
Modeling Movable Components for Disruption
Tolerant Mobile Service Execution

Rene Gabner1, Karin Anna Hummel2, and Hans-Peter Schwefel1,3

1 Forschungszentrum Telekommunikation Wien, A-1220 Vienna, Austria
{gabner,schwefel}@ftw.at

2 University of Vienna, A-1080 Vienna, Austria
karin.hummel@univie.ac.at

3 Aalborg University, DK-9220 Aalborg, Denmark

Abstract. Software as a Service relies on ubiquitous network access
which cannot be assured in mobile scenarios, where varying link quality
and user movement impair the always connected property. We approach
this challenge by utilizing movable service components between a remote
cluster, cloud, or server and the client device using the service. To over-
come connection disruptions, service components are moved to the client
prior to connection loss and executed locally. Although the basic concept
is a brute force approach, challenges arise due to best fitting service de-
composition, accurate estimation of connection losses, and best trade-off
between moving service components and the overhead caused by this
proactive fault tolerance mechanism.
This paper contributes to the general approach by presenting a system
architecture based on an extended client/server model which allows to
move components. Additionally, an analytical model is introduced for
analyzing where to place service components best and extended to in-
vestigate failure rates and average execution time in different system
configurations, i.e., different placement of service components either on
the server cloud or client side. The models presented are based on Markov
chains and allow to analytically evaluate the proposed system. Applied
to a specific use case, we demonstrate and discuss the positive impact
of placing components temporarily at the client in terms of failure rate
and mean service execution time.

Key words: Mobile Computing, Software as a Service, Service Decom-
position, Markov Model, Disruption Tolerance

1 Introduction

Software as a Service (SaaS) [1] is a field in particular of interest for mobile com-
puting scenarios, like support for mobile workers or mobile business in general.
Instead of pre-installed software packages, software is hosted and maintained at
a service provider and can be accessed by the user. In this vision, the burden
of troublesome installing, updating, and maintaining is taken from the user. In
mobile contexts, it is even more beneficial to access the software as a service to



2 R. Gabner, K. A. Hummel, H. Schwefel

fulfill tasks without having pre-installed too many applications. Computing cloud
infrastructures are enabling system architectures for supporting the envisioned
SaaS solution.

In contrast to stationary scenarios, mobile networked systems are impaired
by varying link conditions due to fading effects and environmental disturbances
on the wireless medium, other devices competing for access to the wireless link,
and moving in and out of the range of a wireless network. As a consequence,
intermittent connectivity is likely to happen and has to be addressed to make
mobile SaaS feasible.

Our approach addresses intermittent connectivity by considering different
locations for service execution, i.e., at the (remote) server cloud or the mobile
client. In case of stable connectivity, service parts may remain at the server and
classical client/server communication will be efficient to assure fastest service
execution. In situations of weak connectivity and frequent disconnections, ser-
vice parts have to be moved to the client to remain operational which will lead
to increased service execution times at the low performance mobile device. We
see four major challenges of the approach: First, the best fitting granularity of
service decomposition and dependencies between service components have to
be found. Second, detecting best time periods for placing service components
have to be detected, e.g., predicting disconnects in advance. Third, determining
optimized allocations of service components for a certain predicted network be-
havior. Fourth, moving software service parts causes overhead and the trade-off
between availability and networking overhead has to be considered.

In this paper, we approach the third research question, as it is a motivating
prerequisite for the other challenges, by modeling a service as a composition
of parts, i.e., service components, and analyzing how the allocation of these
components to client or server side influences certain performance or reliability
metrics. Successful service execution means that the components can be accessed
and used. Intermittent connectivity now leads either to completely failed services
or delayed service execution. We consider both cases and present (i) an analyt-
ical model for service failure/success evaluating the failure rate of services and
(ii) an analytical model for service execution time analysis for different com-
ponent placement configurations. Hereby, our fault model consists of network
disconnection failures only.

