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Abstract

Transformations of object-oriented methods are a prevalent object-oriented pro-
gramming technique, but in many languages they are not supported at runtime.
Therefore it can be hard to apply method transformations for incremental or exper-
imental software evolution, or other problems that require runtime software behavior
adaptation. The goal of the work presented in this paper is to provide a better con-
ceptual and technical support for runtime method transformations. A non-intrusive
model for method transformations and a set of runtime method transformation
primitives are presented. We also present a pattern language for implementing dy-
namic method abstractions and combining them with languages that do not support
dynamic methods natively. As a case study we introduce a runtime transformation
framework for the dynamic configuration and composition language Frag, its con-
nection to Java, and an end user programming example.
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1 Introduction

Runtime software adaptation and evolution is required in many program-
ming situations. The standard solution, supported by most object-oriented
languages, is the association (or delegation) relationship. By changing the as-
sociation or delegation link, the program behavior can be modified at runtime.
In many programming situations, especially in the presence of unanticipated
software evolution [1], developers would benefit from a more sophisticated run-
time adaptation and evolution support. In this paper, we aim at supporting
situations in which it is necessary to specify a new behavior for a program
at runtime and the necessary changes cannot be anticipated before runtime.
Such requirements occur frequently when a program needs to be changed in-
crementally, or runtime experimentation is required for the programming task.

Consider a typical example situation: many activities of reengineering a soft-
ware system are rather experimental or incremental in their nature. Under-
standing a given legacy system, for instance, often means to “play” with the
existing system, add traces, modify the source code, etc. Wrapping a legacy
system means to create an initial set of wrappers first and then evolve these
wrappers incrementally. Logging and tracing a system’s call structures often
means incrementally adding traces until the relevant control flows are cap-
tured. In summary, many typical reengineering activities have an experimen-
tal or incremental nature and are dependent on runtime semantics. Having
to recompile the system for each change can rather hinder experiments or
incremental evolution.

Situations, similar to the reengineering example, arise in many other domains.
Just consider two other examples (from projects the author was involved in).
Evolution in scientific software can be supported by letting the domain expert
experiment with the implementation of the scientific algorithms while the soft-
ware is running [2]. Similarly, content editors of digital television applications
benefit from being able to incrementally change the applications while they
are running to see the effects of changes directly and to foster rapid application
development (see Section 4.4 for an example from this domain).

Many approaches are proposed to cope with adaptation and evolution of
object-oriented programs. Runtime adaptations are an integral part of a
number of more dynamic, object-oriented environments, such as CLOS [3],
Smalltalk [4], and Self [5]. These languages provide both a programming en-
vironment and a program execution environment, allowing one to influence
the language behavior from within a program. Different language constructs,
such as computational reflection [6,7], Lisp macros [8], meta-object protocols
(MOP) [9], meta-classes, dynamic method lookup and dispatch, and dynamic
classes are supported for this purpose. These constructs provide a great power



to the programmer; yet they also pose a high complexity: in order to under-
stand some expression in the language, the current runtime definition of the
environment has to be understood.

Similar dynamic and introspective languages features are provided by a num-
ber of scripting languages, including Tecl [10], Python [11], Perl [12], and
Ruby [13]. These languages provide these features in a more “tamed” way
because they follow a different approach to system development than system
languages [14]: instead of developing the whole system in only one language, a
two-language approach is chosen. Reusable components are written in system
languages, such as C, C++, or Java, and the scripting language is used as a
glue to compose and configure these components. For other tasks, such as in-
cremental or experimental software evolution, the dynamic and introspective
languages features are mostly used in the course of daily programming and
not as a distinct adaptation or evolution technique.

A number of approaches have been proposed to support object-oriented evo-
lution and adaptation without a need for meta-programming or reflection. In-
stead (static) program transformation is used. Examples are aspect-oriented
programming (AOP) [15,16,17,18] and refactoring [19,20]. Program transfor-
mation generally refers to techniques for automating programming tasks to
increase the programmer’s productivity [21]. There are many other application
areas for program transformation in software engineering, including compila-
tion, optimization, refactoring, software renovation, and reengineering. These
(and many similar) techniques have in common that they are easier to un-
derstand and apply for the average programmer than meta-programming or
reflection. Yet they are hard to apply in the context of runtime evolution and
adaptation because they focus on static adaptation techniques.

Aspect-oriented adaptation constructs can also be composed at runtime. For
instance, there are a number of AOP approaches that offer runtime aspect
composition [22,23,24]. Dynamic message interceptors in programming lan-
guages (such as XOTcl filters and mixin classes [25]) or message interceptors
in popular middleware (e.g. [26,27]) can be used to implement runtime compo-
sition of aspects as well (see [28]). These approaches require either the system
to be statically instrumented before the runtime adaptation takes place, or
the programming language or middleware must support runtime adaptation
constructs.

Another important issues is that scenarios of incremental or experimental
software evolution often require a simple interface for the adaptations. For ex-
ample, for the reengineers, scientists, or content editors in the examples given
above, it is important that the offered programming interfaces are simple and
specific to the work task [29]. However, in virtually all adaptation approaches
discussed above, not only the specific work task implementation has to be



understood, but also the system and its environment, such as the system
structures to which the adaptation is applied, the meta-object protocol, the
reflection system, the aspect language, or the adaptation constructs.

This paper proposes runtime method transformations to support incremental
or experimental software evolution. Runtime method transformations are very
similar in their application to (static) program transformations. Yet, internally
they are implemented using a reflective object or class system. This system is
completely hidden from the developer, so that it does not add further com-
plexity. Within the local context of the transformed methods, the full power
of a programming language is available. As we will show, runtime method
transformations combine three important characteristics: they can be used for
runtime adaptation, they introduce no new, complex abstractions but use the
simple, familiar method abstraction, and they can be applied locally in the
context of a particular work task. All three characteristics cannot be found
together in any of the approaches discussed above.

As a foundation of runtime method transformation, we provide a conceptual
framework and terminology for runtime adaptation (presented in Section 2).
Whereas working with runtime method transformation is non-complex and
simple, the design and implementation of a runtime method transformation
framework is a non-trivial task in most programming languages. To support
the design and implementation of runtime method transformation frameworks
following the concepts from Section 2, a pattern language is provided in Section
3.

We do not only investigate runtime method transformation at a conceptual
level, but we also describe a prototype implementation: the Tcl extension
Frag [30] (see Section 4). Frag is an object-oriented Tcl [10] extension that is
designed to be used for configuration and composition tasks. Frag supports a
reflective object and class system and can be combined with other languages
(currently C, C++, Tcl, and Java). To the best of our knowledge, none of the
aspect and adaptation frameworks discussed above supports such language
diversity. On top of this infrastructure, we present a simple trace example and
a more complex end user programming example from the area of interactive
game scripting.

2 Runtime Method Transformations

A method transformation is a kind of program transformation, and it can be de-
fined as any possible change of the definition of an (object-oriented) method.
A method definition comprises a method name, a method scope (usually a
specific class) in which the method is defined, method parameters (possibly



also parameter types and parameter order), a return type, and a method
body. All these elements can possibly be affected by a method transforma-
tion. As we change these elements frequently during ordinary object-oriented
programming practices, method transformations are a prevalent technique of
object-oriented programming.

A runtime method transformation is a method transformation that is applied
to a method while the system runs. Note that the notion of dynamic methods
is nothing new. As we discuss in Section 3, dynamic methods are a common
pattern in Lisp variants, Smalltalk, many popular scripting languages, and
even in Java [31]. As pointed out in [31]: “dynamic methods are at the same
time a powerful and a dangerous device. When used properly, they offer unique
possibilities to extend and retroactively modify software systems. On the other
hand, when used inappropriately, they make it quite easy to cause havoc by
overriding dynamic methods in a completely nonsensical way.” The goal of
this work is to provide a non-intrusive, limited model with which dynamic
methods can be applied safely as a dedicated software engineering approach.

2.1 A Non-Intrusive Method Transformation Model

A method can have an initial definition that is altered by a runtime method
transformation. There are different goals of our approach that require some
kind of non-intrusiveness of method transformations:

e The runtime method transformations should be usable as a dynamic adap-
tation technique. That is, we use it to add decorations or adaptations to
existing methods, such as trace code. We should also be able to dynami-
cally remove these decorations or adaptations again when no longer needed.
Intrusive method transformation would make it hard to remove once added
code.

e Experimentation and incremental evolution with method transformations
should be supported. This goal implies that once made, additions should be
(easily) removable. We should also be able to distinguish different additions,
if there are more than one, because any of them might be removed.

e A goal of our work is tool support for runtime method transformations.
Besides applying the individual method transformations, the tool can high-
light different transformations or additions, for instance, in different colors.
To do so, the tool needs to find out what is an addition and what belongs
to the original method definition.

