Implementing Object-Specific Design Patterns
Using Per-Object Mixins

Gustaf Neumann and Uwe Zdun
Information Systems and Software Techniques
University of Essen, Germany
{gustaf.neumann,uwe.zdun} Quni-essen.de

Abstract

Object-oriented software system composition is tradi-
tionally centered on class-based designs. In this paper
we will take a look onto design issues from an object-
level point of view and discuss the idea to build designs
especially tailored for the object-level. Currently the
object-oriented paradigm is still evolving. New ideas,
like design patterns, enhance composability on the class-
level. Based on the example of three design patterns
from [11] (Decorator, Strategy, and Observer) we will
show in this paper how to refine class-level designs at
the object-level.

We believe that the underlying concepts of a program-
ming paradigm and the capabilities of the programming
language should be of comparable expressiveness. Re-
garding the class-level implementation of design pat-
terns, we have introduced a language construct called fil-
ter, providing a powerful language support for class-level
patterns. Similarly, in order to implement the object-
level patterns presented in this paper, we use another
language construct, tailored for the implementation on
the object-level, called per-object mixins. This construct
is implemented in the scripting language XOTcL, which
is an extension of MIT’s OTcL.

1 Introduction

Object-orientation is based on the principles of infor-
mation hiding and abstraction through encapsulation
and on specialization through inheritance. This ap-
proach has proven well in reducing complexity of soft-
ware architectures, but unfortunately it still entails cer-
tain obstacles and limitations. Currently a central weak-
ness is the composition of objects. Class-level language
constructs are able to describe the properties and the be-
havior of their instances in detail, but they suffer from
powerful means to express how classes and objects are
composed and how they are inter-related.

The discrepancy between the aim of abstractions hid-
ing their implementation and the reality, where client

objects need access to module internals, is another chal-
lenging problem [14]. The necessity to let a module
address the requirements of several clients, while stay-
ing focused enough for each specific client, entails the
need for a new model of abstraction. Such a model are
open implementations [15], for instances implemented
with meta-object protocols [16].

Reflective techniques, like read/write introspection, in
conjunction with dynamics of object and class-system,
are a solution to allow modules to adapt their descrip-
tive representation to client requirements. A general
problem is, how to access these features properly. Ap-
proaches, like [16] or [22], use a distinction between a
meta-level and a base-level, where the behavior of the
base-level is controlled through meta-objects. This is
a useful but low-level approach. The per-object mixins
used in this paper provide a higher-level interface to let
objects be adapted for client requirements and they are
completely transparent for client objects.

Moreover, they avoid the distinction between meta-
level and base-level. We consider the implied splitting of
the tasks of one design entity into two (or more) objects,
a base-level and a meta-level object, as the biggest dis-
advantage of meta-object protocols. We rather propose
the usage of meta-classes (see [19]) or per-object mixins
in order to be able to decompose base- and meta-part,
while preserving the one design entity as one object of
the implementation.

Another common problem to object-orientation is
that numerous components, with several classes and
all their relationships, have to work in concert. The
evolving complexity of applications makes it difficult for
software engineers to make the right design decisions.
Therefore, it is important to make good designs acces-
sible to other software engineers and this way reusable.
The object-oriented design community proposes design
patterns [11] as a solution to this problem.

Design patterns are a description of situations in
which several classes cooperate on a certain task [26].
They typically can be found in the “hot spots” [25] of
software architectures. Design patterns are collected in
catalogs, like [11, 9]. Most efforts in the literature con-

centrate on cataloging of patterns. By using design pat-
terns, they become a part of the programmer’s paradigm

[2].

Unfortunately, in order to reuse the design experience
represented in the design pattern in an implementation,
the programmer has to recode the pattern for every us-
age. Therefore, the design pattern is no entity of the
programming language. In [3] more problems with de-
sign pattern implementation are investigated, i.e. :

e Traceability: The pattern is scattered over the ob-
jects and, therefore, hard to locate and to trace in
an implementation [26]. We also see the problem of
traceability of run-time structures, induced by the
absence of introspection mechanisms in languages
like C++.

o Self-Problem: The implementation of several pat-
terns requires forwarding of messages, e.g. an object
A receives a message and forwards it to an object
B. Once the message is forwarded, references to self
refer to the delegated object B, rather than to the
original receiver A [17].

e Reusability: The implementation of the pattern
must be recoded for every use.

e Implementation Overhead: The pattern implemen-
tation requires several methods with only trivial be-
havior, e.g. methods solely defined for message for-
warding.