The paper is structured as follows: After presenting a survey on related con-
cepts for disconnected service operation in Section 2, we describe the system
architecture for movable service components in Section 3. In Section 4 we in-
troduce the analytical model based on Markov chains. Service invocations are
modeled as transitions which may succeed or fail due to network failures. In
Section 5, we introduce the editor use case and present results for this particular
service to demonstrate the potential of both the general concept of meaningful
placement of service components for tolerating disconnections and the insights
gained by using the analytical models introduced. Section 6 summarizes the work
and presents an outlook on future work planned.



Modeling Movable Service Components 3

2 Related Work

Allowing services to be allocated and executed at different distributed locations
was a hot topic in the past years. Fuggetta et al. [4] address the increased size and
performance of networks as a motivator for mobile code technologies. Different
mobility mechanisms like migration, remote cloning, code shipping, and code
fetching are utilized to meet a diversity of requirements. We conceive temporary
proactive code migration to support our architecture best. However the main
focus is the analysis of impacts of code migration and optimization of component
location to achieve best service execution with a minimum of interruption and
delay.

When mobile communications became popular, the research area expanded
and mobile computing introduced challenges different from traditional dis-
tributed computing. These challenges are related to mobile data management,
seamless mobile computing, and adaptations due to limited mobile device ca-
pabilities. Imielinski et al. [5] describe the implications and challenges of mo-
bile computing from a data management perspective. Important aspects are (i)
management of location dependent data, (ii) disconnections, (iii) adaptations
of distributed algorithms for mobile hosts, (iv) broadcasting over a wireless net-
work, and (v) energy efficient data access. While mobile networks grew rapidly,
a diversity of different mobile devices were pushed to the market, running dif-
ferent operating systems and execution environments. Because of many different
mobile platforms, service development becomes complex and costly, as each plat-
form needs its own implementation of a service.

The SaaS approach can help to overcome multi implementations of services.
Instead it is possible to run a service on an execution platform within the net-
work. Every mobile client with access to the network’s application server can
use such services. Our architecture benefits from the SaaS approach as it over-
comes complicated installations on the client and keeps the solution flexible to
reconfiguration and component migration at runtime. To execute such SaaS ser-
vices which support movable components, special execution environments at the
client are required. One possible solution is presented by Chou and Li [2]. They
adapted an Android based mobile platform for distributed services, and show
one way to execute SOA based applications. This architecture supports also
access to services deployed in a SaaS environment. Because such SaaS models
depend on reliable network connectivity, disruption tolerant networks are also
of particular importance for mobile scenarios.

There are various researchers investigating in disruption tolerance. For exam-
ple, Chuah et al. [3] investigate network coding schemes for disruption tolerant
mobile networks. They compare the performance of different schemes and mes-
sage expiration times to enhance network connections between mobile nodes
suffering from intermittent connectivity. Another approach introduced by Ott
and Xiaojun [9] is based on the application layer and introduces end-to-end dis-
connection detection and recovery schemes for mobile wireless communication
services. Such end-to-end solutions take advantage of the fact, that the observa-
tion of the network is not based on information from the underlying transport



4 R. Gabner, K. A. Hummel, H. Schwefel

and physical layers, which are not available in all cases. The network predic-
tion function proposed by our architecture could benefit from such end-to-end
network state detection solutions.

An approach to deal with interrupted connections is discussed by Su et
al. [10]. They propose an architecture for seamless networking utilizing special-
ized application proxies at the client. Those proxies are tuned to serve a special
service like SMTP. In our proposed execution environment, proxies will only be
used to support the migration of service components.

3 System Description

We propose an architecture which supports mobile, wireless service execution on
thin-clients, based on the Software as a Service (SaaS) paradigm [1]. One major
constraint of SaaS is the availability of a stable, always-on network connection to
the host running the service. Applied in a mobile context, intermittent connec-
tivity caused by disrupted transmissions at the air interface is a major challenge.
To overcome this issue we propose to split the service into several service parts
(service components) applying service decomposition techniques. Selected ser-
vice components are moved proactively from the service execution platform to
the thin-client in case of estimated bad network quality. The service execution
platform is expected to run on a server cloud, in this paper also simply referred
to as server.