Note that non-intrusiveness is only a goal for some kinds of method trans-
formations, others can be inherently intrusive in nature. Once developers are
sure that some method transformations are mature, it should be possible to



take these over into the productive system. To resolve these forces we propose
to distinguish the following concepts:

e Method Intrinsics: We call the original or inherent definition of a method the
intrinsics of the method (according to the intrinsic object definition in role
concepts [32]). There are some runtime method transformation primitives
that change intrinsics of the method. When some additions become mature,
developers can decide to migrate these additions into the intrinsics of the
method. We distinguish the intrinsic signature (return type and parameter
list) and the intrinsic body. Note that a change of one of them does not
necessarily imply a change of the other. A change of the intrinsic signature
often implies some interface incompatibility.

o Method Extrinsics: Extrinsics are results of runtime method transformations
that are stored separately and do not change the intrinsics of the method.
The advantage of method transformations that do not alter the intrinsics is
that additions can also be deleted automatically after they have been added.
When working with a tool, a second advantage is that we can highlight the
additions. We distinguish before-code, after-code, and extrinsic signature
elements (return type and parameter list).

o Clurrent Method Definition: There is always a current method definition,
which is actually executed, when the method is called. This is a runtime
representation of the method. The current method definition is a composi-
tion of method intrinsics and method extrinsics. Initially the current method
definition equals the method intrinsics, but it changes when runtime method
transformations are applied.

e Method Definition in the Program Text: The current method definition is
a runtime representation of the method that has to be distinguished from
the method representation in the program text. Especially for tools it is
important to have a means to write a changed method back into the system’s
program text. In other words, the environment should support some means
to serialize the current method definition at runtime.
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Figure 1. Construction of the Current Method From Extrinsics and Intrinsics



These elements of our method transformation model define how a method is
constructed in the presence of runtime method transformations (see Figure
1). These model elements imply also the possible activities and transitions,
performed by the different kinds of method transformations (depicted in Fig-
ure 2). Before any method transformation can be applied, the original method
definition has to be stored as intrinsics. Next we can apply method trans-
formations that change either the intrinsics or the extrinsics. An intrinsic
change directly affects the stored intrinsics, whereas an extrinsic change is
non-intrusive. There is a special activity “make current method intrinsic” to
make the current method the intrinsic method definition; that is, we accept
any extrinsic change performed so far. This activity is typically implemented
by serializing all extrinsic and intrinsic elements into one method text, which
is then used to override the original intrinsic method definition. After perform-
ing a number of method transformations during a system run, the changes can
either be discarded or written back into the program text.

Note that the “discard” path is not only used when a method transformation
experiment has failed, but also when using runtime method transformations
as a programming technique. Consider, for instance, a set of methods of a
component C' is adapted with a trace aspect. We only want to change the
current runtime method definition for as long as the system runs, but not
the method definition in the program text. Otherwise other applications using
the component C' would have to use the trace aspect as well, what is not
intended. Thus, the changes are only applied for one application, and when
the application stops, the changes are discarded.
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2.2 Runtime Method Transformation Primitives

In this section, we introduce the set of runtime method transformation prim-
itives as provided by our transformation framework, introduced in Section 4.



Of course, this is not a complete set of all possible runtime method transfor-
mation primitives, but it is sufficient for practical work with runtime method
transformations. Some of these primitives are also covered (in part) by the
refactorings documented in [20], what we indicate accordingly.

Some runtime method transformation are applied only in the scope of a single
method. Other runtime method transformations are externally visible; that is,
they either affect the signature of the method or even classes and class hierar-
chies. As discussed in the previous section, we can further distinguish changes
to the method intrinsics and non-intrusive changes to the method extrinsics.
When using these criteria for discriminating runtime method transformations,
we can derive four categories that we describe in more detail in the remainder
of this section (see also Figure 3).

There is a set of primitives that belong to the class/hierarchy change category.
All primitives in this category affect the method’s class or class definition when
the method transformation is applied. These transformations alter the method
intrinsics. Typical primitives in this category are:

e Add Method: A new method is added to a specified class.

e Delete Method: A method is removed from a specified class.

e Copy Method: The method is copied to another destination, given by a class
and method identifier. Copy Method can be implemented as Add Method
at target.

e Move Method: The method is moved to another destination, given by a class
and method identifier. This primitive might break client code. If only the
method identifier changes, the primitive can be used to rename a method.
Move with rename can be made compatible by Substitutions on all affected
client code. The transformation covers the refactorings Rename Method and
Move Method from [20]. Move Method can be implemented as Copy Method
followed by Delete Method of the source method.

e Pull Up Method: This primitive is a kind of Move Method with a superclass
as destination. It should only be applied, if it makes sense to apply the
method for all subclasses of the destination class. There is a same-named
refactoring in [20]. Pull Up Method can be implemented as Add Method (at
superclass) and Delete Method (from subclass).

e Push Down Method: This primitive is a kind of repeated Move Method with
a list of subclasses as destination. It can be applied to all subclasses or to
any subset of them. There is a same-named refactoring in [20]. Push Down
Method can be implemented as Add Method (at subclasses) and Delete
Method (from superclass).

Another set of primitives belong to the before/after-code change category. All
primitives in this category affect only the method’s extrinsics and are method
internal changes. Thus these primitives are mainly used for decoration and
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Figure 3. Categories of Runtime Method Transformation Primitives

adaptation tasks:

e Add Code Before Method Body: This primitive adds a given code snippet
before the method body.

e Delete Code Before Method Body: This primitive deletes a specific piece of
“before-code” that has been added before.

e Delete All Code Before Method Body: This primitive deletes all “before-
code” that has been added.

o Add Code After Method Body: This primitive adds a given code snippet
after the method body.

o Delete Code After Method Body: This primitive deletes a specific piece of
“after-code” that has been added.

e Delete All Code After Method Body: This primitive deletes all “after-code”
that has been added.

Aspect-oriented systems also define the “around” category, meaning that some
code is executed instead of an original method definition. As an intrinsic
change, around code can be implemented using Delete Method of the orig-
inal method definition followed by Add Method of the new definition. This
change would overwrite the method definition. Sometimes forwarding to the
original behavior from the around code is required. This can be done using
Move Method instead of Delete Method. Then the new method can refer to
the moved method. Transparent, extrinsic around behavior is more difficult to
achieve using method transformations: we additionally need an automatic for-
warding mechanism. As an example solution, we will introduce Frag’s mixin
classes in Section 4. An Add Method on a mixin class provides an extrin-
sic around implementation that can automatically forward invocations using
Frag’s next primitive.

The primitives in the category signature change affect either the intrinsic or



extrinsic signature of a method. Thus they are externally visible transforma-
tions:

e Change Parameters: This primitive exchanges the (extrinsic or intrinsic) pa-
rameter list of a method. The two refactorings Add Parameter and Remove
Parameter also change the method parameters [20]. Note that for positional
arguments (as in most programming languages) this transformation might
break client code, except if it is possible to provide default values (as for
instance in Tcl). Non-positional arguments, as in SOAP [33], can also avoid
this problem. Another solution is to first apply Copy Method, and then
change the parameters on the copy only, what can be applied if such poly-
morphism is support by the language.

e Change Return Type: This primitive exchanges the (extrinsic or intrinsic)
return type of a method. It changes the method argument intrinsics and
potentially changes the method signature. Note that this transformation
might break client code. Again, Copy Method followed by Change Return
Type can solve this problem. Some languages, such as Tcl, have only one
generic return type (in Tecl: strings), making this primitive obsolete.

The primitives in the category method rewriting apply a specified substitution
for the method and rewrite it accordingly:

o Substitution: There are many possible ways to specify substitutions. We use
regular expressions in our work for this purpose, of course, other substitution
or rewrite rules are also possible. Furthermore, one can also specify to which
parts of the method the substitution should be applied: the method body
intrinsics, the signature intrinsics, the signature extrinsics, the before-code,
or the after-code. Any combination is also possible. The primitive thus can
possibly change the method intrinsics or the extrinsics. The primitive can
be applied as a method internal change only, or be externally visible, say,
by changing the method’s intrinsic signature.

e FEzxchange Body: The intrinsic body of a method is exchanged with another
body, which is specified. This primitive is similar to the refactoring Substi-
tute Algorithm [20].

o Make Current Method Intrinsics: This is a special substitution that accepts
the current before-code and after-code as intrinsics and then applies the
Delete All Before-Code and Delete All After-Code primitives. Note that
this primitive is a part of our activities model (see Figure 2) and is required
for implementing the model fully.

