
Reengineering to the Web: A Reference Architecture

Uwe Zdun
Specification of Software Systems

Institute for Computer Science
University of Essen, Germany

zdun@acm.org

Abstract

Reengineering existing (large-scale) applications to the
web is a complex and highly challenging task. This is due
to a variety of mostly demanding requirements for inter-
active web applications. Usually high performance is re-
quired, old interfaces still have to be supported, high avail-
ability requirements are usual, information has to be pro-
vided to multiple channels and in different formats, pages
should contain individual layout across different channels,
styles should be imposed over presentation, etc. To achieve
these goals a variety of different technologies and concepts
have to be well understood, including HTTP protocol han-
dling, persistent stores/databases, various XML standards,
authentication, session management, dynamic content cre-
ation, presentational abstractions, and flexible legacy sys-
tem wrapping. In a concrete project, all these components
have to be integrated properly and appropriate technologies
have to be chosen. On basis of practical and theoretical ex-
perience in the problem domain, in this paper, we try to iden-
tify the recurring components in reegineering projects to the
web, lay out critical issues and choices, and conceptually
integrate the components into a reference architecture.

1. Laying out the Problem Domain

Reengineering to the web most often means to develop
an interactive web application that is connected to existing
legacy components or (partly) replaces them. That is, the
legacy application has to be provided with an (additional)
interactive web interface that (a) decorates the outputs of the
system with HTML markup and (b) translates the (e.g. form-
based) inputs via the web browser into the (legacy) system’s
APIs. In our experience, the domain of building interactive
web applications is often underestimated. Thus, in many
upfront designs simplistic architectures and implementation
techniques are chosen that lead to severe maintenance prob-

lems as the web application evolves. Note that some web ap-
plications, developed from scratch, have similar characteris-
tics, therefore, they often face similar maintenance problems
as well.

In Figure 1 we can see such a simplistic three-tier archi-
tecture for interactive, web-based applications. A web user
agent, such as a browser, communicates with a web server.
The web server “understands” that certain requests have to
be handled interactively. Thus, it forwards the request and
all its information to another module, thread, or process that
translates the HTTP request to the legacy system’s APIs. An
HTML decorator has to build up the appropriate HTML page
out of the system’s response and trigger the web server to
send the page to the web client.

Using this simple architecture for a given legacy appli-
cation, we can derive a simple process model for migrating
an application to the web. In particular, the following steps
have to be performed in general. Of course there are sev-
eral feedback loops during these steps, and they are not in
particular order:

� Providing an Interface API to the Web: To invoke
a system’s functions/methods and decorate them with
HTML markup, we first have to identify the relevant
components and provide them with distinct interfaces
(which may, in the ideal case, exist already). These in-
terfaces have to satisfy the web engineering project’s
requirements. To find such interfaces, in general, for
each component there are two possibilities:

– Wrapper: Wrap the component with a shallow
wrapper object that just translates the URL into
a call to the legacy system’s API. The wrapper
forwards the response to an HTML decorator or
returns HTML fragments by itself.

– Reengineered/Redeveloped Solution: Sometimes
it is suitable to reengineer/redevelop a given com-
ponent completely, so that it becomes a purely
web-enabled solution. E.g. this makes sense,

Web
Server

incoming request

Legacy
System

Request
Decoder

call conforming to
legacy system’s APIs

A
P

Is

HTML
Decorator legacy system’s

responseresponse in HTML

Figure 1. Simplistic Three-Tier Architecture for (Re-)engineering to the Web

when the legacy user interface has not to be sup-
ported anymore.

� Implementing a Request Decoder: A component has to
map the contents of the URL (and other HTTP request
information) to the legacy system’s API, or the wrap-
per’s interface respectively.

� Implementing an HTML Decorator Component: A
component has to decorate the legacy system’s or wrap-
per’s response with HTML markup.

� Integrating with a Web Server: The components have to
be integrated with a web server solution. For instance,
they can be CGI-programs, run in different threads or
processes, or may be part of a custom web server.

In our experience, this architecture is in principal apply-
ing for most reengineering efforts to the web and for many
newly developed, web-enabled systems. However, this sim-
ple architecture does not model the major strategic decisions
and the design/implementation efforts involved in a large-
scale web development project well. There are many is-
sues, critical for success, that are not tackled by this simplis-
tic architecture, including: technology choices, conceptual
choices, representation flexibility and reuse, performance,
preserving states and sessions, user management, and ser-
vice abstraction.

In this paper we will survey and categorize critical aspects
in modern web development. Thus we will step by step en-
rich the simple architecture presented above to gather a con-
ceptual understanding which components are required for
reengineering a larger system to the web. The idea is to doc-
ument and integrate the solutions that have shown their suc-
cess in practice. We will use a reference architecture to com-
bine the various elements of the architecture in such a way
that we can incrementally evolve web applications. More-
over, as a side effect, we will build up a framework to cat-
egorize web development environments and packages. An
important goal is to assemble a feature list for mapping re-
quirements to concrete technological and conceptual choices

so that new projects can easier decide upon used technolo-
gies.