Fig. 1. Overall system architecture.

Figure 1 shows a service Service 1 which has been decomposed into five ser-
vice components (SC1, SC2, SC3, SC4, and SC5). Each component is respon-
sible for a well defined task. After it has finished, the execution flow is passed to
another service component. This concept is sometimes termed component chain-
ing model. The subsequently executed component may however depend on the
result of the previous computation, which is modeled probabilistically for the
component chaining description in Section 4.1.



Modeling Movable Service Components 5

The Network State Prediction (NSP) function collects and holds information
about the current state of the network connection between the server and the
thin-client. Additionally, it interfaces a couple of different data sources to predict
the network state condition. For instance, the observation of the network state
over a longer time period combined with additional geo-location information
can be evaluated in this component. The location data can be requested directly
from the thin-client if a GPS receiver is available or, otherwise, from a mobile
operator. Of course there are other possible data sources which can be integrated
by expanding the interface of the NSP. In case we expect network connection
degradation, the NSP triggers the application server to move components which
are essential for the execution within the next time periods to the client. If the
service components have been moved successfully to the client, it is possible to
continue service execution even if the connection is lost. In case a component is
unreachable caused by a suddenly broken network link there are two possibilities
to handle the situation: As described later in Section 4.2, the execution fails
in case of an unreachable service component. The other approach modeled in
Section 4.3 has an additional network down state to delay the whole service
execution. After reconnecting to the service execution platform, the application
server might decide to fetch back any of the service components to take over
execution again.

In order to support the decision which components should be migrated in
a specific network environment, the remainder of the paper focuses on compo-
nent placement and analyze the impact of different static component placement
configurations for an example service.

4 Service Component Model

In Section 3 we discussed the system architecture including the view of a service
being decomposed into components some of which can be migrated between
client and server. In order to make substantiated choices on which configuration
to apply in a given setting, this section comes up with different Markov models
that allow to analyze the consequence of a certain static placement of service
components on client and server side.

4.1 Markov Model for Service Component Flow

An application consists of service components which may reside on the cloud
(here referred to as a single application server) or on the (thin) client. The se-
quence of service components that is invoked in the course of a service execution
is modeled as deterministic Markov chain. The service components are thereby
assumed to be completely autonomous and are executed sequentially; as a con-
sequence the only interaction between service components occurs when passing
the execution flow from component i to component j, where i, j = 1, ...N . The
transition probabilities between states in the Markov chain model (which corre-
spond to service components) depend on the service type, usage patterns, and



6 R. Gabner, K. A. Hummel, H. Schwefel

input objects. Those transition probabilities are collected in the stochastic ma-
trix P.1 The Markov chain model contains exactly one absorbing state, whose
meaning is a successful service completion. Without loss of generality, we order
the states in this paper in a way that state N is always the absorbing success
state. The initial state, i.e., first service component called, can be probabilisti-
cally described by an ’entrance vector’ p0. The examples discussed later in this
paper always assume state 1 as the single entrance state, hence p0 = [1, 0, ..., 0].

As the application model described by the transition probability matrix P
(and the entrance vector p0) only describes the probabilistic sequence of compo-
nent executions, it has to be slightly modified to allow for notions of execution
time. Namely mean state-holding times T1, T2, ...TN−1 for the N − 1 states (the
absorbing success state, here assumed state N , does not require an associated
state-holding time) need to be defined which then allow to transform the discrete
model into a continuous time Markov chain where the generator matrix Q is just
obtained via correct adjustment of the main-diagonal of the matrix

Q∗ = diag (1/T1, ..., 1/TN−1, 0) ·P,

such that the row-sums of Q are all equal to zero.

