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Abstract

Many software systems suffer from missing support for behavioral (runtime) composition

and configuration of software components. The concern “behavioral composition and con-

figuration” is not treated as a first-class entity, but instead it is hard-coded in different

programming styles, leading to tangled composition and configuration code that is hard to

understand and maintain. We propose to embed a dynamic language with a tailorable ob-

ject and class concept into the host language in which the components are written, and use

the tailorable language for behavioral composition and configuration tasks. Using this ap-

proach we can separate the concerns “behavioral composition and configuration” from the

rest of the software system, leading to a more reusable, understandable, and maintainable

composition and configuration of software components.

Key words: Software components, component composition, component configuration,

tailorable language.

1 Introduction

Many software systems depend on a behavioral composition and configuration of their soft-

ware components. Thecompositionof software components defines how the components of a
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software architecture are plugged together; i.e. which components can interact in which way

with which other components. For instance, Java classes declare theirimport to indicate which

other classes are required by the class. In the following example we import an EJB from another

EJB using two Javaimport statements:

import stocks.StockQuotes;

import stocks.StockQuotesHome;

Note that this is only a declarative composition at compile time. Thebehaviorof the compo-

sition – i.e. how the components/classes are plugged together at runtime – is handled by code

that is part of the importing EJB:

Context ctx = new InitialContext();

StockQuotesHome = (StockQuotesHome)

ctx.lookup("java:comp/env/ejb/stocks");

In addition to component composition, component configuration is required. Theconfiguration

of a software component defines the runtime properties of one concrete component instance.

For example, we can define simple properties of a component instance, such as an human-

readable name or a textual description of the component (such properties are called metadata

or annotations). We can also configure more complex properties. For instance in the above

example for each EJB instance we need to configure to whichStockQuotes instance it is

bound in which way. Today such configurations are often given in a declarative manner, for

instance, in XML. In the EJB example the importing EJB’s deployment descriptor references

theStockQuotes instance:

<ejb-ref>

<description>Reference to stock quotes EJB</description>

<ejb-ref-name>ejb/stocks</ejb-ref-name>

<ejb-ref-type>Session</ejb-ref-type>

<home>stocks.StockQuotesHome</home>

<remote>stocks.StockQuotes</remote>

<ejb-link>StockQuotes</ejb-link>

</ejb-ref>

Even though different component approaches realize component composition and configura-

tion in different ways, the general solutions are similar. (Note that many industrial systems

use no explicit component composition and configuration concepts at all. Thus the concern

“composition and configuration” is not separated in a deployment descriptor, but instead it is

completely hard-coded in the system’s code).

The main problem that this paper deals with is thatbehavioral composition and configuration

is not supported and thus must be provided using hard-coded program fragments. That is, the

runtime semantics of the composition or configuration relationship must always be foreseen
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by the developer. Any kind of unanticipated software evolution [1], related to the composition

and configuration code, requires substantial amounts of changes to the software system. Un-

fortunately, unanticipated changes are frequently required. Just consider we want to introduce

a conditional composition or configuration in the above example: We would have to hard-code

the condition as part of the business logic.

In some systems, the situation is even more severe: behavior changes are required and cannot

be foreseen untilruntime. Runtime behavior composition and configuration, however, is not

supported.

A consequence of missing support for behavioral composition and configuration support is that

the principle separation of concerns is violated: The concerns “composition and configuration”

aretangledin the business logic. Tangled code makes the business logic hard to understand and

maintain, and the concern “behavioral composition and configuration” becomes hard to reuse

[2].

In summary, the problem of missing support for behavioral composition and configuration has

a significant impact on important quality attributes of a software architecture [3], including

the maintainability, understandability, reusability, and flexibility. In this paper we propose a

language-based approach to solve these problems. In particular, we propose to implement the

pattern Object System Layer [4] on top of a dynamically interpreted language and to embed

this language in the language in which the components are written. In the Object System Layer

we implement a dynamic object system, reflection techniques, and support for flexible clas-

sification (using dynamic mixin-based inheritance, dynamic classes, dynamic aspects, or any

equally powerful adaptation concept). The resulting language/architecture is called atailorable

languagebecause it can be adapted to different composition and configuration tasks in different

environments. It is used for the behavioral composition and configuration concerns in the sys-

tem. We claim (and later provide evidence for these claims) that this approach has the following

contributions:

• Our concept, presented in Section 3, supports behavioral runtime composition and configu-

ration in an easy-to-use manner. Also integration with languages or component frameworks

is easy to achieve. We demonstrate this using an example from a case study in Section 4, a

prototype implementation in Section 5, and an example how the prototype is integrated in

Java and C++ in Section 6.

• The concerns “composition and configuration” are separated from the business logic, and

thus a better separation of concerns is achieved.

• Our approach re-uses a few well-known, but non-simple concepts, such as dynamic and ho-

moiconic languages, dynamic object systems, mixin concepts, etc. These are not easy to build

from scratch, but fortunately many elements are already implemented and can be reused. To

demonstrate this we have implemented a prototype language, Frag, that implements these

concepts (see Section 5). We discuss the details of this implementation because for us it was
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not obvious which elements are required for a well-working solution implementing the con-

cepts from Section 3. The trade-offs of our prototype are briefly evaluated in Section 7. We

also hope this discussion helps readers to realize similar architectures in other languages or

environments.

• The concepts on which our approach is based have been defined in various areas, such

as scripting, aspect-orientation, language integration, component-orientation, reengineering,

and others (more details are discussed and contrasted to our approach in Section 8). Sur-

prisingly the concepts have not been combined to a language-based approach for behavioral

runtime composition and configuration. We claim that applying the conceptstogetheris im-

portant for improving the way we compose and configure components with behavior.

2 Background and motivating examples

To set the scene for this paper, we want to briefly introduce the notion of “components” used

throughout this paper. Then we give some motivating examples of systems in which the above

introduced problem of missing behavioral configuration and composition support is of impor-

tance.

2.1 The component concept

In this paper we use the definition of the termsoftware componentby Szyperski [5]:

A software component is a unit of composition with contractually specified interfaces and

explicit context dependencies only. A software component can be deployed independently

and is subject to composition by third parties.

This definition is quite broad and includes as diverse entities as server components (such as

EJB, CCM, and COM+), Java Beans, component frameworks in scripting languages (such as

Tcl, Python, Perl, and Visual Basic), Active X controls, C libraries with distinct APIs, etc.

Note that the industrial understanding of the term component is often still quite different to

an “ideal” academical understanding: Industrial components are often of a large scale, with no

enforced boundaries, and only loosely defined interfaces [6]. Thus the notion of a component is

not really well defined for practical purposes because the term is used to denote many different

things (see also [7]). For the purposes of this paper, we do not want to exclude any of these

meanings of a software component.

