
Integrated Design and Process Technology, IDPT-2002
Printed in the United States of America, June, 2002

c
�

2002 Society for Desing and Process Science

XML-Based Dynamic Content Generation and Conversion for the
Multimedia Home Platform

Uwe Zdun
Institute for Computer Science
University of Essen, Germany

zdun@acm.org

ABSTRACT:Many systems gather content from multiple
input sources and provide it to multiple output channels.
Usually content has to be (partly) generated, and content
has to be converted to different formats. In this paper, we
will discuss the domain of digital content broadcasting with
the Multimedia Home Platform (MHP) as a case study do-
main. However, there are other domains that require con-
tent generation and conversion as well, such as web engi-
neering and content management. As a solution, we will
present a generic XML-based architecture for dynamic con-
tent generation and conversion. It provides content convert-
ers for multiple input and output formats. Content format
templates, fragments, and content format builders are alter-
natives for dynamic content generation. Page templates are
used to impose common styles and portal layouts for inter-
dependent content. A Service Abstraction Layer supports
service-based integration of different new media platforms.

I. INTRODUCTION

Many interactive applications have to generate formatted
content on request, and/or convert given content to others
formats and styles. The content is usually not or only partly
available in pre-built files of the target format. Generated
content often has to be formatted in different markup lan-
guages, such as HTML, WML, and XML. In many cases,
other formats, such as graphical user interfaces and textual
representations, have to be supported as well. Moreover, the
content usually has to be provided to different channels with
different protocols, such as HTTP, WAP, UMTS, MMS, etc.

In our experience these issues are recurring in different
contexts in which content has to be flexibly gathered and
provided for different platforms, as for instance interactive
digital broadcasting, web publishing, and content manage-
ment. In this paper, we will discuss an architecture for
dynamic content generation and conversion based on XML
technologies.

As a case study we present an industry project with the
goal to define a generic product line architecture for the
content provider BetaBusinessTV on top of the Multimedia
Home Platform (MHP) [5]. The MHP is a standard, client-
side environment, based on the Java programming language,
for interactive digital broadcast applications.

All the problems of content generation and conversion, as
named above, apply for an MHP product line: the content
presented on an MHP terminal usually has to be provided
to other channels as well, such as the web or mobile de-
vices. These (may) use different formats and styles than an
MHP application. The MHP itself supports (and will sup-
port) different content formats as well, including compiled
Java application classes, XHTML pages, ECMA scripts, etc.
That means content created in multiple input formats has to
be converted to the target formats. Usually, content is partly
pre-built, and partly it has to be generated on request, say,
on basis of data received via a return channel. The pre-built
content may have to be dynamically converted on server-
side.

In this paper, we will first explain the MHP domain and
present a reference architecture on the server side in which
our content generation and conversion architecture will be
integrated. Then we will identify a set of recurring problems
in the domain of generating and converting content dynam-
ically. As a solution, we present a dynamic content gener-
ation and conversion architecture based on XML technolo-
gies. Finally, we will analyze the impact of the architecture,
and discuss related work.

II. CASE STUDY: MULTIMEDIA HOME PLATFORM

PRODUCT LINE

As a case study domain, we will discuss content presenta-
tion, generation, and conversion issues in a generic product
line architecture for the MHP. In this section, at first, we will
briefly explain the MHP domain. Secondly, we will discuss
the issue of dynamically generating and converting content
in this domain. Thirdly, we will outline some problems and
open issues tackled by our work.

A. Multimedia Home Platform (MHP)

In 1998, the Digital Video Broadcasting Project (DVB)
embarked on an ambitious project to produce a European
platform for the converging multimedia services of the fu-
ture. The DVB-MHP specification [5] aims at the deploy-
ment of an open standard API that will facilitate seam-
less services across broadcast, telecommunication, and com-
puter platforms. The MHP standard defines a client-side
software layer that runs on an MHP terminal. Possible MHP



2

Transport
Protocolls

Application
Manager

Virtual
Machine

Application
Layer

System Software

Resources

System
Dependent

Plug-In

Interoperable
MHP

application

Interoperable
MHP

application

System
Depedent

Legacy
Application

Interoperable
Legacy

Application

Interoperable
Plug-In

MHP API

Fig. 1. MHP Basic Client-Side Architecture

terminals are digital set-top boxes (STB), integrated digital
TV sets (IDTV), and multimedia PCs. The MHP standard
provides specifications and APIs for MHP terminal imple-
mentations, including:

� Platform Architecture: The client-side architecture de-
picted in Figure 1 is defined in detail. It consists of three
basic layers: a resource layer comprising the hardware and
software resources provided by the MHP terminal (such as
a settop-box), a system software layer for reliable control of
the platform and application management, and an applica-
tion layer running interoperable MHP applications such as
Java TV applications (XLets) and HTML applications.

� DVB-Java Platform on Top of a Java Virtual Machine:
The MHP is based on an embedded Java virtual machine im-
plementation running DVB-J applications. It includes most
standard Java APIs, and a set of custom APIs for user inter-
faces, security, TV APIs, etc.