In the course of this paper we will explain some exam-
ples from different web development environments, includ-
ing PHP [2], WebShell [21], and ActiWeb [16], to illustrate
how identified features can actually be implemented. Due to
the limited paper length, we cannot give a full technology
overview, thus we use these examples because we feel they
let us easily illustrate a few implementation choices. How-
ever, there are many other great solutions not mentioned ex-
plicitly, and in some projects it may be required to imple-
ment certain functionality from scratch.

First, we will discuss legacy system wrapping, i.e. en-
abling the legacy system to be connected to web compo-
nents. Afterwards, we will summarize the HTTP protocol
handling elements that have to be accessible for a reengi-
neering project to the web. Then we discuss the choices and
implementation variants for dynamic content creation, that
is, content decoration with HTML and ensuring consistent
representation styles. Finally, we will bring these fragments
together and present them in an integrated reference archi-
tecture.

2. Legacy System Wrapping

An important part of migrating a legacy system to the web
is wrapping an existing system. Wrappers are mechanisms
for introducing new behavior to be executed before, after, in,
and/or around an existing method or component. Wrapping
is especially used as a technique for encapsulating legacy
components. Common techniques of reusing legacy compo-
nents by wrapping are discussed in [19]. Moreover, wrap-
pers are often used to extend object-oriented structures, as
discussed in [3]. There are several ways to implement wrap-
pers in object-oriented languages, including simple Adapters
[8] and more sophisticated schemes.

The Component Wrapper pattern [11] accesses a black-
box component using a central placeholder for component

access. A Component Wrapper is a white-box for the com-
ponent’s client and enables us to introduce changes and cus-
tomizations, e.g. with Decorators and Adapters. Therefore,
the pattern is often used for legacy wrapping. During the
process of legacy wrapping in the web context some other
central concerns have to be considered:

� Mapping Calls into the Legacy System: When we have
decoded a URL, we have to look up the responsible
wrapper and invoke it.

� Cross-Cutting Concerns: Some concerns are cutting
across several elements of a legacy interface and/or sev-
eral elements of a business transaction. Since HTTP is
stateless, HTTP requests/responses and business trans-
action elements are usually not synchronous. There-
fore, we have to integrate the wrapped legacy system
with session management and state preservation means.
Since we usually want to decouple such concerns from
the legacy application, they have to be implemented on
the wrapper. There are some high-level techniques for
implementing such wrappers, including Aspects [13]
and interception techniques on the component wrapper,
as discussed in [9].

� Multiple Channels: Often different requests coming
from different clients, communicating over different
channels, have to be supported. It should not be re-
quired to change the business logic every time a new
channel has to be supported or a new service is added
to the application. Wrappers often have to be written
for other channels than HTTP as well. All these wrap-
pers should be integrated, and if possible, code should
be reused.

� Service Abstraction: Often the legacy system provides
multiple services as well. Therefore, there should be an
abstraction for service providers. Again, these have to
be dispatched on the wrapper.

In many business systems, the problems of multiple chan-
nels and service abstraction are occurring together. They are
often resolved by a Service Abstraction Layer architecture
[22]. A Service Abstraction Layer is an extra layer to the
business tier containing the logic to receive and delegate re-
quests. In Figure 2 we can see that the Service Abstraction
Layer abstracts from different service providers, and that it
implements different channel adapters to support calls via
different protocols.

When pages have to be generated dynamically, as it is
required in most interactive web applications, the Service
Abstraction Layer may serve for more purposes: it may be a
Message Redirector [10] for indirecting symbolic calls (e.g.
encoded in an URL string) to actual implementations. This
indirection can be implemented in a configurable way.

Backend
Tier

Business
Tier

S
er

vi
ce

 A
bs

tr
ac

tio
n

La
ye

r

Client
Tier

COM
Adapter

HTTP
Adapter

WAP
Adapter

Service 1

Service 2

Service 3

Service 4

Client

Figure 2. Service Abstraction Layer Archi-
tecture with Service Providers and Channel
Adapters

For instance, in ActiWeb [16] the Message Redirector
maps calls from URLs to web objects. It validates that
the web object is exported and that it exports the targeted
method. Otherwise an error is raised. Moreover, cross-
cutting concerns can be registered here, such as user authen-
tication and other security services.

3. HTTP Protocol Handling

A basics of any interactive, web-based application is
the HTTP protocol [6]. Therefore, an obvious technology
choice, that has to be made, is which web server should be
used. For delivering static web pages only a few forces have
to be considered in the technological decision, such as prices
of web server products, ease-of-use, supported functionali-
ties of the HTTP protocol, performance, and perhaps autho-
rization and logging capacities. As we will see in the remain-
der of this paper, there are a lot of other forces that have to
be considered as well, when web pages have to be gener-
ated dynamically. These vary in different web development
environments and include the support for programming lan-
guages, packages, models of web decoration, means for in-
tegrating with (sub-)systems, persistence/database services,
process/thread models, etc. In this section we will concen-
trate on the differences in HTTP protocol handling with rel-
evance to reengineering to the web.