Though all named kinds of component offer some means for component composition or con-

figuration, none of the above named component concepts focuses on this aspect specifically or

does solve the problems motivated in Section 1 completely.
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2.2 Motivating examples

Now that we have defined our understanding of the term software component, let us give a few

motivating examples from real world systems in which behavioral composition and configura-

tion of components is needed, but not well-supported.

In many projects, multiple platforms and environments have to be supported, including various

operating systems, different hardware platforms (e.g. PCs, embedded devices, settop boxes),

and software platforms (e.g. standalone, application server). These come with different char-

acteristics (e.g. performance, threading, memory). Components might have to be configured

flexibly to different platforms, and re-compilation is not always possible. It is significantly eas-

ier to specify such configurations in a behavioral fashion than to use declarative configuration

options because for each change, new configuration options have to be defined and deployed to

clients.

Consider, for instance, the TPMHP project [8,9], developing a product line architecture for

the Multimedia Home Platform (MHP) [10]. Components are broadcasted to platforms, such

as digital settop-boxes, PCs, and TV sets. That is, the component has to be composed and

configured with the components that are already present on the platform. This has to happen

at runtime: when the component arrives at the platform and got started. For instance, different

compositions or configurations are required for different hardware capabilities on the settop-

boxes and for supporting user preferences [8].

Another example are reengineering to the Web projects (see [11]) that involve multiple plat-

forms, including legacy platforms, stand-alone desktop applications, and Web application

servers. Here, software components must be dynamically configured and composed according

to capabilities of the environment into which they are loaded.

If multiple programming languages are used in a system, the configuration and composition

aspects are typically handled differently in each language. Cross-language composition is thus

hard to understand and maintain. Typical examples that require composition and configuration

of components across languages are reengineering projects or software product lines. Here mul-

tiple languages need to be supported, for instance, for historic reasons like supporting legacy

systems written in other languages than the main system. Composition and configuration con-

cepts should cut across the individual programming languages used. But this is difficult because

language concepts are heterogeneous.

Consider for instance the reengineering project in [12] which provides an object-oriented inter-

face and a middleware to a given C system, meaning that C and C++/Java need to be supported.

Language integration goes beyond pure invocations in the other language. What is needed

are language integration concepts for the different languages’ concepts, such as object and
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type systems, as well as wrapping concepts for (foreign language) components. If the concern

“composition and configuration” should be separated in such a system, the composition and

configuration concepts must include concepts for language integration as well.

Many composition and configuration approaches only support static composition and configu-

ration (i.e. composition at compile time). Just consider the C++ and Java inheritance relation-

ships, generative programming approaches [13], or aspect-oriented programming in the style

of AspectJ [14]. In many scenarios these approaches provide a good means for component

composition and configuration; in other scenarios, however, they do not work so well because

runtime composition or configuration is inherently needed by the component.

Rapid configuration of server components is another example where runtime behavior compo-

sition and configuration is required. 24x7 servers usually should not be shut down for configu-

ration tasks; thus configuration is required while the server is running (see [11]). This problem

is partially solved by load-time AOP approaches for application servers, such as JAC [15] or

JBoss AOP [16]. However, these approaches can only configure components with behavior

while they are loaded into the Java virtual machine – once a class is loaded, the behavior can

only be manipulated in predefined ways. Dynamic AOP approaches, such as AspectWerkz [17]

or Steamloom [18], even support dynamic re-configuration of the aspects but behavior redefi-

nition of the aspects or aspectized components is not supported (but can be “simulated”).

In summary, the example projects have severe requirements of changing the behavior (or se-

mantics) of their component’s composition or configuration at runtime. Thus, we believe the

concern “behavioral composition and configuration” should be supported explicitly.

3 Concept of a tailorable language for configuration and composition support

If we summarize the requirements from the previous sections, we need a configuration and

composition concept that:

• supports behavioral definitions of composition relationships and configuration code

• supports behavior (re-)definition at runtime

• is easy to combine with multiple environments (like platforms, one or more languages in

which components are written, etc.)

• supports separation of concerns for the concern “composition and configuration”

Our proposed approach to solve these related problems is to define a dynamically interpreted

language that is flexibly adaptable (tailorable) to the context in which it is used. Such a lan-

guage can then be integrated into the languages in which the system’s components are written.

All composition and configuration behavior is then externalized into the composition and con-

figuration language.
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The concept should be integrated with multiple object-oriented and non-object-oriented lan-

guages. In this context a major design obstacle is that the language concepts of those other

“host languages” are quite diverse. It should be possible to quickly integrate the object con-

cepts of composition and configuration language with the respective language concepts of the

other languages.

The approach we propose builds on an architecture that contains three key elements:

(1) The language chosen should be adynamically interpreted languagethat is able to eval-

uate data, provided in the language, as code. Such languages are also calledhomoiconic

languages[19]. This language property is illustrated by the simple example in Lisp below,

in which we first assign toa a program fragment which assigns 1 tob. Later we evaluate

the program fragment thata refers to usingeval . The consequence is that the code ina

is executed andb is set to 1.
(setf a ’(setf b 1))

; ...

; some time later

; ...

(eval a)

Besides the Lisp family of languages, many other languages are homoiconic, including

Tcl, Perl, Prolog, and Smalltalk.

(2) The chosen language should be (or be made)embeddablein all other host languages in

which the components to be composed and configured are written. “Embeddable” means

that the embedded language is used like a library of the embedding language; i.e. the em-

bedding language controls the embedded language. Operations in the embedded language

can be invoked from the embedding language, and embedded language can call back into

the embedding language. Again, there are many languages supporting this feature. For in-

stance, most scripting language, such as Tcl, Python, and Perl, are embeddable in C/C++

(some of them also in Java). The Java Native Interface supports embedding C programs in

Java.

(3) The patternObject System Layer[4] implements an object system as a Layer [20] in an-

other system. This way we can extend systems written in non-object-oriented languages

with object-oriented concepts, integrate different object concepts, and extend existing ob-

ject concepts. In this paper we use the Object System Layer pattern to realize thetai-

lorability property of the composition and configuration language.

An example of an Object System Layer architecture is depicted in Figure 1. The busi-

ness logic components are written in a host language. The host language embeds the com-

position and configuration language. The composition and configuration language is tai-

lored to the object system of the host language. The Object System Layer can intercept

all invocations relevant for composition and configuration. It introduces the behavioral

system composition and configuration at these invocations transparently. †
7



Figure 1 should be placed here.