� Transport Protocols: A set of communication channels
is specified, including broadcast channel protocols (such as
MPEG-2 video and data transmission via a DSM-CC object
carousel), and interaction channel protocols (such as TCP,
HTTP, UDP, and DSM-CC User-to-User).

� Content Formats: There is a determined set of required
content formats to be supported by an MHP client. These
are static bitmap formats, like JPEG, PNG, and GIF. Other
static formats are MPEG-2 frames, video drips, MPEG-1
audio clips, and UTF-8 format. The MHP client has to sup-
port at least a resident font, but portable downloadable font
resources are also supported.

� Application Model and Lifetime Signaling: A DVB-J ap-
plication has four different states: loaded, paused, active,
and destroyed. The application manager has to manage and
signal lifetime events, and handle resource allocation.

� Security: There are several security means specified, in-
cluding conditional access to control the management of a
set of authentication keys used to descramble or decrypt
downstream video or data streams, secure communication
over the return channel with SSL, and the bytecode verifica-
tion of the Java VM.

� Graphics and GUI: The HAVi graphics reference model
and a few extra specifications for the MHP are supported.
The model includes a background screen (backgrounds are
still images), a graphics screen, and a video screen. On top

of the graphics model the HAVi Level 2 UI is used as User
Interface API for the MHP. The HAVi level 2 UI is based
upon the Java AWT 1.1 lightweight widget framework. But
only a subset of the AWT is required since other parts of the
AWT widget set are not considered as “TV-friendly.”

We believe that software development for the MHP will
differ from current embedded or PC platforms, since the
MHP cross-cuts these domains and the television broad-
cast world. Moreover, MHP applications need to be inte-
grated with applications and content from several different
sources. E.g., the content has also to be provided to other
platforms, like the web, mobile devices, or teletext. Applica-
tions have to be integrated with broadcaster applications, ex-
isting legacy applications, and other similar platforms, such
as web applications.

B. Dynamic Content Creation in an Integrated Broadcast
Architecture

Our project was concerned with the definition of a generic
MHP product line architecture for the content provider
BetaBusinessTV. The company mainly aims at business TV
customers in the financial and insurance business sectors.
The customers usually want to use the business TV plat-
form for rapidly informing their employees with financial
news, stock prices, interest rates, etc. Other channels, such
as mobile phones and the web, have to be integrated into the
framework.

The MHP specification mainly defines a client-side stan-
dard. However, many essential ingredients of a product line
architecture have to be defined on server-side. In the course
of the project we have defined a server-side reference ar-
chitecture which takes the full content production chain and
user interaction into account.

We propose to understand the broadcasting process as the
reference architecture depicted in Figure 2. The content
provider authors or supplies the content. It is important that
there is an integrated software support, so that technical non-
experts – at the knowledge level of today’s web publishers
– are able to easily publish content in a suitable appearance.
For instance, in many MHEG-5 environments content is still
authored solely with text editors. This is not very appealing
for the average content author. The content provider controls
the content that is to be broadcasted. These issues are han-
dled by content authoring tools. But the content provider
also has to be able to control when to broadcast the con-
tent. Therefore, the broadcaster’s content management sys-
tem has to build runtime logs to ensure correctness. To a cer-
tain degree the content provider also has to have control on
how to broadcast, e.g. to optimize the order of broadcasting
content chunks, say, to minimize startup times of interactive
applications.

Content providers may be small, medium, or large size
companies, that have for various reasons an interest in pub-



3

lishing content via a digital broadcast. An important aspect
is that many content providers may share a broadcaster’s
network and that they may operate remotely from the broad-
caster. In the broadcaster’s architecture a central media man-
agement handles all audio, video, and data content. The data
is sent to the multiplexer. Content and media management
also handles the synchronization with the return channel.
This information may be provided to the content provider.
There can also be a direct return channel connection to the
content provider.

MUX

Client

N
etw

ork

Digital
Receiver

BroadcasterContent Provider

Content
Publisher

Application

Audio/Video
Server

N
etw

ork

Content &
Media

Management

Content
Authoring

Return
Channel
Handler

Broadcast
Channel
Protocol

Interaction
Channel
Protocol

Return
Channel
Handler

Fig. 2. Intergrated Broadcast Architecture

C. Dynamic Content Generation and Conversion: Prob-
lems and Open Issues

In this paper we will focus on a specific part of the in-
tegrated content broadcasting architecture sketched above:
the generation and conversion of content on the content
provider’s side. Here, the content may be given in differ-
ent input formats, and the output formats accepted by the
broadcast network (and thus the MHP terminals) have to be
generated from these inputs. Usually, other channels such
as the web have to be supported as well. In this context
there is a set of recurring problems. Some of these problem
are unique to the interactive digital TV domain, some prob-
lems are general problems of dynamic content generation
and conversion. Typical general problems are:

� Incoming Content Format Conversion: Incoming content
usually comes in a variety of different formats that may dif-
fer from the formats and styles in which the content has to
be represented on the MHP terminal. Given that there are �

input formats and � target formats, ��� � content converters
have to be written.

