Known Uses

• An aspect-oriented composition framework intercepts specific events in the control
flow, called joinpoints. The aspect is applied to these joinpoints. Thus the opera-
tion that applies the aspect must be informed about the details of the joinpoint. Many
aspect-oriented composition framework use   to convey this informa-
tion. For instance, AspectJ [KHH+01] realizes its joinpoints using the JoinPoint
interface. From an aspect the current joinpoint can be accessed using the variable
thisJoinPoint. The aspect framework automatically instantiates the JoinPoint in-
stances and fills it with values. For instance, the following instruction in an AspectJ
advice prints the name of the signature of the currently intercepted joinpoint:

System.err.println(thisJoinPoint.getSignature().getName());

• In the Web services framework Apache Axis [Apa04], when a client performs an
invocation or when the remote object sends a result, a  , called the
MessageContext, is created before a Web services message is processed. Both on
client and server side, each message gets processed by multiple handlers, which realize
the different message processing tasks, such as marshaling, security handling, logging,
transaction handling, sending, invoking, etc. Using the MessageContext different han-
dlers can retrieve the data of the message and can potentially manipulate it.

• In CORBA the Service Context is used as a   which can contain any
value including binary data. Service context information can be modified via CORBA’s
Portable Interceptors.

• In .NET CallContexts are used as  . They are used to transport infor-
mation from a client to a remote object (and back) that is not part of the invocation
data. Examples include security credentials, transaction information, or session IDs.
The data is an associative array that contains name/value pairs:

CallContext.setData("itemName", someData);

•   are often used when objects are simulated on top of procedural APIs.
The first argument is a  which bundles all the data about the current ob-
ject. For instance, the Redland API [Bec04] simulates objects using this scheme. Each
Redland class has a constructor. For instance, the class librdf model can be created
using the librdf new model operation. A   of the type librdf model
is returned. A pointer to this   type is used in all operations of the
librdf model type. For instance, the “add” operation looks as follows:

int librdf_model_add (librdf_model* model, librdf_node* subject,

librdf_node* predicate, librdf_node* object);

Conclusion

In our earlier pattern collection Some Patterns of Component and Language Integration
[Zdu04b] we provided the starting point for a pattern language on the topic of software inte-
gration, namely component and language integration. Argument passing is an important issue
in the realm of component and language integration because the argument passing styles of
two systems to be integrated must be aligned. Thus, in this paper, we have supplemented our
earlier patterns for component and language integration with some additional patterns. These
patterns can be used by developers to realize argument passing architectures which provide
more sophisticated argument passing solutions than ordinary invocations. Of course, these
patterns can be applied for other tasks than component and language integration as well. As
future work, we plan to further document patterns from the component and language integra-
tion domain, and integrate them into a coherent pattern language.

Acknowledgments

Many thanks to my VikingPLoP 2005 shepherd Peter Sommerlad, who provided excellent
comments which helped me to significantly improve the paper.

References

[Apa04] Apache Software Foundation. Apache Axis. http://ws.apache.org/axis/, 2004.

[Bec04] Dave Beckett. Redland RDF application framework. http://
www.redland.opensource.ac.uk/, 2004.

[BEK+00] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F.
Nielsen, S. Thatte, and D. Winer. Simple object access protocol (SOAP) 1.1.
http://www.w3.org/TR/SOAP/, 2000.

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-
orinented Software Architecture - A System of Patterns. J. Wiley and Sons Ltd.,
1996.

[CEK+00] L. Cannon, R. Elliott, L. Kirchhoff, J. Miller, J. Milner, R. Mitze, R. Schan,
E. Whittington, N. Spencer, H. Keppel, D. Brader, and M. Brader. Recom-
mended c style and coding standards, 2000.

[GA99] P. Greenspun and E. Andersson. Using the ArsDigita community system. Ars-
Digita Systems Journal, Feb 1999.

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[GNU05] GNU. Program argument syntax conventions. http://www.gnu.org/software/
libc/manual% slashhtml node/Argument-Syntax.html, 2005.

[Hen00a] K. Henney. Patterns in Java: Patterns of value. Java Report, (2), February
2000.

[Hen00b] K. Henney. Patterns in Java: Value added. Java Report, (4), April 2000.

[Hen05] K. Henney. Context encapsulation – three stories, a language, and some se-
quences. In Proceedings of EuroPlop 2005, Irsee, Germany, July 2005.

[Kel03] A. Kelly. Encapsulate context. In Proceedings of EuroPlop 2003, Irsee, Ger-
many, June 2003.

[KHH+01] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.
Getting started with AspectJ. Communications of the ACM, October 2001.

[Nob97] J. Noble. Arguments and results. In Proceedings of Plop 1997, Monticello,
Illinois, USA, September 1997.

[NZ00] G. Neumann and U. Zdun. XOTcl, an object-oriented scripting language. In
Proceedings of Tcl2k: The 7th USENIX Tcl/Tk Conference, Austin, Texas,
USA, February 2000.

[Ous94] J. K. Ousterhout. Tcl and Tk. Addison-Wesley, 1994.

[PL03] G. Patow and F. Lyardet. Open arguments. In Proceedings of EuroPlop 2003,
Irsee, Germany, June 2003.

[SG96] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging
Discipline. Addison-Wesley, 1996.

[SR98] Peter Sommerlad and Marcel Rüedi. Do-it-yourself reflection. In Proceed-
ings of Third European Conference on Pattern Languages of Programming and
Computing (EuroPlop 1998), Irsee, Germany, July 1998.

[VKZ04] M. Voelter, M. Kircher, and U. Zdun. Remoting Patterns – Foundations of En-
terprise, Internet, and Realtime Distributed Object Middleware. Wiley Series
in Software Design Patterns. October 2004.

[Zdu03] U. Zdun. Patterns of tracing software structures and dependencies. In Proceed-
ings of EuroPlop 2003, Irsee, Germany, June 2003.

[Zdu04a] U. Zdun. Pattern language for the design of aspect languages and aspect com-
position frameworks. IEE Proceedings Software, 151(2):67–83, April 2004.

[Zdu04b] U. Zdun. Some patterns of component and language integration. In Proceed-
ings of 9th European Conference on Pattern Languages of Programs (EuroPlop
2004), Irsee, Germany, July 2004.

[Zdu04c] Uwe Zdun. Loosely coupled web services in remote object federations.
In Proceedings of the Fourth International Conference on Web Engineering
(ICWE’04), Munich, Germany, July 2004.