3.1. HTTP Request Handling

Usually, HTTP request handling is transparently per-
formed by the web server. However, for many task we re-
quire at least a conceptual understanding of this process. Of-
ten we have even to manipulate request handling elements
manually to obtain the desired result. Therefore, it is im-
portant that the chosen server technology offers interfaces to

access and manipulate the vital parts of HTTP request han-
dling.

In many web servers there is some kind of request handler
or worker object that handles an individual request. On reac-
tive servers events, such as client requests, are handled with
a Reactor [18] that dispatches the connection events. A cen-
tral Acceptor in an Acceptor/Connector [18] variant listens
on the port. It establishes a socket connection for incom-
ing requests and creates the request handler, or it invokes the
responsible request handler, if it is already existing. This
architecture is discussed in detail in [15].

There are several parts of such an architecture that web-
enabled components, wrapping a legacy component, may be
interested in:

� URL Handling and Mapping: In an interactive web ap-
plication we have to map URLs to calls understandable
for the legacy system’s API. Important tasks are: en-
coding/decoding URLs (see Section 3.2), form decod-
ing and accessing of form data (see Section 3.3), and
mapping of URLs to calls (see Section 2). Ideally, all
these tasks would be handled automatically by a web
development environment, but often they have to be im-
plemented by hand.

� Error Handling: Each server has to have a form of error
handling, at least to handle the HTTP errors (such as
setting the return code to 404, if a page is not found).
Usually interactive web applications may have custom
error events, and they are possibly able to handle errors
on their own. Thus there should be at least a means to
get and set the error state. E.g. PHP [2] additionally
allows for setting custom error handlers and for writing
to the server’s error log. Sometimes the error handler
can be extended or overloaded as well, as in [15].

� Header Interpreter: For incoming requests the HTTP
header information has to be parsed. It contains the
HTTP method (such as GET, PUT, POST, etc.), con-
tent length, content type, and other header information.
It should be possible for an interactive web application
to retrieve all this information so that, for instance, it
can be used for the URL-to-call mapping decision (see
Section 2). For example, in ActiWeb [16] it is possible
to overload all parts of the header interpretation process
and to retrieve all meta information from the header.
E.g. the mobile code facilities of the framework trans-
parently distinguish ordinary calls from agent migra-
tion by observing these information.

� HTTP Redirect: Some calls should be redirected to an-
other destination. This can be done by creating a redi-
rected request by hand or by using HTTP redirect (as
specified in [6]).

3.2. URL Handling

To let an interactive web application map a given URL to
a call, understandable for the legacy system’s interface, we
first have to decode the URL. For instance, in ActiWeb [16]
web objects are running in so-called places that are unam-
biguously identified by host name and port. All web objects
are also identified unambiguously by an URL. To let object-
oriented calls be invoked using URLs, they are automatically
transformed using the web standard CGI encoding/decoding
(e.g., spaces are transformed to ’+’). The general form for
object-oriented calls via an URL in ActiWeb is:

http://hostname:port/objName+methodName+arguments

The URL Decoder of the place automatically transforms
such URLs into an object-oriented call (see Section 2 for
a discussion of the mapping architecture). To enable embed-
ding calls into responded web pages (e.g. to integrate hyper-
links within a legacy application’s web pages) we have to
generate URLs as well. Thus there has to be a Call Encoder
that encodes a call to the legacy system in an URL.

WebShell [21] allows for converting a given list of key
and value pairs into a CGI encoded URL. PHP [2] only sup-
ports standard URL encoding and decoding, as well as pars-
ing an URL into its fragments. WebShell, PHP, and Acti-
Web support base64 encoding and decoding to transfer bi-
nary data encapsulated in HTTP requests.

An important part of generating URLs is to generate a
self-reference. That is, a string-based identifier to the current
process, object, method, function, etc. has to be obtained to
build up a URL-encoded call to itself. This is required (a) to
build up conceptual entities on the web (such as web objects)
that handle a given task on their own and (b) to avoid hard-
coding of names, IDs, or other identifiers, so that these infor-
mation can change without breaking the application. Both
goals are not well supported in many loosely-coupled CGI
applications but are important for maintaining the system.
“(a)” enables encapsulation and separation of concerns and
thus eases understandability. “(b)” enables changeability of
identifiers. Generating self-references can, for instance, be
automated using introspection or reflection functionalities of
the used programming language (if it supports them).

Every interactive web application requires means to en-
code calls, to decode URLs, and to generate self-references.
Ideally all these tasks would be handled automatically by the
web development environment, however, in many web ap-
plications these important tasks are only hand-coded. This
may lead to considerable efforts during maintenance. For
instance when object or method names change, we have
to search for all occurrences of dependent hand-built self-
references, scattered across the code. It is even worse, if
the schemes of URL decoding or call encoding should be

changed, or if an additional scheme should be support, be-
cause in this cases all occurrences have to be changed at
once. For instance, both Actiweb [16] and WebShell [21]
provide means for automated URL encoding, call decoding,
and self-reference generation.