� Multiple Target Formats, Styles, and Channels: In the
MHP context, there are multiple target formats, including
compiled Java application classes, XHTML pages, ECMA
scripts, and others. Moreover, often content has to be pre-
sented to other channels than the broadcast channel as well.
Typical other channels are the web and mobile devices such
as mobile phones and PDAs. Those usually have quite dif-
ferent representational characteristics. E.g. on the web usu-
ally smaller fonts can be used and more information can be

presented on a page than on a TV set; on a cellular phone
less information can be presented within one page. Typical
TV consumer behavior is different to PC user behavior.

� Abstraction from Content Format Specifics: When content
has to be generated on-the-fly it is undesirable to code the
content creation logic for each content format on its own.
Ideally there would be some abstraction from specifics of
different content formats so that the same business logic can
be used to build content in different formats.

� Non-Programmers as Content Creators: In the digital TV
domain usually there is a lack of qualified programmers, but
not of content creators at the knowledge level of today’s web
publishers. Therefore, it is undesirable that for providing
new content always Java classes have to be written, but there
should be simpler (e.g. graphical) tools.

The interactive digital television also has a few unique
characteristics that distinguish the domain from similar PC-
based platforms, such as the web. Those have to be consid-
ered for a content generation and conversion architecture as
well:

� Resource Limitations: Settop-boxes typically have more
limited hardware resources than PC platforms, and a broader
variety of different hardware platforms has to be supported.
In the TV market, older appliances have to be supported for
a longer period of time, and the market saturation with high-
end boxes is usually low. Thus, the resource model of MHP
compliant set-top boxes or personal workstations limits the
design freedom.

� Broadcast Channel Flexibility: The broadcast channel
provides a very high bandwidth, however, it is quite inflexi-
ble in its handling. First, the data has to be sent to the broad-
caster, and a DSM-CC object carousels has to be built up
before the data can be sent out. This implies much higher
reaction times than for instance on the web. Moreover, it
is rather impractical to broadcast personalized content for
each user. For such tasks, the return channel can be used.
The content also has to be prepared in well-sized chunks
and a suitable order so that the application and its data can
be downloaded in one turn of the object carousel. Otherwise
long loading times are the result.

� Return Channel Bandwidth: Compared to the broadcast
capacity, the communication bandwidth of the auxiliary re-
turn channel is rather low.

As such, even though we concentrate on the server-side ar-
chitecture, our work also addresses the design spaces given
by the unique constraints of the MHP standard and MHP
compliant set-top boxes in the context of dynamic content
generation and conversion.

III. XML-BASED ARCHITECTURE FOR DYNAMIC

CONTENT GENERATION AND CONVERSION

In this section, at first, we will present the idea to use
XML as a generic data glue in a content conversion archi-
tecture. Then we will discuss an architecture for publishing



4

and gathering content together with the broadcast architec-
ture presented, and we discuss XML-based content conver-
sion in this context.

A. XML as a Generic and Flexible Data Glue

In a many interactive applications different forms of con-
tent have to be provided. Usually content to be presented on
the web can be given in different formats, different legacy
APIs, and over different channels. The code for conversion
to and from different formats should be reusable, and the
number of conversion should be minimal. Often different
programming languages and programs should be able to ac-
cess the same information base. Ideally, we would be able to
access content that is provided in several different formats
on different channels in a generic, flexible, and reusable
way.

Scripting languages are often called “glueing languages”
because they serve as a behavioral glue to compose compo-
nents. In this section we present the idea to use XML as a
generic data format that serves as a data glue. Of course, we
can also choose other generic (standardized) content repre-
sentation formats that fulfill the requirements of the appli-
cation, such as XSLT, DOM, RDF, etc. The basic idea is to
provide one intermediate representation for all data – in the
same way as scripts glue components – to glue the data of
applications requiring different formats.

In this context, we have to define a task-specific language
on top of XML that defines the presentational objects in a
content provider’s domain. Usually, we define hierarchical
content structure with primitive and compound content ele-
ments. E.g. in the financial news example, the news of a new
CEO for a company can be composed as a composite stock
news with title and picture of the new CEO in the header, a
formated text fragment that is loaded from the content cache,
and links to the data sheet of the stock item in the footer.
<stockNews stockID="851399">
<header type="verbose">

<title> A. Nobody employed as new CEO</title>
<picture docID="jpgs/anobody.jpg>

A. Nobody
</picture>

</header>
<formatedText docID="texts/anobody1.xml"/>
<footer>

<seeAlso docID="stocks/851399/dataSheet.xml">
Current stock price and data sheet

</seeAlso
</footer>

</productPage>

The Composite structure provides an information archi-
tecture that follows the structure of the XML files. In Figure
3 an excerpt of the information architecture for stock news
pages is shown. If the parser finds a new XML node, the
responsible class is instantiated, and the new object handles
the arguments and inner nodes. Each compound node class
has a set of constraints that determine which inner nodes
can be accepted. For instance, a “watch list” can have a “see

also” link to a “stock news” page but cannot have the “stock
news” page itself as a list child. If the constraint is violated,
a central content gatherer (see next section) returns an error
message that can be displayed by the content editor’s tool.
The xoXML and xoRDF parsers, discussed in [12], provide
an automated architecture for building up such object trees
with constraints from XML files.

