
EnhancingObject-BasedSystemComposition thr oughPer-Object Mixins

GustafNeumannandUweZdun
InformationSystemsandSoftwareTechniques

Universityof Essen,Germany�
gustaf.neumann,uwe.zdun� @uni-essen.de

Abstract

Themanagementof complexity in large systemsis tra-
ditionally focusedon the modeling and managementof
classesandhierarchiesof classes.In order to improve the
compositionalflexibility in large systems,this paper turns
the focuson objectsrather than classes.We will demon-
strate that a more powerfulobjectsystemcaneasethede-
velopmentof large systemsand can improve the degreeof
codereuse. Thepaper introducesa new object-level lan-
guageconstruct,per-objectmixins,for object-basedsystem
composition. It is implementedin the scripting language
XOTCL, which is anextensionof MIT’s OTCL.

Per-object mixins extend the methodchaining mecha-
nismof OTCL with theability to mix classesinto theprece-
denceorder of an arbitrary object. Per-objectmixinscan
be usedto implementstate-specificbehaviorchangesin a
cleanway. We presentper-objectmixinsas a general ap-
proach to hideobjectspecificsfromclientobjectstranspar-
ently.

1. Intr oduction

ExtendedOTCL (XOTCL, pronouncedexotickle) is anex-
tensionof OTCL [22] which is an object-orientedflavor
of the scripting languageTCL (Tool CommandLanguage
[16]). A centralpropertyof TCL is theuseof stringsasthe
only representationof data. For that reasonTCL offers a
dynamictypesystemwith automaticconversion.TCL is ex-
tensiblethroughcomponents,whichareapplicationspecific
extensionstypically writtenin C.All componentsintegrated
in TCL useastringinterfacefor argumentpassingandthere-
fore they automaticallyfit together.

Thecomponentscanbereusedin unpredictedsituations
without change.In [17] and[14] it is pointedout that the
evolving componentframeworksprovide a high degreeof

codereuse,andoffer easyusageandrapid applicationde-
velopment. In the mentionedpapersit is argued that in
scriptinglanguagesapplicationdevelopersmayconcentrate
primarily on the applicationtask,ratherthan investingef-
forts in fitting componentstogether. Therefore,in certain
applicationsscripting languagesare very productive and
canleadto a high-qualitydevelopmentof software.

OTCL preservesandextendstheseimportantfeaturesof
TCL. It offersobject-orientationwith encapsulationof data
andoperations,singleandmultipleinheritance,athreelevel
class systembasedon meta-classes,and method chain-
ing. Insteadof a protectionmechanismOTCL provides
rich read/writeintrospectionfacilities,which allows oneto
changeall relationshipsdynamically(see[22] for details).

TheseOTCL propertiesprovide a goodbasisfor XOTCL

(seeFigure 1). The XOTCL extensionsfocus on mecha-
nismsto managethe complexity that may occur in large
object-orientedsystems,especially when these systems
have to be adaptedfor certainpurposes. Suchsituations
occurfrequentlyin the context of componentframeworks.
In particularweaddedthefollowing support:

� DynamicObjectAggregations, to providedynamicag-
gregationsthroughnestednamespaces(objects).

� NestedClasses, to reducetheinterferenceof indepen-
dentlydevelopedprogramstructures.

� Assertions, to reducethe interfaceand the reliability
problemscausedby dynamictyping and,therefore,to
easethecombinationof many components.

� Meta-data, to enhanceself-documentationof objects
andclasses.

� Per-objectmixins, asa meansto improveflexibility of
mixin methodsby giving an objectaccessto several
differentsupplementalclasses,whichmaybechanged
dynamically.

1

� Filtersasameansof abstractionsovermethodinvoca-
tions to implementlarge programstructures,like de-
signpatterns.

Tcl

Extended OTcl

dynamic aggregations
nested classes
assertions
meta-data
per-object mixins
filter

Adopted from OTcl:

multiple inheritance
method chaining
meta-classes
read/write introspection
dynamic extensibility

Tcl

object-orientation:
 encapsulation
 inheritance

Tcl

namespaces
introspection
extensibility

New Functionalities:

...

Other
Extensions

Figure 1. Langua ge Extensions of XOTCL

Theselanguagefunctionalitiesaim at the management
of complexity. An importanttasksin this scopeis thecom-
positionof objects(and their properties). This paperwill
motivateandexplain the ideathat (in appropriateapplica-
tions) high-level languageconstructsworking of the level
of (single)objectsmaybeusedasabettermeansthanclass-
level constructsfor objectcomposition.Afterwardsthispa-
perdiscussesthenovel object-level languageconstructper-
objectmixin asanapplicationof this idea.In anotherpaper
[15] we useper-objectmixins to implementandlanguage
supportobject-level designpatterns.

2. Object- and Class-Level Constructs

In this sectionwe will give a brief introductioninto the
objectandclassconceptsof XOTCL (refer to [13, 22] for
more details),which are derived from OTCL. Afterwards
wewill introducethedistinctionbetweenobject-andclass-
level approachesandpresentideashow to improvecompo-
sitionabilitieson theobject-level.

2.1. The XOTCL Object and ClassSystem

In XOTCL everyobjectis associatedwith aclassoverthe
class relationship.Classesareorderedby therelationship
superclass in a directedacyclic graph. The root of the
classhierarchyis theclassObject, themostgeneralclass.
A singleobjectcanbeinstantiateddirectly from this class.