3.3. URL-Encoded and Multi-Part Form Data

On the web, data, to be transfered to the server, is usually
obtained through forms. Thus, for any web application that
does not only show its information on the web, but is inter-
active as well (i.e., it allows for queries and changes of the
information), the form data has to be transfered to the legacy
application.

In general, form data may be URL-encoded or provided
as multi-part form data. We have already discussed URL en-
coding in the previous section. In principal this mechanism
can be used to append any form data to a URL, like:

http://<base-url>?elt1=content1&elt2=content2...

As described in the previous section, this form can easily
be mapped to arguments of methods in an automated fash-
ion. However, this form of transfer has some limitations.
First, the content is visible on the browser’s location bar.
That means, confidential information may be visible, and the
URLs are cumbersome to edit for the users. Moreover, some
browsers do not accept very long URL strings.

At least when long contents should be transfered (such
as files), multi-part form data should be used. It requires
support for the POST HTTP method and the encryption
type multipart/form-data (see RFC 1867). Moreover,
base64 de-/encoding, supported by most web development
environments, is required to transfer binary data. Multi-part
form data encodes the message in MIME format (see RFC
1521) within the HTTP request.

For example ActiWeb, WebShell, and PHP support both
schemes. ActiWeb and WebShell support a generic evalua-
tion scheme, so that an application does not have to know
which variant is used. In ActiWeb [16] for both variants a
lightweight form data object is created which can be intro-
spected and queried for the form data. In WebShell [21] so-
called form variables are provided, i.e. a link to a specified
global variable. In PHP [2] we have to distinguish the two
forms by hand.

3.4. Session Management and State Preservation

The HTTP protocol is stateless, however, most legacy ap-
plications are at least in part requiring states. For instance,
when a user has to log in and out, there has to be a session
maintained for that time period. To map a stateless client

request properly to the correct session, we have different op-
tions:

� URL Encoding: We can encode vital information, such
as user name and password, in the URL, by attaching
them as standard URL parameters to the base URL.
This works in almost any setting, but we have to be
aware that some browsers have limitations regarding
the length of the URL. Moreover, the information are
readable on the user’s screen, and they are sent in unen-
crypted form. For sensitive applications we have to use
further security measures (see Section 3.5).

� HIDDEN Form Fields: We can embed information in
a form that is hidden from display by using HIDDEN
form fields. However, of course, they are readable as
plain text in the HTML page’s source.

� Cookies: Cookies are a way to store and retrieve in-
formation on the client side of a connection by adding
a simple, persistent, client-side state settable by the
server. However, the client can deactivate cookies in the
user agent, thus, cookies do not work always. Cookies
can optionally be sent via a secure SSL connection.

On server-side the session context has to be kept persis-
tent. Thus, the session management usually requires persis-
tent objects. ActiWeb [16] includes various persistent stores
that transparently make objects persistent. PHP [2] inte-
grates persistent database connections via SQL links. It is
important that the persistent connection has not to be build
up each time a different request handler requires it (e.g. han-
dled through persistent connections). Moreover, it should be
possible to share open connections established earlier. Usu-
ally, sessions have to expire after a while and a re-login is
necessary. If only a user identity has to be preserved, we can
also use only HTTP basic or digest authentication (see next
section).

3.5. Authorization and Encryption

Security issues are relevant to most reengineered web ap-
plications, at least for login with user name and password.
Moreover, secure communication or securing transfered data
is required. These issues have to be tightly integrated with
session management. In general, we require user authentica-
tions and encryption as typical means to secure an interactive
web application, in particular:

� HTTP Basic Authentication: The definition of
HTTP/1.1 [6] contains some means for access control
of web pages, called basic authentication scheme. This
simple challenge-response authentication mechanism

lets the server challenge a client request and clients can
provide authentication information. The basic authen-
tication scheme is not considered to be a secure method
of user authentication, since the user name and pass-
word are passed over the network in unencrypted form.

� HTTP Digest Authentication: Digest Access Authen-
tication, defined in RFC 2617 [7], provides another
challenge-response scheme, that does never send the
password unencrypted, which is the most serious flaw
of basic authentication.

� Encrypted Connection (Using SSL): Using a secure net-
work connection, supported by most servers, we can
secure the transaction during a session.

� URL Encryption: To avoid readability of encoded
URLs we can encrypt the attached part of the URLs.