Some approaches, like [2, 3, 10, 12] provide a language
support for design patterns to solve this problem. In [25]
seven meta-patterns are identified that define most of
the patterns of Gamma et.al. [11]. In [19] we have shown
an approach, how to generally language support patterns
based on these meta-patterns, using a new class-level
language construct, called filter.

Filters are instance methods registered for a class C.
Every time an object of class C receives a message, the
filter is invoked automatically. When the filter is reg-
istered, all messages to objects of this class (and all its
sub-classes) must pass the filter, before they reach their
destination object. Therefore, the filter is a very power-
ful language construct. In combination with its rich in-
trospection facilities and the dynamics of filter registra-
tion it is able to achieve a powerful language support for
design patterns, but also has strong meta-programming
abilities and can be used as a general tracing facility.

But this power comes with a certain coarseness, when
applied to the object-level. Generally it is possible to
specialize a filter enough to satisfy every client object’s
requirements. But we think the more intuitive way is, to
provide a language construct, similar to the filter espe-
cially tailored for the object-level. For this task we will

introduce a language construct called per-object mixin
(investigated as a language construct in [20]).

Moreover, we will show that the general idea of refin-
ing class-level constructs to the object-level is not lim-
ited to programming language constructs. Large pro-
gram structures, like class-level design pattern, can also
be transformed into an object-specific pattern. In this
paper we will show such a refinement on the example of
the decorator, strategy and observer pattern [11]. We
will use the new language construct per-object mixin to
implement the object-specific patterns properly. Before-
hand, we give a brief overview of the XOTcL language,
in which we have implemented the per-object mixins.

2 Extended OTcL

Extended OTcL (XOTcL, pronounced ezotickle) is an
extension of OTcL [28] which is an object-oriented flavor
of the scripting language TcL (Tool Command Language
[23]). Generally, there is a fast and high quality devel-
opment of software systems in scripting languages, like
Tcr. Since they offer a dynamic type system with auto-
matic conversion, they become easily extensible through
components (e.g. written in XOTcL, Tcr, or C). All
components use the same string interface for argument
passing and therefore they automatically fit together.
The components can be reused in unpredicted situations
without change. In [24] and [19] it is pointed out that the
evolving component frameworks provide a high degree of
code reuse, and offer easy usage and rapid application
development.

OTcr preserves and extends these important features
of Tcr. It offers object-orientation with encapsulation
of data and operations, single and multiple inheritance,
a three level class system based on meta-classes, method
chaining and rich read/write introspection facilities, al-
lowing the programmer to change all relationships dy-
namically (see [28] for details).

In XOTcL every object is associated with a class over
the class relationship. Classes are ordered by the rela-
tionship superclass in a directed acyclic graph. Classes
are a special objects with the purpose of managing other
objects. “Managing” means that a class provides meth-
ods to create and destroy instances, and that it provides
a repository of methods for its instances (“instprocs”)
to define their behavior. Furthermore, a classes can be
combined through single or multiple inheritance. The
instance methods common to all objects are defined in
the root class Object (predefined or user defined). Since
a class is a special (managing) kind of object it is man-
aged itself by a special class called “meta-class” (which
manages itself). One interesting aspect of meta-classes is
that by providing a constructor, pre-configured classes
can be derived. New user-defined meta-classes can be

derived from the predefined meta-class Class in order
to restrict or enhance the abilities of the classes that
they manage. All inter-object and inter-class relation-
ships are fully dynamic and can be changed at arbitrary
times with immediate effect. Since classes are also ob-
jects, all methods applicable for objects can be applied
on the class-objects as well.

