
A Pattern Language for the Design of Aspect Languages and Aspect

Composition Frameworks

Uwe Zdun

New Media Lab, Department of Information Systems

Vienna University of Economics, Austria

zdun@acm.org

Abstract

Aspects avoid tangled solutions for cross-cutting design concerns. Unfortunately there are various reasons

why it may be hard to use an aspect language or aspect composition framework as a solution, even though

developers are faced with cross-cutting design concerns or tangled code structures. For instance, certain

limitations of specific aspect composition frameworks might hinder the use of aspects. Or because of particular

project requirements, such as constraints for the programming language or limitations of performance and

memory, developers are not able to use an existing aspect composition framework. In such cases, developers

would benefit from better understanding existing aspect composition frameworks. This would help developers

to customize existing techniques or implement (simple) aspect composition frameworks from scratch. For these

purposes, we present a pattern language for tracing and manipulating software structures and dependencies,

and then explain different, existing aspect composition frameworks as sequences through this pattern language.

We also evaluate alternative designs, common design trade-offs, and design decisions for implementing aspect

composition frameworks.

1 Introduction

This paper addresses implementation techniques for composing (or weaving) aspects. Different composition

frameworks for aspect-oriented programming (AOP) [19] are distinct but comparable. A number of languages,

frameworks, and tools have been proposed for AOP. Up to date there are only a few works about the common-

alities in these AOP approaches [23].

Some works propose an integrating terminology or model for different AOP approaches. Filman and Fried-

man [11], for instance, propose a generic definition of AOP. They understand AOP as quantified programmatic

assertions over programs written by programmers oblivious to such assertions. Masuhara and Kiczales [23]

implement a number of AOP concepts in a simple object-oriented language (namely pointcuts and advice,

1

traversal specification, class hierarchy composition, and open classes). These implementations are used to

compare how different AOP concepts realize modular cross-cutting. Other authors generalize from concrete

AOP implementations by providing design languages for aspects. For instance, Clarke and Walker [8] pro-

vide an UML-based modeling language for AOP concepts. Some authors propose formal models for specific

aspect-oriented concepts. For instance, Lämmel and Stenzel [21] propose a formal model for method call

interception.

The works summarized above provide an understanding of AOP beyond a single implementation. All these

approaches focus on theconceptsof AOP. In this paper, we take a different stance and concentrate on the

internal implementationof aspect composition frameworks1. In most cases these implementations are not even

visible to the aspect composition framework user.

To explain and compare the aspect composition framework implementations we use a pattern-based ap-

proach. The basic idea of our work is that the common and distinctive properties in the design of aspect

composition framework implementations can be explained using a pattern language for tracing and manip-

ulating software structures and dependencies [37]. In this paper, we discuss how the patterns are used for

implementing successful aspect composition frameworks. The purpose isnot to propose a new aspect concept,

but to explain and evaluate existing technical solutions.

After describing the pattern language briefly, we will concentrate ondifferent implementations of aspect

composition frameworks. These will be explained as sequences through the pattern language, in particular:

• we discuss generative aspect language implementations using the example of AspectJ [18];

• we discuss Hyper/J [31] as an example of a byte-code manipulation approach using composition rules;

• we discuss JAC [27] and JBoss AOP [5] as two examples of load-time byte-code manipulation for im-

plementing dynamic wrappers and message interception;

• we discuss aspects based on dynamic message redirection using the examples of XOTcl message inter-

ceptors [25] and message interceptors in popular middleware (e.g. [3, 16, 35]);

• we discuss aspects based on class graph traversals using the example of DJ [26];

• we discuss some other approaches with interesting characteristics briefly [36, 33, 21, 15].

Finally, we use the pattern language to evaluate alternatives, common design trade-offs, and design deci-

sions for implementing aspect composition frameworks.

1.1 AOP Terms

Let us briefly introduce a few terms that have become quite well accepted in the AOP community (and that we

use in the subsequent examples). These terms originate from the AspectJ [18] terminology. They describe the

constituents of anaspectin a number of AOP approaches (note that there are other kinds of aspects as well):

1We use the generic term ’aspect composition framework’ in this paper instead of ’aspect language’ because some AOP implementa-

tions do not include an aspect language. Every aspect language, however, provides some framework for composing the aspects.

2

• Joinpointsare specific, well-defined events in the control flow of the executed program.

• An adviceis a behavior that is triggered by a certain event and that can be inserted into the control flow,

when a specific joinpoint is reached. Advices allow one to transparently apply some behavior to a given

control flow.

• Pointcutsare the glue between joinpoints and advices: a pointcut is a declaration that tells the aspect

composition framework which advices have to be applied at which joinpoints.

• Introductionschange the structure of an object system. Typical introductions add methods or fields to an

existing class or change the interfaces of an existing class. Introductions are not supported by all aspect

composition frameworks.

1.2 Motivation and Target Audience

This paper targets at those developers who need to understand how aspect composition frameworks are re-

alized. A conceptual understanding of the internals might be required for effectively working with an aspect

composition framework. It might also help to select the best solution for a given task by comparing the different

implementations’ trade-offs. Finally, in cases where existing aspect composition frameworks and languages do

not provide a suitable solution, developers either have to make additions or customizations to existing imple-

mentations or develop an in-house aspect composition framework. In the remainder of this section we discuss

a number of motivations that might lead to one of these situations.

There are a number of potential practical problems with existing aspect composition framework implemen-

tations:

• Even though aspect composition frameworks exist for many programming languages, there are still many

language without AOP support (especially in the legacy system context).

• If the computation environment is limited, as in embedded systems, it can be problematic to use the

current AOP systems, as they produce some memory and performance overheads for their runtime envi-

ronment; however, from a conceptual point of view the aspect concept can be used to reduce or eliminate

such overheads. For instance, the small components project [33] implements (among other things) a

project-specific aspect composition frameworks avoiding the overhead of a runtime environment.

• Sometimes it is simply a business decision that no third-party language extensions should be used in a

project.

• Some aspect models are already quite complex languages. For solving simplistic AOP problems the

required learning effort might be too large and writing a simple, project-specific aspect composition

framework might be less effort.

A main motivation for this work is the observation that current aspect constructs cannot completely untan-

gle all concerns, what might lead to novel aspect concepts and implementations in the future. This issue is

3

discussed already in the AOP community. For instance, Kienzle and Guerraoui [20] report from their experi-

ences that automatically aspectizing non-transaction code with transactions is doomed to failure. Separating

transaction interfaces in aspects is also problematic, as it leads to an “artificial” separation of the transaction

aspect from the object it applies to. Rashid and Chitchyan [28] propose AOP techniques as an effective means

to modularized persistence. Yet they also identify the limitation that trade-offs between the reusability and per-

formance of persistence aspects need to be made. The available AOP tools do not provide the optimal aspect

constructs for implementing the persistence aspects. Soares et al. [30] have successfully used AspectJ to un-

tangle the distribution and persistence aspects of a web-based information system. They also identify a number

of drawbacks. For instance, (some) aspects might have unintended side-effects that are hard to foresee. There

are also problems regarding the reuse of aspects, if the aspect specifications have to lexically refer to elements

of the system they are applied in. In the concrete case, the AspectJ pointcuts had to adopt the system’s naming

conventions and thus were not reusable for other systems.

It is also important to note that the term “aspect” is broader than the AOP concepts currently realized by

aspect composition frameworks. These primarily realize extensional (or sometimes called “superimposed”)

aspects that can be separated in an (object-oriented) language construct (e.g. a class-like structure such as

an AspectJ aspect) and are executed for certain events in the call flow. However, this kind of aspects is just

one possible interpretation of the term “aspect” in the realm of software engineering. Design disciplines, for

example, know other interpretations, and there is no reason to believe that other interpretations are less relevant

for the software engineering discipline. For instance, Mørch sees aspect-orientation as a way to interweave

the aspects design, programming, and use of software [24]. In the context of reengineering, for example, it

is important to be able to separate such aspects or extract them from existing source code. Existing AOP

languages might help to architecturally separate some parts of these aspects, but such aspects can hardly be

completely untangled.

2 Understanding Software Structure and Dependency Tracing and Manipulation: A

Pattern Language

In this section we present a pattern language for tracing and manipulating software structures and dependencies.

A patternis a proved solution to a problem in a context, resolving a set of forces. In more detail, the context

refers to a recurring set of situations in which the pattern applies. The problem refers to a set of goals and

constraints that typically occur in this context, called the forces of the pattern. These forces are a set of factors

that influence the particular solution to the pattern’s problem.

As an element of language, a pattern is an instruction, which can be used, over and over again, to resolve

the given system of forces, wherever the context makes it relevant [1]. Apattern languageis a collection of

patterns that solve the prevalent problems in a particular domain and context, and, as a language of patterns, it

especially focuses on the pattern relationships in this domain and context.

In an aspect composition framework we require some way to find or trace the joinpoints in a software

system. Further, we need to manipulate these spots to apply the aspects. Tracing and manipulating software

4

structures and dependencies is a common problem in many software engineering fields. For instance, many

software maintenance and reengineeringprojects need to find the existing structures and relationships in a

software system.Development tools, such as IDEs, profilers, or architecture visualizations, need to trace struc-

tures and dependencies in the source code and/or the call flow.Programming language implementations and

programming language extensionsneed to find existing structures and dependencies in the source code when

parsing it.Meta-object protocols (MOP) and meta-level architecturesrequire (runtime) structure information

about their base-level objects in order to control them from the meta-level.