Fig. 2. Decomposed service with movable components.

Some of the service components cannot be freely migrated between server and
client side. Typical examples include user-interface components that naturally
have to reside on the client, or service completion states that require centralized
storage of the result in the application server, hence are fixed to reside on server
side. See Section 5.1 for an example. Other service components can be migrated
between client and server side, as illustrated in Figure 2. The vector c ∈ [0, 1]N

represents a specific placement of components on client and server side; here we
use c(i) = 0 for a client-side placement of component i. If the service execution
flow passes from a component i to another component j, this transition requires
network communication, if and only if these two components are located on
different physical entities, i.e., c(i) 6= c(j).
1 Note, that we use bold fonts for matrices and vectors to improve readability.



Modeling Movable Service Components 7

The goal of this section is to come up with quantitative models that allow to
calculate application reliability and performance for specific static configurations
c; the process of how such configurations are created, e.g., the download of the
component to the client, is not considered. These models are developed in the
following subsections.

4.2 Service Success/Failure Model

In the first scenario, we describe a modification of the discrete time Markov chain
P such that the modified model P′(c) allows to compute the probability that
the application is successfully completed given a certain component placement
described by c. As we consider the modified model for a specific given configu-
ration, we drop the dependence on c in the following for notational convenience.
The properties of the communication network are assumed to be described by a
simple Bernoulli process, i.e., whenever network communication is needed upon
transitions of the execution flow to a component placed on the different physical
entity, the network is operational with probability 1 − pf and the transition to
the new service component succeeds. If network communication is not successful,
the new service component cannot be executed and service execution fails.

Fig. 3. Extended service component model including network failure.

The modifications of the Markov chain to capture such behavior in the ex-
tended model P′ are illustrated in Figure 3. The matrix P′ contains one more
state, state number N +1, which resembles an absorbing service failure state. Ev-
ery transition i→ j, where i, j = 1, ..., N between service components placed on
different entities is partially forked off to the fail state with probability pf . The
probability of a service failure can be computed as the probability of reaching
the absorbing fail state, i.e.,

Pr(service failure) =
(

lim
k→∞

p0 ·P′
k
)

e′N+1,

where e′N+1 is a column vector with all components set to 0 except component
N + 1 which is set to 1. The service failure probability can hence be computed
numerically, see Section 5.2 for examples.



8 R. Gabner, K. A. Hummel, H. Schwefel

4.3 Execution Time Model

The Markov model in the previous section allows to calculate service success
probabilities defined by the probability that the network communication is avail-
able for remote component interactions in a probabilistically chosen execution
sequence of service components. If the network is not available (which occurs ac-
cording to a Bernoulli experiment with probability pf when the execution flow is
migrated to a remotely placed component), the service execution is stopped and
considered failed. There are however cases of elastic or delay-tolerant services
in which a temporarily unavailable network connection just creates additional
delay. Another variant is that the network connectivity is not completely unavail-
able but rather in a degraded state which leads to longer communication delays.
In the following, we describe a Markov model transformation which allows to an-
alyze the impact of such additional network disruption delay on the distribution
of the service execution time for different placements of the components.

We use the continuous time version of the service model, i.e., a Continuous
Time Markov Chain (CTMC), described by the generator matrix Q, see Sec-
tion 4.1. The service execution time without considering component placement
and network interaction is then the phase-type distribution [7, 8] described by
the first N − 1 states.

Fig. 4. Extended service component model including network failure and execution
time.