The OTcL properties provide a good basis for XOTcL.
The XOTcrL extensions focus on mechanisms to man-
age the complexity that may occur in large object-
oriented systems, especially when systems-parts have to
be adapted for certain purposes. In particular we added
the following support:

o Dynamic Object Aggregations, to provide dynamic
aggregations through nested namespaces (objects).

e Nested Classes, to reduce the interference of inde-
pendently developed program structures.

e Assertions, to reduce the interface and the reliabil-
ity problems caused by dynamic typing and, there-
fore, to ease the combination of many components.

e Meta-data, to enhance self-documentation of ob-
jects and classes.

e Per-object mizins, as a means to improve flexibility
of mixin methods by giving an object access to sev-
eral different supplemental classes, which may be
changed dynamically.

e Filters as a means of abstractions over method in-
vocations to implement large program structures,
like design patterns.

3 Per-Object Mixins

In this section we will give a brief introduction to
the new language construct per-object mixin, discussed
more deeply in [20]. The construct bases on the method
chaining ability of OTcL, which mixes the same-named
(or “shadowed”) super-class methods into the current
method (modeled after CLOS [5]), without explicit nam-
ing of the “mixin” method. A method can invoke the
shadowed methods by the next-primitive, resulting in an
unambiguous, linear next-path.

Per-object mixins are a novel approach of XOTcL to
handle complex data-structures dynamically on a per-
object basis. The term “mixin” is a short form for
“mixin class”.

A per-object mizin is a class which is mixed into
the precedence order of an object in front of the
precedence order implied by the class hierarchy.

As a consequence, the per-object mixins extend the
method chaining of a single object.

An arbitrary class can be registered as a per-object
mixin for an object by the predefined mixin method.
This method accepts a list of per-object mixins allowing
the programmer to register multiple mixins. The follow-
ing defines the classes A and Mix1 (with a method) and
registers Mix1 on the instance a of class A.

Class A

A instproc procl {} {
puts [self class]
next

}

Class Mix1

Mix1 instproc procl {} {
puts [self class]
next

}
A a
a mixin Mix1

Since the per-object mixins extend the method chain-
ing, they use the next-primitive to forward messages to
shadowed methods. If a call on object a is invoked, like
“a proc1l”, the per-object mixin is mixed into the prece-
dence order of the object, immediately in front of the
precedence order resulting from the class hierarchy. The
resulting output of the example call is:

::Mix1
HH
Object
"~ ~
N
A \ next
next 4
.=~ N ’
’
’ >\ .
Mix1 A
) I

P ! per-object
1 mixin .

4 ' . ,l;]stance-of
Figure 1: Next-Path with Per-Object Mixins

Mixins may be removed dynamically at arbitrary
times by handing the mixin method an empty list. For
introspection purpose XOTcL offers the mixin option of
the info instance method. A command of the form

objName info mixin %class?

returns the list of all mixins of the object, when class
is not specified. The command returns 1, if class is a
mixin of the object, or 0 otherwise.

The usual way to specialize descriptive structures
in object-oriented languages is inheritance. Since per-
object mixins are themselves normal classes they can
benefit from specialization through inheritance. This is
necessary, because, by being normal classes, instances

can be derived directly from them. Without providing
an inheritance ability the behavior of a class as a per-
object mixin would differ from the behavior, when the
class is instantiated. This would be an undesirable in-
consistency to the language.

4 Per-Object Design Patterns

4.1 Implementation through Per-Object
Mixins

The refinement idea of class-level constructs to the
object-level is not only applicable to language constructs
but also to certain class structures. E.g. certain de-
sign patterns are implementable on the object-level. For
the implementation of design patterns on the class-level
we propose the language support through filters as pre-
sented in [19].

A central property of per-object mixins is that they
act transparently for their objects. Therefore, we con-
sider them as a natural way for object-based decompo-
sition [18]. An disadvantage of traditional object-based
decomposition is that it splits one conceptual entity into
multiple separated entities. Traditional object-oriented
approaches offer no support to combine several objects
to an entity, without loosing the decomposition. An im-
portant sub-problem in this context is the mentioned
self-problem [17], since forwarding in a decomposed sys-
tem entails the problem of loosing the self-reference.

Per-object mixins are able to decompose several tasks
of one conceptual entity, without referencing to another
object. Since design patterns often gain from decomposi-
tions, per-object mixins make these patterns conceptual
entities. Therefore, we consider per-object mixins as a
proper implementation of object-level design patterns.