Usually, we would integrate the generic, domain-specific
content format in XML with an information architecture fol-
lowing the XML hierarchy. That is, a Composite [6] struc-
ture is built to model the information architecture required
to support XML elements as classes. Here, we define com-
pound classes for stock news, header, and footer, and leaf
classes for title, formated text, picture, and see also links.

Using XML as a generic content format has the advan-
tage that XML allows for integrating content from heteroge-
neous sources. It reduces the necessary number of convert-
ers from

� ��� converters to
�

input format converters plus
� target format converters. Conversions can be applied au-
tomatically. XML is a basics to implement an efficient con-
tent conversion and generation architecture in the context of
multiple formats and channels, since fragments can be cre-
ated and cached. Content editors can edit and understand
the XML files, and thus, they can define page constructions
with a simple format and without programming. Graphical
tools can easily be written. By adding new classes content
formats can be customized to new domains. This is very
important for a business TV content provider who has to
customize applications rapidly for different customers.

However, there are also a few liabilities in using XML
for content integration. The format and its information ar-
chitecture have to be defined centrally, thus, as applications
evolve, it may be hard to evolve the XML format non-
centrally (in a distributed and collaborative working envi-
ronment). Therefore, initial formats have to be well de-
signed for the particular domain, and extension processes
have to be defined. Conversion can mean to loose informa-
tion if the expression power of other supported formats and
the XML format vary. For unknown documents it may be
hard to guess automatically which parts of the XML format
conform to which part of the unknown document.

B. Integration with the Broadcast Architecture

In the previous section we have proposed to generically
define the content with XML and to integrate it with the in-
formation architecture by using Composite classes. As a
next step, we have to integrate this business logic architec-
ture with the broadcast architecture from Section II-B. That
is, we have to discuss how content is stored and managed,
how necessary conversion can be triggered by the broad-
cast architecture, and how other channels can be integrated.
For these tasks we require central instances that handle cen-
tral content publishing and gathering tasks, content caching,



5

DocumentFragment

CompoundFragment LeafFragment

StockNews Picture TitleHeader FormatedText SeeAlsoFooter... ...

Fig. 3. Composite Structure for the Stock Information Example

conversion to the generic XML format, and conversion from
the generic XML format to target formats.

In Figure 4 we see a schematic overview of content man-
agement and conversion on basis of XML. A central con-
tent publisher can be accessed by different content manage-
ment and creation tools. The gatherer accepts content in the
generic XML format, or content in any other formats for
which a converter to the generic XML format is available.
Then conversion is triggered, and the content is stored in the
content cache. A central content publisher allows for retriev-
ing content. It may be triggered by different clients, includ-
ing the broadcast architecture that builds up the DSM-CC
object carousel, and thus, delivers content to MHP clients.
Other platforms are also integrated such as web or mobile
device clients. Again, content conversion may have to be
triggered.

Often content creation and conversion may be triggered
without a request as well. For instance, the cache can
pre-calculate certain elements according to certain caching
rules. Content change detection and propagation have to find
and invalidate cached elements that are not valid anymore.

Besides conversion, we also dynamically create (parts
of the) content. Here, we will discuss three alternatives:
fragments, content format templates, and constructive ap-
proaches. To impose common styles, portal layouts, and
other customizations of interdependent content, page tem-
plates can be used. The parts of an integrated architecture
for content creation and conversion are depicted in Figure 4.

C. Dynamic Content Conversion

The architecture based on publisher and gatherer does not
rely on certain conversion technologies or concepts. There
are different alternatives for XML-based conversion. In
general, at first, we have to convert input formats to XML
(some input formats such as images may not be converted
but stored in the input format). The gatherer allows us to
access the documents in the generic data glue format. In
three steps other formats may be generated on request from
the XML representation stored in the content cache: XML
input processing, conversions, and XML output processing.
The result may be stored in the content cache again (e.g. af-
ter change propagation and update), or the result is directly

delivered in the target format.

XML input processing means to parse and validate the
XML text. After parsing, the relevant information has to be
recognized and/or searched in the XML document. Once the
information is located it can be extracted and connected to
the business logic. After performing conversions using the
business logic, or with the internal (e.g. DOM tree based)
representation, or by applying XSLT style sheets, we can
either recreate XML text or other target formats during XML
output processing.

Given that we use XML as a generic representation for-
mat, we have to convert the input formats to XML, and XML
documents to the target formats. Of course, some target for-
mats may also be input formats, and XML may also be input
or target formats. For some conversions input and target for-
mat may also be identical, say, if an XML document has to
be convert from one DTD to another one. E.g. in the finan-
cial sector there are different content management tools pro-
ducing different XML output, and there are multiple propri-
etary formats. The XML information architecture provides
a common ontology, and on the content converters it is de-
fined how to map each individual input format ontology to
the common one. Of course, there may be lossy conversions
and other related problems that have to be fixed. In the con-
tent provider business, a possible solution is to provide semi-
automatic converters that “guess” an ontology mapping, and
learn from content editor corrections.

In the XML context, in general, there are three different
models to handle XML processing:

� Event-Based Processing: SAX [10] is a simple API for
event-based parsing of XML text. Expat [2] is an XML
parser that provides another event-based model. In general
event-based parsers produce a flow of events from a given
XML text (like start, end, data of an XML node). Usually,
the APIs are relatively simple, and the memory usage is low.
The basic idea is to catch the relevant events as they are pro-
cessed. Therefore event-based processing is especially well-
suited when the target information has to be accessed only
once.