The architecture elements (1) and (2) are relatively easy to realize because existing implemen-

tation can be reused. The great number of existing implementations can be used as a guideline

for building a “little” homoiconic, embeddable language from scratch, if this is required. The

novel aspect of our concept is to combine such a language with an Object System Layer that

provides the following properties as extensions of the language:

• Dynamic object system:In a dynamic object system all relationships of an object, including

class and superclass relationships, might possibly be changed at any time. This especially

means that a dynamic object system can be combined with (dynamically loaded) components

of the host language at runtime. The important conceptual property is that the object system

must contain language constructs that are tailorable to the concepts of the host language. In

particular, we want the classes in the Object System Layer to wrap host language classes, and

then add the composition and configuration classes to these wrapper classes. We propose two

language features to reach this goal. Many other concepts exist that can be used equivalently:

· Flexible classification concept:In our prototype one object can have multiple, dynamic

classes, which are composed as mixins [21,22,23]. This feature is used to add the com-

position and configuration classes dynamically to the host language wrappers. Many other

dynamic programming techniques, such as dynamic aspects [17,18], meta-objects [24], or

meta-classes [25], can be used equivalently to add behavior to classes dynamically and

transparently.

· Split objects:Invocation in the composition and configuration language should be auto-

matically indirected to the wrapped object in the host language. We use the pattern Split

Object [26,27] to realize this goal: A split object is an object that exists in two languages,

but is treated like a single instance. This way we intercept invocations that are not imple-

mented in the composition and configuration language, and forward them automatically

into the host language. An example is shown in Figure 2. To realize this feature we use a

dynamic dispatcherin the composition and configuration language, andgenerative/aspect-

oriented programmingin the host language. Again any other technique that is capable of

intercepting all invocations to an object can also be used to realize the Split Object pattern

(see [26]).

• Reflection: Reflection [28,29] allows to query the runtime state of the object system at any

time. We require two kinds of reflective properties in our Object System Layer:

· Structural reflection (introspection):Because we aim at runtime composition, an important

goal is to be able to find out the current composition of the objects and classes at any

time. Therefore, we need to offerintrospection optionsfor each language element provided

by the Object System Layer. Examples are introspection options for type relationships,

superclass relationships, associations, and aggregations. Using introspection options we

can find out about the structure of the composed components at runtime. This feature is
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used as a “memory” of how the object system is tailored to the structures in the host

language. Any other structural reflection technique can be used equivalently.

· Control flow reflection:Structure information, as obtained by introspection options, are

one part of the current context of an object. The second part is the behavior or control flow

context in which the object is invoked. The behavior context is in many interpreted lan-

guages handled by the callstack. Thus, the callstack should be fully accessible from within

the language. This way we can find out, for instance, which component has called which

other component. This feature is used to allow for conditional composition and configu-

ration behavior on basis of the current control flow. Any other techniques that allows for

access to the current control flow of the invocations in the Object System Layer can be

used equivalently.

We call a language that supports the properties and the architecture sketched above atailorable

language. Such a tailorable language can be used to provide the behavioral runtime composition

and configuration of components, (possibly) written in other languages. In the remainder of this

paper, we show this as follows:

• We explain an excerpt of a case study using this architecture as an example in Section 4

• We provide the details of a prototype implementation in Section 5

• We demonstrate how this prototype can be tailored to the host languages Java, C, and C++

(see Section 6) †
Figure 2 should be placed here.

4 Case study excerpt: Hardware selection for an MHP product line

In this section we present a simple case study of how to apply the concepts from the previ-

ous section in a typical, practical composition and configuration situation (see [8] for more

details). The sample code excerpts are written in our prototype implementation Frag, explained

in Section 5.

Consider you are developing a product line of software components for the Multimedia Home

Platform (MHP) [10]. The MHP specification [10] is a generic set of APIs for digital content

broadcast applications, interaction via a return channel, and internet access on an MHP termi-

nal. Typical MHP terminals are for instance digital set-top boxes, integrated digital TV sets,

and multimedia PCs. The MHP standard defines a client-side software layer for MHP termi-

nal implementations, including the platform architecture, an embedded Java virtual machine

implementation running DVB-J applications, broadcast channel protocols, interaction channel

protocols, content formats, application management, security aspects, a graphics model, and a
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GUI framework.

Even though there are just a few MHP set-top boxes available right now, a great diversity of

products can be foreseen in this field. In addition, there will be a great number of supporting

systems, such as input devices. The whole variety of different TV systems and PCs also might

be used as an MHP client platform. An MHP product line needs support dynamic configuration

of the hardware during application startup on the client platform.

Software products that should run on a MHP platform need to consider multiple kinds of vari-

ation regarding the hardware environment. As MHP applications are broadcasted, the earliest

possible binding time for the variation points is during startup of the application on the client

platform.

Let us consider a few typical hardware selection problems. Different input devices offer various

input events, and the MHP application needs to dynamically configure itself to these hardware

elements. Graphical elements in the MHP API include a few graphic functions of Java, as well

as the more advanced GUI elements of the HAVI standard [30]. It depends on the type of set-

top box if HAVI is supported or GUI elements have to be painted using the graphic functions

of Java. Different back-channels can be identified at runtime and may in some situations be

handled differently.

In pure Java these issues are typically handled by loose associations with objects. This, how-

ever, does not provide a central variation point management architecture that, for instance,

supports querying various hardware options or reconfiguring them at runtime with a common

model.

The solution idea, proposed in this section, is to use our prototype Frag as a composition and

configuration language for hardware-related software components. We use scripts like the fol-

lowing example for behavioral compositions and configurations:

...

MHPButton create OK -set parent OKBOX

MHPButton create CANCEL -set parent OKBOX

if {$earlyVisible == 1} {

CANCEL setVisible

OK setVisible

}

...

In the script two button components are created and composed with another componentOKBOX.

Then the components are configured conditionally: If the variableearlyVisible is true, the

configuration optionvisible is set on both components.

Scripts, like this example, can be rapidly composed and changed, and they can be stored in a
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central repository. In Java, the classes that implement the respective GUI components (such as

theMHPButton in the example above) support a common interface. The common interface is

mapped to the HAVI API or the Java-based Graphics API respectively:

class HAVI_Button implements MHP_Button {

HtextButton button;

// use HAVI HtextButton to draw a button

...

}

class Graphics_Button implements MHP_Button {

// use Graphics API to draw a button

...

}

These classes are bound to Frag classes using the pre-defined classJavaClass . All classes

derived fromJavaClass are wrappers for classes that are defined in Java. That is, all instances

of the classes are Split Objects between Frag and Java.

We can select between the HAVI implementation and the Graphics implementation by using

the following behavioral composition script:

if {[hardwareSelection haviSupport] == 1}

...

JavaClass create MHPButton -set javaClass HAVI_ButtonCmd

...

} else {

...

JavaClass create MHPButton -set javaClass Graphics_ButtonCmd

...

}

The resulting object structure of the example, if HAVI is selected, is shown in Figure 3. †
Figure 3 should be placed here.