Classesarea specialobjectswith the purposeof man-
aging other objects. “Managing” meansthat a classpro-
videsmethodsto createanddestroy instances,and that it
provides a repositoryof methodsfor its instances(“inst-
procs”) to definetheir behavior. Eachclassinheritsbehav-
ior throughsingleandmultiple inheritance. The instance
methodscommonto all objectsaredefinedin therootclass
Object (predefinedor userdefined). Since a classis a
special(managing)kind of object it is manageditself by
a specialclasscalled“meta-class”(which managesitself).
Oneinterestingaspectof meta-classesis thatby providing
a constructor, pre-configuredclassescanbe derived. New
user-definedmeta-classescan be derived from the prede-
fined meta-classClass in order to restrictor enhancethe
abilitiesof theclassesthatthey manage.

All inter-object and inter-class relationships(such as
class, superclass) are fully dynamic and can be
changedat arbitrary times with immediateeffect. Since
classesarealsoobjects,all functionalityapplicablefor ob-
jectscanbeappliedon theclass-objectsaswell (including
theper-objectmixins presentedin thispaper).

2.2. Classesand Composability

Object-orientationorganizesprogramstructuresaround
data,while the objectsarecharacterizedprimarily by their
behavior. Object-orientedprogrammingstyle encourages
the accessof encapsulateddataonly throughthe methods
of theobject,sincethis allows dataabstractions[21]. Cen-
tral propertiesof object-orientationareinheritanceanden-
capsulationof dataandoperations(conventionallyapplied
on class-level). A weaknessis the compositionof objects.
While theclass-level constructsdescribethepropertiesand
the behavior of their instancesin detail, they suffer from
powerfulmeansto expresshow classesandobjectsarecom-
posedand how they are inter-related. One reasonis that
classstructuresarenotfine-grainedenoughfor severalcom-
posabilityissues.

But inheritanceand polymorphismstill imply certain
other problems. Hatton [6] points out that in traditional
object-orientedapproachesthesestwo conceptsdo not fit
the humanreasoningprocessvery well becauseof the im-
plied non-localityproblems. Sinceinheritancebreaksen-
capsulationup to a certaindegree,thequestionwhetherin-
heritanceis neededat all is raised[20]. Object-basedlan-
guages[21] follow thisapproach.For examplethelanguage
Self [19] usesprototypesto combineinheritanceandinstan-
tiation in orderto provide a simpleandflexible alternative
to inheritance.Lieberman[10] proposesdelegationto re-
place traditional inheritance. His idea is that behavioral
sharingbetweenobjectscanbe accomplishedby forward-
ing of message.Weck and Szyperski[20] point out that

2

in orderto ensurecontractsbetweenobjects,e.g.provided
throughassertions(as in Eiffel [12]), encapsulationis es-
sential,but that theencapsulationis brokenby inheritance.
Moreover, assertionsmaybeweakenedby inheritanceand
polymorphism,sincethey have to cover all possiblepoly-
morphicstructures/several differentsubtypes.This forces
theprogrammerto formulateverygeneralassertions,easily
becomingtoo broadfor thedesiredtask1.

Several authorsproposeways how to enhancethe ex-
pressive power of inheritance(e.g.[2, 18]). Concepts,like
designpatterns[5], rather rely on delegation/aggregation
thenon inheritance. The overall problemis, that compo-
sition on the object-level is not suitedby class-level con-
structssufficiently. We introducednew languagefeatures
like the filter [14] andclassnesting,thatoperateon whole
classhierarchies.Thesefeaturesreducethe complexity in
largesystemsradically, but they imply acertaincoarseness,
whenthey shouldwork solelyon singleinstances.

2.3. Enhancing Object Composability

The problems of object composability are discussed
widely. In [11] socalled’inhibitors’ for composabilityare
examined.Currentlythereis alackof aconsistentterminol-
ogy andinsight in therelationsbetweendifferentcomposi-
tion techniques.Compositioninterfacesareneitherflexible
norpredictable.Thecompositionsemanticsdonotdescribe
theintentionof thecompositionclearlyandhinderto man-
agechangepropagation.

Oftenarefinementof class-level constructsto theobject-
level seemsa naturalway to enhanceobject composabil-
ity. In XOTCL suchrefinementsdo exist also in the ba-
sic functionalities.For examplethedynamicclassconcept
of XOTCL allows oneto changethesuperclassrelationship
at arbitrary times. In XOTCL an object can dynamically
switchits classby alteringits class relationship.This “re-
classing”of objectsis anelegantsolutionfor statechanges,
the implementationof a life-cycle, or of objectschanging
roles. The chainingof super-classrelationshipwould not
be fine-grainedenoughfor suchtasks,thereforedynamics
on theobject-andon theclass-level arenecessary.

As statedcommonand new functionalities in object-
orientationwork mainly on the class-level. The consider-
ationspresentedabove justify the ideathat in many cases
class-level constructsmay be supplementedby a similar
constructespeciallytailoredto the object-level. Neverthe-
less, the enhancementof composabilityon class-level is
alsoa valuablegoal. Our approachrelieson the ideathat

1For thesereasonswe introducedassertionson the class-and object-
level to XOTCL (not describedin this paper– see[13]).

objectsandclassesmustentail abilities of similar expres-
sionpower. Ournotionis thatin many conventionalobject-
orientedprogramminglanguagestheobject-level is notcov-
eredenough.Ontheotherhand,theexpressivepowerof the
compositionalprogrammingabilities on class-level is too
weak,whenthestructuresarebecomingvery complex (see
[14] for anapproachto solve thisproblem).