Even though these application fields are quite diverse, many implementations are based on a set of common

patterns for structure and dependency tracing and manipulation. Becauseaspect-oriented systemshave to

interpret and potentially manipulate either the software structures or the call flow, they are often implemented

with structure and dependency tracing and manipulation techniques as well. Note that some of the application

fields are closely related to AOP, namely programming language extensions and MOPs.

In Figure 1 an overview of the pattern language for structure and dependency tracing and manipulation is

presented. In the remainder of this section, we present each pattern briefly (explaining its context, problem,

solution, and an example with a figure)2. Where possible, we present the pattern already in a typical AOP

context or use an example that can be found in some AOP solution. Note that the individual patterns are not

limited to the AOP domain; a more generic and detailed description of the patterns can be found in [37] (the

two patternBYTE CODE MANIPULATOR andCOMMAND LANGUAGE are not explained in [37]).

Invocation Context Introspection Option

Message Interceptor

Indirection Layer

Message Redirector

Hook Injector implements and
provides

uses

Byte Code Manipulator

Trace Callback
Parse Tree Interpreter

implement dynamic
indirection layer

Metadata Tags

get invocation
 information
at runtime

get structure
information
at runtime

implements and
provides

uses

Command Language

implement static
indirection layer

uses for byte code
injection

invokes
uses for source
code injection

specify hook
injection

specify hook
injection

specify indirection

specify indirection

Figure 1. Important relationships of the patterns are represented by labeled arrows

2.1 Parse Tree Interpreter

Consider an aspect composition framework for composing aspects at compile time. It requires information

from the source code (and perhaps other formal source documents). Consider further, a parser for the source

language(s) is available and can be reused, or it does not seem too much effort to write a (full) parser for the

source language(s). Note that, if the aspect composition framework offers an aspect language, this language

2We present patterns from the pattern language inSMALLCAPS font, external patterns are presented inItalics.

5

has to be parsed as well.

A PARSE TREE INTERPRETERparses the sources using the (existing) source language parser and uses the

parser’s outputs to create a parse tree. ThePARSE TREE INTERPRETERoffers an API to interpret and possibly

modify the parse tree in an application-specific way.

The example in Figure 2 shows a typicalPARSE TREE INTERPRETERof an aspect composition framework.

It first parses the source files and builds a token tree for each source document. Then the API of thePARSE

TREE INTERPRETERis used to find and modify the joinpoints in focus of the aspects. Finally the modified

code is emitted (and then handed to the aspect compiler).

Aspect Weaver

Parser

Parse Tree Interpreter

Parse Tree Builder

Token Tree

1) parse file("MyClass.java") 2) parse document

3a) read file 3b) add token

4a) add aspect at joinpoints

3c) create token tree element

4b) instrument token tree

Source Document
MyClass.java

5) emit modified code

Figure 2. A parse tree interpreter of an aspect weaver

2.2 Indirection Layer

In addition to the information available from source documents, most aspect composition frameworks also

require runtime call flows (and data flows).

An INDIRECTION LAYER traces all relevant static and dynamic information at runtime. It is aLayer be-

tween the application logic and the instructions of the (sub-)system that should be traced. The general term

“instructions” can refer to a whole programming language, but it can also refer to the public interface of a com-

ponent or sub-system. TheINDIRECTION LAYER wraps all accesses to the relevant sub-system and should not

be bypassed. “Hooks” are provided to trace and manipulate the relevant information. Typical hooks provided

by an aspect composition framework are the joinpoints.

Figure 3 shows anINDIRECTION LAYER consisting of a number of wrappers. These wrappers are used

for invoking elements of a sub-system. The wrappers provide hooks to invoke code before or after the actual

invocation.

INDIRECTION LAYER is a generalization for patterns wrapping an implementationLayer [6] with a sym-

bolic language, such asObject System Layer[14], Microkernel[6], Virtual Machine[13], Interpreter[12], and

others. In this pattern language, we use the generalINDIRECTION LAYER pattern as an abstraction for these

individual patterns.

6

Indirection Layer

Wrapper 1

Client 2

Client 1

Client Layer Sub-System

Wrapper 2

Wrapper 3

1) invoke wrapper O1

O3

O5

O2

O4

2a) "before" advice
2b) invoke hidden layer elements
2c) "after" advice
...

3) return result

Figure 3. Indirection layer consisting of a number of wrappers

2.3 Trace Callback

Consider one or more specific structures of the runtime system need to be traced. It might not be known until

runtime which structures are to be traced.

TRACE CALLBACKS permit a developer to trace a specific runtime structures without (large) performance

penalties for untraced structures. ATRACE CALLBACK interface is provided by anINDIRECTION LAYER,

and the structures to be traced are only accessed via theINDIRECTION LAYER. With this interface one can

dynamically add or remove aTRACE CALLBACK for a specific runtime structure of theINDIRECTION LAYER.

When adding or removing aTRACE CALLBACK, the developer specifies the type of the traced runtime structure,

the callback event, and a callback operation. The callback operation is a user-defined operation handling the

callback event. Whenever the callback event happens for the specified runtime structure, the callback operation

is executed by theINDIRECTION LAYER implementation automatically.

Figure 4 shows the example of aTRACE CALLBACK for a method invocation. TheINDIRECTION LAYER

adds a trace to an object. When the specified method is invoked, the object invokes theTRACE CALLBACK

automatically.

Indirection Layer

Trace Manager

Client 2

Client 1

Client Layer

Object 1

Object 2
3) invoke aMethod

Object 3

5) invoke "Client1->callback"

4) "Object2->aMethod" invoked

1) addTraceCallback("method", "Object2->aMethod",
 "invoke", "Client1->callback")

2) add trace

Figure 4. Trace callback for a method invocation

7

2.4 Message Redirector

An INDIRECTION LAYER is an intermediate layer between the application logic and a subsystem. In object-

oriented systems that means it intercepts and adapts all individual messages that are sent from the application

logic to the subsystem.

A MESSAGE REDIRECTORis aFacade[12] to theINDIRECTION LAYER. Application layer objects do not

accessINDIRECTION LAYER objects directly, but send symbolic (e.g. string-based) invocations to theMESSAGE

REDIRECTOR. TheMESSAGE REDIRECTORdispatches these invocations to the respective method and object.

A MESSAGE REDIRECTORhas some benefits compared to anINDIRECTION LAYER with scattered wrappers.

It provides transparent control over the complete call flow: the client does not need to know the wrapper

or implementation object. As a central instance, aMESSAGE REDIRECTORcan handle issues cutting across

multiple instances and manage common state (such as a call stack).

Figure 5 shows aMESSAGE REDIRECTORof an INDIRECTION LAYER. All invocation have to pass it, thus

it has complete control over the call flow of theINDIRECTION LAYER.

Indirection Layer

Message Redirector

Object 1

Object 2

Object 3Client 2

Client 1

Client Layer

1) invoke message redirector
 ("Object 3", "aMethod", ...)

2a) lookup "Object3"
2b) lookup "aMethod"
2c) invoke found method

3) return result

4) return result

Figure 5. A message redirector is used to implement an indirection layer

2.5 Byte Code Manipulator

Many programming languages, such as Java or Tcl, are not compiled to native machine code, but use an inter-

mediate representation internally, called the byte code. The byte code is an interpreted language with a small

and easy-to-understand set of instructions. These low-level instructions are interpreted by anINDIRECTION

LAYER called the virtual machine. Consider, for instance, you want to implement some language extensions

for aspects, but you have no access to the source code and/or you want to apply the aspects at load time (or

even at runtime). In such cases it is an option to manipulate the byte code (instead of the source code). Even

though the byte code is a low-level representation, it contains all relevant information about a program (for

instance the Java byte code contains constants, interfaces, classes, methods, class attributes, exceptions, etc.).

Typically you do not want to deal with low-level byte-code instructions.

As depicted in Figure 6, aBYTE CODE MANIPULATOR first looks up the program structure (in the figure

from a class repository). Then the byte code is parsed and a runtime representation of the byte code is produced.

For each language element represented in the byte code, theBYTE CODE MANIPULATOR offers an operation for

8

querying them and manipulating them. TheBYTE CODE MANIPULATOR can provide source-level abstractions

(such as an operationgetMethods to find all methods of a class and an operationaddMethod to add a method

to a class). Alternatively, it can provide a high-level API to access and manipulate the elements of the byte-

code. Source-level abstractions are typically easier to understand than the byte-code details. Typically, there

are some byte-code details that cannot directly be reflected in source-level abstractions.

For a language using a compiler that creates byte code (such as class files produced by a Java compiler),

a BYTE CODE MANIPULATOR can either change the class files on disk, manipulate classes at load time in the

class loader, or generate new classes at load time. For a (scripting) language that supports on-the-fly byte code

compilation at runtime (such as Tcl), aBYTE CODE MANIPULATOR is used to handle the interaction between

the script interpreter and the on-the-fly byte code compiler.

Class Parser
Class Repository

Byte Code Manipulator

Aspect Composer
1) get class

2) lookup class

Byte Code Runtime Representation

4) creates

3) parse byte code

5a) query & manipulate byte code

5b) query & manipulate

Figure 6. A byte code manipulator used by an aspect composer

2.6 Hook Injector

Structure tracing or behavior modification can be provided using aMESSAGE REDIRECTOR. But this usually

requires the (sub-)system or its clients to be changed, what is not always possible or wanted.

A HOOK INJECTOR traces specific, well-defined points of a program by injecting indirection hooks at

these points. This can be done using aPARSE TREE INTERPRETERor BYTE CODE MANIPULATOR. Either

manipulated source code or byte code is emitted. This manipulated program is then compiled or interpreted,

instead of the original program. Semantically the new code is equivalent to the original code, with the exception

of the injected hooks for extracting or modifying the relevant invocations.