Let us compare the solution briefly to composition and configuration using hard-coded invo-

cations in Java. The solution has many benefits: Behavioral composition and configuration is

not tangled in the business logic code. Thus the solution supports better understandability and

maintainability. The developer did not have to care at all for language integration: This was

done automatically by usingJavaClass in Frag (and the Split Object pattern hidden by this

class). Thus the solution is easy to use. As Frag is dynamically interpreted the composition and

configuration behavior can be changed at runtime. Thus the solution supports unanticipated

software evolution. There are a few disadvantages as well: Each composition/configuration
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object consumes memory, and invocations routed through two languages are slower then in-

vocation performed in only one language. This is not a big drawback, as it only applies for

composition and configuration code, which is not a large part of the system and does not af-

fect performance-critical parts of a system. A second drawback is that there is more learning

effort required: Developers must learn the Java MHP system plus the configuration options and

syntax of Frag. Overall, the benefits clearly outweigh the drawbacks in this example.

5 Details of the prototype implementation Frag

We have realized the concepts, introduced in the previous sections, in a prototype implemen-

tation called Frag [31]. Frag extends the existing scripting language Tcl [32] with an Object

System Layer that supports the properties described in the previous sections. We have chosen

Tcl because it is easily embeddable in C/C++ and Java, which are languages typically used in

our projects, and because Tcl is also a homoiconic language (i.e. code can be provided and eval-

uated at runtime). Many other languages have similar properties and could have been chosen

as well, such as Lisp, Smalltalk, Ruby, Python, or Perl.

In the following sections, we describe some of the details of the Frag implementation, because

we think they are not obvious and important for realizing the concepts in other environments.

Note that even though all conceptual ingredients of the solution must be present, there are many

alternative realization solutions possible.

Frag is developed as an open-source project and can be downloaded from [31]. In this paper we

describe only the concepts of our prototype implementation as needed for the paper. For further

details, a language reference describing the syntax and semantics of Frag can be found online

at [33]. Frag requires either Tcl [32] (to be run as a C/C++ extension) or Jacl [34] (to be run as

a Java extension). Jacl is an implementation of a Tcl interpreter in plain Java.

5.1 Dynamic and Tailorable object and class concept

In Frag, every entity is represented by an object. An object might be interpreted as “more” than

a pure object whenever the context makes it relevant. For instance, an object can play the role

of a class or a superclass. The class concept of the language is not fixed but can be tailored to

the particularities of the host language. The goal of this tailorable class concept is to support

many different language concepts.

For instance, consider inheritance. Frag is capable to integrate different inheritance models with

one class concept, including static multiple inheritance as in C++, static single inheritance and

interfaces as in Java, dynamic inheritance as in XOTcl [35], mixin-based inheritance [21,22],
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and procedural concepts simulating inheritance (as sometimes used in C, Tcl, or Cobol). This

concept is different to object-based languages, such as Self [36], that do not language-support

inheritance and use delegation to model inheritance instead.

Let us briefly introduce the dynamic object and class concept of Frag with some examples. In

Frag an object is created by invoking the methodcreate of its class. For instance, we can

create an objectConnection1 from the most general classObject :

Object create Connection1

This invocation means that a new object with the object IDConnection1 is created. This new

object has the classObject .

Each object can have one or more classes, but each object in Frag has at least one class. An

object always has at least the classObject , the most generic class in the Frag object system.

Each other class is a subclass ofObject . This way it is ensured that every object in Frag can

use the features defined for the classObject .

We have already seen that the methodcreate can be used to derive an object from a class.

Consider we want to create a classSocketConnection , and derive an objectConnection2

from this class. This is done as follows:

Object create SocketConnection

SocketConnection create Connection2

In the context ofConnection2 , the objectSocketConnection acts as a class. Note that

there is no difference in how we have createdSocketConnection and Connection1 ; at

this point both are ordinary objects. The subsequent creation ofConnection2 is what makes

SocketConnection (also) a class. In other words,SocketConnection acts as a class only

in the context ofConnection2 (and its other instances).

In this example it does not make much sense to derive objects fromConnection2 ; thus it will

likely not act as a class. But note that this two-level class concept is not always applying. For

instance, we might want to constrain or extend the features ofSocketConnection .

Just consider a typical situation in a composition and configuration language like Frag:

Frag does not implement theSocketConnection itself, but it is a wrapper for a Java

class. That means somewhere we need to define how to access the Java counterpart of

SocketConnection , and this implementation should be reusable for all Java classes. This

can be done by giving theSocketConnection itself a classJavaClass which can be used

for other Java classes as well:

Object create JavaClass

JavaClass create SocketConnection

SocketConnection create Connection3
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All three exampleclasses relationships are depicted in Figure 4.

Classes of classes are used to configure the split objects, as shown in the example in Section 4

(where we have usedJavaClass already).

Note that a number of inheritance concepts, such as Smalltalk [37], XOTcl [35], or SOM [25],

see the class of a class as a so-calledmeta-class(such asJavaClass in the example above).

When an object system distinguishes classes and meta-classes explicitly, there are a number of

open issues, including the number of meta-levels and how to compose meta-classes with meta-

classes [25]. Frag avoids these problems by making all classes ordinary objects and interpreting

their own class relations only in their particular context. In Section 5.3 we explain how these

classes are unambiguously composed using a linearized method resolution order. †
Figure 4 should be placed here.

In Frag, each object can have multiple classes. This feature can be used, for instance, to imple-

ment the pattern Decorator [38]. Consider a simple example: we want to log the invocations of

Connection3 using the classConnectionLogger . This class can be added toConnection3

by adding it in addition to the existing classSocketConnection using the methodclasses :

Connection3 classes {ConnectionLogger SocketConnection}

Now Connection3 has two classes,ConnectionLogger andSocketConnection . Note

that we still have to compose the two classes properly to makeConnectionLogger a Deco-

rator of SocketConnection . This functionality is provided by the language elementnext ,

explained in Section 5.3.classes can be used to dynamically change the classes of an object

at any time.

The feature “multiple classes” is used to dynamically add behavior to the split objects at run-

time.

In Frag each class can have one or more superclasses. Superclasses are defined for a class

with the methodsuperclasses . Per default, each class has the superclassObject . This

class does not have to be explicitly provided as a superclass. For instance, if we want to pro-

vide a class for logged connections, we can provide the two classesConnectionLogger and

SocketConnection as superclasses:

Object create LoggedSocketConnection \

-superclass {ConnectionLogger SocketConnection}

Note that the superclass relationship is also dynamic. Again this feature is used to tailor the

object system to a specific context. For instance, in theJavaClass example above, the con-
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structor ofJavaClass dynamically registers a superclassJava for each of its instances that

actually implements the reflective connection to the Java language. In other words “dynamic

superclasses” can be used to dynamically tailor the behavior of a class and all its instances.