Kiczales[7] pointsoutageneralunderlyingproblem:the
traditionalview on abstractionis insufficient. Theprimary
placefor anabstractionboundaryis betweentheaspectsof
a systemparticular to an implementationand the aspects
commonacrossall implementations.Oftenthis usefulidea
goestogetherwith the sensethat the implementationis to
be completelyhiddenbehindonly one interfacefrom the
client. Unfortunately, severalclientsneeddifferentknowl-
edgeaboutthe implementation,e.g. for performancerea-
sons.Kiczalesproposesopenimplementationsasasolution
to this problem. The goal for the per-objectmixins, pre-
sentedin thenext section,is to offer amorehigher-level so-
lution to thisproblem.We will seethatthey areableto eas-
ily adaptinterfacesin anobject-specificway, aretransparent
for clients,aredynamicallyattached/detached,have access
to their object’s internalsthroughreflective techniques,but
do not let theclient breaktheabstractionboundary.

3. Per-Object Mixins

3.1. Method Chaining

A specialfeatureof XOTCL derived from OTCL is the
methodchaining without explicit naming of the “mixin”
method. It mixesthe same-named(or “shadowed”) super-
classmethodsinto thecurrentmethod(modeledafterCLOS
[1]). A methodcaninvokeexplicitly theshadowedmethods
by thenext-primitive, resultingin anunambiguous,linear
next-path(seeFigure2). Whennoper-objectmixins (or fil-
ters)are involved, the next-pathis identical to precedence
orderof classes.

In thefollowing examplewedefinefour classesandpro-
vide a constructorfor eachof them. Theprimitivenext is
usedto call all constructorsalongthe next-path. A call of
next without argumentspassesall argumentsto the shad-
owedmethod:

Class Room
Class OvalRoom -superclass Room
Class Office
Class OvalOffice -superclass {OvalRoom Office}
Room instproc init args {
[self] set roomNumber 0; next

}
OvalRoom instproc init args {
[self] set diameter 0; next

3

Object

Room Office

OvalRoom

OvalOffice

next

next
next

next

Figure 2. Class Hierarchy and Next-Path

}
Office instproc init args {

[self] set deskType metal; next
}
OvalOffice instproc init args {

[self] set ownerName -; next
}

Whenan object of classOvalOffice is createdthe four
instancevariablesownerName, diameter, roomNumber,
anddeskType aredefinedwith default values.At runtime
the definition of the instancevariablesoccursin the men-
tionedorder. This orderingmechanismis usedfor all inst-
procs.

3.2. Usageof Per-Object Mixins

Per-objectmixinsareanovelapproachof XOTCL to han-
dlecomplex data-structuresdynamicallyonaper-objectba-
sis.Theterm“mixin” is a shortform for “mixin class”.

A per-objectmixin is a classwhich is mixed into the
precedenceorderof anobjectin front of theprecedence
orderimpliedby theclasshierarchy.

As aconsequence,theper-objectmixinsextendthemethod
chainingof a singleobject.

An arbitraryclasscanberegisteredasaper-objectmixin
for anobjectby thepredefinedmixin method.Thismethod
acceptsa list of per-objectmixins to registermultiple mix-
ins. The following definesthe classesA and Mix1 (with
somemethods)andregistersMix1 ontheinstancea of class
A.

Class A
A instproc proc1 {} {

puts [self class]
next

}
A instproc proc2 {} {

puts [self class]
next

}
Class Mix1
Mix1 instproc proc1 {} {
puts [self class]
next

}
A a
a mixin Mix1

Since the per-object mixins extend the methodchaining,
they usethe next-primitive to forward messagesto shad-
owed methods. If a call on object a is invoked, like “a
proc1”, theper-objectmixin is mixedinto theprecedence
orderof theobject,immediatelyin front of theprecedence
orderresultingfrom theclasshierarchy. Theresultingout-
put of theexamplecall is:

::Mix1
::A

The call “a proc2” results in the output “::A”, since
proc2 is not a methodof theper-objectmixin. We extend
the exampleby anotherper-object mixin and constructa
chainof mixins (seeFigure3), e.g.:

Class Mix2
Mix2 instproc proc1 {} {
next
puts [self class]

}
a mixin {Mix1 Mix2}

Sincetheputs commandin proc1 isplacedafterthecall to
next, theoutputof thismethodis generatedafterthemeth-
odsof classA arefinished. The call “a proc1” produces
theoutput:

::Mix1
::A
::Mix2

AMix2Mix1

Object

next

next

nextnext

a

instance-of

per-object
mixin

per-object
mixin

Figure 3. Next-Path with Per-Object Mixins

Mixins may be removeddynamicallyat arbitrarytimes
by handingthemixin methodanemptylist. For introspec-
tion purposeXOTCL offers the mixin option of the info
instancemethod.A commandof theform

4

objNameinfo mixin ?class?

returnsthe list of all mixins of the object,whenclass is
not specified.Thecommandreturns1, if class is a mixin
of theobject,or 0 otherwise.