The following model of the execution time behavior for the client-server con-
figuration c of the service components is employed: First all software components
that are executed on the client side are assumed to execute more slowly by a fac-
tor of kclient. This is reflected by scaling all corresponding rows of Q by a factor
of 1/kclient. For the communication behavior, the following two input parameters
are required in addition to the network failure probability pf : (i) A matrix D,
whose elements Di,j specify the mean communication delay for the activation of
component j from the remote component i. (ii) The mean time until network
recovery Dfail. The generator matrix of the CTMC for the distributed client-
server implementation under such assumptions on the remote communication



Modeling Movable Service Components 9

delays is then obtained by adding two additional delay states for each transition
i → j with Qi,j 6= 0 and c(i) 6= c(j). Let’s assume these two additional delay
states obtain labels H +1 and H +2, then the following modified transition rates
are employed in the extended matrix Q′ (illustrated in Figure 4):

Q′(i, j) = 0; Q′(i, H + 1) = pfQ(i, j); Q′(i, H + 2) = (1− pf )Q(i, j)

Q′(H + 1, H + 2) = 1/Dfail, Q′(H + 2, j) = 1/Di,j .

The diagonal elements of Q′ need to be adjusted accordingly. If component
i and j are placed on the same entity (c(i) = c(j)), then Q′(i, j) = Q(i, j). Note
that using a matrix for the remote communication delays allows to distinguish
between components that may have different sizes of parameters/data associated
with their remote call. For the numerical examples in Section 5.3, we however
employ Di,j = 1 for all i, j.

The extended generator matrix Q′ then contains the phase-type distribution
(time until reaching state N , which is assumed to be the service success state),
for which the standard matrix calculations for moments, tail probabilities, or
density values can be applied, see [7, 8]. Numerical results are presented in
Section 5.3.

Note, that many variants of the Execution Time Model can be defined: For
instance, the current approach in Figure 4 assumes that the network is opera-
tional with probability 1−pf and in that case the remote component call can be
successfully finalized. One could of course also consider the case that the network
connection can fail during the remote component call, which would correspond
to a transition from state H + 2 to state H + 1 in the figure. Similarly, more
general network down times than exponential can be represented by replacing
state H + 1 by a phase-type box of states.

5 Numerical Results

In the following we present numerical results to illustrate the service failure and
execution time models for the example of a text editor service.

5.1 Text Editor Example Service

The editor example described below is used in Sections 5.2 and 5.3 to exem-
plify results of the introduced Markov models. Figure 5 shows the discrete time
Markov model of the editor, including the values of the transition probabilities.

The transition probabilities are chosen so that they approximately resem-
ble average user behavior: Component 2, the Editing Framework, is used most
frequently as it processes the input of the user. Any key press or menu bar
activity is communicated from the UI to the Editing Framework. Thus, the
transitions between UI and Editing Framework component are most frequently



10 R. Gabner, K. A. Hummel, H. Schwefel

Fig. 5. Example use case text editor service.

taken. Creating, opening, or saving a document (components 3 to 5) are less
likely operations compared to keystrokes. Components 1 (user interface) and 6
(service success) are special with respect to placement in the client/server ar-
chitecture. The user interface needs to be executed on the client, and the final
success operation is assumed to include storage of the document in the server
cloud, hence must be located at the server. This fixes two of the components in
the configuration vector c.

Fig. 6. Editor example configurations.

We consider four different static configurations to analyze the execution char-
acteristics of the editor as summarized in Figure 6. For configuration 1, every-
thing expect the UI is located at the server. This is a pure SaaS configuration.
For configurations 2 and 3, exactly one component in addition to the UI is placed
on the client (note, that the selected components are used with different frequen-
cies). Configuration 4 is placing all movable components on the client, hence, this
configuration puts the highest resource requirements to the client.

5.2 Numerical Results for Service Success Probability

The editor example service is now used to exemplify the Markov model capa-
bilities and to show the type of analysis and conclusions that can be obtained
from the service success model in Section 4.2. Figure 7 shows the calculated



Modeling Movable Service Components 11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr(network failed): p
f

P
r(

se
rv

ic
e 

fa
ile

d)

Service Failure Probability: Editor example

 

 

SaaS: only UI on client
UI and function *SAVE* on client
UI and editing framework on client
All components on client (except success)

Fig. 7. Service failure probability of the editor service in four different component
placement configurations.

service failure probabilities for the four different placement configurations of
service components (Figure 6). The probability of network failure upon remote
component interaction, pf , is varied along the x-axis. The best possible scenario
results when all editor components are placed on the client (solid line), so that
only a single network interaction is necessary, namely the one connected to the
transition to the success state (at which the edited file is stored at the server).
As there is exactly one network interaction necessary in this case, the service
failure probability is equal to pf in this case.