5.2 Dynamic methods

Frag supports dynamic methods. That is, methods can be defined, redefined, and deleted during

runtime.

A method is simply defined by invoking themethod operation and providing it with the method

name, the parameter list, and the body of the method.

ConnectionLogger method writeMsg {channel msg} {

puts $channel $msg

}

All parameters passed to Frag methods are strings. Thus the parameterschannel andmsg in

the example method above have no type definitions in their signature, just parameter names.

Wrappers to statically typed host language objects need to take care for type conversions (see

Section 6). Note that for performance reasons Tcl performs type conversions internally (e.g.

an integer is internally stored and handled as an integer to avoid continuous back and forth

conversion). But these internal data types and conversions are not visible to the language user.

This simple, generic type concept for primitive data types is an important feature for easily

integrating various host languages.

The “dynamic methods” feature is used to define new behavior at runtime.

5.3 Mixin methods and the method resolution order

The class hierarchy is determined by the class and superclass relationships of an object. The

result is a directed, acyclic graph. This graph is interpreted in the specific context of each

object. The class and superclass relationship graph might contain more than one way to reach

one and the same class from one object. To avoid ambiguities, Frag uses a simple resolution

rule to determine the order of dispatch: each class of an object is traversed one after another.

For each class all of its superclasses are traversed. For each class first the whole superclass tree

is traversed completely, before the next class (and its superclasses) are traversed. This way a

full list of all classes applicable for an object is created recursively. This list is linearized to

contain each class exactly once: always the last occurrence of a class in the list is chosen. This

way it is ensured thatObject is always the last class in the list, because it is the superclass of

all other classes.
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In the description so far, the most specific class in the hierarchy overrides the more general

classes that come later in the linearized method resolution order. That is, if two classes define

a method with the same name, the method of the more specific class is executed. Sometimes

we want this behavior, but especially in a component composition context there are other cases

where we want to compose two methods as in the Decorator design pattern [38].

Just consider again theConnectionLogger class for socket connections from the example

above. Here, we want to observe specific methods of the socket connection (likeopen , close ,

etc.), but the logger should not override the methods ofSocketConnection .

To resolve this problem, Frag offers a primitivenext to proceed in the linearized order of

classes from within a method. Consider the methodclose should be logged before and after a

connection is actually closed:

ConnectionLogger method close {} {

self writeMsg stdout "Before close [self]"

next

self writeMsg stdout "After close [self]"

}

Thenext primitive in between the two output statements forwards the invocation to the next

class(es) on the linearized method resolution order (also called “next path”). That is,close is

searched on the subsequent classes on the next path and invoked, if found.

Note that this behavior is very important for wrapping existing classes. Without it we would

have to make changes to the wrapped class or its client in order to introduce a Decorator, some-

thing that we often cannot do, because there is no access to these classes. Note that composition

with next provides language support for the pattern Decorator.

Using next a Frag method can be used as amixin method. Frag’s dynamic class concept,

supporting multiple classes and multiple superclasses, together with mixin methods, can be

used to realizedynamic mixin-based inheritance. The mixin classes can be used as small

units of composition that are not necessarily defined completely, and that can be mixed into

the class hierarchy at arbitrary places, as first envisioned in Flavors [21]. Consider the class

ConnectionLogger : it can be mixed onto a single object, but also onto a class implement-

ing theConnection interface. This way Frag realizes the concept of mixin-based inheritance

[22,23] in a dynamic fashion.

Figure 5 shows the full class and superclass graph forConnection3 on the left hand side. The

class and superclass graph from the perspective ofConnection3 (on the right hand side) is

much simpler, because all relationships that are not relevant for the dispatch in the context of

Connection3 are removed. From the few remaining relationships duplicates are eliminated,

so that the next path order, as depicted in the figure, results. †
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Figure 5 should be placed here.

5.4 Dispatcher

A very important feature of Frag for the integration with other host languages is the

dispatcher method. We have already explained that Frag first tries to resolve a method

within the class hierarchy of the object. A method, however, which is really implemented

in the host language cannot be found in the Frag class hierarchy, unless we write a wrapper

method for each host language method. In Java, for instance, we could look up such methods

using reflection. To do so, we need some way to invoke this lookup process and the method

invocation.

Such tasks can be handled by the special methoddispatcher that might be defined for each

class. When a method is not found on the class hierarchy, Frag does not raise an error im-

mediately, but invokes the methoddispatcher . The dispatcher method of the top-most class

Object does per default nothing else than raise the error “Method not found”. In other words, if

dispatcher is not overridden by a subclass, an unknown method invocation causes a runtime

error.

Subclasses can overridedispatcher and thus handle messages, not defined in Frag, arbitrar-

ily. For instance, the method for dispatching to Java (explained in detail in Section 6) imple-

ments a dispatcher that invokes the Java reflection API to look up the method.

In Figure 6, a methodclose is dispatched for a classSocketConnection . As it cannot be

found in the class hierarchy,dispatcher is invoked with the argumentclose . dispatcher

is overridden in the superclassJava of SocketConnection . Here, it is defined that a Java

proxy is invoked that is of the Java classReflectObject . This class looks up its arguments via

reflection and invokes the Java method if it is found. Note that we have omitted type conversions

and lookup invocations to simplify the figure. †
Figure 6 should be placed here.

5.5 Structural reflection using introspection options

Because Frag is designed for runtime composition, an important goal is to be able to find out the

current composition of the objects and classes at any time. Therefore Frag offers introspection

options for each language element it introduces. Introspection is realized by the methodinfo

of the classObject . info accepts a number of options, summarized in Table 1. Subclasses
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can extendedinfo with additional options. †
Table 1 should be placed here.

Let us briefly explain one example to show howinfo works. Consider you want to add a

ConnectionLogger to an object as a Decorator, as introduced above. But in contrast to the

simple example above, you do not know the list of classes. This is a typical situation in a wrap-

ping context because other, independent extensions might have introduced Decorators before.

With the introspection optionclasses , we can add the Decorator to the current class list by

concatenating theConnectionLogger and the current classes:

Connection3 classes [concat ConnectionLogger [Connection3 info classes]]

In other words, we can introduce Decorators transparently, without making any assumptions

about other extensions of the class.

5.6 Control flow reflection using callstack information

In Frag the control flow is handled on Frag’s callstack. This callstack is fully accessible from

within the language.

All callstack information is provided using the objectcallstack . The keywordself , used in

earlier examples, is actually a shortcut tocallstack self , which returns the top-level object

on the callstack. With the callstack information options, summarized in Table 2, objects, meth-

ods, and classes at any level of the callstack can be queried. In typical programming situations,

the top-level (level 0) and the calling level (level 1) that represent the current and calling scope

are important.