Figure 7 shows aHOOK INJECTORthat injects hooks by parsing a document, modifying the representa-

tion in memory (here a parse tree), and writing the modified source document back. This document is then

interpreted or compiled, instead of the original source document.

2.7 Message Interceptor

Controlling the call flow in anINDIRECTION LAYER can be done either with aMESSAGE REDIRECTORor

a HOOK INJECTOR. These patterns provide only low-level support for tracing, modifying, or adapting of

message invocations; that is, these tasks have to be hard-coded into theMESSAGE REDIRECTORor hook

implementations.

9

Hook Injector

Parse Tree Interpreter

Client

1) inject hooks

3) parse document

Modified Source Document

...
void setName(String n) {
 String params[] = new String[1];
 params[0] = n;
 callstack.push(this, setName, params);
 logger.logSetMethod("before");
 name = n;
 callstack.pop();
}
...

Source Document

...
void setName(String n) {
 name = n;
}
...

2) parse document 4) modify parse tree

6) write parse tree

5) write modified document

Figure 7. A hook injector implemented with a parse tree interpreter

MESSAGE INTERCEPTORSexpress dynamic message traces, modifications, or adaptations as first-class

entities of theINDIRECTION LAYER. The MESSAGE INTERCEPTORSare invoked for standardized invoca-

tion events observable in anINDIRECTION LAYER, such as “before” a method invocation, “after” a method

invocation, or “instead-of” invoking a method. This can be done with a callback mechanism built into the

INDIRECTION LAYER. The callback mechanism can be triggered either by aMESSAGE REDIRECTORor the

hooks of aHOOK INJECTOR. Optionally aMESSAGE INTERCEPTORcan specify conditions to be evaluated

when the invocation event happens, and it is only executed, if the condition is true.

Figure 8 shows twoMESSAGE INTERCEPTORSimplemented with aMESSAGE REDIRECTOR. These are

registered as “before interceptors” and are thus invoked before the actually invoked method. One of these

MESSAGE INTERCEPTORSis also registered as an “after interceptor.” Thus it is also invoked after the method

invocation returns.

Indirection Layer

Message Redirector
Object

Client

Client Layer

Interceptor 1

2) before invocation:
 "Object aMethod"

1) invoke "Object aMethod"

4) invoke aMethod

Interceptor 2

3) before invocation:
 "Object aMethod"

5) after invocation:
 "Object aMethod"

Figure 8. Message interceptors implemented with a message redirector

10

2.8 Introspection Option

An aspect composition framework requires information about many software structures and dependencies at

runtime. These structures and dependencies include dynamic structures (that can change at runtime) as well

as static structures (that are defined at compile time and do not change at runtime). But in most programming

languages there is no integrated and extensible way to obtain this information at runtime.

INTROSPECTION OPTIONSgather and provide this information for the structures or dependencies of an

INDIRECTION LAYER. All messages that are creating or changing structures or dependencies have to pass the

INDIRECTION LAYER and can thus be traced. In addition to the pre-defined structures and dependencies, a

simple extension API for adding new, domain-specificINTROSPECTION OPTIONScan be offered.

Figure 9 shows an example: the (wrapper) classes in theINDIRECTION LAYER implement a method “info”

that providesINTROSPECTION OPTIONSfor their structures and dependencies. Clients can access this method

via theMESSAGE REDIRECTOR.

Indirection Layer

Message Redirector

Object 1

Object 2

Object 3Client 2

Client 1

Client Layer

1) invoke "Object3 info methods"

4) return method list

5) return method list

3) get method list

2) invoke "Object3 info methods"

Figure 9. Introspection options for objects in an indirection layer

2.9 Invocation Context

Invocation information is important for object-oriented adaptations that rely on message exchanges. For in-

stance, an aspect requires some knowledge about the invoking and invoked object and method. The invoking

method should not have to provide the invocation information as a parameter because the aspect should be

applied transparently.

An INVOCATION CONTEXT can be used to obtain the invocation information from inside of an invoked

method or a wrapper method. TheINVOCATION CONTEXT contains at least information to identify the calling

and called method, object, and class. In a distributed context, location information for caller and callee are also

required. INDIRECTION LAYERS usually maintain a callstack of runtime invocations, including information

like caller, called object, invocation parameters, invoked method scope, and other per-call information. That

means, in the context of anINDIRECTION LAYER the INVOCATION CONTEXT essentially is the top-level

callstack entry.

Figure 10 shows aMESSAGE REDIRECTORthat puts each invocation onto a callstack. Thus an interceptor

is able to obtain the currentINVOCATION CONTEXT containing information about the intercepted invocation.

11

Indirection Layer

Message Redirector

Call Stack

Object

Client

Client Layer

2) push callstack entry

Log Interceptor3) before invocation:
 "Object aMethod"1) invoke "Object aMethod"

4) get invocation
 context

5) log

6) invoke aMethod

7) pop callstack entry

Figure 10. Invocation context obtained from a callstack

2.10 Metadata Tags

Consider some of the relevant information required for an aspect composition framework cannot be given in

the source documents. For instance, there might be no proper language resource to specify the aspects.

A solution is to provide a standard notation for embeddingMETADATA TAGS in the code or in configura-

tion files. TheseMETADATA TAGS contain additional information (such as aspect specifications). Typically,

METADATA TAGS are provided as hierarchical key/value lists.

Figure 11 shows the example of an aspect composer that obtains the aspect composition information from

an XML-based configuration file. This metadata needs to be parsed and interpreted first, so that the aspect

composer can query this information later on.

Parser

Metadata Interpreter

Aspect Composer 3) parse document

<method-pointcut
 class="X"
 methodName="set*">
 <interceptors>
 <interceptor
 class="LogInterceptor"/>
 </interceptors>
</method-pointcut>

Metadata Runtime Representation

1) parse metadata

4) build up

6) query

5) query metadata

2) parse config file

Figure 11. Aspect metadata tags in a configuration file

2.11 Command Language

METADATA TAGS are good for handling simple, structured configuration options in a declarative manner. It is

hard, however, to deal with configuration options that require behavioral specifications and/or programming

constructs, such as conditions, loops, blocks, substitutions, or expressions.

A solution is to extend theMETADATA TAGS syntax to aCOMMAND LANGUAGE. That means, each tag is

implemented by oneCommandclass [12], implemented in anINDIRECTION LAYER. An Interpreter[12] for

12

the COMMAND LANGUAGE uses the symbolic names in theCOMMAND LANGUAGE representation and maps

them to theCommands.

SomeCommandsare pre-defined, but the user can provide newCommands. Typically, in a general purpose

COMMAND LANGUAGE pre-definedCommandsare conditions likeif , loop statements likewhile , etc. In

a COMMAND LANGUAGE for configuring an aspect composition framework, someCommandsfor annotating

aspects are usually pre-defined. The user might be able to define customizationCommandsfor specific aspects.

For instance, the persistence aspect in Figure 12 requires a configuration of the objects or classes to be made

persistent. That means, in this example, the pointcuts are configured using aCOMMAND LANGUAGE.

Command Language Interpreter

1) parse document

Command Implementation
Persistence Aspect

...
makePersistent(String classExpr,
 String nameExpr)
...

Aspect Config File
(in Command Language)

...
makePersistent "mypackage.*" ALL
...

Aspect Composer

2) map commands to aspect components

3) register and configure aspects

Figure 12. A persistence aspect configured using a command language

2.12 Other Patterns Used with the Pattern Language

A number of other patterns are often used together with the patterns of the pattern language.

A PARSE TREE INTERPRETERrequires some means to traverse its parse tree. A typical use of such a

traversal functionality is aHOOK INJECTOR. It needs to deal with all elements of the parse tree that are

involved in the injection process. There are different patterns that provide solutions for this problem:

• A Visitor [12] can be used to visit all nodes of the parse tree and perform some operations implemented

by another object.

• An Iterator [12] can be used to walk through all nodes in one pass, after the nodes have been linearized

(e.g. as an in-order node list).

• A Composite[12] can be used to implement operations to be performed on all nodes of the tree.

Note that these patterns can also be used for traversing a runtime representation of the program, such as a class

graph obtained withINTROSPECTION OPTIONS.

A PARSE TREE INTERPRETERand aBYTE CODE MANIPULATOR build a runtime representation of the

parsed data. Typically there are different node types which have to be created and linked into a graph structure,

such as a tree. AFactory[12] or aBuilder [12] can be used to create the node structures.

13

When more than oneMESSAGE INTERCEPTORapplies to a message invocation, the interceptors need to

be applied in some order. Typically they are ordered as aChain of Responsibility[12], and anIterator is

used to walk through theMESSAGE INTERCEPTORchain. Some frameworks allow for structuringMESSAGE

INTERCEPTORSasComposites.

A MESSAGE REDIRECTORusually is aFacade[12] to its INDIRECTION LAYER.

3 Pattern Sequences for Aspect Composition Frameworks

In this section, we explain current aspect composition techniques as sequences through the pattern language.

As Alexander points out [2], pattern descriptions alone do not really allow a person to generate a good design,

step by step, because they concentrate on the content of the patterns rather than laying the emphasis on mor-

phological unfolding. The creative power lays in thesequencesin which the patterns are applied. For a given

task, the number of possible sequences is huge compared with the number of sequences which work, that is by

comparison, tiny. Thus it is important to document the inherent knowledge in the pattern language in form of

sequence examples that have proved to work in practice. Discussing such pattern sequences for the technical

implementation of aspect composition frameworks is the focus of the remainder of this paper. We also compare

these sequences in order to evaluate the common trade-offs of implementing aspect composition frameworks

in Section 4.