3.3. Multiple Mixin Classes

Per-objectmixinscancoveracommonproblemwhichis
not solvableelegantlyusingjust classhierarchiesandmul-
tiple inheritance:theproblemof supplementalclasses.Sup-
plementalclassesintroduceadditionalorthogonalfunction-
ality into a classhierarchyof anapplication,which already
performsa commonor basictask.In orderto introducethe
additionalfunctionality, multiple inheritancecan be used.
We will show thatanapproachbasedon per-objectmixins
solvesthisgeneralproblemmoreelegantly.

In orderto introducesupplementalclassesbasedonmul-
tiple inheritance,it is necessaryto definea new class,like
for example:

Class Basic+Add1 -superclass {Add1 Basic}

In languageslikeXOTCL theclasshierarchycanbechanged
in adynamicalmanner, everyobjectof theclassBasicmay
bechangedto classBasic+Add1 atarbitrarytimes,e.g.:

Basic basicObj
...
basicObj class Basic+Add1

Now weconsiderasituationwith two supplementalclasses.
The following setof classeshasto be definedto cover all
possiblecombinations:

Class Basic
Class Add1
Class Add2
Class Basic+Add1 -superclass {Add1 Basic}
Class Basic+Add2 -superclass {Add2 Basic}
Class Basic+Add1+Add2 \

-superclass {Add2 Add1 Basic}

In order to define supplementalclassesbasedon multi-
ple inheritancethenumberof helper-classesrisesexponen-
tial. For � supplementalclasses,�����
	 (or their permuta-
tionsif ordermatters)artificially constructedhelper-classes
areneededto provide all combinationsof additionalmixin
functionality. In general,whensupplementalclassescause
sideeffects,andthey areaddedrepetitiously, thenumberof
constructiblehelper-classesis unlimited.

This demonstratesclearly that thesub-classmechanism
basedon multiple inheritanceprovidesonly a poorway to
mix in orthogonalfunctionality. Therefore,we suggestper-
objectmixins to implementthe supplementalclasses,e.g.
:

Class Basic
Basic instproc someProc {} {
do the basic computations

}
Class Add1
Add1 instproc someProc {} {
do the supplemental computations
next

}
Basic bObject -mixin Add1

Below is a small applicationexample to demonstrate
how to usemixins for multiplesupplementalclasses:

Class Agent
Agent instproc move {place} {
do the movement

}
Class InteractiveAgent -superclass Agent

Supplemental-Classes
Class MovementLog
MovementLog instproc move {place} {
movement logging
next

}
Class MovementTest
MovementTest instproc move {place} {
movement testing
next

}

An Agent classis defined,which allows agentsto move
around.Someof theagentsmayneedloggingof themove-
ments,someneeda testingof the movements,and some
both (perhapsonly for a while). Thesefunctionalitiesare
achieved throughthe supplementalclasses,which we will
applythroughper-objectmixins.

We now createtwo interactiveagents;oneis loggedand
oneis tested:

InteractiveAgent i1
InteractiveAgent i2
i1 mixin MovementLog
i2 mixin MovementTest

At arbitrarytimesthemixins canbechangeddynamically.
For examplei2’smovementscanalsobelogged:

i2 mixin {MovementTest MovementLog}

Figure4 shows the situationof the objecti2 andits next-
path.

Mixins aretransparentfor client objects.Objectspecific
statechangescanbe modeledthroughthe modificationof
the classrelationship. Whenan object switchesits class,
this doesnot affect the supplementalclassesregisteredas
mixins of theobject. But if thesupplementalclasseswere
accessedtroughmultiple inheritance,there-classingof ob-
jects of the samebasic type would have to cover all dif-
ferentderivedtypes. In particulartherewould be onespe-
cializedclassfor eachsupplementalclasscombination(as

5

Object

next

next

Agent

InteractiveAgent

next

MovementTest MovementLog

i2

instance-of

nextnext

per-object
mixin

per-object
mixin

Figure 4. Next-Path for the Agent Example

shown above). In order to known which classof theseis
the correctonefor a certainobject,the objectitself hasto
“remember”its classes’super-classes(andkeepahistoryof
super-classes,if they alsomayhavechanged).

Therefore,whenusingmultipleinheritancetogetherwith
dynamicclassswitching,theobjectsareforcedto storelo-
cal informationof their classes.Suchnon-localitiesbreak
encapsulationagain. Therefore,dynamic object-oriented
environmentsneeda facility to attachclassesto objects
apart from the inheritancehierarchy. From that point of
view per-objectmixins arenecessaryto reachthe primary
object-orientedgoal of encapsulationin dynamicenviron-
ments.

3.4. Call Graph Dependenciesfor the Mixins

A generalproblemin thecontext of mixins arethecall-
ing dependencies:whatkind of othermethodscanbecalled
from a mixed-inmethod.In orderto allow mixin methods
of a per-objectmixin classto accessother(sister)instance
methodsof thesamemixin class(this is necessaryfor more
complex applications)thesystemhastwo alternatives:

A naive approachis, to dispatchthe sistermethoddi-
rectly. Thisapproachhastheconsequencethatthemessage
forwarding mechanismof XOTCL is bypassedand same-
namedmethodsdefinedasobject-specificproc’s become
unaccessible.Another consequenceis that mixins would
not be appliedon calls from other mixins. This strategy
would be an unorthogonalexceptionto the languageand
wasthereforediscarded.