For instance, the following method prints out the name of the object and method that has in-

voked it:

X method callerPrinter {} {

puts "Invoker: [callstack callingObject]->[callstack callingMethod]"

}

The feature “control flow reflection” can be used, for instance, to make conditional composition

or configuration decision, based on the object/class/method that has invoked a method. †
Table 2 should be placed here.
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6 Integration with host languages

In this section, we explain the integration of Frag with the host languages Java, C, and C++.

For integrating these languages, we use the split object concept and Frag’s language concepts,

introduced in the previous sections. In other words, we give examples of how to tailor the

language Frag to the concepts of other languages (Java, C, and C++).

6.1 Tailoring Frag to Java

Integration with a host language is typically done by providing a component that tailors the Frag

object system to the particularities of the host object system. In case of Java, the integration

component consists of two main classes:JavaClass andJava .

The classJavaClass is used for wrapping a Java class with a Frag object. Any instance of

this class is a split object; and invocations are automatically forwarded into Java and vice versa.

Both, wrapping a Java class and forwarding invocations, is implemented using Java reflection.

Internally primitive Java types (like int, boolean, etc.) are automatically converted to and from

strings. Non-primitive Java types have to be wrapped in order to be used from Frag.

Figure 7 shows the structure of the split object solution. A split object class in Frag is derived

from the classJavaClass which overloads the standard creation process of Frag: it does not

only create a Frag instance, but also a Java instance. To do so,JavaClass looks up the respec-

tive Java class via Java reflection. All split objects automatically get the superclassJava which

overloads the standard dispatcher. This dispatcher forwards the invocation to the Java instance,

if the operation cannot be found for the Frag instance. †
Figure 7 should be placed here.

Some language semantics of the Java language must be provided by the split object because

they cannot be ignored. Even though type conversion is handled automatically on the class

Java , sometimes we need to care for type casting. For instance, when an object is obtained

from a Java hash-table, the result is returned as ajava.lang.Object – and not as the “real”

type put into the hash-table. Such re-typing to more generic types, performed inside of Java

classes, cannot be deduced by the automatic type converter. The classJava contains a method

cast for handling type casting.

If we dispose a split object in Frag, the Java garbage collector automatically frees the Java

instance as well. The classJava ensures that a Java reference is hold until the Frag destructor

is called – this way the correct destruction order is ensured automatically.
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All other host language particularities of Java are handled in the same way – by implementing

them on the two classesJavaClass andJava . These classes tailor all derived classes so that

they do not violate semantics of the host language.

6.2 Automatically accessing Frag from Java

We also need to access Frag objects from Java. To do so, we have to instantiate a Frag interpreter

from Java and then we can perform invocations using the methodeval . We can insert such

invocations, wherever we need them, because Frag isembeddedin Java.

Sometimes this is not enough: consider we want to automate the indirection of certain invoca-

tions in the host language into the composition language. For instance, all instances of the Java

classObject1 might require configuration by split objects. It is cumbersome to inserteval

invocations around each Java invocation.

A better solution is to automate the indirection. Luckily, there are good tools available to realize

such an indirection, namely program generators and AOP tools. In our prototype implementa-

tion we use AspectJ [14]. Many other AOP tools would be able do the same job.

For all specified invocations, our AspectJ aspect invokes Frag objects instead of the Java invo-

cations. Invocations to classes that are instrumented in this way have to go through Frag before

they reach the original receiver.

Essentially, the AspectJ aspect automates the concept that we have already depicted in Figure 2.

The client “virtually” wants to callObject1 in Java. But “really” the invocation is intercepted,

sent to the split object forObject1 , and thenObject1 in Java is really invoked. The split

object thus can do composition or configuration tasks in a dynamic fashion without the Java

object noticing it.

6.3 Integration of C and C++

The concepts described for Java work in the same way for other languages, such as C and C++.

Integration of Frag with C and C++ is quite similar to integration with Java, except that these

languages do not provide a reflection API. Thus it is not possible to dynamically look up C++

classes and methods or C structs and functions. The standard Tcl approach for integration is to

use function pointers and write the wrappers by hand or with a code generator. A code generator

that supports Tcl wrapper generation for C and C++ is SWIG [39].

C functions and C++ methods are wrapped using function pointers. In C we usually try to
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align some structures and functions that semantically belong together to form a split object.

In C++ we additionally have to map the C++ object identity to Frag object IDs. Typically we

additionally mimic relevant parts of the C++ class hierarchy in Frag and let these class inherit

from a classC++, the superclass for all C++ split objects. This class handles the integration with

the C++ class concept. For instance, it invokesnew or destroy in C++ when the respective

constructor or destructor are invoked in Frag. As C and C++ contain no garbage collector, it

is important to care for the destruction order of split objects so that no memory leaks occur or

memory is not freed twice.

7 Trade-off evaluation

In Sections 1 and 2 we have provided a motivation of the problems that might lead to the

adoption of our approach: Behavioral composition and configuration is needed in an easy-to-

use manner, perhaps even at runtime, and/or the concerns “composition and configuration”

should be separated from the business logic. As described in Section 2.2, many projects have

such requirements. To avoid the unnecessary complexity of an additional software framework,

of course, the approach should only be used, if these requirements occur in a project. If this is

the case, there are, however, other solutions for composition and configuration. For instance, in

Section 1 we have given the example of composition and configuration in the EJB framework

and mentioned simple hard-coding as another alternative solution. In this section we want to

evaluate the factors that are drawbacks of our approach or might be conceived as problems. The

goal is to allow an architect or developer to make an informed trade-off analysis between our

approach and alternative approaches.

A drawback of our approach is that a second language has to be learned by developers, as well

as the additional APIs of the composition and configuration language implementation. This

learning effort has to be contrasted to that of other solutions. For instance, in the EJB example

in Section 1 the EJB APIs and XML deployment descriptor language has to be learned.

The split object approach has the drawback that each invocation has to be dispatched twice,

once in the host language and once in the composition and configuration language. This means

that split object invocations take at least twice as long as ordinary invocations. This estimation is

not necessarily correct, however, when the performance of the whole application is compared:

The composition and configuration code performed in the composition and configuration lan-

guage would be needed anyway, so it is not clear that the split object implementation is really

slower than a composition and configuration programmed in the host language. Thus what ac-

tually needs to be compared is the performance of the composition and configuration language

and the host language performance.