On top of the transformation primitives defined before, we can define complex
method transformations, as for instance the following examples:

e FExtract Method: A new method is added with Add Method. Its body is
defined as a part of another method. The code in this other method is
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exchanged by Substitution with an invocation to the new method. There is
a same named refactoring [20].

e [nline Method: A method is deleted with Delete Method. The body of the
method is inlined in all client methods by Substitution. Note that the pa-
rameters have to be adapted or substituted as well. There is a same named
refactoring [20].

e Model-Based Rewriting: The substitutions in the “method rewriting” cat-
egory are basic primitives that are sufficient for experimental changes and
simple replacements. For some tasks it might be beneficial if the substitu-
tion recognizes model elements in the text to be substituted. Then rewrite
rules such as “rename all occurrences of the class X in a given code snippet”
can be written. We have not implemented such support in our transforma-
tion framework yet, but it can be done using the pattern INTROSPECTION
OPTIONS (see Section 3).

3 Design and Implementation of a Runtime Method Transforma-
tion Framework: A Pattern Language

In the preceding sections we have assumed that the used language provides
support for dynamic methods. However, most mainstream languages, such as
C, C++, or Java, do not provide such a language construct. In this section, we
present a pattern language as a conceptual, language-independent foundation
for designing and implementing a technical infrastructure for runtime method
transformations.

A pattern is a recurring solution to a problem in a context, resolving a set of
forces. Each pattern is a three-part rule, which expresses a relation between
a certain context, a problem, and a solution [34]. A pattern language is a
collection of patterns that solve the prevalent problems in a particular domain
and context, and, as a language of patterns, it especially focuses on the pattern
relationships in this domain and context. As an element of language, a pattern
is an instruction, which can be used, over and over again, to resolve the given
system of forces, wherever the context makes it relevant [34].

The patterns, described in this section, are sufficient to design and implement
a runtime method transformation framework and combine it with a given
host language, even if that language does not support dynamic method ab-
stractions. We have implemented runtime method transformation frameworks
within the implementation of XOTcl [25], an object-oriented Tcl variant writ-
ten in C. Also we have implemented a method transformation framework in
Frag [30], a Tcl extension written in Tcl itself (see Section 4).

Figure 4 shows an overview of the patterns in the pattern language and their
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most important relationships. This pattern language has a strong relation to
two ‘external’ patterns from [35]. A COMMAND [35] encapsulates an invocation
to an object and provides a generic (abstract) invocation interface. COMMANDS
alone only allow for adaptation by changing the association link to a coOM-
MAND. In the pattern language the COMMAND abstraction is extended with
additional indirections to allow for building and interpreting dynamic method
abstractions. The important interpretation step is implemented using another
pattern from [35], the INTERPRETER pattern. In general an INTERPRETER de-
fines a representation for a grammar along with an interpretation mechanism
to interpret the language. These two patterns are used within some of the
other patterns of the pattern language. The other patterns are in particular:

e A DYNAMIC METHOD provides a method abstraction that can be modified,
added to a class, and deleted from its class at runtime.

e A COMMAND LANGUAGE [28] provides a symbolic (e.g. string-based) lan-
guage which is mapped to COMMANDS using an INTERPRETER.

e A METHOD COMMAND is a special COMMAND used for defining (and re-
defining) methods at runtime. Thus it can be used to implement DYNAMIC
METHODS in languages that provide no suitable abstraction natively.

e An INTROSPECTION OPTION [36] provides introspection of software struc-
tures and dependencies, defined for instance within an INTERPRETER.

e A CALLSTACK contains one callframe for each invocation (for instance
within an INTERPRETER). It is used to maintain per-call data.

e An INVOCATION CONTEXT [36] describes the current invocation and pro-
vides access to per-call data for COMMAND LANGUAGE objects.

e A SPLIT OBJECT is an object defined half in a host language and half in
the COMMAND LANGUAGE. This way host language objects can be accessed
from within the COMMAND LANGUAGE, and vice versa.

e A HOOK INJECTOR [36] inserts invocations (hooks) into a given program
(e.g. into the parse tree or byte code). It can be used to insert SPLIT OBJECT
invocations into a given program.

3.1  Dynamic Method

Context Runtime modification of the system’s behavior is required.

Problem Consider a situation in which modifying the system’s behavior at
compile time, binding time, or load time is too early. For instance, a reengineer
who wants to add traces to specific parts of a system would benefit from
adding these changes at runtime while working with a reengineering tool. In
this scenario, a hands-on, runtime approach is required for experimentation.
The approach should also provide a conceptual framework so that the “final”
changes (after experimenting a while) can be incorporated into the system.

12
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The quality of the code should not suffer from this kind of software evolution.

Solution Provide a DYNAMIC METHOD abstraction, so that method defini-
tions can be added to a class and removed from a class (or object) at runtime.
This way the method definition can be modified at runtime as well (by replace-
ment). For instance, the method definition can consist of a number of strings
containing the class name, method name, method parameters (and parameter
types), return type, and method body.

Figure 5 shows an INTERPRETER that reads a script, defining a method
myMethod. At runtime, a client first adds another method log and then rede-
fines the method myMethod to use log for a trace output message. Alternatively,
the client could also remove methods from the running system.

_________ method log (String msg) {

Client } print(msg);

Interpreter
\ Original Program:

method myMethod () S method mYMethod 01
log(this, "myMethod"); 1) interpret script someCall();
somecCall(); — |}

Figure 5. Method definition and redefinition at runtime

Discussion DYNAMIC METHODS highly raise the runtime flexibility of a sys-
tem and enable dynamic (i.e. interactive or experimental) system evolution.
But without further conceptual support, they can add complexity to a system.
That is, for understanding a system, a developer needs to know the current
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method definitions at any time. Note that the approach proposed in this paper
provides such conceptual support.

With DYNAMIC METHODS only, it is hard to evolve a system incrementally
because a developer cannot find out about the old method definition. Remem-
bering the method definition locally does not help much, because possibly an-
other part of the program has changed the method in the meantime. Changing
the method would then discard these changes. INTROSPECTION OPTIONS for
DYNAMIC METHODS provide a solution to this problem. They allow one to
query the currently defined methods and method definitions at runtime.

A DYNAMIC METHOD can be implemented with a special kind of COMMAND
[35], a METHOD COMMAND. In interpreted languages the DYNAMIC METHOD
can also be implemented within the language’s INTERPRETER [35].

DYNAMIC METHOD code might be inconsistent with the rest of the system,
leading to runtime exceptions. For instance, a DYNAMIC METHOD’S code might
refer to another method that does not exist. It is the responsibility of the client
providing a new method definition to ensure consistency. INTROSPECTION
OPTIONS enable the client to check the environment for consistency.

3.2 Command Language

Context Multiple COMMANDS are used within one system.

Problem Using many COMMANDS (say for configuring a system) without fur-
ther support can be cumbersome in some in cases, where the COMMANDS have
to be assembled in various different ways. Runtime composition of the com-
MANDS is not possible if the composition is hard-coded into static, compiled
languages (such as C, C++, or Java). The code of multiple, consecutive COM-
MAND invocations might be hard to read, just consider the following simple
example:

if (exprCmd.execute()) {
result = doCmdl.execute();
doCmd2.value = result;
doCmd2.execute();

}

Solution Express COMMAND composition in a COMMAND LANGUAGE, instead
of calling the commands directly using an API. Each COMMAND is accessed
with a unique command name. The host language, in which COMMANDS are
implemented, embeds the COMMAND LANGUAGE. In the host language, the
COMMAND LANGUAGE’S INTERPRETER or compiler is invoked at runtime to
evaluate the COMMANDS expressed in the COMMAND LANGUAGE. Thus COM-
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MANDS can be composed freely, even at runtime.

Almost all elements of a COMMAND LANGUAGE are COMMANDS, what means
that a COMMAND LANGUAGE’S syntax and grammar rules are usually quite
simple. There are some additional syntax elements, as for instance grouping
of instructions in blocks, substitutions, and operators (examples are operators
for assignments, ends of instructions, or expressions).