� Tree-Based Processing: DOM [15] and xoRDF [12] are
models that create a tree-based representation for XML (and
RDF respectively) in memory. Therefore, the document can



6

MHP Client

Content
Gatherer

Content
Publisher

Content
Cache

Content
Management

Tools

Input
Format

Content
Converter

Content
Converter

other channels

Target
Format

XML
Format

XML
Format

Change Detection
and Propagation

Content Format
Builders

Content Format
Templates

Fragments

Page
Templates

D
ynam

ic C
ontent

G
eneration

Fig. 4. Integrated Content Publishing and Gathering with XML

easily be searched and queried using a tree traversal API
for random access in memory. DOM parsing usually suffers
from high memory usage (about 2-3 and more times of the
document size depending on the DOM implementation).

� Rule-Based Processing: In XSLT [3] rules are given that
are to be applied when specified patterns are found in the
source document (which is XML text). These patterns are
specified using the Xpath language. Xpath is used to locate
and extract information from the source document. While
event- and tree-based processing require the developer to
write a program for information extraction, XSLT mostly re-
quires writing style sheets which are themselves XML doc-
uments. Thus non-programmers are (to a certain degree) ca-
pable of writing these rules. However, the non-imperative
model of XSLT is often not well-accepted by developers
used to imperative programming models.

In Table I the three processing models are compared re-
garding their capabilities during XML input processing. As
discussed in the previous section, XML output processing
is required as well in a generic content conversion architec-
ture. The capabilities during XML output processing are
compared in Table II.

In the MHP context, all three models may be relevant, and
therefore, often they have to be combined. Event-based ma-
nipulation is especially well-suited for low-level tasks, such
as integration with dynamic content generation (see next
section). The MHP provides interactive applications, and
in almost any interactive application setting dynamic con-
tent generation is a requirement. Thus, event-based parsing
is important for the developers of the product line architec-
ture. For direct manipulation of the content tree-based and
rule-based content manipulation are well-suited. Tree-based
parsing is often used for visualization of the content struc-
ture, and rules are used for high-level customizations that
are independent of program code. Often developers used to

imperative languages prefer the tree-based model, whereas
the rule-based model can be used for direct manipulation by
non-programmers.

Many XML processing architectures use a scripting en-
gine as well. To a certain degree an XSLT engine can be seen
as a scripting engine, however, for many behavioral modi-
fications an imperative scripting language is usually better
suited and more accepted by developers. A scripting engine
can be used with all processing models to ease API access,
glue different components, and enable rapid behavioral cus-
tomizations.

IV. DYNAMIC CONTENT GENERATION

In the MHP context, often the same content has to be pro-
cessed for one of the MHP formats and for formats of other
platforms as well. Sometimes the same format has to be
supported in different variants, say one XHTML page pro-
cessed for display on a TV set and one HTML page for dis-
play in a web browser. The content target format has to be
generated from the generic XML representation on request.
Sometimes parts of this generation have to be performed on-
the-fly because the content contains dynamically changing
elements, other parts can be cached. Ideally we would be
able to abstract from specifics of the content format in the
business logic code so that an application programmer and
content creator has not to be aware of these specifics.

To resolve these problems we basically have two differ-
ent choices: we can abstract from content formats by using
only an abstract interface of content elements, and construct
a generic representation using these elements. As an alter-
native we can use a template-based approach; that is, we
can integrate meta-information in the XML content repre-
sentation that are replaced with dynamic content later on,
or we can provide different fragments that are composed to



7

Event-Based Tree-Based Rule-Based
Parsing Model Generating events (node Building up a node tree (using Using tree and event-based processing

start, end, and data) event-based processing)
Extracting content Event catching Tree Traversal API Getting content with XPath statements
Searching content Event catching API for content extraction Getting content with XPath statements

TABLE I

XML INPUT PROCESSING: COMPARISON OF THE PROCESSING MODELS

Event-Based Tree-Based Rule-Based
Creating the Processing Generating events as Factory methods of the tree XSL statements
Representation method calls (hand-built)
(Re-)creating XML text Customizing event handler Custom tree traversal XSL output

methods (hand-built) class (hand-built) method statement

TABLE II

XML OUTPUT PROCESSING: COMPARISON OF THE PROCESSING MODELS

complex pages. In the MHP context, a constructive, pro-
grammatic approach is usually used by developers of the
product line and for building user tools. Templates can be
used by content editors for specify dynamic content without
programming. Fragments have to be combined with both
approaches to build pages efficiently from smaller building
blocks, and for integration with content caching. The issues
discussed in this chapter are discussed in more detail in [16].

A. Constructive Approach: Content Format Builder

To construct a variety of different content formats with
one generic interface, we can provide an abstract content
format builder class that determines the common denomi-
nator of the used interfaces. Then we build special classes
that implement this interface for each supported content for-
mat, as well as special methods (e.g. callbacks) for required
specialties. For instance, we can derive one content format
builder for HTML on the web, one for XHTML on the TV
set, one for a Java-based Havi Level 2 User Interface ac-
cording to the MHP specification, etc. Thus, in this ex-
ample, Java code is generated that represents the same user
interface as provided by the HTML forms in the two HTML
representations.