A similar trade-off analysis can be made for other quality attributes [3], such as memory con-
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sumption, program reliability, and productivity. It is hard to give a general estimation for these

factors, however, because the quality attributesare not independentof each other and they

are not independent of the quality attributes that our approach aims at, i.e. maintainability,

understandability, reusability, and flexibility. A general trade-off analysis is thus not possi-

ble because the quality attributes of an architecture can only be judged using thedomain-

specificrequirements of that particular architecture. Finally, evaluations of these attributes

are alwayslanguage-dependentandimplementation-dependent. Our prototype implementation,

Frag, however, is only one possible implementation variant of the concepts. The concepts can

be implemented in many other ways – with quite different impacts on the quality attributes

mentioned above.

Having said that, for Frag or similar implementations (that is: implementations reusing a script-

ing language) we can make some estimations for the trade-offs compared to a hard-coded native

C/C++ or Java implementation. Note that these results are observed in our examples and case

studies and cannot necessarily be generalized. Also note that Prechelt comes to similar results

in an empirical comparison of these and other factors in a number of languages including Tcl,

C, C++, and Java [40]. Designing and writing the program in scripting languages such as Tcl

takes no more than half as much time as writing it in C, C++, or Java, and the resulting program

is only half as long. The typical memory consumption of a script program is about twice that

of a C or C++ program. For Java it is another factor of two higher. C/C++ programs are always

significantly faster than Java and script programs. In the majority of cases, Java programs are

faster than the script programs, in other cases the script programs outperform Java programs.

No unambiguous differences in program reliability between the language groups can be ob-

served. In our implementation approach an additional memory consumption penalty for the

memory used by the script interpreter should be considered. Again, this must be contrasted to

the memory consumption of alternative solutions for component composition or configuration

Because we use a two-language-approach, the drawbacks of one language implementation can

compensated in the other language. For instance, performance-critical code can be moved from

the composition and configuration language into the host language, whereas performance-

uncritical code is placed in the composition and configuration language to benefit from the

productivity gain of that language.

Our conclusion from these results is that the Frag prototype implementation and similar imple-

mentations of our concepts have a moderate performance and memory consumption penalty,

but offer benefits in terms of productivity and program length. For performance-critical and

memory-critical applications, for instance embedded systems, the performance and memory

consumption penalty might be a problem, for many other application areas this should be tol-

erable. A final estimation, whether our approach is appropriate or not cannot be provided in

general, but must be made domain-specifically, because other factors, such maintainability, un-

derstandability, reusability, and flexibility, must also be considered.
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8 Related work

8.1 Frameworks for composition and configuration of software components

Current mainstream server component frameworks, such as Enterprise Java Beans (EJB), the

CORBA Component Model (CCM), or COM+, mainly provide black-box components [5,41].

Both approaches compose components using a component container: usually glue code can

be generated for given components, which handles the composition, and annotations (XML

metadata) are used for configuration. These approaches have had much industrial success and

in them configuration and composition concerns are treated as first-class entities of the soft-

ware architecture. However, in contrast to our approach, unforeseen behavioral configuration

and composition requires hard-coding. Runtime configuration and composition is only sup-

ported in a declarative manner. Our approach can be used to extend existing server component

frameworks with support for behavioral runtime composition and configuration.

Jiazzi [42] is a component infrastructure for Java. It does not primarily describe the connectors

and flows between architectural elements, but the “uses” relationships. ArchJava [43] is also

a Java extension that embeds the architectural knowledge and the code in the same document.

These approaches have the general goal to make component composition explicit, a common-

ality with our approach, but use a different solution: architectural elements are described in a

programming language extension that resembles an architecture definition language. Both ap-

proaches can untangle the concern “composition”, but do neither provide support for behavioral

composition nor runtime composition.

The VCF framework [44] integrates components from various Java component models, namely

COM+, Corba, EJBs, and Java Beans. A Facade component is provided that can load plug-ins

for the various component technologies. The Facade provides a common denominator inter-

face of the technologies to clients. VCF has a different architecture than our approach because

it focuses more on integration. Thus VCF has a richer model of pre-defined integration behav-

ior, but VCF does not provide for user-defined extensibility of the composition/configuration

behavior as our approach does.

8.2 Languages for composition and configuration of software components

Other popular component approaches are component frameworks [45] introduced by scripting

languages like Tcl, Perl, Ruby, or Python. A component framework is a collection of software

components and architectural styles that determine the interfaces that components may have

and the rules governing their composition [46].
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As a Tcl extension, our prototype Frag builds on the experiences gathered in those languages.

However, our concepts extend those of the other object-oriented scripting languages, such as

Ruby, Python, Perl, and XOTcl [35]. These languages are implemented in C and thus hard to

embedded in other host languages than C/C++ such as Java. Also, our concepts provide a sim-

pler and more flexibly tailorable language. For instance, the dynamic mixin-based inheritance

feature allows for simple Decorator-style composition of split object classes and extensions.

All named scripting languages can nonetheless be used as a starting point for implementing the

Object System Layer required in our concepts, and are important predecessors of our approach.

Lua [47] is an embeddable programming language library similar to other scripting lan-

guages. In contrast to most other scripting languages, however, Lua offers support for meta-

programming and reflection that is intended to be used for creating domain-specific languages.

This makes Lua similar to our approach, because it is tailorable in the sense that it provides a

language framework for creating other languages. Thus it should be easier to create a compo-

sition and configuration language in Lua, and to adapt Lua to other host languages, than it is in

many other languages. What is missing in Lua to realize our concepts is a construct to untangle

the composition and configuration concerns, such as dynamic mixin-based inheritance or

dynamic aspects.

A number of more dynamic, object-oriented environments, such as CLOS [48], Smalltalk [37],

and Self [36], provide both a programming environment and a program execution environment,

allowing one to influence the language behavior from within a program. Our approach utilizes

this important concept of these languages.

Introspection options are a simplified form of the language concept of computational reflection

[28,29]. The dynamic, tailorable object system aims to provide a similar expression power as

meta-object protocols (MOP) [24], but in a more easy-to-understand and easy-to-use manner.

Besides these simplifications, Frag extends these languages’ concepts with language extensi-

bility and embeddability concepts.

Piccola [49] is a language for building applications from software components. The semantics

of Piccola is defined in terms of a process calculus in which values are communicated as nested

records, called forms. Piccola is more “pure” than our approach in the sense that it only provides

compositional features as language elements. A consequence of this strong focus is, however,

that arbitrary behavioral composition is not possible – which is a major goal of our approach.

8.3 Mixin concepts

Classes are not always suitable as a unit of composition: On the one hand, a unit of reuse should

be small and flexibly composable with arbitrary kinds of other classes. On the other hand, an

object’s type needs to defined completely and requires a fixed place in the class hierarchy. Moon
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proposed flavors as an early attempt to solve this problem [21]. Here, a flavor is a small unit

of composition that is not necessarily defined completely. It can bemixedinto a given class

hierarchy at arbitrary places.