4.2 The Decorator Design Pattern

Figure 2 shows the implementation of the decorator
pattern from [11]. It attaches additional responsibility
to an object. Another way to do so is using inheritance,
but this is inflexible, because the additions would have to
be statically attached. The decorator pattern solves this
problem by defining an abstract component type and by
letting decorators aggregate one such component. The
emerging run-time object structure is a chain of deco-
rators terminated by the concrete component, which is
the object being decorated. The pattern is an alternative
to sub-classing and, therefore, resembles the per-object
mixin. For that reason, this pattern is very easily trans-
ferable to the object-level.

The implementation of Gamma et.al. [11] suffers from
several problems, due to the used language C++. It

Cc

Operation

—

ConcreteComponent

component
Decorator

Operation O---=-4-----]

L

ConcreteDecoratorA ConcreteDecoratorB

Operation

Operati EEET] EEE i !
peration © 1 Decorator::Operation() .

! addedBehaviour()

Operation

addedState addedBehaviour

Figure 2: Decorator Design Pattern [11]

entails the self-problem, since the first decorator is the
receiving object and this reference gets lost through mes-
sage forwarding. The pattern is hard to trace in the
program code and hard to introspect in the run-time
structures. The abstract pattern semantics are mixed
into application classes, therefore, the pattern is hard to
reuse.

Component

0 i RES
peration \ next

* !
1
» ~ onext » ~ next 1

¢ 9 V4

ConcreteDecoratorA | | ConcreteDecoratorB

1
ConcreteComponent

Q Operation
| addedBehaviour

Operation

addedState . bd
7

Operation

_____________ :
addedBehaviour | f NN \
[self] next ' 1 ~ \ per-object mixin

............. ~
1 N \ 7/

) er-object mixin™ A
. per-ob) ~ [componentObj
next
. -
~ - -

- -

/.
~ instance-of

Figure 3: Per-Object Decorator Implemented with Per-
Object Mixins

Figure 3 shows the per-object decorator implemented
through mixins in general. The component object
has several mixins defined automatically performing the
added behavior. They are combined through next. Af-
terwards the operation is forwarded to the object’s class
and is resolved in original precedence order. All oper-
ation calls are performed on the same object, so this
solution does not suffer from the self-problem. Since
mixins are a language construct they are easy to reuse.
Furthermore, they are introspectable, so the pattern is
traceable in the run-time structures.

As an example we will implement an Image class which
is decorated by a scrollbar and a menu. We create the
three necessary classes. At first we build an abstract
component type Widget for all three classes, using the
abstract instance method. For the sake of simplicity we
give the classes only one (unspecified) method draw:

Class Widget
Widget abstract instproc draw args

Class Image -superclass Widget
Image instproc draw args {
do the drawing of the image
}
Class Menu -superclass Widget
Menu instproc draw args {
attach menu to an image
next
}
Class ScrollBar -superclass Widget
ScrollBar instproc draw args {
attach scrollbar to an image
next

}
In order to provide the main window of an image viewer
with a scrollbar and a menu, it is only necessary to in-
stantiate the Image and to specify the decorating classes
Menu and Scrollbar as mixin classes of the object:

Image mainImage -mixin {Menu ScrollBar}

Out of its simplicity and shortness this solution reduces
the complexity of the pattern radically. Moreover, it
does not entail the stated problems like the self-problem,
but all these benefits would also apply on decorators
using filters. The main difference is, it is applied on
the object-level. Only one image is decorated. Without
maintenance of arbitrary structures, like decorator-lists,
or other implementation overhead we can simply create
other Image-instances, which are decorated in another
way. E.g. a zoomed image that needs no menu is created
by:

Image zoom -mixin ScrollBar
4.3 The Strategy Design Pattern

The strategy design pattern [11] encapsulates a set of
algorithms in classes and lets clients use them through
an abstract interface. This way the algorithms become
dynamically exchangeable. Figure 4 shows the pattern
implementation of Gamma et.al.