For thesereasonswe decidedto implementa moregen-
eral solution, which dispatchesevery invocationfrom the
mixin asanregularinvocationon theobject.Thisapproach
hasanotheradvantage.Severalapplication,of recursivena-

ture, e.g. recursive computationsor compositestructures,
like thecompositeor chainof responsibilitypattern[5], in-
ducethe usageof a recursive approach.Throughthe dis-
patchalongtheobjectthemixin methodgetstheability to
maprecursionsdirectly. The mixin methodcancall itself
recursively until the recursive taskis ended.Afterwardsit
forwardsthe result usingnext. This avoids the needfor
delegationto otherobjectsin orderto userecursions.

3.5. Per-Object Mixin Inheritance

The usual way to specializedescriptive structuresin
object-orientedlanguagesis inheritance. Sinceper-object
mixins are themselves normal classesit is desirablethat
they can benefit from specializationthrough inheritance.
But this alreadyimplies anotherreasonfor mixin inheri-
tance:sinceper-objectmixins areclasses,instancescanbe
derived directly. It is also desirable,that theseinstances
behave similar to objectshaving the classas a per-object
mixin.

Considerthe following example. An application,like
e.g. a web-browser, needsin several situation a general
meansto receive a data-streamincrementallyandin some
of thesesituations,it hasto measurethetime periodsof re-
ceiving data. The later taskcould be modeledeasilyby a
per-objectmixin, theformerwould mostlikely bemodeled
by aninstantiatedclass.But bothclassesneedthesameab-
stractinterfaceandthe initialization tasks– which arefor
bothclassesthesame– needto beperformedonly onceper
data-stream.

A solutionwould bea generalclassSink, which is sub-
classedto two classes. MemorySink stores/handlesthe
data-stream,while TimeSink handlesthe time measure-
ments(andinheritsfrom Time):

Class Sink
Class MemorySink -superclass Sink
Class Time
Class TimeSink -superclass {Time Sink}
MemorySink s1 -mixin TimeSink

In the usualcaseMemorySink is instantiatedand the in-
stancegets the per-object mixin TimeSink to obtain a
timed memorysink when needed. But both classesmay
beinstantiatedor usedasa mixin.

A difficulty ariseswhenTimeSink is usedas a mixin
class. Both classes(MemorySink andTimeSink) inherit
from theSink class,but with differentprecedenceorders.
It is necessarytp marksuchcommonclassesin thesamehi-
erarchymustbemarked,in orderto avoid doubleexecution
of the inheritedmethods(which canbea probleme.g. for
a destructor).For that taskwe introducedthemixinsin-
herit option,which hasthesyntax:

6

ClassNamemixinsinherit �
����� �����
If this option is turnedoff, mixin-classeswill not inherit
from this class. By default it is turnedon (except for the
generalclassesObject andClass. Withoutargumentit re-
turnsthecurrentstateof theoptionontheclassClassName.
Figure 5 shows the emerging situation for an instanceof
MemorySink, with aTimeSink-mixin andthemixinsin-
herit optionturnedoff onSink. Theoptionhastheeffect,
thattheprecedenceorderfor TimeSink, which would nor-
mally beTime followedby Sink is not used,sincemixins
do not inherit from Sink or Object. Insteada dispatch
alongMemorySink is choosen.Without the option seton
Sink, Sink would be searchedprior to MemorySink (for
someapplicationsthismight bethedesiredbehavior).

Sink mixinsinherit 0
MemorySink sink1 -mixin TimeSink

next

next

Sink

MemorySinkTimeSink

sink1

instance-of

next

per-object
mixin

Time

next

Object

next

Figure 5. Mixin Inheritance Example

3.6. Hiding Object Specifics thr ough Per-Object
Mixins

As shown in the previous examples,per-object mix-
ins act transparentlyfor their client objects. In tradi-
tional object-orientedapproachestwo orthogonaltasksof
oneconceptualentity, like a computationandan (perhaps
graphical)output,wouldbeplacedin two differentobjects.
Suchan usageof objectsfor the purposeof systemmod-
ularizationis one of the fundamentalstrengthsof object-
orientation. Meyer [12] calls this approachobject-based
decompositionandarguesthat many importantaspectsof
softwarequality areachievableby decomposition,suchas
extendibility, reusabilityandcompatibility.

Onedisadvantageof object-baseddecompositionis that
it splits oneconceptualentity (from the client objectpoint

of view) into multipleseparatedentities.Traditionalobject-
orientedapproachesoffer nosupportto combineseveralob-
jects to an entity, without loosing the decomposition.An
importantsub-problemin this context is the self-problem
identifiedby Lieberman[10]. The implementationof the
supplierasseveralobjectsrequiresforwardingof messages,
e.g.thecomputationobjectreceivesa requestfor a compu-
tation andforwardsit to the outputobject. Oncethe mes-
sageis forwarded,the referenceto the receiving computa-
tion objectis lost for theoutputobject(andotherobjectsof
theconceptualentity). Referencesto self refer to thedele-
gatedobject,ratherthanto theoriginal receiver.

Per-object mixins are able to decomposeseveral tasks
of one conceptualentity. They are themselves ordinary
classes.Therefore,they canbe usedfor object-basedde-
compositionandareableto achieveits benefits.Sincethese
classesaremixed into the currentobject’s precedenceor-
der they do not suffer from the self-problem,becauseev-
ery self-referencerefersto the sameobject. This objectin
conjunctionwith its mixins andclassesformsa conceptual
entity for theclient.