Moon’s approach is refined by the concept of mixin-based inheritance [22,23]. In this approach,

a mixin is a class whose superclass is not specified at mixin implementation time, but is left to

be specified at mixin use time. The advantage is that a single mixin can be used as a subclass

for multiple other classes. Thus, mixins can be reused across a number of base classes. How-

ever, still this approach suffers from the problem that the mixins are derived by inheritance.

Therefore, it is hard to write generic, reusable composition units using this approach alone.

The mixin concept has a strong influence on the object system design in our work. In order to

use mixins for dynamic component composition, we had to extend the mixin concept with a

concept for dynamic mixin composition (dynamic mixin-based inheritance) and a concept for

behavior redefinition in the mixin classes.

8.4 Aspect-oriented component composition

Aspect-oriented programming (AOP) [50] approaches can be used to untangle composition- or

configuration-related concerns from a software system, and define them in aspects.

AspectJ [14] allows to declaratively provide “pointcuts” that specify “joinpoints”. Joinpoints

are specific, well-defined events in the control flow of the executed program. At these join-

points “advices” can be introduced, which define new behavior to be added before, after, or

around the joinpoint. Aspects are cleanly separated (untangled) from the business logic code.

Thus AspectJ can be used for static behavior adaptation, a feature that we use for language

integration with Java (see Section 6). However, as AspectJ uses a compile-time tool, called the

aspect weaver, for instrumentation, it does not support the main goal of our approach: dynamic

behavior redefinition for composition and configuration concerns.

JAC [15] is a framework for dynamic, distributed aspect (server) components. As in Frag and in

contrast to AspectJ [14], methods in focus of structural or behavioral aspects are specified with

strings and looked up reflectively. JAC’s dynamic wrappers are method interceptors, similar

to Frag’s mixin methods. JAC allows to configure aspects using domain-specific languages.

The elements of the language are corresponding to method names of the aspect component.

This is similar to how Java/C/C++ elements are bound to Tcl/Jacl in Frag. JAC uses load-time

instrumentation to introduce aspects, whereas Frag uses runtime dynamics.

Other dynamic AOP approaches in Java are AspectWerkz [17] or Steamloom [18]. Here, “dy-

namic” does not mean that behavior can be redefined at runtime. Just the aspect composition

of “expected” classes can be changed. Even though behavioral composition or configuration
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is much less convenient than in our approach (behavior changes require re-loading and re-

weaving), it is possible to use these tools for behavioral composition or configuration. The ben-

efit of using these approaches, compared to our approach, would be that the developer could

work in one language (here: Java) only, and does not have to learn multiple languages.

AspectS [51] provides a runtime aspect weaver for Smalltalk. It uses a message interceptor

concept, called method wrappers, and adds them to the program using meta-programming tech-

niques. In particular, method wrappers allow for the introduction of code that is executed be-

fore, after, or around an existing method. Method wrappers replace an entry in a class method

dictionary, add behavior to the method invocation, and eventually invoke the wrapped method

itself. Frag implements a similar basic concept in its mixin methods, but extends the concepts

in various ways – especially we have extended the mixin concept with dynamic mixin-based

inheritance and extended the language with tailorability concepts. AspectS/Smalltalk do not

focus on embeddability, but because all other elements of our approach are supported in some

way, we believe it is quite straightforward to realize our concepts in AspectS for Smalltalk

components.

9 Conclusions and further work

Behavioral composition and configuration of software components is an important issue in

many software systems. Unfortunately, the support for this concern is not a first-class citizen

in many component models, especially if behavior changes are required while the system runs.

We have pointed out that there are many concepts that solve parts of this problem: scripting

languages introduce embeddability in other languages, homoiconic languages allow for behav-

ior redefinition at runtime, mixin approaches allow for extending classes transparently, patterns

like Object System Layer and Split Object provide language concept extensions and integra-

tion, reflection supports informed decision about the system’s structure and control flow, and

so forth.

The contribution of this paper is to provide a language-based approach and architecture that

integrates these important related approaches into a single concept for behavioral composition

and configuration of software components at runtime. This concept allows for untangling com-

position and configuration concerns from the business logic code – into mixin classes defined in

the composition and configuration language. The composition and configuration language is a

tailorable language, meaning that it can easily be adapted to new languages and new component

models.

Even though each of the ingredients is quite complex on its own, we believe that the combina-

tion is nonetheless useful for two reasons: (1) as shown in the example in Section 4 the concepts

are quite easy to use once they are implemented, and (2) the implementation can be based on
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existing technologies that hide the complexity. We have demonstrate this using our prototype,

Frag, which reuses the Tcl language, Java reflection, AspectJ, and SWIG.

As further work we plan to provide more integration models than just Java and C++ for the

prototype, and extend the concepts to support dynamic AOP languages. We also want to extend

the concepts to support distributed components provided as Web services.
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Figure 1. An object system layer connects the system’s composition and configuration components with

the business logic components
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Figure 2. Split object example: An invocation from the host language cannot be dispatched in the com-

position and configuration language. Thus it is automatically forwarded to the host language object

wrapped by the split object.

33



Composition and Configuration LanguageHost Language

splitObject

splitObject

splitObject

:HaviOK

:HaviBOX OKBOX: MHPBox

OK: MHPButton

:HaviCANCEL CANCEL: MHPButton
parent

parent
parent parent

Figure 3. Object structure of the example
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Figure 5. Left: full class and superclass graph; right: class and superclass graph with next path
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java:invoke("java0x3 close")

:JConnection

close()

JavaFrag

Figure 6. Dynamics of a dispatcher invocation to a Java proxy
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Introspection Option Parameters Description

args method Parameter list of method

body method Body script of method

children List of child objects

classes ?pattern? Classes of an object

default method arg var Default value of a variable

defaults Variable defaults of a class

exists var Returns1 if var exists for an object, otherwise0

instances ?pattern? Instances of a class

nextpath Nextpath of an object

parent Parent of an object, if any

methods ?pattern? Methods of a class

subclasses ?pattern? Subclasses of a class

superclasses ?pattern? Superclasses of a class

vars ?pattern? Variables of an object

allInstances ?pattern? Recursively get all instances of a class

allSubclasses ?pattern? Recursively get all subclasses of a class

allSuperclasses ?pattern? Recursively get all superclasses of a class

Table 1

Introspection options
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Callstack Information Parameters Description

class ?level? Currently executing class (optionally: at given callstack level)

method ?level? Currently executing method (optionally: at given callstack level)

self ?level? Currently executing object (optionally: at given callstack level)

level Current callstack level

callingClass Class at calling level (equalscallstack class 1 )

callingMethod Method at calling level (equalscallstack method 1 )

callingObject Object at calling level (equalscallstack self 1 )

Table 2

Callstack information options
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