COMMAND LANGUAGE code is typically expressed as strings of the host lan-
guage, in which the COMMAND LANGUAGE is implemented. From within the
host language, code can be evaluated in the COMMAND LANGUAGE, and the
results of these evaluations can be obtained.

Consider again the above simple example. Using a COMMAND LANGUAGE we
can provide the dynamic expression by variable substitution (with ‘$’) and
pass the result of doCmdl as an argument to doCmd2 (with ‘[...17). These
changes shorten the resulting code and make it much more readable:
if {$expr} {

doCmd2 [doCmd1]
}
Discussion Often existing COMMAND LANGUAGES, such as scripting lan-
guages, can be reused. Thus, to use a COMMAND LANGUAGE usually does not
mean that developers have to implement a full-fledged programming language
from scratch.

In languages that support DYNAMIC METHODS, COMMAND LANGUAGE and
host language can be identical. In other cases, we require some kind of language
integration in order to use a host language object from within a COMMAND
LANGUAGE, and vice versa. This integration is provided by SPLIT OBJECTS.

To avoid two different invocation styles in a compiled host language, we can
use a HOOK INJECTOR to add COMMAND LANGUAGE invocations into host
language code.

3.3 Method Command

Context DYNAMIC METHODS should be implemented.

Problem Many programming languages do not allow for changing method
definitions at runtime, but this is a requirement for DYNAMIC METHODS. How
can we implement a DYNAMIC METHOD abstraction in a language that does
only supports methods that are compiled before runtime?

Solution Implement a method abstraction as a special COMMAND [35]. A
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METHOD COMMAND is a COMMAND variant that evaluates the embedded
method definition when the COMMAND is executed. It also adds two more func-
tionalities to standard COMMANDS: first, it allows one to provide and change
the method body and argument definitions at runtime. Secondly, it provides
a connection to an INTERPRETER or on-the-fly compiler for the language in
which the method bodies are written.

Figure 6 shows a client that invokes a DYNAMIC METHOD using an INTER-
PRETER. The INTERPRETER looks up the METHOD COMMAND corresponding
to the provided method name in the COMMAND table of the class of the in-
voked object. The returned METHOD COMMAND object contains the DYNAMIC
METHOD data (arguments and body) and can be executed within the INTER-
PRETER. The result of the invocation is returned to the client.

/I 1) eval "printer log" I

Client ]|
T

4 | (this.bod r“ ’ Interpreter .
) eval (this.body) Printer

/

3) execute | 2b) lookup method command "log" I
Method Command "Printer.log" <—)

Command Table

Figure 6. Invoking a dynamic method encapsulated in a method command

Discussion METHOD COMMANDS enable clients to generically define DY-
NAMIC METHODS, even if the programming language does not support them.
As a drawback in such languages another style of invocation is required for
the DYNAMIC METHODS. The client has to write something like:
interpreter.eval ("printer log");

instead of for example:

printer.log();

A HOOK INJECTOR can inject such invocations and thus help to avoid this
problem.

If on-the-fly compilation of DYNAMIC METHODS is supported, the METHOD
COMMAND also maintains a compiled version of the method. Runtime (byte-
code) compilation is usually performed lazily: after the method has changed,
the compiled version is invalided and compiled again for the next use.

The pattern relies on the INTERPRETER [35] pattern. The INTERPRETER pOs-

sibly can implement a very simple language (e.g. a domain-specific language),
or a more complex one. One should consider to use an existing language’s IN-
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TERPRETER rather than writing a new language INTERPRETER from scratch.
The main tasks of the INTERPRETER are parsing and interpreting the lan-
guages grammar, and mapping COMMAND invocations to implementations,
including invocations of (other) METHOD COMMANDS.

3.4 Introspection Options

Context Information about the software structures and dependencies of a
system is required at runtime.

Problem Many architectural structures and dependencies of a software sys-
tem are needed while it runs. These structures and dependencies include dy-
namic structures (that can change at runtime) as well as static structures
(that are defined at compile time and do not change at runtime). But in many
programming languages there is no integrated and extensible way to obtain
this information at runtime.

In the case of DYNAMIC METHODS, making sensible changes to a method
definition often requires knowledge of the original behavior. Or, in other cases,
the original behavior should be preserved in some way. That is, the original
method definition of a DYNAMIC METHOD is required at runtime.

Solution Offer INTROSPECTION OPTIONS for each interesting architectural
element (e.g. in the INTERPRETER). For instance, for DYNAMIC METHODS
let developers obtain the original method definition by offering INTROSPEC-
TION OPTIONS for the METHOD COMMANDS. Provide options for retrieving
the method body (as a string containing the program text) and the argument
list with argument names and argument types.

Figure 7 shows how INTROSPECTION OPTIONS can be used to access an IN-
TERPRETER’S internal structures. Here, the COMMAND table of a particular
class €3 is queried for a list of the METHOD COMMANDS.

| 1) invoke "C3 info methods" I 2) get method list
\ Method Command Table
/ Interpreter c3
7 / -
. / /
Client 1 ‘\| 4) return method list I

3) get method commands I

Figure 7. Querying the command table using an introspection option

Discussion When using INTROSPECTION OPTIONS and DYNAMIC METHODS,
the consistency problem of remembering the current method definition for re-
defining methods can be avoided. The METHOD COMMAND itself remembers
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its definition and provides it using INTROSPECTION OPTIONS. Typical INTRO-
SPECTION OPTIONS for methods are parameters, body, parameter types, and
return type.

INTROSPECTION OPTIONS and DYNAMIC METHODS can be used to incremen-
tally make changes to a method. The method definition can get more and
more refined. An original behavior definition can then be used as an example.
Thus incremental changes of a given implementation are possible.

3.5 Callstack

Context An INTERPRETER or another runtime dispatch mechanism is used.

Problem State should be preserved or manipulated at a given point in the
control flow. This problems occurs, for instance, when implementing an IN-
TERPRETER. The INTERPRETER needs to preserve the currently executing
object, class, and method, when invocations take place from within the cur-
rently executing method.

Solution The control flow can be abstracted into a number of invocations. Let
the INTERPRETER instantiate one callframe per invocation and push it onto
a CALLSTACK. When the invocation (and all inner invocations) have finished,
the callframe is popped from the CALLSTACK. The callframe contains all per-
call information needed by the system.

Discussion Typically an INTERPRETER or another runtime dispatch mecha-
nism requires some way to maintain per-call information. However, a CALL-
STACK poses an overhead, if it is not needed. INVOCATION CONTEXTS can be
used to make the CALLSTACK accessible from within a COMMAND LANGUAGE.

In the context of DYNAMIC METHODS the CALLSTACK plays another important
role. Consider a situation in which a method is redefined while an invocation of
this method is still running. For instance in the following example the running
method is overwritten by a text read from a file. It has to be ensured that
the final close statement of the original method invocation is reached in any
case. This can be done by remembering the execution code (or compiled byte
code) of an executed method from within the callframe. Reference counting
for method bodies can be used to avoid the overhead of remembering a copy
of the method body in each callframe.

Cl method x args {
set FILE [open "method-x.def"]
C1l method x args [read $FILE]
close $FILE

}
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3.6 Invocation Context

Context An INTERPRETER is used for a COMMAND LANGUAGE.

Problem From within a COMMAND LANGUAGE script, information about the
control flow is required at runtime, such as the currently executing object,
class, and method or the calling object, class, and method.

Solution An INVOCATION CONTEXT is used to obtain the invocation informa-
tion from inside of a running method. The INVOCATION CONTEXT contains at
least information to identify the calling and called method, object, and class.

When a CALLSTACK is used, the INVOCATION CONTEXT is a view on the
CALLSTACK and contains (at least) the information in the top-level callframe.
In a COMMAND LANGUAGE, a COMMAND can be provided that allows scripts
to obtain the INVOCATION CONTEXT from the CALLSTACK.

Figure 8 shows an INTERPRETER that puts each invocation onto a callstack.
Thus from within a method aMethod it is possible to obtain the current INVO-
CATION CONTEXT.

| 5) pop callstack entry I Callstack
Client | 2) push callstack entry I \
\\ 4) get invocation
| context
1) invoke "C1 aMethod" I /
\\» T 7
Interpreter N C1
P 4

—| 3) invoke aMethod I

Figure 8. Invocation context obtained from a callstack

Discussion INVOCATION CONTEXTS are especially useful together with an
INTERPRETER or other indirection techniques that require a CALLSTACK (or
another way to maintain per call information). If the CALLSTACK information
is not available, the system needs to be restructured to provide an additional
indirection. This costs memory and performance.