3.1 AspectJ

Currently, a common way to implement aspects are generative environments, such as AspectJ [18], D [22], or

ComposeJ [36] (a tool for adding composition filters [4] to Java). Byte code manipulation as used by Hyper/J

[31] or JAC [27] follow a similar sequence with some notable differences (see next sections). For illustration

of the generative sequence, we will give some examples from AspectJ.

In AspectJ, the aspects are described in an extension of the Java language, consisting of a set of additional

instructions. This aspect language is added to the code written in the base language. Consider a Java class

Point exists, and we want to assert certain properties using AspectJ.

class Point {

void setX(int x) { ... }

...

}

As additional statements, AspectJ introduces theaspect statement, as well as pointcuts (call , target , args ,

etc.) and advices (before , after , around):

aspect PointAssertions {

before(Point p, int x): target(p) && args(x)

&& call(void setX(int)) {

if (x > 100 || x < 0) {

System.out.println("Illegal value for x");

return;

}

}

14

The aspect contains one advice. The advice itself consists of an advice head, a pointcut definition, and an

advice body. The advice head defines the type of advice (before, after, or around) and advice parameters. The

pointcut definition defines a set of joinpoints where the advice has to be applied. The above pointcut includes

all joinpoints that are acall to avoid methodsetX with oneint argument. Thetarget type of the call must

be aPoint , and the firstint argument is bound to the identifierx . The advice means that theif statement in

the advice’s body has to be executed before any of the specified joinpoints is reached.

Note that some of the elements of a joinpoint (such astarget and this) can only be determined at

runtime, as they depend on the control flow of the program. In contrast, the joinpoints for thecall pointcut

can be determined statically by analyzing the program text.

The advice body defines the actions to be taken before the joinpoint is executed. At runtime the advice

parameters are passed to the advice body with their current values.

The AspectJ compiler composes the aspect language with the statements in the base language. The required

information for this task is contained in the aspect language, the Java class and method structure, and the spots

where invocations are sent or received (to handle the call flow). The AspectJ compiler inherits from a Java

compiler class because the AspectJ syntax is an extended Java syntax.

A part of the AspectJ compiler is the AspectJ parser. The aspect language parser inherits from a Java parser.

The AspectJ compiler implements aPARSE TREE INTERPRETERthat parses the program text files and creates

a parse tree. The AspectJ parser builds the parse tree for both the AspectJ and Java parts of the system. AspectJ

uses an abstract syntax tree (AST) in which each Java or AspectJ statement is represented as a node tree object.

For each type of statement there is a class inheriting from a classASTObject . These are instantiated by an

abstract syntax treeFactory(in the classAST).

A HOOK INJECTOR injects hooks at the respective joinpoints (a process called “inlining”). The aspect

language code is replaced either by base language primitives or byte-code instructions of the virtual machine.

Parsing, parse tree interpretation, and hook injection are organized in multiplecompiler passesthat create

and then transform the information in the abstract syntax tree by iterating over all the compilation units (here,

an Iterator is used). After the initial parser pass, compiler passes for interpreting the Java structures (type

graph, signatures bindings, forward references, etc.) follow. Then joinpoints are collected, static joinpoints are

planned, control flow and exceptions are checked, and advices are planned and woven.

All (static) joinpoints are instantiated during these steps and plans for composing them are made. In the

weaving pass, these plans are implemented. That means the joinpoints are woven in correct order and according

to the connectors “and,” “or,” and “not.”

Then a few helper passes follow. Finally either the passes for source code or byte code generation end the

process of parsing and inlining.

These results of hook injection are not visible to the user. TheHOOK INJECTORinserts hooks into the exist-

ing base language program. The injected hooks invoke objects implementing anINDIRECTION LAYER that is

part of the runtime environment of the woven application. The hooks together with respective implementations

are a static form ofMESSAGE INTERCEPTORS. In AspectJ theMESSAGE INTERCEPTORimplementation is

15

realized as an advice; the injected hooks call the before, after, or around advices.

At runtime of the woven program, the aspect language runtime environment is implemented as anINDI -

RECTION LAYER. AspectJ implements a static weaving process. In other words,MESSAGE INTERCEPTORS

cannot be composed at runtime. Some tasks, however, are handled dynamically by theINDIRECTION LAYER.

For instance, AspectJ provides a partly dynamic joinpoint model and one can specify control flows (cflow) as

pointcut elements (which are dynamically computed on a control flow stack).

The runtime environment of theINDIRECTION LAYER has to be bound to any AspectJ application. It

contains the dynamic parts of the AspectJ joinpoint model and thecflows . This joinpoint implementation

provides a variant of theINVOCATION CONTEXT pattern for aspects, containing invocation information for

dynamic pointcuts, such as thetarget of a joinpoint, the current object (this) of a joinpoint, and the ar-

guments of a joinpoint (args). Obviously, these information are invocation-specific and cannot be statically

determined by the compiler. As we have seen in the above example, these information can be connected to

the static part of a joinpoint. Thus the dynamic part of a joinpoint offersINTROSPECTION OPTIONSfor static

parts: the joinpoint’s kind, signature, source location, and string representation.

As a benefit, the runtime joinpoint model permits pointcuts and advices to retrieve certainINVOCATION

CONTEXT information about the call flow and the current joinpoint at runtime. As a drawback, the runtime

environment consumes additional runtime resources.

As we can see in the following code fragment from the AspectJ code, the runtime joinpoint implementation

offers the INVOCATION CONTEXT information, as well the connection to the static part (which offers the

respectiveINTROSPECTION OPTIONS):

class JoinPointImpl implements JoinPoint {

...

org.aspectj.lang.JoinPoint.StaticPart staticPart;

...

public Object getThis() { return _this; }

public Object getTarget() { return target; }

public Object[] getArgs() { return args; }

public String getKind() {

return staticPart.getKind();

}

public Signature getSignature() {

return staticPart.getSignature();

}

public SourceLocation getSourceLocation() {

return staticPart.getSourceLocation();

}

public final String toString() {

return staticPart.toString();

}

...

}

INTROSPECTION OPTIONSare used to connect the static and the dynamic part of joinpoints. SomeINTRO-

16

SPECTION OPTIONSabout the Java class and method structure are offered by the Java Reflection API.

In AspectJ the original class implementation can be extended with introductions. For instance, in the

example above it would make sense to have a method for checking the assertion, but this method requires the

self reference of the current object. Thus it should be a method of thePoint class. An aspect can be used to

introduce this method to the existing class:

aspect PointAssertions {

private boolean Point.assertX(int x) {

return (x <= 100 && x >= 0);

}

before(Point p, int x): target(p) && args(x)

&& call(void setX(int)) {

if (!p.assertX) {

...

}

In a generative environment such introductions are implemented by injecting hooks into the respective

classes with theHOOK INJECTOR.

3.2 Hyper/J

Hyper/J [31] supports multi-dimensional separation and integration of concerns [32] in Java. Object-oriented

languages promote decomposition by classes as the single decomposition dimension. Unlike classes, other

kinds of concerns cannot be encapsulated easily, and thus, their implementations is scattered across the class

hierarchy. Hyper/J provides means to decompose a program according to these other concerns.

The Hyper/J tool provides in first place a sophisticatedHOOK INJECTOR. The tool includes aBYTE CODE

MANIPULATOR and thus the source code of the Java classes is not required. The hooks are injected accord-

ing to specifications in three different kinds of files: hyperspace specification, concern mapping files, and

hypermodule specifications. These contain primarilyCOMMAND LANGUAGE instructions describing how to

(de-)compose the concerns.

• Hyperspaces identify thedimensionsand concernsof importance and can be seen as a kind of

project definition. Dimensions are used to group related concerns, as for instance:SomeDimen-

sion.SomeConcern .

• Concern mappings describe how various elements of Java classes address different concerns in a hy-

perspace. The following Java elements can be mapped to dimensions and concerns: package, class,

interface, operation, and field.

• A hypermodule specification is a particular composition of the units in some selection of the concerns

in the hyperspace. It identifies some dimension and concern names (so-called hyperslices) that are to be

composed in the context of the hyperspace.

The composition in hypermodules follows general composition strategies that can be specified by the de-

veloper:

17

• mergeByName means that units in the same-named hyperslices are merged together into a new unit.

• nonCorrespondingMerge means that units in different hyperslices with the same name are not to be

connected.

• overrideByName indicates that units in same-named hyperslices are connected by an override relation-

ship: the last hyperslice in the hypermodule specification overrides the others.

In addition to these default composition strategies, exceptions can be declared using more specific composition

rules. In these composition rules, units can be declared to equate each other, an order can be specified, units

can be renamed, units can be merged or not, specific actions can be defined to override other actions, a given

unit can be declared to match a set of units, and methods can be “bracketed.” The bracket composition rule

is of specific interest because it permits to define one operation as aMESSAGE INTERCEPTORfor another

operations, for instance:

bracket "*"."foo*"

from action Application.Concern.Class.bar

before Feature.Logging.LoggedClass.invokeBefore($ClassName),

after Feature.Logging.LoggedClass.invokeAfter($OperationName);

This declaration means that all methods whose names begin withfoo in any class in the input hyper-

slices will be bracketed by the methodsFeature.Logging.LoggedClass.invokeBefore and Fea-

ture.Logging.LoggedClass.invokeAfter . The optionalfrom clause restricts the calling context from

which the bracket methods will be invoked. For example, thefrom clause of the bracket relationship defined

above indicates that the before and after methods should only be invoked whenfoo methods are called from

within the methodApplication.Concern.Class.bar . Note that this is a static alternative to a callstack

and/or anINVOCATION CONTEXT (which would be used in more dynamic environment to limit the caller of a

MESSAGE INTERCEPTOR).