Context strategy Strategy

Contextinterface Algoritminterface

[$ |

ConcreteStrategyA ConcreteStrategyB ConcreteStrategyC

Algoritminterface AlgoritmInterface Algoritminterface

Figure 4: Strategy Design Pattern [11]

The implementation entails similar obstacles like the
decorator pattern, which are described in [2]. Le. it is
hard to determine in the program code or at run-time
if a class is instantiated as a strategy or as an applica-
tion object. When the strategy object refers to self, it
refers to itself instead of the receiving context object.
The explicit forwarding of messages is an implementa-
tion overhead, where the software engineer has to ex-
plicitly distinguish between containing object and the
strategy objects.

The object-specific implementation using mixins en-
tails none of these problems. Since mixins are not in-
stantiated and form a conceptual entity with the con-
taining object, there is a clear distinction of strategy
part and containing object part, which is introspectable
at run-time. But still the self-problem does not occur.
The forwarding is handled automatically — without nam-
ing of the mixin-method — by the next-primitive of the
language. Figure 5 shows the evolving situation for an
object containingObj1 that is attached to one specific
strategy. Note, that this solution is also applicable if
the strategy depends on the output of the object, since
the strategy computation may be put after the next-call.

next
-

Context & = ~ Strategy

- =p-| Algoritminterface

-
-

f n EX[, *
. ¢

| instance-of ’

| -

|

|

|

|

|

ConcreteStrategyA ConcreteStrategyC

ConcreteStrategyB

AlgoritmInterface

/ 7

/ per-object mixin

containingObj1 ’
— -~

Figure 5: Per-Object Strategy Implemented with Per-
Object Mixins

Algoritminterface AlgoritmInterface

“next
’

As an example we will implement a comparison strat-
egy for strings. For instances, if a parser should parse a
string into a node tree, it has to check which node type
a string to be parsed belongs to. In a language offering
class-objects, an abstract factory for node objects can
question the node class-object, whether a string matches
the type of the node or not, before creating a new in-
stance.

Firstly, we create the abstract interface for nodes that
just specifies an interface for parsing:

Class Node -parameter content

Node abstract instproc parse string
For this example we create two special node types, a
description node, which holds a literal “Description” and
a “or” node holding an “or”-expression.

Class DescriptionNode -superclass Node

DescriptionNode set content "Description"

DescriptionNode instproc parse string {

parse the description string

}

Class OrNode -superclass Node

OrNode set content "|"

OrNode instproc parse string {

parse the or expression string

¥
On both classes the content of the node class is stored
as a class variable. Here, we need two different compari-
son strategies: Literals, like “description”, must exactly
match their content, while expressions, like “or”, must
only contain their content. We implement these com-
parison strategies as classes:

Class ComparisonStrategy
ComparisonStrategy abstract instproc match string

Class Equals -superclass ComparisonStrategy
Equals instproc match string {

[self] instvar content

return [expr {$string == $contentl}]
}

Class Matches -superclass ComparisonStrategy
Matches instproc match string {

[self] instvar content

return [string match $string* $content]

}

If we now register the two comparison strategies for the
corresponding node class-objects, like:

DescriptionNode mixin Equals
OrNode mixin Matches

a factory can query the class-object for a match and
instantiate the proper node class in order to let it parse
the given string, e.g. :

if {[0rNode match $stringl} {
OrNode orNodeObj -parse $string
}

4.4 The Observer Design Pattern

The observer pattern is a solution to the common
problem that a set of depending objects (“observers”)
rely on the state of one or more observed objects (“sub-
jects”). It fulfills the task of notifying all state changes.
Figure 6 shows the observer design pattern as presented
in [11].

observers
Subject Observer
Attach Update
Detach
Notify ©O----- o "7t !
' for all 0 in observes { !
! o->Update() '
'} 1
L
ConcreteObserver pmmmmmmomommmmng
Conr j subject 1 observerState = H
,,,,,,,,,,,,,,,, Update O------1-"| subject->GetState '
GetState O- - - - -1 - J\ : observerState R '
| return st
.