3.7 Split Object

Context A COMMAND LANGUAGE is used within another language (the “host
language”).
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Problem Typically the COMMAND LANGUAGE needs to access host language
objects. Here “access” means performing lookups, invocations, creations, and
destructions of objects and methods. These tasks can be handled by a wrap-
per object. Yet pure wrapping poses some problems in more complex language
integration situations. A wrapper provides only a “shallow” interface into a
system, and it does not reflect further semantics of the two languages. Exam-
ples of such semantics are class hierarchies or delegation relationships. Further,
a wrapper does not allow one to introspect the system’s structure. The logical
object identity between wrapper and its wrappees is not explicit. Complex
wrappers that are implemented by hand are hard to maintain.

Solution A SPLIT OBJECT is an object that physically exists as an instance
in the COMMAND LANGUAGE and the host language, but logically it is treated
like one, single instance. Both halfs can delegate invocations to the other half.
One half is called the wrapper half, and it provides an automatic forwarding
mechanism to send invocations to the wrappee half. The wrapper mimics the
user-defined class hierarchy of the wrappee, variables are automatically traced
and shared, and methods can be wrapped. Depending on the language fea-
tures of the two languages, these functionalities can either be implemented by
extending the language’s dispatch process, using reflection, or using generative
programming techniques.

Figure 9 shows a host language client that needs to invoke a host language
object Object1. This object is a SPLIT OBJECT: instead of invoking this object
directly, the counterpart in the COMMAND LANGUAGE is invoked first, which
forwards the invocation back into the host language. This way the COMMAND
LANGUAGE can intercept the invocation.

! Base Language . i_Command Language !

| 2) lookup "Object1"

! I
! 1
1
Client ! ! \ J
N : 1
| 1) eval "Objectl log" \ Interpreter

S

1
: : |
! I : | 3) invoke "log"
q : | 4
! 1
Objectl | ! Objectl

Figure 9. Invoking a split object through the command language

Discussion SPLIT OBJECTS can be used to deeply integrate two object sys-
tems. Concepts realized in one object system can be used from within the
other object system. For instance, this way a DYNAMIC METHOD abstraction,
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implemented in the COMMAND LANGUAGE, can be used for host language
objects.

SPLIT OBJECTS pose a memory and performance overhead and thus should
only be used for host language objects that need to be accessed from the
COMMAND LANGUAGE.

From the COMMAND LANGUAGE we can automatically forward invocations
into the host language. In turn, ordinary host language invocations bypass
the SPLIT OBJECT in the COMMAND LANGUAGE. Thus, from within the host
language, we have to use the INTERPRETER’S eval method to access a SPLIT
OBJECT. To avoid this additional invocation style, a HOOK INJECTOR can be
used to replace host language invocations with indirections to SPLIT OBJECTS.

3.8 Hook Injector

Context A program text should be manipulated. For instance, invocations
should be indirected into a COMMAND LANGUAGE.

Problem A sub-system’s behavior should be modified, but neither the sub-
system’s nor its clients’ code should be permanently changed. Consider you
want to avoid invocations of the following style to deal with SPLIT OBJECTS:

interp.eval("MyObject create a");
interp.eval("a write Hello");

Instead all objects of the type MyObject should be made SPLIT OBJECTS, and
all invocations should be sent through the COMMAND LANGUAGE first.

Solution Use a parser for the host language and let a HOOK INJECTOR inject
the indirection hooks directly into the parse tree (or into the byte-code). Either
write a custom compiler to directly create machine code or byte code, or, as
a simpler alternative, produce a new program in the host language with the
injected indirection hooks. Then let this program be compiled or interpreted,
instead of the original program. Semantically the new code is equivalent to
the original code, with the exception of the injected hooks for extracting or
modifying the relevant invocations.

Figure 10 shows a HOOK INJECTOR that injects hooks by parsing a document,
modifying the representation in memory (here a parse tree), and writing the
modified source document back. This document is then interpreted or com-
piled, instead of the original source document.

Discussion In compiled languages, a HOOK INJECTOR only performs static
modifications. Thus it is only possible to dynamically change those classes
which are statically instrumented before. Instrumenting a class, for instance for
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}
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) inj | | 2) parse document 4) modify parse tree

, \

\ 3 | 5) write modified document

Client Hook Injector

Figure 10. A hook injector manipulating the parse tree

introducing DYNAMIC METHOD, poses a performance and memory overhead,
even if the DYNAMIC METHOD abstraction is not used later on.

4 Case Study: Design and Use of a Runtime Method Transforma-
tion Framework

In this section we present a case study of a method transformation frame-
work implemented in Frag [30], an object-oriented extension of the program-
ming language Tcl [10]. Frag is a full-fledged object-oriented programming
language. However, it is not primarily designed for building complete systems,
but it is rather intended as a composition and configuration language for other
languages, namely C, C++, and Java. That is, Frag is typically embedded
in these languages and it is used for configuring applications, for composing
component architectures, or for providing a little, domain-specific language.
To support such tasks, Frag offers a reflective and very flexible object system,
and it provides means to be easily integrated with those other languages (ex-
amples are provided below). Frag specifically aims at Java because the Frag
implementation is completely implemented in Tcl and runs in a Java Virtual
Machine on top of Jacl [37] (of course, it also works with the standard Tcl
implementation implemented in C).

Frag implements a DYNAMIC METHOD abstraction together with INTROSPEC-
TION OPTIONS using the Tcl or Jacl INTERPRETER. This implementation is
explained in Section 4.1. DYNAMIC METHODS can be used from other lan-
guages by using SPLIT OBJECTS. Using a HOOK INJECTOR we can instrument
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the other languages code to automatically invoke a SPLIT OBJECT half in Frag.
We have implemented a HOOK INJECTOR for Java using AspectJ (see [38] for
details) and HOOK INJECTORS for C++ using SWIG [39].

On top of the DYNAMIC METHOD abstraction, Frag provides a method trans-

formation framework following the concepts from Section 2 (explained in Sec-
tion 4.2).

In this section we provide two examples. Firstly, we provide a simple trace
example. Secondly, we present a case study of using the transformation frame-
work for interactive game scripting.

4.1  Frag’s Dynamic Methods

Frag provides a highly flexible object system in which each element and rela-
tionship is completely dynamic and introspective. Objects can be interpreted
differently in different contexts. That is why we call the Frag object system
“contextual.” An object might be interpreted as “more” than a pure object
whenever the context makes it relevant. For instance, an object can play the
role of a class or a superclass. The class concept of the language is not fixed
but can be tailored to the particularities of a host language. This way Frag can
easily be integrated with other languages such as C, C++, and Java (please
refer to [30] for more details). In the remainder of this section we concentrate
on DYNAMIC METHODS in Frag.

Frag’s DYNAMIC METHODS are defined in a method table. Each object can
have methods, but these are only applied when the object acts as a class
for other instances. Consider we create a class MyClass. This class contains a
simple method writeMsg which is defined by invoking the method operation
and providing it with the method name, the parameter list, and the body of
the method:

MyClass method writeMsg {msg} {
puts $msg
}

All parameters passed to Frag methods are strings. Thus the parameter msg
in the example method above has no type definitions in the signature, just the
parameter name. SPLIT OBJECTS, wrapping statically typed host language
objects, need to care for type conversions. Note that for performance reasons
Tcl performs type conversions internally (e.g. an integer is internally stored
and handled as an integer to avoid continuous back and forth conversion). But
these internal data types and conversions are not visible to the language user.
This simple, generic type concept for primitive data types is an important
feature to let users who are not expert programmers understand the language
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concepts without sophisticated knowledge of a programming language’s con-
cepts.

The language element self can be used to refer to the current object. In
Frag, methods can be redefined at arbitrary times by simply replacing the
method definition. An invocation like the following in the same program as
the invocation above, replaces the above method definition with the one below:

MyClass method writeMsg {msg} {
puts "[self]: $msg"
¥

We can also delete a method or rename a method using rename. Renaming a
method to an empty string causes the method to be deleted. For instance, we
can delete writeMsg as follows:

MyClass rename writeMsg {}

Frag provides a primitive next that implements mixin methods. That is, when
next is called from within a method, all superclasses of the method’s class are
searched for the same-named method, and if it is found, it is invoked. Thus it is
“mixed” into the current method execution. Dynamically classes can be added
to and removed from the class hierarchy at arbitrary places. These classes are
mixin classes containing mixin methods for extending the given class hierarchy.
Mixin classes are a dynamic message interception techniques, and thus they
are an alternative to runtime method transformations. We compare these two
approaches in Sections 5 and 6.