3.3 JAC

JAC [27] is a framework for dynamic, distributed aspect components in Java. Here, “dynamic” means that

aspects can be deployed and un-deployed at runtime. To prepare the Java classes to be used with aspects,

a BYTE CODE MANIPULATOR is applied at load time. As of JAC version 0.10 BCEL [9] is used, in earlier

versions Javassist [7] was used. BCEL offer a high-level API to access and manipulate the byte-code details.

The BYTE CODE MANIPULATOR is used by theHOOK INJECTORof JAC. The inserted hooks have the

responsibility to indirect invocations into the JACINDIRECTION LAYER that implements the JAC AOP features.

There are three main features to support dynamic aspects in JAC: aspect components, dynamic wrappers, and

domain-specific languages.

Aspect componentsare classes that subclass the classAspectComponent . In JAC a runtime meta-model

called RTTI (runtime type information) is defined that providesINTROSPECTION OPTIONSfor base program

elements. Also, the RTTI can be used for structural changes at a per-class level (similar to AspectJ’s intro-

ductions). Pointcuts can be defined to add before, after, or around behavior for base methods. In contrast to

18

AspectJ, method’s in focus of aspects are specified with strings and looked up reflectively (i.e. usingINTRO-

SPECTION OPTIONS). The pointcuts of the aspect components are used to invokeMESSAGE INTERCEPTORS,

defined by dynamic wrappers (see below). For each pointcut, hooks are introduced at all respective joinpoints

using theHOOK INJECTOR.

Dynamic wrapperscan be seen as generic advice. They are implemented as classes extending the class

Wrapper . Wrappers are ordered in wrapping chains. The methodproceed can be invoked from inside of the

wrapper method. It forwards the invocation to next wrapper in the wrapper chain, and finally to the wrapped

method.

The methods of the wrapper have a parameter of the typeInteraction . This class implements anINVO-

CATION CONTEXT containing information about the wrapped object, method, arguments, and wrapping chain

of the invocation.

A third feature of JAC aredomain-specific languagesthat can be defined for configuring aspects. Instead

of using simpleMETADATA TAGS, JAC provides aCOMMAND LANGUAGE that can be extended by the user:

operations of the aspect component can be provided asCommandimplementations and invoked from the

configuration file. This way each aspect can define its own configuration language.

For instance, the predefined authentication aspect component of JAC offers the following configuration

method:

void addTrustedUser(String username);

This method can be invoked from within theCOMMAND LANGUAGE script:

addTrustedUser "renaud" "renaud"

3.4 JBoss AOP

The JBoss Java application server contains a stand-alone aspect composition framework [5]. It implements

a similar sequence of the pattern language as JAC, but there are some interesting differences in the design

decisions.

Hooks are injected into all “advisable” classes using aHOOK INJECTORthat internally uses theBYTE CODE

MANIPULATOR Javassist [7] at load time. Javassist provides a source-level abstraction of the byte-code.

An advice is implemented as aMESSAGE INTERCEPTOR. All MESSAGE INTERCEPTORSmust implement

the following interface:

public interface Interceptor {

public String getName();

public InvocationResponse invoke(Invocation invocation) throws Throwable;

}

The name returned bygetName is a symbolic interceptor name.invoke is a callback method to be called

whenever the advice is to executed. The parameter of the typeInvocation is an INVOCATION CONTEXT

containing the invocation and method parameters. In contrast to many other frameworks, the response is not

stored in theInvocation object as well, but in theInvocationResponse object that is returned.

Forwarding to the next interceptor and finally to the intercepted method is done using a methodinvo-

keNext of the INVOCATION CONTEXT object:

19

invocation.invokeNext();

All pointcut definitions are given using XML-basedMETADATA TAGS, for instance:

<interceptor-pointcut class="mypackage.MyClass">

<interceptors>

<interceptor class="TracingInterceptor" />

</interceptors>

</interceptor-pointcut>

The class attribute of interceptor pointcut can take any regular expression as argument. For instance, the expres-

sionmypackage.* can be used to intercept all messages sent to members of a particular packagemypackage .

To support some level of composition, one can predefine a set of interceptor chains that can be referenced in

any interceptor-pointcut (so-called interceptor stacks). JBoss AOP provides an runtime interface to manipulate

the interceptors of an advised class. Interceptors can be appended, pre-pended, or removed from the interceptor

chain at runtime.

The INVOCATION CONTEXT provides anINTROSPECTION OPTIONto access specificMETADATA TAGS at

runtime. This way aspects can useMETADATA TAGS for aspect configuration.

Introduction-pointcuts can be defined using theMETADATA TAGS as well. These introduce one or more

interfaces to a class plus a mixin class that implements these interfaces.

3.5 Extended Object Tcl (XOTcl)

Sometimes dynamic composition of aspects is required. JBoss AOP, for instance, supports dynamic configu-

ration ofMESSAGE INTERCEPTORS. Note that this does not imply a dynamic aspect composition framework:

the aspectized classes are instrumented by aBYTE CODE MANIPULATOR at load time.

A really dynamic aspect composition process can be implemented when the patternMESSAGE REDIREC-

TOR is used together with anINDIRECTION LAYER. A MESSAGE REDIRECTORreceives symbolic invocations

that are indirected to the actual implementations of all objects in the system. Thus, aMESSAGE INTERCEPTOR

can dynamically intercept any message in the call flow, when it is dispatched by theMESSAGE REDIRECTOR.

XOTcl [25] is an object-oriented Tcl variant that uses the patternMESSAGE REDIRECTORfor its imple-

mentation. The symbolic invocations received by theMESSAGE REDIRECTORare strings extracted from the

program code. These invocations are indirected to the Tcl or XOTcl implementation (written in C), or other

loaded components.

The idea of applying aspects as dynamicMESSAGE INTERCEPTORSon top of a (given)MESSAGE REDI-

RECTORarchitecture is quite simple: if we specify all those calls that are in focus of an aspect as criteria for

theMESSAGE INTERCEPTOR, and let theMESSAGE REDIRECTORexecute thisMESSAGE INTERCEPTORevery

time such messages are called, we can implement any aspect that relies on message exchanges. To receive the

necessary information for dealing with the invocations, theMESSAGE INTERCEPTORshould be able to obtain

the INVOCATION CONTEXT to find out which method was called on which object (the callee). Often the call-

ing object and method are required as well.INTROSPECTION OPTIONSare typically used to obtain structure

information.

20

For instance, the XOTcl code corresponding to the above AspectJ point class example in Section 3.1 looks

as follows:

Class Point

...

Class PointAssertions

PointAssertions instproc assertX x {

if {$x <= 100 && $x >= 0} {return 0}

return 1

}

PointAssertions instproc setX x {

if {[my assertX $x]} {

puts "Illegal value for x"

} else {

next

}

}

Point instmixin PointAssertions

At first, the corresponding code for the class and the aspect (here also implemented as a class) is defined. Then

dynamically one of these classes is registered as an instance mixin (a class-basedMESSAGE INTERCEPTOR)

for all points; thus all calls to the methodsetX are intercepted by thePointAssertion mixin’s same-named

methodsetX .

There are two common ways to ensure the non-invasiveness of aspects (i.e. the obliviousness property in

the terminology of Filman and Friedman [11]) when using mixins:

• Mixins can be applied to a superclass or interface, and are automatically applied to all subclasses in the

class hierarchy. Thus developers of subclasses can be oblivious to the aspect.

• A mixin can be registered for a set of classes usingINTROSPECTION OPTIONS. For instance, one can

apply a mixin for all class names starting withPoint* . This way mixins can be applied in a non-

invasive way for any kind of criteria (pointcuts) that can be specified using the dynamicINTROSPECTION

OPTIONSof XOTcl.

The instructionnext is responsible for forwarding the invocation. It thus handles (non-invasive) ordering

of theMESSAGE INTERCEPTORSin a Chain of Responsibility[12]. At the end of the chain comes the actually

invoked method. Thus the placement of thenext instruction enables us to implement before, after, or around

behavior of theMESSAGE INTERCEPTOR.

In contrast to AspectJ, we do not have to “introduce” the methodassertX onPoint , as the mixin shares its

object identity with the class it extends. However, in other cases we might want to change the class structure. In

XOTcl at any time a new method can be defined (because all XOTcl structures are fully dynamic). Such kinds

of dynamics requireINTROSPECTION OPTIONSto ensure that we do not violate some architectural constraints

by re-structuring the architecture. For instance, in the example above we can first check at runtime that there

is no methodassertX defined forPoint yet, before we introduce it:

21

if {[Point info instprocs assertX] == ""} {

Point instproc assertX x {

if {$x <= 100 && $x >= 0} {return 0}

return 1

}

}

In case of XOTcl (and Tcl) alsoTRACE CALLBACKS for variable slots are supported. That is, we can

dynamically observe specified variables, when they are accessed in theINDIRECTION LAYER. This mechanism

is similar toMESSAGE INTERCEPTORS, but it is of a finer granularity, as we can observe single variables. That

means, in most cases, aTRACE CALLBACK has a smaller performance impact than aMESSAGE INTERCEPTOR,

but it is not well applicable for observing larger structures with multiple callbacks.