SetState

subjectState

Figure 6: The Observer Pattern [11]

Bosch [2] identifies the problem that the traceability
and resuseability of the pattern suffer from the fact that
the methods attach, detach and notify do not build up
a conceptual entity and that the calls of notify must be
inserted at every point where a state change occurs. In
[19] we present a solution for this problem which is using
filters. In the case that only some observed methods of
a certain set of subjects (and not all subjects of one
type) should be observed, the object-specific solution
presented in this section is more appropriate. When
all the instances of a whole hierarchy (possibly with all

Subject Observer

observedOperationl
~ observedOperation2

3 unobservedOperation T N

next ! ! M
1 / next ' next
\ U]

ConreteSubject ConreteObserver

observedOperationl
observedOperation2

observedOperationl
observedOperation2

observedOperationl [~
observedOperation2

unobservedOperation — N
< -
~ P f
instance-of > < per-object mixin _ next
-
observedObj | _ _ = = = 7

Figure 7: Per-Object Observer Implemented with Per-
Object Mixins

their methods) are depending on the subjects, the filter
solution should be used.

In Figure 7 a solution for an observer using per-object
mixins is presented. The observers are mixins of the ob-
served object and specify a set of observed operations.
Additionally the subjects may contain unobserved oper-
ations.

As an example for this solution we present a network
monitor which observes a set of connections and main-
tains several views on these (e.g. a diagram and a textual
output). This example is strongly resembling the exam-
ple in [19] and should underline the stated differences of
the two language constructs filter and per-object mixins,
which are examined more deeply in Section 5.1.

» .

. g

Diagram * =

. Collector: c1 -

1}

1
TextOutput 4

Collector: c2 -

4
4

Figure 8: Observer Example

In the implementation the class Pinger encapsulates
view and collector classes, the collectors are treated as
subjects of the observer:

Class Pinger

Class Pinger::Collector

Pinger::Collector abstract instproc ping string
Class Pinger::NetCollector -superclass Collector

The operation ping is the network event, which must
be handled by the collector. This is the operation to
be observed. The NetCollector starts the observation

of the network connection in its constructor init. The
constructor is an unobserved operation:

Pinger::NetCollector instproc init args {
set hostName 132.252.180.67
set £ [open "| /bin/ping $hostName" r]
fconfigure $f -blocking false
fileevent $f readable "[self] ping \[gets $£\1"
}
Pinger::NetCollector instproc ping {string} {
handle the network event

}

The two observers:

Class Pinger::Diagram
Class Pinger::TextOutput

must specify an observing ping method. The text output
presentation may look like:
Pinger::TextOutput instproc ping {string} {
puts "PINGER: [self] -- $string"
}

The diagram ping operation will most likely forward the
message to a specified diagram object. For concrete ap-
plications the classes of the observers must be registered
as mixins, e.g. like the situation in Figure 8, where c1 has
one diagram observer, while c2 is observed by a textual
output and a diagram:

Pinger::NetCollector cl -mixin Pinger::Diagram

Pinger::NetCollector c2 \

-mixin {Pinger::TextOutput Pinger::Diagram}

5 Related Work

We firstly will compare the per-object mixin approach
to implement design patterns to our class-level approach
“filter”. Afterwards we will sketch related works from
the literature regarding per-object mixins and finally re-
garding the idea of language support for design patterns.

5.1 Comparison of Filters and Per-Object
Mixins

As shown in [19] filters are able to achieve a reusable
language support for design patterns as programming
language entities. Furthermore it enables running pro-
grams to trace (and manipulate) their structures. This
power has sometimes the disadvantage of a certain
coarseness, when filters should work on single objects.

Consider a situation where only a single method in-
voked on some objects should be observed. The filter
would have to be defined on these object’s classes. In
order to fulfill it’s observation task it would have to check
explicitly on every call to every object of these classes
whether the object is in the set of observed objects or
not. This is an elaborate solution. Moreover, if the set

of observed objects may change dynamically at least a
list of them would have to be maintained. Perhaps there
would have to be different filters for every object. In any
case this would lead to an implementation overhead. All
these problems would not occur when using per-object
mixins.

Generally, a class-level construct aiming at reduction
of complexity in large systems must be able to handle
very broad structures, like entire class hierarchies. For
some problems on the object-level a finer granularity of
the language construct is more appropriate.

Nevertheless, both new language constructs, filter and
per-object mixin contain several similarities. A filter
which contains code for an explicit delimitation of it’s
actions to a certain method of a certain instance of one
class, is relatively equivalent to a per-object mixin. On
the other hand, the same applies for a per-object mixin
which is registered on every instance of a class or hier-
archy and contains methods for all instprocs of the hier-
archy. The elaborateness of both directions emphasizes
the sensibleness of the idea of a distinction of object- and
class-level for language constructs aiming at complexity.