At the other extreme, the full SaaS configuration in which only the user-
interface is placed on the client (dashed-dotted line), frequent network inter-
actions are necessary in particular for transitions between the UI and Editing
Framework component leading to a rapid increase of service failure probabil-
ity already for very small parameter ranges of pf . Hence, the SaaS approach is
in this example only useful for scenarios of good network connectivity (pf well
below 5%). Moving the service component Save to the client actually increases
the service failure probability slightly due to the necessary interactions between
editing (remaining on server) and saving (moved to the client), however hardly
visible in Figure 7. Placing the Editing Framework instead on the client leads to
a dramatic improvement: For instance, a service failure probability below 40%
can be achieved also for network failure probabilities up to more than 20%.

Due to the simple structure of the editor example, the qualitative superiority
of the configuration placing UI and Editing Framework both on the client is



12 R. Gabner, K. A. Hummel, H. Schwefel

intuitively clear. However, the Markov model can be used to substantiate such
choices with quantitative results and it can be argued whether moving a compo-
nent might even worsen the failure rate. In particular for more complex service
component interactions the Markov model can be used to make optimized choices
about which component to place on client-side.

Note, that the four curves in Figure 7 never cross. Hence, when purely op-
timizing placement choices based on minimizing service failure probability, the
network quality (expressed by pf ) does not influence the ’ranking’ of the different
placements.

5.3 Numerical Results for Execution Time Analysis

In the following we present numerical results to illustrate the application of the
execution time CTMC from Section 4.3. The results use the same modular text
editor service as previously for the service failure probability analysis. The mean
state-holding time for the different states (assuming execution on the server) are:

TUI = 1, Tedit = 0.1, Tnew = Topen = Tsave = 1.

Due to the possibility of rescaling time, we use configurable units of time in the
investigations below; for illustration, seconds can be assumed.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
110

120

130

140

150

160

170

180

190

200

210

220

p
f

m
ea

n 
se

rv
ic

e 
ex

ec
ut

io
n 

tim
e

Editor example: k
client

=10.0, D
fail

=20.0

 

 

SaaS: only UI on client
UI and function *SAVE* on client
UI and editing framework on client
All components on client (except success)

Fig. 8. Mean service execution time [units of time] of the editor example in four
different configurations.



Modeling Movable Service Components 13

The execution of the service component on the client is assumed to take
kclient = 10 times as long as the execution on the server. The remote call of an-
other module is for all module pairs the same, Dij = 1. If the network connection
is down (with probability pf ), the mean time to recovery is exponentially dis-
tributed with mean Dfail = 20. Figure 8 shows the mean application execution
times for the same four component placement configurations as in the previous
section. The full SaaS approach leaving all components on the server (dashed-
dotted line) requires frequent network interactions, which degrades application
execution time dramatically already for rather small probabilities pf . When mov-
ing the Save component to the client, the execution time even increases showing
that this configuration is not beneficial. Installing all components on the client
(solid line) minimizes the impact of the network quality (as expressed by pf ).
However, for parameter ranges of pf smaller than approx. 15% in the calculated
example, the solution of having both the UI and the Editing Framework ex-
ecuted locally on the client performs best. The latter is a consequence of the
slow-down factor kclient of the processing at the client.

In summary, the calculation model can here be used to dynamically opti-
mize the execution times via changes of the component placement depending
on network quality. Note that the execution times grow linearly with pf ; as the
network functionality does not change the execution flow through the modules
(only its timing), the number of remote component invocations stays the same,
hence pf linearly scales into mean service execution times.