For instance, the following code invokes aTRACE CALLBACK methodvartracer , whenever the variable

x is read or written. As the trace is introduced in the constructorinit , the variablex of anyPoint instance is

traced:

Point instproc vartracer {var sub op} {

puts "[self]->$var accessed"

}

Point instproc init args {

...

my trace variable x rw "[self] vartracer"

...

}

3.6 Apache Axis Handler Chains

MESSAGE INTERCEPTORSbased on aMESSAGE REDIRECTORcan also be found in the many distributed object

systems. Here, the symbolic invocations received by theMESSAGE REDIRECTORare the remote calls that are

sent across the network. TheInterceptorpattern [29] describes this variant ofMESSAGE INTERCEPTORS.

Apache Axis [3] implements aMESSAGE INTERCEPTORframework, as it can be found in many distributed

object systems (other examples are Orbix [16] or Tao [35]). Note that theseMESSAGE INTERCEPTORare not

primarily designed for AOP, but can be used as an infrastructure for an AOP solution.

In Axis remote messages, sent from a client to a server, are handled both on client side and server side

by handler objects, arranged in aChain of Responsibility. Each handler provides an operationinvoke that

implements the handler’s task. This operation is invoked whenever a message passes the handler in the handler

chain. TheClient Proxy[34] passes each request message through the client side handlers until the last handler

in the chain is reached. This last handler (in Axis called the “sender”) is responsible for sending the message

across the network using the Axis framework. On server side, the request message is received by theServer

Request Handler[34] and passed through the server handler chain until the last handler (in Axis called the

“provider”) is reached. The provider actually invokes the web service object. After the web service object has

returned, the provider turns the request into a response. The response is passed in reverse order through the

respective handler chains – first on server side and then on client side.

22

All handlers betweenClient Proxyand sender on client side and all handlers betweenServer Request

Handlerand provider areMESSAGE INTERCEPTORS. TheClient Proxyand theServer Request Handleract as

MESSAGE REDIRECTORSthat indirect remote message into the handler chain.

An INVOCATION CONTEXT (in Axis called theMessageContext) has to be created first, before the mes-

sage is sent through the handler chain. This way different handlers can retrieve the data of the message and can

possible manipulate it. AnINVOCATION CONTEXT is used on client and server side. Each message context

object is associated with two message objects, one for the request message and one for the response message.

Note that this infrastructure alone is not an AOP framework. What is missing is a way to specify pointcuts

and apply these. This can be done quite easily by hand, because all necessary information is provided to the

MESSAGE INTERCEPTORSin the INVOCATION CONTEXT. With this information only one type of joinpoints

can be specified: remote invocations.

A simple implementation variant is to makeinvoke a Template Method, defined for an abstract class

AspectHandler . All aspect handlers inherit from this class, and implement the methodapplyAspect . This

method is only called, if there is a pointcut for the current aspect and message context defined.
public abstract class AspectHandler extends BasicHandler {

public boolean checkPointcuts(MessageContext msgContext) {

// check whether pointcuts apply and return true/false

...

}

public void invoke(MessageContext msgContext) throws AxisFault {

if (checkPointcuts(msgContext) == true) {

applyAspect(msgContext);

}

}

abstract public void applyAspect(MessageContext msgContext);

}

3.7 DJ and DemeterJ

DJ (and DemeterJ) [26] is a variant of the dynamic aspect composition scheme that does not provideMESSAGE

INTERCEPTORSbut uses traversal strategies andVisitors [12]. A class graph can be traversed as follows:
static final ClassGraph cg = new ClassGraph();

...

cg.traverse(this,

"from Schema via ->TypeDef,attrs,* to Attribute",

new Visitor() {

void before(Attribute host) {

if (host.name.equals("name"))

def.add(host.value);

}

});

...

The cg object is aMESSAGE REDIRECTORthat first creates a (reusable) traversal graph, and then the object

structure is traversed. In DJ, information about the class graph are obtained asINTROSPECTION OPTIONS(in

23

Demeter/J class dictionary files and behavior files are used). At each step in a traversal, the fields and methods

of the current object, as well as methods of theVisitor object, are inspected and invoked byINTROSPECTION

OPTIONSthat are obtained via Java’s Reflection API.

For theVisitors the programmer can define typed before and after methods that are executed before and

after an object of a certain type is traversed. Also methods to be executed for start and finish of the traversal

can be defined.

3.8 Some other Aspect Composition Frameworks

In this section, we want to discuss some interesting aspects of other solutions that have not been discussed

before.

In ComposeJ [36] one can provide a composition filter [4], consisting of a Java part and a composition

filter part (written in the composition filter syntax). The composition filter part is written in aCOMMAND

LANGUAGE that refers to the Java class name. It tells the ComposeJ compiler how to compose the base classes

with the composition filter class.

The small components project [33] implements a projects-specific aspect composition framework (among

other things), solely using generative techniques. The goal is to avoid overheads of a aspect runtime environ-

ment in embedded systems. To reach this goal all compositional information is given asMETADATA TAGS.

In particular, the class structure is given as an XMI model, and there are template classes, metaclasses, map-

ping files, and config files that define various component composition aspects (such as structures, instantiation,

threading parameters, instance-container mapping, and security settings).

There are various approaches that combine some of the implementation approaches. For instance, there

are approaches that integrate the benefits of the dynamic aspect composition into generative environments.

The solution in [21] is a generative aspect model; however, it allows for activating and deactivating aspects at

runtime. This is done via a central registry for aspects. This registry serves as a centralMESSAGE REDIRECTOR

for which every class is registered that contains asuperimpose statement. AHOOK INJECTORinjects hooks

into each method of these classes. The hooks call the registry in case of a methoddispatch , enter , or exit

event. If an correspondingMESSAGE INTERCEPTORis registered as an advice, it is called by the registry before

the original call.

Sometimes it makes sense to apply different aspect interpretation models together. For instance, AJDC

(AspectJ Design Checker) [15] is an extension of AspectJ that uses TyRuBa [10] as a logic meta-programming

engine for finding errors and problems in AspectJ code. AJDC generates facts and rules out of the parse tree

to be compiled, and it provides some rules for retrieving trace information like subclass relationships. Then

TyRuBa is used to interpret this output. There are three additional statements understood by AJDC to define

errors and problems in AspectJ code, and within them the TyRuBa syntax is embedded as a pointcut language.

24

4 Evaluation of the Pattern Sequences

As explained before, applying the individual patterns does not necessarily lead to a successful solution. Thus it

is important to understand the sequences or combinations of patterns that work in practice. We have explained

many individual sequences or combinations of patterns in the previous section. In this section we want to

categorize and revisit the general sequences behind these successful solutions. At first, we compare the main

features exposed in the individual solutions. Next, we describe the generic pattern sequences and discuss their

trade-offs.

4.1 Comparing Features of the Pattern Sequences

Aspect Composition
Framework

Joinpoint
Extraction

Dynamic Static

Message
Redirector

Trace
Callback

Parse Tree
Interpreter

Byte Code
Manipulator

Aspect
Composition

Dynamic Static

Message Redirector +
Message Interceptor

Trace
Callback

Hook
Injector

Static Message
Interceptor

Static Trace
Callback

Message Redirector
as Registry

Aspect Inlining
(No Language Runtime)

Aspect
Language

Command Language +
Introspection Options

Base Language
Synatx

Parse Tree
Interpreter

Other
Synatx

API GUI

Context/Environment
Information

Invocation
Context

Introspection
Options

Aspect
Functionality

Message
Interception

Tracing Specific
Structures Introductions

Aspect
Configuration

Metadata
Tags

Command
Language

Static Pointcut
Information

Aspect
Specification

Figure 13. Feature diagram for aspect composition frameworks based on the pattern language

In this section, we summarize the main design decisions for an aspect composition framework, based on the

most important features of the aspect composition frameworks that we have discussed in the previous section.

As Figure 13 illustrates in a feature diagram [17], there are five main design decisions to be considered:

• Which functionalities should the aspects provide?

• In which way should the joinpoints be extracted?

• How should aspects be composed with the system (and with each other)?

• Which context or environment information are available for the application of aspects?

• In which aspect language or aspect configuration syntax should the aspects be specified?

Note that these are technical considerations for the implementation of an aspect composition framework. How-

ever, of course, the design decisions for these alternatives are heavily influenced by the concepts to be realized

by the aspect composition framework.

25

The first, obvious distinction of aspect composition frameworks are the main functionalities provided by

aspects:

• Most aspect languages are able to manipulate message invocations. This can be done by inlining aspect

code or withMESSAGE INTERCEPTORS.

• Alternatively, specific structures can be in focus of an aspect. This can be done by inlining aspect code

or with TRACE CALLBACKS.

• Some aspect languages support introductions as well.

An obvious commonality in different aspect composition frameworks is that we require some joinpoint

model. Each aspect sequence provides some way to extract this information. The pattern language offers the

following alternatives:

• There are two alternatives for static joinpoint extraction:

– We can use aPARSE TREE INTERPRETERto extract (and manipulate) the information in the source

code.

– We can use aBYTE CODE MANIPULATOR to find (and manipulate) the joinpoints in a given byte

code.

• There are two alternatives for joinpoint extraction at runtime:

– We can use aMESSAGE REDIRECTORthat can trace all invocations of a (sub-)system.

– We can use aTRACE CALLBACK that traces all accesses to a specific structure, such as a variable.

Once we have extracted the relevant joinpoints, the aspect can be composed. Again, an aspect can either

be composed statically or dynamically:

• The primary pattern for implementing static composition isHOOK INJECTOR. TheHOOK INJECTORcan

either produce program code in the base language or manipulate the byte code. Again there are multiple

alternatives:

– TheHOOK INJECTORcan inline the complete aspect code at any joinpoint. This bloats the resulting

byte code or source code, and does not allow for central management of joinpoints at runtime. But

this variant can minimize the runtime overhead.