Both constructs use inheritance for specialization,
classes can optionally limit their inheritance abilities,
when applied as per-object mixin (see [20] for details).
The differences, the two constructs entail, make them
well suited for their language level. Per-object mixins
are only applied on calls to one object’s methods which
are defined on the per-object mixin class. The filter han-
dles all calls of all instances of the filtered class and it’s
sub-classes.

On the example of the observer pattern, investigated
in this paper and in [19], it becomes obvious that the
granularity of both language constructs makes them rea-
sonable in usage, depending on the application’s needs.
These should be the basis for the decision which kind of
design pattern, object- or class-level, is to be used. The
decision for the appropriate language construct follows
directly.

5.2 Related Work on Per-Object Mixins

Per-object mixins base on the method chaining mech-
anism of OTcr, discussed more deeply in [28]. The mech-
anism provides an automatic method chaining without
explicit naming of the mixin method. It is a very flex-
ible programming mechanism and, combined with the
unambiguous precedence OTcL offers, they avoid name
clashes through (multiple) inheritance at all. The idea
of mixins in OTcL are influenced by the lisp extension
CLOS [5].

There are several extensions to the idea of mixins dis-
cussed. In Agora [27] mixins are treated as named at-
tributes of classes, in order to let the class control how

it is extended. A central property of these mixins is that
they may be nested. Bracha and Cook [6] analyze dif-
ferent inheritance mechanisms and propose mixins as a
general inheritance construct. Inheritance is interpreted
as mixin composition. In Jigsaw [7] mixins are used to
unbundle the several roles of classes by providing a set
of operators controlling effects like inheritance, name-
resolution, modification, etc.

These approaches use class-level constructs, also re-
sembling the filter approach. But as they use mixin
classes the methods are only applied on certain messages
(methods of the mixins), and not on all messages like in
filters. This limits the expressiveness of mixin classes in
comparison to filters. Since these mixins are applied only
on classes their granularity is not fine enough for object-
level applications. Nevertheless as a kind of “per-class
mixins” they show the similarity between mixin and fil-
ter in general.

There are some other class-level concepts, with the
ability to intercept and then change, redirect, or other-
wise affect messages. The composition filter model [1]
introduces the idea of a higher-level object interaction
model through abstract communication types (ACTSs).
This idea was adopted by some approaches in the area
of distributed computing, e.g. like Orbix filters [13].

5.3 Related Work on Design Pattern Im-
plementation

Soukup [26] and Bosch [3] have identified problems
in the implementation of popular design patterns [11].
Hedin [12] presents an approach to implement design
patterns based on an attribute grammar in a special
comment marking the pattern in the source code. This
addresses the problem of traceability. The comments as-
sign roles to the classes, which constrain them by rules.

The FLO-language [10] introduces a new component
“connector” that is placed between interacting objects.
The connectors are controlled through a set of inter-
action rules that are realized by operators. It is also
centered on messages exchanges.

The LayOM-approach [2] is an approach for language
support for design pattern, partially resembling the fil-
ter, since the approach is centered on message exchanges
as well. It puts layers around the objects which handle
the incoming messages. Every layer offers an interface
for the programmer to determine the behavior of the
layer through a set of operators which are (statically)
given by the layer definition.

These approaches are class-level approaches and
therefore suffer from the stated problems regarding the
object-level composability. In [4, 3] a composition tech-
nique, called superimposition is proposed as a language
support for implementation of frameworks. It composes

the different behavioral roles a component has to play
into one single entity. In conjunction with the layers
this approach should also allow the software engineer
to implemented a design pattern object-specific, in the
sense that it is able to let supplier objects play differ-
ent roles for different client requirements. Therefore, we
think object-level design pattern should be easily im-
plementable using this approach, but in comparison to
per-object mixins this class-level approach seems to suf-
fer from being static and offering no introspection.

6 Conclusion

In this paper we have argued for a stronger focus
on composability issues regarding the object-level and
explained several obstacles in object-oriented program-
ming. We solved these by introducing flexible and fine-
grained language constructs. In particular we presented
the high-level programming language construct of per-
object mixins, and showed its well-suitedness for object
composition.