Because Frag is designed for runtime composition, an important goal is to
be able to find out the current composition of the objects (and classes) at
any time. Therefore Frag is designed as a fully reflective language, offering
INTROSPECTION OPTIONS for each language element it introduces. Introspec-
tion is realized by the method info of the class Object. info accepts a number
of options. The following INTROSPECTION OPTIONS are relevant for DYNAMIC
METHODS: args returns the parameter list of a method, body returns the body
script of a method, and methods returns the list of methods defined for a class
(for other INTROSPECTION OPTIONS see [30]).

For instance, the implementation of copyMethod of the MethodTransformer (in-
troduced in the next section) uses the DYNAMIC METHOD abstraction to create
a new method. Here, the INTROSPECTION OPTIONS options args and body are
used to retrieve the arguments and body of the source method srcMethod on
the source class srcCl:

MethodTransformer method \
copyMethod {srccl srcmName targetcl targetmName} {
$targetcl method $targetmName \
[$srccl info args $srcmName] \
[$srccl info body $srcmName]
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}

Tecl (and thus Frag) is implemented as a COMMAND LANGUAGE. Every lan-
guage element is a COMMAND. For instance, when a method is copied using
copyMethod the DYNAMIC METHOD abstraction, accessed with method, cre-
ates a new METHOD COMMAND with the name destMethod for destCl. This
COMMAND is bound to the implementation of the Frag METHOD COMMAND
resolver and stores the arguments and body within the class. The Tcl IN-
TERPRETER is used for interpretation of the METHOD COMMANDS, as well
as for script evaluation. Tcl compiles methods internally using an on-the-fly
byte-code compiler.

In Frag all invocations are pushed onto a CALLSTACK. This CALLSTACK is fully
accessible from within the language. Using the Frag object callstack we can
query the current INVOCATION CONTEXT (and all other INVOCATION CON-
TEXTS on the CALLSTACK). self is actually a short-cut for callstack self,
which returns the top-level object on the callstack. callstack method returns
the currently executing method, and callstack class returns the currently
executing class. The options callingObject, callingMethod, and callingClass
return the same information at the caller level.

For instance, the following method prints out the name of the object and
method that have invoked it:

X method callerPrinter {} {
puts "Invoked by [callstack callingObject],\
[callstack callingMethod]"

4.2 Frag’s Runtime Method Transformation Framework

In this section we explain Frag’s runtime method transformation framework,
following the concepts explained in Section 2. The main part of the runtime
transformation framework is implemented in a MethodTransformer class. It
contains methods for the runtime method transformation primitives as well as
some convenience methods. As shown in Figure 11, the method transformer as-
sociates hash tables for intrinsic code, intrinsic arguments, before-code, after-
code, and extrinsic arguments. The hash tables contain either script lists or
argument lists. The argument lists contain the arguments in the order in which
they should be applied, whereas the script list contain the scripts in the order
in which they should be composed. We do not maintain return types, as there
is only one generic return type in Tcl (i.e. strings).

The method transformer class stores the DYNAMIC METHOD definitions (ar-
guments and code snippets) in the hash tables. The combinations of method
name and class name are used as keys for the hash tables. Thus for any com-
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Figure 11. Method Transformer Design

bination of method and class we can store the intrinsics, a list of before-code
fragments, a list of after-code fragments, and extrinsic arguments.

Before a non-intrusive method transformation is performed the first time, it
is ensured that the intrinsics are stored in the two intrinsic hash tables. Thus
the intrinsic method definition is saved.

A convenience method emitMethod is used to construct the current method
definition from before-code, after-code, and intrinsics. It is invoked after each
change to method extrinsics or intrinsics.

A method makeCurrentIntrinsic is supported to make the current method
definition the intrinsics, so that any change performed so far is accepted.
Before this method is invoked, it is always possible to go back to the original
definition by making the intrinsics the current method definition.

The rest of the method transformer code are the individual method transfor-
mation primitives, as they have been explained already in Section 2. Thus we
do not repeat these here; the individual method names can be seen in Figure
11.

Besides support for incremental and experimental software evolution, there
are four main uses for the method transformer framework in our work:

o Transformation and Evolution: The method transformation framework can
be loaded into any Frag system and be used as a high-level program trans-
formation technique. That is, (existing) methods can be transformed, refac-
torings can be applied, and the system can be incrementally evolved.

e Object-Oriented Adaptation: As pointed out in Section 5 many object-
oriented adaptation techniques rely on static method transformations. The
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method transformer framework can be used to implement similar dynamic
techniques. The method transformations are then used as a language ex-
tension for runtime object-oriented adaptation. It is possible to perform
structure adaptations (similar e.g. to AspectJ introductions) as well as
behavior adaptations (similar e.g. to AspectJ pointcuts and advices).

e Optimization: A special use of the method transformer is optimization of
message interceptor code. Frag classes can be used as mixin classes for other
classes. This implies a dynamic dispatch of methods to the mixin class. At
performance bottlenecks it might be better to use native, byte-code com-
piled methods without any further dispatch. Still in these situations it makes
sense to use message interceptors as a design abstraction. Here, we can ap-
ply the method transformer: we still design and implement the application
using the message interceptors, but where a performance bottleneck arises,
we use the method transformer to inline the message interceptor code in the
calling methods dynamically (see Section 6 for a performance comparison).

e Tools: We also use the method transformer in a component composition and
reengineering tool for experimentation purposes.

4.3 Trace Example

As an example, let us consider a typical trace example (as often used as an
example in the field of aspect orientation). Consider there is a set of classes
Circle, Point, and Square, derived from a generic Figure class and we want
to trace any setter method (methods starting with set) of these classes. But
we do not have any knowledge which setter methods are defined on which
subclasses, what might even change when more subclasses are defined.

As a solution, we derive a class SetterTrace from the MethodTransformer class.
This class has a method traceAllSetters for tracing the setter methods on
all subclasses with a specified piece of before-code. First we have to find all
relevant classes, what is done by a simple recursive method using INTROSPEC-
TION OPTIONS. Then we iterate over all subclasses and over all methods of
these subclasses with two foreach loops. For every method name that begins
with set, we add the specified before-code:

Object create SetterTrace \
-superclasses MethodTransformer \
-makeSelfClass
SetterTrace method traceAllSetters {cl code} {
set classes [concat $cl [$cl getAllSubclasses]]
foreach ¢ $classes {
foreach method [$c info methods] {
if {[string match set* $method]} {
self addBeforeCode $c $method $code
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}
}
}
}

Next, we can apply the setter trace to all classes that are derived from Figure:

SetterTrace traceAllSetters Circle {
puts "CALL Class= [callstack class]"
puts " Method= [callstack method]"

}

Now every setter method on every figure class prints the class and method
name before it is executed.

4.4 End-User Programming Example: Interactive Game Scripting

Consider the example of developing game scripts for interactive games that
should run on the digital television set-top box for the multimedia home plat-
form (MHP) [40]. Specifying in-game scenes and character behavior is a com-
plex task, and thus a programming language or domain-specific language is
useful here. MHP settop boxes run Java programs. Yet programming in-game
scenes in Java is problematic, because game level and scene designers usually
are not professional programmers. Thus, what is need, is a simple configu-
ration language that can easily be connected to those elements of the Java
program which are relevant for game scripting. In such cases, we propose to
use SPLIT OBJECTS and a dynamic COMMAND LANGUAGE. For instance, Frag
is designed for configuring Java using scripts.

Consider, for instance, a Java class Wizard provides all basic actions for a
wizard character, such as character painting, move sequences, spell cast move-
ments, etc. Now consider further the wizard is capable of some 100 spells,
each having different effects on the wizard and the spell’s target. Also each
spell causes different visual effects. Configuring these spells is a typical game
scripting task. For instance, a spell script might look as follows:

JavaClass create Wizard -superclasses Character

Wizard method castBurnSpell {target} {
self spellCastMovement 3
set success [self castSpell fireball]
self substractMana 15
$target burn [expr 2 * $success]
$target hit [expr 3 * $success]

}

A few scripts might be provided by the game engine programmer as an exam-
ple. The rest of the scripts should be developed by game level and scene de-
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signers. Obviously, many parameters in this script (and all other spell scripts)
need extensive game playing and testing by trial and error. If it would be nec-
essary to re-compile and re-start the game application to change parameters
or behavior of the scripts, there would be a considerable overhead in terms
of development times. Instead it makes sense to dynamically manipulate and
exchange the scripts during game play testing.