The content format builder classes’ instances enable the
application to incrementally build up pages according to the
content format. For each page a result can be retrieved as
well. Usually we would provide different abstractions, such
as menus, forms, lists, etc., that can be supported by each
specific content format. Of course, some elements provided
by one content format have to be ignored by others. This
way limited content formats, say, for a WAP platform or
other mobile devices, can be supported as well. As a draw-
back, to a certain degree we limit the user interfaces to the
common denominator of the involved formats, or we have to
program more advanced functionality for the less advanced
formats by hand.

Usually for each content format element we have methods
for starting and ending the element, so that elements may
be placed in between. The content format builder is either a
Composite [6] object that is built up incrementally, or a hier-
archally structured list. Content format builders generically
build up content formats; thus, they are a generic construc-
tive approach. In contrast, content format templates are a
generic template-based approach for the same problem.

B. Template-Based Approach: Content Format Templates

As an alternative, we can provide meta-information re-
garding the user interface construction in the XML files.
These XML files are handled as templates to be converted by
a template engine into the respective content formats. The
content is enriched with user interface meta-information.
Thus a little language has to be defined for specifying the
substitutions to be performed by the template engine. In
some variants this is a whole scripting language. Popular
examples of template languages in the web context are PHP,
ASP, and JSP. In the MHP context, often a domain-specific
template language has to be defined which integrates all sup-
ported new media platforms.

The substitution elements are usually independently com-
puted so that it is hard to reuse recurring elements without
changing the language, and concerns cutting across different
elements are hard to express as well. In most cases a con-
tent format template is faster than a content format builder
performing the same task.

C. Template-Based Approach: Fragments

Generating web pages from dynamic content is costly
in terms of memory and performance as content has to be
fetched from databases and has to be dynamically built.
Both, content format builders and templates therefore may
cause performance problems. Moreover, in typical MHP ap-



8

plications interactive content is composed with static ele-
ments in the same pages. That means, a whole content page
is not a suitable building block of interactive applications
with high hit rates. For interactive applications that are pre-
sented to a broader audience using multiple channels, as it
is usual in the business TV context, high hit rates can be
expected. For acceptance of the service among customers,
quick response times are very important. Moreover, incon-
sistencies of pages have to be avoided.

Therefore, the information architecture should concen-
trate on fragments of pages which can be assembled in dif-
ferent ways, either as raw content, by a content converter, by
a content format builder, or by other fragments. The hierar-
chical nature of fragments indicates that we should use the
classes represented in the generic XML format as fragments
of the information architecture. Each fragment has to have a
unique document ID, and can be stored in the cache. A com-
ponent for content change detection and propagation has to
invalidate cache elements that are inconsistent. The gatherer
has to trigger content change detection and propagation.

D. Page Templates

Often content has to be represented in a common style;
e.g. logos, surrounding frames, style sheets, etc. should be
provided. Some required content changes are not solely ex-
pressible by Cascading Style Sheets (CSS), but require be-
havioral specifications of the changes to be performed. Of-
ten a business TV customer has multiple different portals,
and each portal should appear in a different layout. Nonethe-
less, the same information architecture should be reused for
all portals. Content editors should be able to make changes
to the portal layout without programming.

A page template class [16] has a repository of methods for
imposing customizations on pages during creation of the tar-
get format. Page template methods are triggered by the pub-
lisher, and their results may be stored in the content cache.
Page template classes compose the aspects that are cutting
across a portal’s pages in one computational entity. Styles
and layouts are only one typical customization of interde-
pendent content. Others are, for instance, channel-specific
customizations, specifics for different content formats, and
broadcast sequence order.

Each individual portal is dynamically customized with a
simple XML file that is also stored in the content cache.
This way the overall portal appearance can be dynami-
cally changed by content editors without programming. The
system has to automatically re-parse the XML files upon
changes and propagate inconsistencies. In the design de-
picted in Figure 5 we can see that portal layouts, styles, and
other customizations are handled by a list of page templates.
Those decorate the top-level document fragment that repre-
sents the whole page. The portal page template aggregates
all relevant parts. Upon a request the proper parts for the

page are selected and assembled. Styles are more simple,
and can be implemented by a single object.

This generative architecture on server-side creates static
Java classes, web page forms and/or applets, MMS pages,
etc. In the MHP context, for many requests it is unknown
until runtime which format or template has to be supported.
Dynamic changeability is also important because usually
servers cannot be stopped for changes. End-user customiza-
tion can be enhanced by defining the page template charac-
teristics in separate XML files that are dynamically reloaded
upon changes.

V. SUPPORTING MULTIPLE CHANNELS

Often different requests coming from different clients,
communicating over different channels, have to be sup-
ported. It should not be required to change the business logic
every time a new channel has to be supported or a new ser-
vice is added to the application. In many business systems,
this problem is solved by a Service Abstraction Layer archi-
tecture [14]. A service abstraction layer is an extra layer to
the business tier containing the logic to receive and delegate
requests. Service Abstraction Layer abstracts over different
service providers. The Service Abstraction Layer, in turn,
implements different channel adapters to support calls via
different protocols.