3.6. Logging, Testing, and Deployment

An important aspect of most web applications is the re-
quired high availability. Usually a web site should run with-
out any interruptions. This has several implications that have
to be considered when choosing technologies, concepts, im-
plementations, etc. At least the following functionalities are
usually required:

� Permanent and Selective Logging: All relevant actions
have to be logged so that problems can be traced. Some
selection criteria should be supported, otherwise it may
be hard to find the required information out of the pos-
sibly large number of log entries. Sometimes (e.g. for
legal reasons) even more information has to be logged,
such as user transaction traces for e-commerce stores.
Thus logging has to be highly configurable. E.g. Web-
Shell [21] supports log filters that distinguish different
log levels and redirect log entries to different destina-
tions, like files, stdout, or SMS.

� Notification of Events: In cases when certain events
happen, such as certain error states, a person or appli-
cation should be notified. For instance, when an error
message is recurring, an email may be sent to the sys-
tem’s administrator.

� Testing: Load generators and an extensive regression
test suite are required for testing under realistic condi-
tions.

� Incremental Deployment: Dynamically loadable com-
ponents enable incremental deployment so that the ap-
plication has not to be stopped to deploy new function-
ality. For such tasks, a highly dynamic programming
language allows for changing functionality on the fly.

Often introspection facilities are required as well to find
out the current architectural setting of the system.

4. Content Creation and Representation

Content creation and representation for the web is usually
the central task of a project dealing with migration to the
web. This seems to be a relatively simple effort, especially
when a given legacy system with a distinct API should be
reengineered to the web. In our experience, this viewpoint is
fundamentally wrong and leads to severe problems when the
resulting system have to be further evolved later on. Often
we find systems in which the HTML pages are simply gen-
erated by string concatenation, such as the following code
excerpt:
DString htmlText;
char* name = legacyObject.getName();
htmlText.append("
 Name: ");
htmlText.append(name);
...

This hard-coding of HTML markup in the program code
may lead to severe problems regarding extensibility and flex-
ibility of content creation. Content, representation style, and
application behavior should be changeable ad hoc.

When the user agent (e.g. a web browser) sends a request
to the web server, the requested page may be available on the
file system of the server or it may be dynamically created. In
this paper we will concentrate on interactive, web-based ap-
plications. However, it is important to consider the balance
between static and dynamic content creation carefully. For a
small web development project it may be acceptable to cre-
ate all pages on-the-fly. For a large-scale project the balance
between static and dynamic content is often crucial. Creat-
ing and delivering an HTML page on-the-fly usually costs
significantly more performance than delivering a static page
from the file system.

In this section, we will discuss two conceptually different
approaches for decorating with HTML markup: template-
based approaches and constructive approaches. Moreover,
web-based applications typically have to represent the busi-
ness logic on the web in a coherent way, say, in a common
representation style. In Section 4.3 we will discuss ensuring
common representation styles.

4.1. Template-Based Approaches

Template-based approaches, such as PHP [2], ASP, JSP,
or ColdFusion, let developers write HTML text with special
markup. The special markup is substituted by the server,
thus, a new page is generated, which composes content dy-
namically into the template. For instance, in PHP the PHP
code is embedded by escaping HTML e.g. by using a special
comment:

<body>
<h1> <?php echo("My PHP Heading\n"); ?> </h1>

</body>

On the first glance, the approach is simple and well-suited
for end-users, say, by using special editors. The HTML de-
sign can be separated from the software development pro-
cess and can be fully integrated with content management
systems.

However, real web-based applications usually require
more complex interactions than simply expressible with
templates. Sometimes, the same actions of the user should
lead to different results in different situations. Most ap-
proaches do not offer high-level programmability in the tem-
plate or conceptual integration across the template frag-
ments. Thus, the same fragments of a template often have
be implemented redundantly. Application parts and design
are not clearly separated. Thus template fragments cannot
be cleanly reused. Complex templates may quickly become
hard to understand and maintain.

Sometimes integration of different scripts can be handled
via a shared dataspace, such as a persistent database con-
nection. Sometimes, we require server-side components for
integrating the scripts on server side.

4.2. Constructive Approaches

Constructive approaches generate a web page on the fly
with a distinct API for constructing web pages. Usually they
are not well-suited for end-users since they require knowl-
edge of a full programming language. However, they allow
for implementing a more complex web application logic.

The most simple constructive approach is the CGI inter-
face [4]. It is a standardized interface that allows web servers
to call external applications with a set of parameters. The
primary advantages of CGI programming are that it is sim-
ple, robust, and portable. However, one process has to be
spawned per request, therefore, on some operating systems
(but, for instance, not on many modern UNIX variants) it
may be significantly slower than using threads. Usually dif-
ferent small programs are combined to one web application.
Thus conceptual integrity of the architecture, rapid change-
ability, and understandability may be reduced significantly
compared to more integrated application development ap-
proaches. Since every request is a new process and HTTP is
stateless, the application cannot handle session states in the
program, but has to use external resources, such as databases
or central files/processes.

A variant of CGI is FastCGI [17] which allows a single
process to handle multiple requests. The targeted advan-
tage is mainly performance. However, the approach is not
standardized and implementations may potentially be less
robust.