– The HOOK INJECTORcan inline an invocation of a staticMESSAGE INTERCEPTORdealing with

the message.

– TheHOOK INJECTORcan inline an invocation of a staticTRACE CALLBACK.

– The HOOK INJECTORcan inline an invocation of aMESSAGE REDIRECTORthat invokes aMES-

SAGE INTERCEPTOR. This variant allows for limited dynamics, such as turning aspects on and

off.

26

• There are two variants of dynamic aspect composition:

– MESSAGE INTERCEPTORSare registered within aMESSAGE REDIRECTOR.

– TRACE CALLBACKS can be registered for each structure in focus of an aspect.

Note that only the first variant that completely inlines aspects does not require anINDIRECTION LAYER

at runtime. The more dynamic variants usually have a larger performance (and memory) impact than the less

dynamic ones.

Aspects are applied in the context of a pointcut. In many cases, an advice (or introduction) needs extra

information from the context of the invocation or the runtime environment:

• The most simple way to provide such information is to pass the static information provided in the pointcut

specification (for instance as parameters) to the advice implementation.

• Only when anINDIRECTION LAYER is supported, we can build dynamicINVOCATION CONTEXT infor-

mation (which can for instance be used to implement dynamic joinpoints).

• If the language structures are dynamic, we may also require dynamicINTROSPECTION OPTIONS. They

can be language supported by a reflection API (as in Java). Often there are additionalINTROSPECTION

OPTIONSfor aspect structures.INTROSPECTION OPTIONScan be used to interweave dynamic parts and

static parts of the aspect model, as discussed for the static joinpoint parts and dynamic joinpoint parts in

AspectJ.

Another important issue is how aspects and pointcuts can be specified:

• We can provide an aspect language:

– If we want to use the base language syntax in a compiled language, we typically use aPARSE TREE

INTERPRETERtogether with aHOOK INJECTOR.

– If we want to use the base language syntax in a dynamic, interpreted language, we can alterna-

tively extend the language with new aspect constructs. To write the system back into a file (after

manipulations), we use a program serializer. The serializer introspects the structures usingINTRO-

SPECTION OPTIONSand re-builds the program text. For this variant it is necessary that all program

structures are introspective and can be serialized.

– The most simple way to implement an aspect composition framework is to provide a simple API in

the base language. Using such an aspect extension is more cumbersome than using some dedicated

aspect language constructs. This variant is often used forMESSAGE INTERCEPTORSin middleware

environments.

– Some approaches provide a GUI-based aspect configuration. This variant can internally use any of

the other variants.

• We can also use an aspect configuration language:

27

– For simple aspect configurations we can annotate a program withMETADATA TAGS containing the

aspect.

– For more sophisticated aspect specifications we can use aCOMMAND LANGUAGE.

4.2 Revisiting the Pattern Sequences and Trade-offs

In this section, we want to revisit the most important combinations of patterns in the solutions discussed in

Section 3 and discuss the common trade-offs of different sequences.

The sequence for composing aspects generatively using aPARSE TREE INTERPRETER, as used in As-

pectJ, is depicted in Figure 14. ThePARSE TREE INTERPRETERis used for extracting the information with

a parse tree, including the specification of pointcuts and introductions. TheHOOK INJECTOR injects hooks

and introductions. Optionally, anINDIRECTION LAYER is added that allows for limited runtime dynamics and

introspection.

A benefit of this sequence is that aspects can be expressed in a syntax similar to the base language. It is

easy to change and extend the aspect language because a full parser is available. Potentially a generative aspect

composition framework can offer a performance close to the base language (this largely depends on how much

dynamics are supported in theINDIRECTION LAYER). The main drawback of aPARSE TREE INTERPRETER

based aspect composition framework is that dynamic aspect composition is not possible. However, aMESSAGE

REDIRECTORcan be used to turn aspects on and off, as in the approach of Laemmel et al. [21] (what influences

the performance negatively). Another main drawback is that the source code of all aspectized classes has to be

be available. If a suitable parser is not available this sequences requires a substantial implementation effort.

Message Interceptor

Indirection Layer

Hook Injector

Parse Tree Interpreter

Builder

build full
parse tree

Factory

interpret parse tree: extract aspect language,
add hooks invoking the aspect runtime,

add introductions

insert hooks to call
aspect language runtime

hooks call
message interceptors

Figure 14. Aspect composition based on a parse tree interpreter

The sequence in Figure 15 is used by the load time composition approaches Hyper/J, JAC, and JBoss.

Here, aHOOK INJECTORuse aBYTE CODE MANIPULATOR to read in classes as byte code, add hooks and

introductions, and generate new classes. The pointcuts and introductions are specified either asMETADATA

TAGS or in aCOMMAND LANGUAGE. Hooks are injected for introductions, calls to anINDIRECTION LAYER,

andMESSAGE INTERCEPTORS. We have seen that theINDIRECTION LAYER can either provide dynamics and

introspection for theMESSAGE INTERCEPTORS, as in JAC and JBoss, or theMESSAGE INTERCEPTORScan be

static and the context information is hard-coded in the pointcuts, as in Hyper/J.

The general benefits compared to thePARSE TREE INTERPRETERbased sequence is that this sequence

supports load time aspect composition. That means that the source code does not need to be available, and

28

thus, third party code can be instrumented. Another benefit is that the binding time is postponed. This is

important for server environments, such as JAC or JBoss, that support deployment of classes while the server

runs. Because this sequence does not assume that the base language code is accessible, it does not make much

sense to specify the aspects in a base language syntax. Thus, another way to configure the aspects has to be

found. This can be done by usingMETADATA TAGS or a COMMAND LANGUAGE. Again the performance

impact largely depends on how theINDIRECTION LAYER is designed, but there is a residual performance

impact for all aspectized classes, even if the aspects are not applied.

Message InterceptorIndirection Layer

Hook Injector

Byte Code Manipulator

insert hooks to call
aspect language runtime

environment

hooks call
message interceptors

Metadata Tags

Command Language

specify
pointcuts

and
introductions

read in classes,
add hooks and introductions,

generate new classes

Figure 15. Aspect composition based on a hook injector and a byte code manipulator

Binding at compile time or load time, as in the two sequences explained before, is not always enough.

In environments that are dynamic at runtime, a runtime aspect composition is required. DynamicMESSAGE

INTERCEPTORSare provided by many different environments; especially by programming languages such as

XOTcl [25] and by middleware environments, such as Orbix [16], Tao [35], or Apache Axis [3] (also described

in the Interceptorpattern [29]). Dynamic aspect composition can be implemented in these approaches using

the following sequence: each invocation in the application logic layer is evaluated using theMESSAGE REDI-

RECTOR. The MESSAGE REDIRECTORmaps the called symbolic instruction to an implementation object in

the INDIRECTION LAYER. HereMESSAGE INTERCEPTORSand TRACE CALLBACKS can be applied. If the

MESSAGE REDIRECTORimplements aCOMMAND LANGUAGE, the dynamic language features can be used to

implement introductions (as in XOTcl).

Message Interceptor

Indirection Layer

shields,
provides invocation

context callstack

Message Redirector
invokes dynamically

invokes
dynamicallyTrace Callback

invokes callback
operation

Command Language

optional:
provide introductions

via language dynamics

Figure 16. Aspect composition based on a message redirector

The main benefit of using aMESSAGE REDIRECTORis that both aspect composition and applying theMES-

SAGE INTERCEPTORSis completely dynamic. AMESSAGE REDIRECTORalways has a performance penalty

due to the indirection. But in the discussed environments (XOTcl and distributed object frameworks) theMES-

SAGE REDIRECTORis used even if AOP is not used at all. A benefit compared to the twoHOOK INJECTOR

variants that change the aspectized classes’ implementation (either the source code or byte code) is that there

29

is no further overhead, when the aspect is not applied.

It requires less work to implement aMESSAGE REDIRECTORthan aBYTE CODE MANIPULATOR or PARSE

TREE INTERPRETER. In a MESSAGE REDIRECTORit is easy to provideINVOCATION CONTEXTS, INTRO-

SPECTION OPTIONS, etc. because all necessary information have to go through theMESSAGE REDIRECTOR.

In contrast to injected hooks that are scattered across the code, aMESSAGE REDIRECTORis a central runtime

instance and thus can be used for managing aspects at runtime. AMESSAGE REDIRECTORcan only provide

the base language syntax, if it is part of the language implementation; in other words, the language has to be

a COMMAND LANGUAGE (such as XOTcl). If it is not used already in a system, theMESSAGE REDIRECTOR

requires either the client or the aspectized sub-system to be changed.

By combining the two patternsMESSAGE REDIRECTORor HOOK INJECTOR, some of the drawbacks of

either solution can be avoided.

The patternINDIRECTION LAYER is central for all AOP sequences that require some runtime indirection

or aspect management. If anINDIRECTION LAYER is supported together withMESSAGE INTERCEPTORSthe

sequences introduced before are typically extended by the sequence depicted in Figure 17. Note that the de-

gree of dynamics ofMESSAGE INTERCEPTORSandTRACE CALLBACKS, context information inINVOCATION

CONTEXTS, and details ofINTROSPECTION OPTIONSvaries. The main benefit of adding anINDIRECTION

LAYER is that it can be used to provide information such asINVOCATION CONTEXTS and INTROSPECTION

OPTIONSat runtime. Also, it can be used to make theMESSAGE INTERCEPTORSdynamically configurable.