The sPLIT OBJECT solution allows us to untangle the aspect “in-game con-
figuration” from the game code. Other AOP solutions would also work in
this context, but as a disadvantage many current AOP languages require re-
compilation. The SPLIT OBJECT solution has the disadvantages that the em-
bedded INTERPRETER is slower than a compiled solution. For character scripts
and in-game scenes this loss of speed can be tolerated. The game engine, how-
ever, should be developed in Java.

Using the runtime method transformation framework, the game level and scene
designers can simply use the existing examples and change it by trial and error.
For instance, one can copy the given example to a new method and then go
into this method’s definition and manipulate it:

MethodTransformer copyMethod Wizard castBurnSpell \
Wizard castFireWallSpell

This way the concept of exemplification can be supported by a runtime method
transformation framework (what lowers the learning curve).

Consider there is simple callback test routine defined to run one test movement
of a character:

Core method testVisual {} {;}

This method can be manipulated to run different tests using the exchangeBody
and regsub operations. For instance, we can test the new spell on a Paladin

like this:

MethodTransformer exchangeBody Core testVisual {
Paladin create pl
Wizard create wl
wl castFireWallSpell pl

b

Another example of method transformation during game scripting is adding
before-code or after-code for observation tasks. This way it is very easy to
design the interaction of characters. For instance, group behavior can be im-
plemented by adding notifications of the character objects as before-code or
after-code of the group object’s methods.

Note that it is not intended to let the game level and scene designers send the

invocations to the MethodTransformer by hand (as in the examples above). In-
stead a simple programming tool can provide the MethodTransformer’s prim-
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itives within a GUI (see [41] for examples of how such a tool can look like).
The game level and scene designers only need to provide the parameters and
method bodies. The tool can also check that game level and scene designers
do not manipulate methods or classes that they should not use.

The MethodTransformer framework provides the powerful adaptation tech-
nique implemented by DYNAMIC METHODS in a simplified and safe manner to
the game level and scene designers (here using a simple GUI). The core tech-
nical solution, comprising the SPLIT OBJECT solution and Frag’s DYNAMIC
METHODS, works under the hood of the MethodTransformer framework. Thus,
the MethodTransformer framework is intentionally very simple, whereas the
pattern concepts used in the implementation are in comparison rather com-
plex. The use of the two-language concept has the advantage that script de-
velopers can solely develop in the scripting language which is designed for
rapid application development and offers a low learning curve, whereas the
core application logic can be developed in the system language Java.

5 Related Work

In this section, we discuss some related work to put this paper into context.
First, we discuss related approaches based on static transformations briefly.
Next, we discuss other approaches for system evolution at runtime.

5.1 Static Transformation Approaches

Static transformation refers to approaches transforming a system before run-
time, for instance, at compile time or load time. There are mainly two relations
of runtime method transformations to static transformation approaches:

e Runtime method transformations can implement most of the tasks per-
formed by static transformation approaches; thus they are an alternative
for static approaches in situations where runtime variation is required.

o [f a system is written in a language without support for DYNAMIC METH-
oDS, static transformation approaches can be used to prepare the system
for runtime method transformation (as explained in the HOOK INJECTOR
pattern).

Static transformation approaches with these characteristics are applied for
many different tasks; some example approaches are:

e Different aspect-oriented approaches [15,16,17,18] use static method trans-
formations of source code or byte code for their internal implementation
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(see [28] for a discussion of implementation details of AOP frameworks).

e A number of static transformation techniques are developed in the context
of software maintenance and reengineering scenarios [21].

e Generative programming [42] refers to systems that generate customized
components utilizing modifications of given code fragments and component
assembly apart from given patterns.

e Partial evaluation [43] creates a specialized version of a general program
and can be implemented using program transformations.

e Wrapping is often used to migrate an existing system to a new technology
or programming language [44]. Static wrappers are often generated using
wrapper generators (see e.g. [39]).

Besides these static transformation approaches, there are many other ap-
proaches for modifying a system at runtime (discussed in the next sections).

5.2 Wrappers, Mixins, Message Interceptors, and Composition Filters

Moon proposed flavors as small units of composition that can be mixed into a
given class hierarchy at arbitrary places [45]. Subsequently, mixins were pro-
posed for instance in CLOS [3]. Mixins are classes whose superclass is not spec-
ified at mixin implementation time, but is left to be specified at mixin use time.
An automatic method combination mechanism (such as call-next-method in
CLOS) is used within the mixin. In CLOS mixins are rather a coding conven-
tion; mixin-based inheritance [46] proposes them as formal construct.

An alternative for static wrappers, similar to the mixin concept, are dynamic
wrapping approaches, such as method wrappers [47]. In this concept, invoca-
tions of a wrapped method are indirected to the method wrapper first. The
method wrapper (optionally) forwards the invocation to the original method
implementation, and it can execute code before and/or after the invocation
of the original method. Thus no transformation of the original method imple-
mentation is necessary.

An extension to method wrappers and simple mixin concepts are message
interceptors. Message interceptors are sophisticated wrappers that introduce
new behavior to be executed before, after, and /or around an existing method
or component at runtime. The most important conceptual extensions, intro-
duced by interceptors, are that they can be ordered in chains (or other struc-
tures) and provide some (semi-)automatic forwarding mechanism. Support for
message interceptors can be provided in different environments. For example,
XOTecl [25] is an object-oriented scripting language that supports message in-
terception by special language constructs. Also, interceptors for distributed
invocations are provided in various middleware systems, such as TAO [27]
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or Orbix [26]. The INTERCEPTOR pattern [48] describes this form of message
interception.

We have already explained that method transformations are an alternative
to the forwarding approach chosen in method wrappers, mixins, and message
interceptors. Runtime method transformations can be used to optimize these
techniques. We have already described that Frag supports mixin methods and
mixin classes as a message interception technique (we perform a performance
comparison with runtime method transformations in Section 6.2). Frag sup-
ports both, mixin classes and runtime method transformations, because they
are complementary adaptation concepts. In design situations that require run-
time adaptation and separation of concerns at the same time, mixins or mes-
sage interceptors tend to be the more suitable design abstraction, because
they are separated units. In other situations, such as those of experimental or
incremental program evolution, runtime method transformations are usually
better suited, because they apply changes directly to the design unit (here:
the method) to be incrementally evolved.

Composition filters [49] are a declarative model that explains the basic adapta-
tion concept behind mixin classes and interceptors. The model realizes object
composition using input and output filters for objects and classes. When an
object receives a message, first an input filter chain is traversed, then the
object implementation is invoked, and finally an output filter chain is tra-
versed. Lately the model was extended to support aspect-oriented concerns as
composition filters. Composition filters can be used for incremental and ex-
perimental transformation of methods by introducing filters that override or
adapt a method invocation. Composition filters are an alternative for the run-
time method transformation primitives that modify before or after code. They
can easily express extrinsic around behavior which is difficult to achieve with
method transformations, as discussed in Section 2.2. But intrinsic changes
of a method, such as the method rewriting primitives, are not supported by
composition filters.

5.8  Approaches for Dynamic Aspect Weaving

Lammel proposes method call interception (MCI) [22] as a model for superim-
posing extra functionality onto method calls at runtime. A semantics-directed
implementation of MCI is proposed in [50]. The aspects allow for runtime
adaptation. A central registry for aspects indirects invocations to classes that
‘superimpose’ behavior onto other classes. Runtime method transformation
primitives that do not change the method intrinsics can directly be imple-
mented with MCI. The implementation of the prototype uses static method
transformation following the HOOK INJECTOR pattern: hooks are injected into
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each method of the respective classes.

There are a number of other approaches that use the HOOK INJECTOR ap-
proach for preparing a system for dynamic aspects in Java. For instance, JBoss
AOP [51] modifies the class loader to insert hooks into the Java byte code at
load time, and the aspect composition can be changed at runtime. Prose [24]
performs a similar modification by modifying the native code compilation per-
formed by the Jikes virtual machine at runtime.

AspectS [23] provides a runtime aspect weaver for Smalltalk. It uses the
method wrapper concept, explained above, and adds method wrappers to
a program using meta-programming techniques. In particular, method wrap-
pers replace an entry in a class method dictionary, add behavior to the method
invocation, and eventually invoke the wrapped method itself.