A similar approach integrated with the Java language are
servlets. They are basically Java classes running in a Java-
based web server’s runtime environment. They are a rather
low-level approach for constructing web content. In general,
HTML content is created by programming the string-based
page construction by hand. The approach offers a potentially
high performance.

Most web servers offer an extension architecture. Mod-
ules are running in the server’s runtime environment. Thus
a high performance can be reached and the server’s feature
(e.g. for scalability) can be fully supported. Examples are
Apache Modules [20], Netscape NSAPI, and Microsoft IS-
API. These approach often mean to code the web page con-
struction in C, C++, or Java at a fairly low level. Moreover,
most APIs are quite complex, and applications tend to be
monolithic and hard to understand.

Custom web servers, such as AOL Server [5], TclHttpd
[23], WebShell [21], Zope [14], the Ars Digita community
system [12], or ActiWeb [16] provide more high-level envi-
ronments on top of ordinary web servers. Often they pro-
vide integration with high-level languages, such as script-
ing languages, for rapid customizability. Most often a
set of components is provided which implement the most
common tasks in web application development, such as:
HTTP support, session management, content generation,
database access/persistence services, legacy integration, se-
curity/authentication, debugging, and dynamic component
loading. Some approaches, such as WebShell, offer modules
for web servers, as in this case Apache, as well.

WebShell [21] uses global procedures to combine web
pages:

proc dl {code} {
web::put "<dl>"
uplevel $code
web::put "</dl>"

}

To code these procedures we have to interfere with HTML
markup. However, we can avoid it later on when we combine
such procedures to HTML fragments:

dl {
b {My first page}
em {in Web Shell}

}

Here we have created a <dl> list entry with a bold and an
emphasized text in it.

In Actiweb [16] user interface builders are used to build
up pages. Thus we can use the same code to construct pages
for different user interface types. A simple example just
builds up a web page:

HtmlBuilder htmlDoc
htmlDoc startDocument \

-title "My ActiWeb App" \

-bgcolor FFFFFF
htmlDoc addString "My ActiWeb App"
htmlDoc endDocument

We instantiate an object htmlDoc, then start a document,
add a string, and end the document. The user sees no HTML
markup at all. The page is automatically created by the
builder class.

Template-based approaches are usually faster than purely
constructive approaches. Therefore, many approaches com-
bine the template-based and the constructive approach.
However, often the two used models are not well-integrated,
that is, the user has to manually care for the balance between
static and dynamic parts.

4.3. Representation Styles

Representation styles are important to provide a cooper-
ate identity for a set of related pages. E.g. logos, surround-
ing frames, style sheets, etc. should be provided. A simple
way to achieve a consistent style are cascading style sheets
(CSS). However, some required changes to the content are
not solely expressible by cascading style sheets, but require
behavioral specifications of the changes to be performed. A
simple example is that the incoming format is not HTML,
but e.g. HTML fragments or XML. Some systems, such as
the document management system DocMe, directly manipu-
late given HTML files so that they are presented in the style
of their document class.

“Conceptually cleaner” solutions for such constructively
imposed representation styles use intermediate formats, such
as XML, for document description. The representation
styles are themselves defined in a decoupled (and usually
generic) way. For instance XSLT can be used for defining
the transformations independently. The transformer may as
well be a programming language script or class. In [24] a
generic architecture of such transformations is presented that
allows for integrating all these variants.

5. Reference Architecture Overview

In the previous sections, we have identified and described
different parts of viable architectures for reengineering to the
web, and we have described open issue and problems in the
various domains involved. In this section we will combine
these elements to an integrated reference architecture. Fig-
ure 3 shows the interplay of the various components, dis-
cussed in this paper, as a reference architecture overview.
We can see that this more realistic overview of a web engi-
neering architecture is significantly more complicated than
the simplistic web reengineering architecture, as explained
in Section 1.

In the figure we can easily see the different elements of
a web engineering architecture, as they were discussed in
the previous sections. In a reengineering project, usually
we would start up by wrapping one or more essential com-
ponents with Component Wrappers. When other channels
have to be served as well, such as the legacy user interface,
we will most likely introduce a Service Abstraction Layer
to integrate each Component Wrapper as a service. In this
layer, we also compose them with channel abstractions. To
integrate different Component Wrappers and compose them
with the other elements of the reference architecture, often a
Message Redirector is used to indirect calls. Most often is
also triggers (parts of) URL decoding, since URLs are used
as symbolic calls in the Message Redirector. These elements
of legacy component wrapping are discussed in Section 2 in
detail.

Different components are used by these architectural el-
ements to decorate the results with HTML markup and pro-
vide a common representation style (as discussed in Section
4). Moreover, session management, as discussed in Section
3.4 has to be tightly integrated with the components that
wrap the legacy system’s session abstractions (if there are
none, perhaps they have to be implemented in the Compo-
nent Wrapper layer or they can be omitted).