The representation of the execution time as phase-type distribution also al-
lows to calculate numerically the density, tail probabilities, and higher moments
of the execution time distribution. For the example configurations, we calculated
the coefficient of variation (variance normalized by the square of the mean) of
the execution time distribution for all configurations. The results showed that
placing all components on the server not only dramatically increases the mean
time, but also shows a higher variability in the application execution time. (The
variance can be a useful input for an M/G/1 queuing type of analysis, as then
the mean queue-length and system time only depend on the first two moments
of the service time, e.g., P-K formula [6]).

6 Conclusions

In this paper, an architecture and modeling approach for movable service compo-
nents has been presented targeting the Software as a Service paradigm. Moving
service components from a server cloud to the mobile clients allows to toler-
ate disconnection periods, which are likely to occur in mobile scenarios. First,
we described the concept of moving crucial service components from the server
cloud to the client. Second, we presented analytical models to investigate the
potentials of proactive placement of components. The models are generic for
disruption tolerant computing based on movable components and allows to give
insights for various, even complex services.



14 R. Gabner, K. A. Hummel, H. Schwefel

The usefulness of the analytical models has been demonstrated for a sample
editor use case service, consisting of network intensive and non-network inten-
sive components. In this use case and realistic parameter settings, evaluation
results in terms of failure rate and mean service execution time showed indeed
the potential benefits of moving service components to the client in case of ex-
pected frequent networking failures. These results are encouraging for extending
the approach in future work both in terms of proposing means for triggering
proactive service component migration and investigating the trade-off between
messaging overhead and decreased service failure rate.

Acknowledgments This work has been supported by the Austrian Government
and by the City of Vienna within the competence center program COMET.

References

1. K. Bennett, P. Layzell, D. Budgen, P. Brereton, and M. Munro L. Macaulay.
Service-based Software: The Future for Flexible Software. In 7th Asia-Pacific
Software Engineering Conference, pages 214–221. IEEE Computer Society Press,
2000.

2. W. Chou and L. Li. WIPdroid A Two-way Web Services and Real-time Communi-
cation Enabled Mobile Computing Platform for Distributed Services Computing.
In International Conference on Services Computing, pages 205–212. IEEE Com-
puter Society Press, 2008.

3. M. Chuah, P. Yang, and Y. Xi. How Mobility Models Affect the Design of Network
Coding Schemes for Disruption Tolerant Networks. In 29th International Confer-
ence on Distributed Systems Workshop, pages 172–177. IEEE Computer Society
Press, 2009.

4. A. Fuggetta, G. P. Picco, and G. Vigna. Understanding Code Mobility. IEEE
Transactions of Software Engineering, 24(5):342–361, 1998.

5. T. Imielinski and B.R. Badrinath. Mobile Wireless Computing: Challenges in Data
Management. Communications of the ACM, 37(10):18–28, 1994.

6. Leonard Kleinrock. QUEUEING SYSTEMS, Volume I: Theory. John Wiley &
Sons, New York, 1975.

7. Lester Lipsky. QUEUEING THEORY: A Linear Algebraic Approach. MacMillan
Publishing Company, New York, 2009.

8. Marcel Neuts. MATRIX-GEOMETRIC SOLUTIONS IN STOCHASTIC MOD-
ELS, Revised Edition. Dover Publications, London, 1995.

9. J. Ott and L. Xiaojun. Disconnection Tolerance for SIP-based Real-time Media
Sessions. In 6th International Conference on Mobile and Ubiquitous Multimedia.
ACM Press, 2007.

10. J. Su, J. Scott, P. Hui, J. Crowcroft, E. de Lara, C. Diot, A. Goel, M. H.
Lom, and E. Upton. Haggle: Seamless Networking for Mobile Applications.
Krumm, J., Abowd, G.D., Seneviratne, A., Strang, T. (eds.) UbiComp 2007.
LNCS, 4717(5):391–408, 2007.