When pages have to be generated dynamically, the Ser-
vice Abstraction Layer may serve for more purposes: it may
be a Message Redirector [7] for indirecting symbolic calls
sent by the server to actual implementations of appropri-
ate document selection, conversion, creation, and deliver-
ing in the target format. In Figure 6 the integration of Ser-
vice Abstraction Layer with the broadcast architecture is de-
picted. Content is either generated by services connected to
backends, or provided by content creation/management sys-
tems. In the Service Abstraction Layer content conversion
and generation is integrated. The Service Abstraction Layer
also “knows” the different channels and corresponding for-
mats, so that the correct content format for the respective
platform is created on request.

Backend
Tier

Business
Tier

Client
Tier

Broadcast
Channel

HTTP
Adapter

WAP
Adapter

Service 1

Service 2

Service 3

MHP
Client

Interactive
Return ChannelB

ro
ad

ca
st

er

S
er

vi
ce

 A
bs

tr
ac

tio
n 

La
ye

r

C
on

te
nt

 R
ep

ur
po

si
ng

an
d 

G
en

er
at

io
n

Content
Management

System

Fig. 6. Service Abstraction Layer Architecture for MHP, Web, and Mobile
Phone Platforms



9

PortalLayoutTemplate StyleTemplatePortalLayout

1
DocumentFragment PageTemplate

*

Style1
...

Style2
...

Portal1 Portal2

* ...

XML File
Portal 1

XML File
Portal 2

XML File
Style 1

XML File
Style 2

Fig. 5. Page Templates for Portal Layout and Common Styles

VI. CONTRIBUTION OF THE CONTENT GENERATION

AND CONVERSION ARCHITECTURE

The architecture presented mainly focuses on abstracting
from given content formats, conversions, content genera-
tion, and new media channels in a generic fashion. It in-
tegrates dynamic content creation components and other be-
havioral elements. However, the other problems and open
issues identified in Section II-C are also tackled to a certain
degree.

Incoming content format conversion is handled by content
converters. The different formats are integrated by XML as
a data glue so that there are ��� � converters to be written
for � input and � output formats, instead of � � � content
converters.

Content format builders, fragments, and templates are
different approaches for abstracting from content format
specifics, if the content has to be generated dynamically.
However, if multiple target formats are integrated, we more
or less limit the design space in the formats to the common
denominator. Content converters handle multiple target for-
mats as well, if only a conversion is necessary. Of course,
content format builders can be used in the converter to actu-
ally implement the format creation.

Using converters, builders, and templates we can asso-
ciate static styles, such as Cascading Style Sheets in HTML,
with the documents as well. The conversion itself can also
impose certain stylistic conventions. If behavior has to be
programmed with the conversion process, we can add page
templates, as proposed in [16].

A Service Abstraction Layer allows us to integrate multi-
ple services over different channels. This way typical other
channels in the digital TV domain, such as the web or mo-
bile devices, can be supported as well.

The generic representation such as XML text is usually
readable and changeable easily, so that, for instance, non-
programmers as content creators can manipulate it without
programming experience. Graphical tools for manipulating
the content have to be written additionally; however, this is a
relatively simple and straightforward task. Existing content

creation and management tools can be integrated as input
formats, however, for a tighter integration more program-
ming efforts are required.

The broadcasting context of the MHP case study imposes
a set of unique issues that can only partly be addressed by
our server-side architecture. For instance, in the architec-
ture presented, the data glueing and conversion aspects are
located on the server side so that the resource limitations
of settop-boxes can be addressed. Thus, the XML parser
and interpreter components do not have to be transfered to
the client, and the costly conversions do not have to take
place during application startup on client-side. However,
this design decision means that we have to cope with the
limited flexibility of the broadcast channel, or have to sent
customization information through the return channel de-
spite limited return channel bandwidth. E.g. if we create
Java classes from the XML text, we have to code all con-
figurations that have to happen on the settop-box into the
generated Java code or send these informations via the re-
turn channel.

VII. RELATED WORK

SysMedia’s Magenta is a content authoring and manage-
ment tool for interactive digital television that also supports
content conversion. As a content management system it
centrally unifies the activities of the content provider from
content development over content management over con-
tent broadcast up to content consumption. That is, it can
read all input types and convert them to output types. It
stores the content and content application templates in cen-
tral repositories. It handles the delivery of the content to
the broadcaster. Here, the content management tool serves
as a lightweight workflow engine unifying all tasks in the
content production and publication chain.

Application generators compose applications by drag &
drop. Several ”components” define building blocks for ap-
plications that can be assembled like movies in a cutter ap-
plication. Naturally, such applications are quite simple and
linear. Thus for very simple television applications, applica-
tion generators, such as 4DL’s 4DAuthor, may be an alter-
native to the architecture proposed.



10

An integrated development environment let us write Java
programs in an editor with syntax high-lighting and other
functionalities. A graphic GUI builder enables us to build
parts of the application by drag & drop, that are simple (like
GUI building) in their semantics, but complex to build in
Java. Studio+ is an example product in the area of digital
television.