URL decoding, as in Section 3.2, is usually triggered ei-
ther by the Reactor in the HTTP protocol handling compo-
nents or by the Message Redirector. The components should
have a uniform way to receive encoded information such as
form data. The second part of URL handling, call encod-
ing, is usually triggered directly from the components or the
Message Redirector automatically replaces parts of the re-
sults, returned by the legacy components.

The requests are received using the Acceptor and Reac-
tor of the HTTP protocol handling architecture (see Section
3), and are directed to the Message Redirector using a re-
quest handler. The Message Redirector handles the call to
the legacy API and all conversions. After the call to the
legacy system returns, the Message Redirector can send a
resulting HTML page back to the request handler object,
which sends it to the Connector of the web server. More-
over, there are a set of (optional) components for authenti-
cation, secure communication, HTTP redirections, and error
handling integrated.

The reference architecture is a rather conceptual model.
That is, some concrete architectures vary in details, do not
provide certain components, or do provide additional com-
ponents. Having said that, we believe most applications
reengineered successfully to the web and most web devel-
opment environments can be well categorized into the refer-
ence architecture.

In our experience, there are the following main uses of
the reference architecture:

URL Decoding

part-of

hand-coded

automated

hand-coded

automated

Call Encoding

hand-coded

automated

Generating a
Self-Reference

implementation variants

URL encoded

Multi-Part

Form Data

URL encoded

HIDDEN fields

State
Preservation

Cookies

Persistent
Session Context

Session
ManagementURL Decryption

SSL Connection

Basic

Digest

Authentication

Error Handling

Header
Interpretation

HTTP Redirect

Redirections

hand-coded

Reactor Request
Handler

Template-Based

Constructive

HTML Decoration

Representation
Style

Style Sheet

XSLT Based

Script/Class

Service Abstraction Layer

Web Server

Legacy
ComponentA

P
I

Acceptor Message
Redirector

Component
Wrapper

Legacy
ComponentA

P
I

Component
Wrapper

......

URL EncryptionConnector

uses

way of the request

way of the response

Persistence Service

HTTP Error
Handling

Figure 3. Reference Architecture Overview: Bringing a Legacy Application to the Web

� Understanding Web Engineering: Web Engineering
and related disciplines are emerging, but they are not
fully understood yet. In our experience many devel-
opers and projects do not see the challenging issues of
large-scale web development on the first glance. Thus,
first architectures and solutions are often not capable to
cope with typical requirements. In turn, some typical
requirements, such as non-stopping applications, very
high hit rates, significant difference in the content pre-
sented, and multi-channels, are hard to handle during
maintenance, if the architecture is not designed for in-
cremental evolution.

� Categorization of Web Development Environments: In
this paper, we have given a few examples from differ-
ent web development environments to illustrate the de-
scribed functionality. We believe the full range of web
development environments can be categorized in how
far they support each part of the reference architecture.

� A Framework for Conceptual and Technological De-
cisions: In (consulting) projects with the aim of
reengineering an application to the web, the deci-
sion for a concrete web development environment and
estimations of the project duration are rather hard.
This is mainly because the “web wrapper” is highly
application-context dependent. Therefore, it may be
difficult to decide on first glance which components of
the reference architecture are required in which variant.
Moreover, it has to be assessed which web development
environment or package provides which components of

the reference architecture, how different packages can
be integrated, and which components of the reference
architecture have to be programmed by hand. The ref-
erence architecture is (a) designed for incremental evo-
lution, so that such decision can be made stepwise, and
(b) it provides a conceptual framework for discussing
such decisions.

� A Process Model for Bringing Applications to the Web:
As we have already sketched in Section 1 there is an al-
most sequential path (with several feedback loops) for
bringing an application to the web. It is usually more or
less the reverse order of the way a request takes through
the system (see Figure 3). That is, first a component
is wrapped, then it is provided with HTML decora-
tions, forms, and styles, then it is tested on the web,
and finally advanced features, such as authentication
are added. Usually one functionality is brought to the
web at a time, therefore, there are often many iterations
through the same loop. A similar process model can
be found in [1]. This model rather builds on one con-
crete application case study; therefore, some aspect of
the broader model, sketched here, are not tackled.

Note that there are, of course, some severe limitations
for a reference architecture. That is, the reference archi-
tecture only guides us to the important issues in web engi-
neering, but does not replace practical experience. Many
aspects, such as how different packages can be integrated,
how static and dynamic aspects can be balanced, how the
performance can be enhanced, how the memory consump-

tion can be limited, are often highly application dependent.
Moreover, some important aspects are not tackled in this pa-
per, even though they are highly relevant to many web en-
gineering projects. The reason is that some examples, such
as integrating databases and persistence services, are more
general than pure web development (and thus discussed else-
where). Other examples, such as performance evaluations or
scalability issues, are rather technology dependent. But, of
course, all these aspects have to be considered as well in a
concrete web engineering project.