Another way object-orientationoffers to form such a
conceptualentity is inheritance. We have alreadyargued
that class-level constructsare too generalto solve every
problemon theobject-level. Furthermore,in thecaseof in-
heritancewe have alreadyshown in Section3.3 a common
examplehow the needfor different supplementalclasses
addedto suppliersletsthenumberof classesriseexponen-
tially. Anotherimportantargumentfor themixin approach
is thatmixins hide the datarepresentationsandalgorithms
they entailfromtheactualobject.Thisleadsto transparency
of mixin actions.Many applicationrequireor benefitfrom
transparency of certainobjectspecificactionsthatdo form
aconceptualentity (from theirpoint of view).

Now wepresentageneralschemehow toapplythemixin
approachsketchedabove in general. The following steps
haveto bedone:

1. Find the main task of the applicationand definethe
(possiblyabstract)applicationclass.

2. Eventuallyspecializetheapplicationclass.

3. Find all possiblesupplementalclassesto the applica-
tion classand implementthemasclasses.Theseare
themixin classes.

4. Add mixin methodsto themixin classes.

5. Registerthesupplementalclassesasneededto the in-
stancesof theapplicationclassesasmixins.

6. Let clientsusetheapplicationobjects,without knowl-
edgeof themixins.

7

4. An Application Case: Simple Persistence
Store

In orderto show how to applytheschemeonarealworld
examplewe presentthe base-linearchitectureof a small
persistencestore. Firstly we needa form of storage.The
persistentstoreshouldbe independentof the chosenstor-
ageform. So,we provide an abstractinterfacefor storage
access,specifiedusingtheabstract instancemethod:

Class Storage
Storage abstract instproc open name
Storage abstract instproc store {key value}
Storage abstract instproc list {}
Storage abstract instproc fetch key
Storage abstract instproc close {}

Afterwards,we derive severalspecializedstoragesfrom it,
e.g.a GNU Dbm databaseaccess,a memorystorage,etc.:

Class GdbmStorage -superclass Storage
Class MemStorage -superclass Storage

A persistencemanageris responsiblefor handlingseveral
persistentobjectsand for opening/closingthe storageac-
cess. It gets the storageas a mixin, in order to be able
to changeit dynamicallyat arbitrarytimesandto provide
differentstorageformsto differentpersistencemanagerob-
jects in the samesystem. Furthermore,the mixin is com-
pletelytransparentsolutionfor storageaccess.

Class PersistenceMgr -parameter {pName [self]}
PersistenceMgr instproc init {} {

[self] mixin GdbmStorage
next
open the storage access
[self] open $[[self] set pName].db

}

PersistenceMgr instproc destroy args {
close the storage access
[self] close
next

}

Finally, we needa generalclass,for handlingthe persis-
tence,andseveral sub-classes,for implementationof per-
sistencestrategies. Here,we presenta lazy strategy only
updatingthestorageat destructiontime andaneagerstrat-
egy for updatingon every variable-writing. Sinceappli-
cationobjectsshouldnot be awareof the persistence,this
a suitabletask for per-object mixins. But since normal
inheritanceand mixin inheritancecooperate,as shown in
Section3.5, we can also derive direct instancesfrom the
Persistent-classes.

Class Persistent -parameters {persistenceMgr}

Persistent instproc persistent {list} {
[self] instvar persistenceMgr
foreach var $list {

lappend [self]::__persistentVars $var
$persistenceMgr fetch [self]::$var

}
}

Aboveweseethemostimportanttasksof thePersistent-
class.It takesa parameterfor associatingtheobjectwith a
persistentmanagerandallows the programmerto specify
the persistentvariablesthroughthe persistent instance
method.Automatically, it re-fetchesthesevariablesat next
instantiationtime.

Now we derive an eagerstrategy that definesa vari-
abletracefor thepersistencevariablesandahandlemethod
vtrace. This method is registered through the TCL-
commandtrace variable as a callback, which is in-
vokedevery time thespecifiedvariablesarewritten.

Class PersistentEager -superclass Persistent
PersistentEager instproc vtrace {name sub op} {
store variable ’name’ in storage
...

}
PersistentEager instproc persistent {list} {
next
foreach v $list {

trace variable [self]::$v w \
[list [self] vtrace]

}
}

Finally, a lazypersistency strategy is achievedby overload-
ing thedestructorof thepersistentobject:

Class PersistentLazy -superclass Persistent
PersistentLazy instproc storeall {} {
store all persistent variables in storage
...

}
PersistentLazy instproc destroy args {
[self] storeall
next

}

Now anapplicationclasscanchosetheappropriatestrategy,
thedefault persistentvariablesandthepersistencemanager
usedfor storageaccessin its constructor, e.g.:

Class AppClass
AppClass instproc init args {
[self] set var1 1
[self] set var2 2
[self] mixin PersistentEager
[self] persistenceMgr p
[self] persistent {var1 var2}
next

}

Still every instancecandynamicallychangethe persis-
tence,e.g.registermoreobject-specificpersistentvariables,
changethe strategy, etc. The mixin solutionactstranspar-
entfor clientobjectsandis definableper-object.In compar-
ison to a similar solutioncombiningsuper-classesthrough
methodchaining,which is alsotransparentfor theinstance,
theclass-hierarchyof theapplicationclasshasnot to beaf-
fectedandinstancescaneasilybecustomized.