In the web context there are quite a few projects that deal
with similar issues as discussed in this paper. For generating
and conversion to HTML these frameworks can be used for
implementing the architecture presented.

Template-based approaches, such as PHP [1], ASP, JSP,
or ColdFusion, let developers write HTML text with special
markup. The special markup is substituted by the server,
thus, a new page is generated, which composes content dy-
namically into the template. These approaches can be used
to implement content format templates. Often web-based
applications require more complex interactions than simply
expressible with templates. Sometimes, the same actions of
the user should lead to different results in different situa-
tions. Most approaches do not offer high-level programma-
bility in the template or conceptual integration across the
template fragments. For recurring design elements, the same
fragments of a template have be implemented redundantly.
Application parts and design are not clearly separated. Tem-
plate fragments cannot be cleanly reused. Complex tem-
plates may quickly become hard to understand and main-
tain. Template languages are more simple than construc-
tive approaches, and thus, easier to understand for non-
programmers. They offer also a higher performance than
constructive approaches.

Custom web servers, such as AOL Server [4], WebShell
[13], Zope [9], the Ars Digita community system [8], or Ac-
tiWeb [11] provide more high-level environments on top of
ordinary web-servers. Often they provide integration with
high-level languages, such as scripting languages, for rapid
customizability. Most often a set of components is pro-
vided which implement the most common tasks in web-
application development. In WebShell [13] a Message Redi-
rector for URL mapping is provided. WebShell constructs
pages from Tcl code and it thus provides a constructive ap-
proach for building up pages dynamically. Actiweb [11]
provides a Service Abstraction Layer architecture with a
Message Redirector for URL mapping. It also provides con-
tent format builders for HTML code.

VIII. CONCLUSION

In this paper we have presented an integrated architecture
for dynamic generation and conversion of content for digi-
tal television platforms. The architecture is well-integrated
with the broader reference architecture for interactive broad-
cast product lines, as presented in Section II-B. Similar ar-
chitectures may be applied for other channels (such as the

web or mobile devices) as well. These other channels are
integrated using a Service Abstraction Layer. The generic
XML format enables a business television provider to define
task-specific languages in the domain of the customer’s busi-
ness. These languages are well-integrated with the informa-
tion architecture. It is not much effort to build graphical
tools for end-users on top of this information architecture,
say, by using reflection functionalities on the business logic
classes. We can build architectures that provide a separation
of concerns between content, styles, formats, and channels.
Therefore, different technological choices can be exchanged
against each other. Different converter, builder, and template
technologies can be integrated so that the most suitable tech-
nology can be applied for each task.

ACKNOWLEDGEMENTS

The work described in this paper has partially be founded
by the TPMHP EU project and an industry cooperation with
the company BetaBusinessTV. The author would like to
thank Kersten Dahl, Michael Goedicke, Gustaf Neumann,
Julius Thiele, and Oliver Vogel for their helpful inputs on
various aspects of the work presented.

REFERENCES

[1] S. S. Bakken and E. Schmid. PHP manual. http://www.php.net/
manual/en/, 1997-2001.

[2] J. Clark. Expat - XML parser toolkit. http://www.jclark.com/xml/
expat.html, 1998.

[3] J. Clark. XSL transformations (XSLT). http://www.w3.org/TR/xslt,
1999.

[4] J. Davidson. Tcl in AOL digital city the architecture of a multi-
threaded high-performance web site. In Keynote at Tcl2k: The 7th
USENIX Tcl/Tk Conference, Austin, Texas, USA, February 2000.

[5] ETSI. MHP specification 1.0.1. ETSI standard TS101-812, October
2001.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1994.

[7] M. Goedicke, G. Neumann, and U. Zdun. Message redirector. In
Proceeding of EuroPlop 2001, Irsee, Germany, July 2001.

[8] P. Greenspun and E. Andersson. Using the ArsDigita community
system. ArsDigita Systems Journal, Feb 1999.

[9] A. Latteier. The insider’s guide to Zope: An open source, object-
based web application platform. Web Review, 3(5), March 1999.

[10] D. Megginson. SAX 2.0: The simple API for XML.
http://www.megginson.com/SAX/index.html, 1999.

[11] G. Neumann and U. Zdun. Distributed web application development
with active web objects. In Proceedings of The 2nd International
Conference on Internet Computing (IC’2001), Las Vegas, Nevada,
USA, June 2001.

[12] G. Neumann and U. Zdun. Pattern based design and implementation
of a XML and RDF parser and interpreter: A case study. In Proceed-
ings of 16th European Conference on Object-Oriented Programming
(ECOOP 2002), Malaga, Spain, June 2002.

[13] Andrej Vckovski. Tcl Web. In Proceedings of 2nd European Tcl User
Meeting, Hamburg, Germany, June 2001.

[14] O. Vogel. Service abstraction layer. In Proceeding of EuroPlop 2001,
Irsee, Germany, July 2001.

[15] W3C. Document object model. http://www.w3.org/DOM/, 2000.
[16] U. Zdun. Dynamically generating web application fragments from

page templates. In Proceedings of Symposium of Applied Computing
(SAC 2002), Madrid, Spain, March 2002.