6. Conclusion

In this paper we have identified and discussed the viable
elements of software architectures for bringing a legacy ap-
plication to the web, and integrated the various elements into
an architectural overview. In our experience from several
reengineering projects (and also projects that build web ap-
plications from scratch), the domain of web engineering is
often underestimated in its complexity and diversity. Thus
rather simplistic models, architectures, and implementation
techniques are used for first implementations, what implies
severe problems for maintaining the web application. We
believe, a better understanding of the problem domain in
advance can significantly decrease these problems. The
reference architecture documents the architectural elements
that can be found in numerous successful web applications.
However, it is carefully designed in such a way that it can be
applied incrementally; that is, the architecture has not to be
applied as a whole before it can be used, but additional fea-
tures and components can be added in a stepwise manner.

References

[1] L. Aversano, G. Canfora, A. Cimitile, and A. de Lucia. Mi-
grating legacy systems to the web: an experience report.
In 5th European Conference on Software Maintenance and
Reengineering (CSMR’01), Lisbon, Portugal, Mar 2001.

[2] S. S. Bakken and E. Schmid. PHP manual.
http://www.php.net/manual/en/, 1997-2001.

[3] J. Brant, R. E. Johnson, D. Roberts, and B. Foote. Evolution,
architecture, and metamorphosis. In Proc. of 12th European
Conference on Object-Oriented Programming (ECOOP’98),
Brussels, Belgium, July 1998.

[4] K. A. L. Coar. The WWW common gateway interface – ver-
sion 1.1. http://cgi-spec.golux.com/draft-coar-cgi-v11-03-
clean.html, 1999.

[5] J. Davidson. Tcl in AOL digital city the architecture of a mul-
tithreaded high-performance web site. In Keynote at Tcl2k:
The 7th USENIX Tcl/Tk Conference, Austin, Texas, USA,
February 2000.

[6] R. Fielding, J. Gettys, J. Mogul, H. Frysyk, L. Masinter,
P. Leach, and T. Berners-Lee. Hypertext transfer protocol
– HTTP/1.1. RFC 2616, 1999.

[7] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence,
P. Leach, A. Luotonen, and L. Stewart. Http authentication:
Basic and digest access authentication. RFC 2617, 1999.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[9] M. Goedicke, G. Neumann, and U. Zdun. Design and
implementation constructs for the development of flexible,
component-oriented software architectures. In Proceed-
ings of 2nd International Symposium on Generative and
Component-Based Software Engineering (GCSE’00), Erfurt,
Germany, Oct 2000.

[10] M. Goedicke, G. Neumann, and U. Zdun. Message redirec-
tor. In Proceeding of EuroPlop 2001, Irsee, Germany, July
2001.

[11] M. Goedicke and U. Zdun. Piecemeal migration of a docu-
ment archive system with an architectural pattern language.
In 5th European Conference on Software Maintenance and
Reengineering (CSMR’01), Lisbon, Portugal, Mar 2001.

[12] P. Greenspun and E. Andersson. Using the ArsDigita com-
munity system. ArsDigita Systems Journal, Feb 1999.

[13] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J. M. Loingtier, and J. Irwin. Aspect-oriented pro-
gramming. In Proceedings of ECOOP’97, Finnland, June
1997. LCNS 1241, Springer-Verlag.

[14] A. Latteier. The insider’s guide to Zope: An open source,
object-based web application platform. Web Review, 3(5),
March 1999.

[15] G. Neumann and U. Zdun. High-level design and architecture
of an http-based infrastructure for web applications. World
Wide Web Journal, 3(1), 2000.

[16] G. Neumann and U. Zdun. Distributed web application devel-
opment with active web objects. In Proceedings of The 2nd
International Conference on Internet Computing (IC’2001),
Las Vegas, Nevada, USA, June 2001.

[17] Open Market, Inc. FastCGI: A high-performance web
server interface. http://www.fastcgi.com/devkit/doc/fastcgi-
whitepaper/fastcgi.htm, 1996.

[18] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.
Patterns for Concurrent and Distributed Objects. Pattern-
Oriented Software Architecture. J. Wiley and Sons Ltd.,
2000.

[19] H. M. Sneed. Encapsulation of legacy software: A technique
for reusing legacy software components. Annals of Software
Engineering, 9, 2000.

[20] R. Thau. Design considerations for the Apache server api. In
Proceedings of Fifth International World Wide Web Confer-
ence, Paris, France, May 1996.

[21] A. Vckovski. Tcl Web. In Proceedings of 2nd European Tcl
User Meeting, Hamburg, Germany, June 2001.

[22] O. Vogel. Service abstraction layer. In Proceeding of Euro-
Plop 2001, Irsee, Germany, July 2001.

[23] B. Welch. The TclHttpd web server. In Proceedings of Tcl2k:
The 7th USENIX Tcl/Tk Conference, Austin, Texas, USA,
February 2000.

[24] U. Zdun. Dynamically generating web application fragments
from page templates. In Proceedings of Symposium of Ap-
plied Computing (SAC 2002), Madrid, Spain, March 2002.