8

5. RelatedWork

We firstly will sketch relatedworks regardingthe two
presentedlanguageconstructsand afterwardswe will de-
scribe relatedideasto the notion of object-basedsystem
composition.

5.1. RelatedWork on Per-Object Mixins

We have already discussedthe usageof mixins for
methodchainingin OTCL in Section3.1.Asseenafterwards
themechanismof per-objectmixins functionsthesameus-
ing thenext primitiveandits next-path.TheOTCL mixins
arediscussedmoredeeplyin [22].

Themixinsof OTCL provideanautomaticmethodchain-
ingwithoutexplicit namingof themixin method.They area
veryflexible programmingmechanismand,combinedwith
theunambiguousprecedenceOTCL offers,they avoid name
clashesthrough(multiple)inheritanceatall. Boththeprece-
denceorderandthe ideaof mixins in OTCL areinfluenced
by thelisp extensionCLOS[1].

Thefilter approach[14] is theclass-levelconstructwhich
hasled towardsthe ideaof per-objectmixins. It is defined
asa registeredinstancemethodof a classor meta-class.It
alsousesthe next-path for chainingand is also inherited.
But it is appliedon all calls of all instancesof the regis-
tration classandall its sub-classes,insteadof a limitation
to specificcalls of one instance,asper-objectmixins are.
Relatedwork regardingfilters is discussedin [14, 23]. A
deepercomparisonto thefilter canbefoundin [15].

Thereareseveral extensionsto the ideaof mixins dis-
cussed.In Agora[18] mixinsaretreatedasnamedattributes
of classes.This hasthe consequencethata classcancon-
trol how it is extended.Thereforeit is possibleto constrain
classhierarchiesandto makeextensionsspecificto a class.
As aconsequencesuchkind of mixins maybenested.

Bracha and Cook [2] compare different inheritance
mechanismsand proposemixins as a generalinheritance
construct.Inheritanceis interpretedasmixin composition.
In Jigsaw [3] BrachaandLindstromusemixins to unbundle
the several rolesof classesby providing a setof operators
controllingeffectslike inheritance,name-resolution,modi-
fication,etc.

All mentionedapproachesareworkingontheclass-level
andhave moresimilaritiesto filters thanto per-objectmix-
ins. But they imply themixin characteristicthatmethodsare
only appliedon certainmessages(methodsof the mixins),
andnot on all messages,like in filters. This limits the ex-
pressivenessof mixin classesin comparisonto filters. Since

thesemixins areappliedonly on classestheir granularityis
not fine enoughfor object-level applications.Nevertheless
asa kind of “per-classmixins” they show thesimilarity be-
tweenmixin andfilter in general.

5.2. RelatedWork on Object-BasedComposition

Theideaof enhancingtheroleof objectsis notnew. The
limitations of inheritance(andpolymorphism)andhow to
apply it well are discussedby many authorsfrom several
pointsof view. We have summarizedsomeof thoseideas
in Section2 (in particular: [2, 6, 10, 18, 20]). A power-
ful objectsystemallows the applicationprogrammermore
flexibility and expressionpower. In OTCL [22] thereare
several powerful object-level constructs,like dynamicsin
the classrelationshipandper-objectspecialization.CLOS
[1] enhancesthisflexibility to ahigherlevel. It is oneof the
mostflexible environmentsfor object-orientedengineering.
It is thebasisfor ameta-object-protocol[8], whichprovides
many hooksto influencethebehavior andsemanticsof ob-
jects. Our constructsfilter andper-objectmixin differ sig-
nificantly, sincethey aremorehigherlevel constructs.

In [7] the discrepancy betweenthe software engineer-
ing goal of abstractionshiding their implementationand
the reality of the practiceis examined.Resolvingthis dis-
crepancy, e.g.throughopenarchitecturesor reflective tech-
niques,like introspection,providesa basisfor theusability
of higher level programminglanguageconstructs,like the
presentedper-object mixins. The generalproblemto ad-
dressrequirementsof severalclients,while stayingfocused
enoughfor eachspecificclient,maybesolvedby openim-
plementations[9], which let clientsaccessa module’s im-
plementation.We considerthe per-objectmixin asan el-
egant solution for this problem,sinceit allows per-client
specializationof amodulein a transparentwayandaccom-
plishesthat different client may have different interfaces,
without breakingthe abstractionboundarybetweena sup-
plying moduleandits clients.

All theseideasrun into onegeneraldirection,which is
identified in [4] as a “open-systems-trend”,applying for
operationsystems,databases,communicationsystemsand
programminglanguages.Suchapproachesto opensystems
provide exchangesof objectsin anopenway. Typerestric-
tionsoftenbecomecrucialto beenforcedif theexchanging
partnersaredistributed. Therefore,the intentionto imple-
mentdistributedopensystemsrequirestodelimit class-level
constructsto theobject-level andamoreuniquerepresenta-
tion of objects.To reachthatgoalour solutionpropagates
the string asonly interfacetype, a powerful objectsystem
andspecialobject-level constructs.This way it easesex-
changesof objects. Type safetymay be reintroducedby

9

assertionswhich we alsohave developedasanobject-level
construct(resemblingtheclass-level assertionsin [12]) and
implementedin XOTCL (see[13] for details).