The drawbacks of this sequence are the performance and memory overheads required for each addition.

Invocation Context Introspection Option

Message Interceptor

get structure
information
at runtime

Metadata Tags

Command Language

configure
aspect

Trace Callback

Indirection Layer

get structure
information
at runtime

get invocation
 information
at runtime

provided
by

provided
by

Figure 17. Message interceptor with an indirection layer at runtime

TRACE CALLBACKS are an alternative toMESSAGE INTERCEPTORS. TRACE CALLBACKS are applied

locally, within the implementations of the structures to be traced. As a benefit, they have a slighter performance

impact thanMESSAGE INTERCEPTORSfor untraced structures.MESSAGE INTERCEPTORSare applied by some

central instance (aMESSAGE REDIRECTORor aHOOK INJECTOR). Thus it is easier to trace complex structures

in a non-invasive way.

Aspects can be specified in the programming language syntax (as in AspectJ or XOTcl). An alternative

is to use an aspect configuration syntax. Here we can useMETADATA TAGS or a COMMAND LANGUAGE.

30

If no COMMAND LANGUAGE is available, implementing one is much more work than a simpleMETADATA

TAGS syntax (such as XML). However, aCOMMAND LANGUAGE as in XOTcl or JAC can be used to provide

a domain-specific language for aspect configuration rapidly. Of course, this language has to be understood by

developers, and it is more work to understand aCOMMAND LANGUAGE thanMETADATA TAGS.

5 Conclusion

We have described current AOP implementation approaches using a pattern language for structure and depen-

dency tracing and manipulation. In this realm we believe the patterns capture the major implementation variants

of existing solutions. The forces and consequences of the patterns lead to the choice of appropriate patterns

and pattern variants. Central, domain-specific issues like performance, flexibility, memory usage, program

length, program complexity, learning effort, etc. are highly different in different solutions. Pattern language

sequences were used to illustrate the existing solutions. The sequences should help developers to better under-

stand existing AOP implementation choices. This understanding should enable developers to use, customize,

or implement aspect composition frameworks. Also we can use the patterns and pattern sequences to discuss

the main trade-offs of current AOP implementations, so that developers have clear criteria to select for the

aspect functionalities and properties as required for a particular task. If there is no sufficient implementation

existing, these criteria also help to choose the appropriate patterns for developing an in-house, domain-specific

aspect composition framework for a particular project.

Acknowledgments

This paper is a substantially extended version of a paper (“Using Structure and Dependency Tracing Patterns

for Aspect Composition”) that was presented at the 3rd Workshop on Aspect-Oriented Software Development,

Essen, Germany, March, 2003.

Thanks to Stefan Hanenberg for his helpful comments on this paper and to Markus Völter for discussion of

the pattern language. Many thanks to Steve Berczuk who provided a lot of valuable feedback as a EuroPLoP

2003 shepherd for the pattern language.

References

[1] C. Alexander.The Timeless Way of Building. Oxford Univ. Press, 1979.

[2] C. Alexander and others. Patternlanguage.com. http://www.patternlanguage.com, 2001.

[3] Apache Software Foundation. Apache Axis. http://ws.apache.org/axis/, 2003.

[4] L. Bergmans and M. Aksit. Composing crosscutting concerns using composition filters.Communications of the

ACM, 44(10):51–57, Oct 2001.

[5] B. Burke. JBoss aspect oriented programming. http://www.jboss.org/developers/projects/jboss/aop.jsp, 2003.

[6] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.Pattern-orinented Software Architecture - A

System of Patterns. J. Wiley and Sons Ltd., 1996.

[7] S. Chiba. Javassist. http://www.csg.is.titech.ac.jp/ chiba/javassist/, 2003.

31

[8] S. Clarke and R. Walker. Towards a standard design language for AOSD. InProceedings of the 1st International

Conference on Aspect-Oriented Software Development, pages 120–129, Enschede, The Netherlands, April 2002.

[9] M. Dahm. The bytecode engineering library (BCEL). http://jakarta.apache.org/bcel/, 2003.

[10] K. De Volder.Type-Oriented Logic Meta Programming. PhD thesis, Vrije Universiteit Brussel, 1998.

[11] R. Filman and D. Friedman. Aspect-oriented programming is quantification and obliviousness. InOOPSLA Workshop

on Advanced Separation of Concerns, Minneapolis, USA, October 2000.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns: Elements of Reusable Object-Oriented Software.

Addison-Wesley, 1994.

[13] J. Garcia-Martin and M. Sutil-Martin. Virtual machines and abstract compilers - towards a compiler pattern language.

In Proceedings of EuroPlop 2000, pages 375–396, Irsee, Germany, July 2000.

[14] M. Goedicke, G. Neumann, and U. Zdun. Object system layer. InProceedings of EuroPlop 2000, pages 397–410,

Irsee, Germany, July 2000.

[15] S. Hanenberg and R. Unland. Specifying aspect-oriented design constraints in AspectJ. InWorkshop on Tools for

Aspect-Oriented Software Development at OOPSLA 2002, pages 641–655, Seattle, USA, Nov 2002.

[16] IONA Technologies Ltd. The orbix architecture, August 1993.

[17] K. C. Kang, S. G. Sholom, J. Hess, W. E. Novak, and A. Peterson. Feature-oriented domain analysis (FODA)

feasibility study. Technical Report CMU/SEI-90-TR-21, Carnegie Mellon University, Software Engineering Institute

(SEI), 1990.

[18] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. Getting started with AspectJ.

Communications of the ACM, 44(10):59–65, Oct 2001.

[19] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J. M. Loingtier, and J. Irwin. Aspect-oriented

programming. InProceedings European Conference on Object-Oriented Programming (ECOOP’97), pages 220–

242, Finnland, June 1997. LCNS 1241, Springer-Verlag.

[20] J. Kienzle and R. Guerraoui. AOP: does it make sense? The case of concurrency and failures. InProceedings of the

16th European Conference on Object-Oriented Programming, pages 37–61, Malaga, Spain, June 2002.

[21] R. Lämmel and C. Stenzel. Semantics and Implementation of Method-Call Interception. Draft; http://

homepages.cwi.nl/∼ralf/sdmci/; accepted for publication in IEE Proceedings Software, 2003.

[22] C. V. Lopes.D: A Language Framework for Distributed Programming. PhD thesis, College of Computer Science,

Northeastern University, Dec 1997.

[23] H. Masuhara and G. Kiczales. Modeling crosscutting in aspect-oriented mechanisms. InProceedings of the 17th

European Conference on Object-Oriented Programming, pages 2–28, Darmstadt, Germany, July 2003.

[24] A. I. Mørch. Aspect-oriented tailoring of object-oriented applications. InProceedings of the 21st Information System

Research Seminar in Scandinavia (IRIS 21), pages 641–655, Aalborg University, Denmark, August 1998.

[25] G. Neumann and U. Zdun. XOTcl, an object-oriented scripting language. InProceedings of Tcl2k: The 7th USENIX

Tcl/Tk Conference, pages 163–174, Austin, Texas, USA, February 2000.

[26] D. Orleans and K. Lieberherr. DJ: Dynamic adaptive programming in Java. InReflection 2001: Meta-level Architec-

tures and Separation of Crosscutting Concerns, pages 73–80, Kyoto, Japan, Sep 2001.

[27] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin. JAC: a flexible framework for AOP in Java. InReflection 2001:

Meta-level Architectures and Separation of Crosscutting Concerns, pages 1–24, Kyoto, Japan, Sep 2001.

[28] A. Rashid and R. Chitchyan. Persistence as an aspect. InProceedings of the 2nd international conference on Aspect-

oriented software development, pages 120–129, Boston, Massachusetts, USA, March 2003.

32

[29] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.Patterns for Concurrent and Distributed Objects. Pattern-

Oriented Software Architecture. J. Wiley and Sons Ltd., 2000.

[30] S. Soares, E. Laureano, and P. Borba. Implementing distribution and persistence aspects with AspectJ. InProceedings

of the 17th ACM Conference on Object-Oriented programming systems, languages, and applications, OOPSLA’02,

pages 174–190, Seattle, WA, USA, November 2002.

[31] P. Tarr. Hyper/J. http://www.research.ibm.com/hyperspace/HyperJ/HyperJ.htm, 2003.

[32] P. Tarr, H. Ossher, W. Harrison, and S. Sutton. N degrees of separation: Multi-dimensional separation of concerns. In

Proceedings of the 21st International Conference on Software Engineering (ICSE ’99), pages 107–119, Los Angeles,

CA, USA, May 1999.

[33] M. Voelter. Small Components Project. http://www.voelter.de/projects/smallComponents.html, 2003.

[34] M. Voelter, M. Kircher, and U. Zdun. Object-oriented remoting: A pattern language. InProceedings of The First

Nordic Conference on Pattern Languages of Programs (VikingPLoP 2002), pages 201–226, Denmark, Sep 2002.

[35] N. Wang, K. Parameswaran, and D. C. Schmidt. Meta-programming mechanisms for object request broker middle-

ware. InProceedings of the 6th USENIX Conference on Object-Oriented Technologies and Systems (COOTS), San

Antonio, TX, USA, Jan/Feb 2001.

[36] H. Wichman and others. ComposeJ Homepage. http://trese.cs.utwente.nl/prototypes/composeJ/, 2002.

[37] U. Zdun. Patterns of tracing software structures and dependencies. InProceedings of EuroPlop 2003, Irsee, Germany,

June 2003.

33