5.4 Approaches Utilizing Dynamic Methods

There are many approaches utilizing DYNAMIC METHOD abstractions. We have
already explained that a number of scripting languages, including Tecl [10],
Python [11], Perl [12], and Ruby [13], offer DYNAMIC METHODS natively. In
contrast to our work, these languages do not provide further conceptual sup-
port for runtime method evolution. The patterns described in this paper can
be implemented in all these languages in a similar way as in our case study.

Heinlein implements DYNAMIC METHODS in pure Java using a pre-compiler
based language extension and a Java-like syntax for DYNAMIC METHODS [31].
This approach is an alternative to the two-language approach proposed in our
case study. We have used the two-language approach in order to benefit from
the language diversity. Users only need to learn a sub-set of the simple scripting
language leading to a low learning curve. Moreover, the Frag implementation
can be reused for other languages than Java as well. However, the more Java-
like syntax of Heinlein’s approach might be more appealing to experienced
Java developers. Note that Heinlein’s approach is also covered by our pattern
language (it just omits the pattern SPLIT OBJECT).

The Refactoring Browser [19] is a Smalltalk browser with support for refac-
torings implemented as dynamic method changes. That is, a developer can
automatically perform behavior preserving transformations, as discussed in
[20]. Also there are some rewrite tools for source-to-source transformations
that can be accessed from the tool.
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6 Experiences and Evaluation

6.1 Consequences of Applying Runtime Method Transformations

Our approach offers a unique combination of the following properties (in the
related works discussed in Section 5 one or more of these properties are miss-

ing):

e Runtime evolution: Typical application areas of our approach require ex-
perimentation and incremental evolution at runtime. Using static transfor-
mation or composition techniques is rather cumbersome here.

o Simplicity: Most object-oriented adaptation techniques have rather complex
models that are hard to understand for non-expert programmers. Method
transformations, in contrast, offer a simple, yet powerful concept that can
quickly be fully understood by someone who is not an expert programmer.
Our approach only requires the user to understand the local context in which
(s)he works plus the limited number of method transformation primitives.
These can be applied safely (meaning that any change can be discarded,
if it was not successful). It is easy to provide tool support and integrate
rapid application development environments, such as scripting languages,
with our concepts.

e Language diversity: Most implementations of object-oriented adaptation
techniques focus on a single programming language only, and thus cannot
be used with another language. Using the SPLIT OBJECT approach, we can
combine our method transformation framework with any language that can
work with Frag.

e Learning by example: The concept of exemplification is a typical way to
allow novices to quickly learn how to modify a software system without
fully understanding it. One can use similar existing methods (see Section
4.4 for an example) and modify it slightly. Learning by trial-and-error is
always limited in its capabilities, but it can motivate users to learn the full
languages or interfaces of the system. Typical object-oriented adaptation
techniques do not support exemplifications.

e Fxperimentation: In typical object-oriented adaptation techniques, it is hard
to try out ideas or “play” with a system, say, because recompilations and re-
starts of the system are necessary for each change. In contrast, our concepts
are designed for experimentation with a system while it runs.

o Memory and performance: Almost all object-oriented adaptation techniques
have a considerable overhead in terms of performance and memory con-
sumption compared to native object-oriented methods. As discussed below,
runtime method transformations have only a low overhead and can be used
to optimize mixin class performance.
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There are also a set of characteristic drawbacks that should be considered
before applying the concepts proposed in this paper.

All runtime method transformations that are applied using INTROSPECTION
OPTIONS are only applied for the current state of the system, and not for future
changes. For instance, when all methods of a class C' are transformed, and then
a new method is added to C, this method is not automatically transformed as
well. In contrast, for instance, a mixin class can observe the addMethod method
of the method transformer, and trigger transformations if necessary.

The implementation of a framework using the pattern language is a straightfor-
ward task, if an existing INTERPRETER is reused, as in our examples Tcl [10]
and Jacl [37]. Implementing a full-fledged general-purpose COMMAND LAN-
GUAGE from scratch can be a huge effort; however, it is also possible to im-
plement a little, domain-specific COMMAND LANGUAGE (what is much less an
effort). Note that it is not necessary to use the two-language approach to work
with our concepts (we have already discussed that Java dynamic methods [31]
could be used instead). In general, SPLIT OBJECTS have a performance and
memory penalty, because objects are implemented in two languages and some
invocations need to be dispatched twice.

As explained in the related work section, runtime method transformations
are good for solving experimental problems, but where class-like abstractions
are helping to solve the problem, aspects or mixin classes might be the bet-
ter — more understandable — abstraction, as they group related adaptations
in one computational entity. A solution to this problem is to support both
abstractions, as in Frag.

6.2 Performance Fvaluation

Regarding performance we have predicted that our runtime method trans-
formation framework can be used for optimization of dynamic interceptor
techniques and that it does not perform significantly different to delegation.
To verify this claim, we have performed a performance comparison using a
simplistic example.

The example instantiates a simple circle class with variables for radius, and x
and y coordinates. We have timed two method invocations, invoking a method
perimeter and a method area, performing the respective simple computations.
A trace object is used to print trace messages, and the trace is invoked before
and after the method invocation. We have stripped all outputs, so that only
the invocations are measured.

We have measured the time for invoking the two circle methods without trac-
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Test No Hand-Built | Method Mixin
Instrumentation | Delegation | Transformation | Class
1 Trace: Before/After Tracing 53 ms 66 ms 66 ms 129 ms
1 Trace: Registration/Transformation - - 253 ms 202 ms
3 Traces: Before/After Tracing 53 ms 86 ms 87 ms 265 ms
3 Traces: Registration/Transformation | — - 646 ms 260 ms
Table 1

Performance comparison: Times in milli-seconds

ing. Next, we have measured the time to transform a method and the in-
vocation times of the traced methods. Finally, we have used a Frag mixin
class for the same trace functionality. To be applied for tracing, this message
interceptor needs to be registered as a class first.

The results are summarized in Table 1. All results are measured in milli-
seconds. All measurements were performed on an Intel P4, 2.53 GHz, 1 GB
RAM running Red Hat Linux 8.1. Frag version 0.26 together with Tcl 8.4 was

used.

We can see that before/after tracing with runtime method transformation and
delegation are almost identical, as expected. Both only add a slight overhead to
the version without instrumentation. In contrast to these solutions the mixin
class requires an additional method dispatch and the next primitive has to be
resolved. This results in a substantial overhead of 95% for one trace call. The
mixin class registration is 20% faster than the method transformation. For
three traces on the same methods, the method transformation is only slightly
slower than for one trace. Three consecutive method transformations consume
about three times as much time as one trace. The mixin class registration does
not add much overhead for three traces, but three mixins require considerably
more time to be invoked than one mixin. Thus, method transformations can
well be applied to optimize the performance of runtime message interceptors.

Note that, even though our results are encouraging for the use of runtime
method transformations in fields that require incremental, experimental, or
highly dynamic software evolution or adaptation, there are also other areas,
where our results indicate that runtime method transformations should not
be applied. For instance, where no dynamic transformation is required, static
techniques still perform better because they have no runtime costs for trans-
formation.

7 Conclusion

In this paper we have proposed an approach for runtime method transfor-
mations that can be applied automatically. The approach covers a runtime
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method transformation concept that primarily simplifies and safely applies
dynamic methods, a pattern language for implementing such runtime method
transformations, and a case study of a runtime method transformation frame-
work. Our approach is unique in a number of ways. In contrast to many other
object-oriented adaptation techniques (e.g. from the AOP field), adaptations
are performed at runtime. In contrast to meta-level or reflective approaches,
the approach is very simple. To our knowledge there is no comparable ap-
proach that focuses on multiple languages. The framework is part of a ma-
ture language implementation, and the concepts are applied in a number of
projects. The primary application areas for our approach are different fields
of experimental and incremental program evolution. But as pointed out in the
paper the approach can also be applied for other areas, such as optimizing
the performance of message interceptors and implementing dynamic compo-
sition of aspects. Note that the approach should only be applied if dynamic
program evolution is required, because building a DYNAMIC METHOD infras-
tructure is a substantial work, if no existing implementation can be reused.
Especially if a HOOK INJECTOR and SPLIT OBJECTS are used for introducing
DYNAMIC METHODS there is an overhead in terms of memory and performance
consumption compared to native methods.
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