6. Conclusion

This paperhasdescribedthe generalideaof enhancing
object composabilityabilities of programminglanguages
andpresentedmany argumentsfor this idea. A distinction
of two languagelevels, object- and class-level, was used
to distinguishthis approachfrom conventionalapproaches.
We have pointedout thatoften it is possibleto find resem-
bling constructson both levels, tailoredfor the necessities
of their level. Furthermore,we haveshown thattheseideas
go togetherwith a powerful object-andclass-systemasa
basis,e.g.offeringdynamicsandintrospection.

Afterwardswe have verified theseideason the exam-
ple of a new languageconstructs:per-objectmixins. We
have illustrated them with examples from the language
XOTCL, which offersthementioneddesirablepropertiesin
its object-andclass-system.Nevertheless,the generalun-
derlying constructscould be implementedin several other
languagesaswell. Similarly thegeneralnotionof enhanc-
ing objectcomposabilityis well suitedfor mostclass-based
approaches.

XOTCL is available for evaluation from
http://nestroy.wi-inf.uni-essen.de/xotcl/.

References

[1] D. G. Bobrow, L. G. DeMichiel,R. P. Gabriel,S.E. Keene,
G. Kiczales,andD. A. Moon. CommonLispObjectSystem.
In: CommonLisp the Language. http://info.cs.pub.ro/onl/
lisp/clm/node260.html,2ndedition,1989.

[2] G. BrachaandW. Cook. Mixin-basedinheritance.In Proc.
of OOPSLA/ECOOP’90, volume25 of SIGPLANNotices,
pages303–311,October1990.

[3] G. BrachaandG. Lindstrom.Modularitymeetsinheritance.
In Proc. of IEEE International Conferenceon Computer
Languages, April 1992.

[4] S. Demeyer, P. Steyaert,andK. D. Hondt. Techniquesfor
building openhypermediasystems. In Proc. of ECHT’94
Workshop, September1994.

[5] E. Gamma,R. Helm, R. Johnson,andJ. Vlissides. Design
Patterns: Elementsof ReusableObject-OrientedSoftware.
Addison-Wesley, 1994.

[6] L. Hatton.Doesoosyncwith how wethink? IEEESoftware,
May/June1998.

[7] G.Kiczales.Towardsanew modelof abstractionin software
engineering. In Proc. of IMSA’92 Workshopon Reflection
andMeta-level Architectures, 1992.

[8] G. Kiczales,J. desRivieres,andD. Bobrow. TheArt of the
MetaobjectProtocol. MIT Press,1991.

[9] G. Kiczales,J. Lamping,C. V. Lopes,C. Maeda,A. Mend-
hekar, andG. Murphy. Openimplementationdesignguide-
lines. In Proc.of ICSE’97, Boston,May 1997.

[10] H. Lieberman. Using prototypical objects to Implement
sharedbehavior in objectorientedsystems.In Proc.ofOOP-
SLA’86, Portland,November1986.

[11] C. LucasandP. Steyaert. Researchtopicsin composability.
In Proc.of theCIOOWorkshopat ECOOP, Linz, July1996.

[12] B. Meyer. Object-OrientedSoftware Construction. Prentice
Hall, 2ndedition,1997.

[13] G. Neumannand U. Zdun. XOTCL, an object-oriented
scriptinglanguage.Submittedfor publication,1998.

[14] G. Neumannand U. Zdun. Filters as a languagesupport
for designpatternsin object-orientedscripting languages.
In Proc.of COOTS’99,5th Conferenceon Object-Oriented
TechnologiesandSystems, SanDiego,May 1999.

[15] G.NeumannandU. Zdun.Implementingobject-specificde-
signpatternsusingper-objectmixins. Submittedfor publi-
cation,1999.

[16] J.K. Ousterhout.TCL: An embeddablecommandlanguage.
In Proc. of the 1990Winter USENIXConference, January
1990.

[17] J. K. Ousterhout.Scripting: Higher level programmingfor
the21stcentury. IEEEComputer, 31,March1998.

[18] P. Steyaert,W. Codenie,T. D’Hondt, K. D. Hondt,C.Lucas,
andM. V. Limberghen.Nestedmixin-methodsin Agora. In
Proc.of ECOOP’93, LNCS 707.Springer-Verlag,1993.

[19] D. UngarandR. B. Smith.Self: Thepowerof simplicity. In
Proc.of OOPSLA’87, Orlando,December1987.

[20] W. Weck andC. Szyperski. Do we needinheritance? In
Proc. of the CIOO Workshopat ECOOP, Linz, December
1996.

[21] P. Wegner. Learningthelanguage.Byte, 14:245–253,March
1989.

[22] D. Wetheralland C. J. Lindblad. ExtendingTCL for dy-
namicobject-orientedprogramming.In Proc.of theTcl/Tk
Workshop’95, Toronto,July1995.

[23] U. Zdun. EntwicklungundImplementierungvon Ansätzen,
wie Entwurfsmustern,Namensr̈aumenund Zusicherungen,
zur Entwicklungvon komplexen Systemenin einerobjek-
torientiertenSkriptsprache.Diplomarbeit(diplomathesis),
UniversiẗatGesamthochschuleEssen,1998.

10