After this introduction we investigated in the appli-
cation of the language constructs for design patterns,
which are class-based. For three example patterns we
presented object-level equivalents. We give application
examples implemented via per-object mixins. This way,
we have shown how to implement these new patterns
in a way that they are object-specific, transparent for
the client object and not suffering from the stated set of
deficiencies occurring in traditional design pattern im-
plementations.

For most class-level design patterns, e.g. those in cat-
alogs like [11, 9], it should be possible and make sense to
find an object-specific representation. The subset of pat-
terns that rely on message exchanges, i.e. the patterns
relying on the meta-patterns of Pree [25], should benefit
from being implemented using per-object mixins, when
the pattern is applied on the object-level.

XOTcL is available for evaluation from

http://nestroy.wi-inf.uni-essen.de/xotcl/.

References

[1] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, A.
Yonezawa: Abstracting Object Interactions Using
Composition Filters, ECOOP 93, 1993.

[2] J. Bosch: Design Patterns as Language Constructs,
Journal of Object Oriented Programming, also
available as http://bilbo.ide.hk-r.se:8080/~bosch/,
1996.

[3]

[4]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

J. Bosch: Design Patterns and Frameworks: On the
Issue of Language Support, LSDF’97, also available
as http://bilbo.ide.hk-r.se:8080/~bosch/, 1997.

J. Bosch: Composition through Superimposition,
ECOOP 96 Workshop on Composability Issues in
Object-Orientation (CIOO ’96), 1996.

D.G. Bobrow, L.G. DeMichiel, R.P. Gabriel, S.E.
Keene, G. Kiczales, D.A. Moon: Common Lisp
Object System. In: Common Lisp the Language,
2nd Edition, http://info.cs.pub.ro/onl/lisp/clm/
node260.html, 1989.

G. Bracha, W. Cook: Mizin-Based Inheritance, in:
Proc. of OOPSLA/ECOOP ’90, special issue of
SIGPLAN Notices, Vol. 25, No. 10, October 1990,
pp. 303-311.

G. Bracha, G. Lindstrom: Modularity Meets Inher-
itance, in: Proc. of IEEE International Conference
on Computer Languages, April 1992.

S. Demeyer, P. Steyaert, K. De Hondt: Techniques
For Building Open Hypermedia Systems, ECHT 94
Workshop, Edinburgh, September1994.

F. Buschmann, R. Meunier, H. Rohnert, P. Som-
merlad, M. Stal: Pattern-oriented Software Archi-
tecture — A System of Patterns, J. Wiley and Sons
Ltd, 1996.

S. Ducasse: Message Passing Abstractions as
Elementary Bricks for Design Pattern Im-
plementations, LSDF’97, also available as
http://bilbo.ide.hk-r.se:8080/~bosch/1sdf/, 1997.

E. Gamma, R. Helm, R. Johnson, J. Vlissides:
Design Patterns: FElements of Reusable Object-
Oriented Software, Addison-Wesley, 1994

G. Hedin: Language Support for Design Patterns
using Attribute FExtension, LSDF’97, also avail-
able as http://bilbo.ide.hk-r.se:8080/~bosch/lsdf/,
1997.

IONA Technologies Ltd.: The Orbiz Architecture,
August 1993.

G. Kiczales: Towards a New Model of Abstraction in
Software Engineering, in: Proc. of IMSA’92 Work-
shop on Reflection and Meta-level Architectures,
1992.

G. Kiczales, J. Lamping, C. Videira Lopes, C.
Maeda, A. Mendhekar, G. Murphy: Open Imple-
mentation Design Guidelines, in: Proc. of ICSE’97,
Boston, May 1997.

G. Kiczales, J. des Rivieres, D.G. Bobrow: The Art
of the Metaobject Protocol, MIT Press 1991.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

H. Lieberman: Using Prototypical Objects to Im-
plement Shared Behavior in Object Oriented Sys-
tems, in: Proc. of OOPSLA ’86, Portland, Novem-
ber 1986.

B. Meyer: Object-Oriented Software Construction —
Second Edition, Prentice Hall, 1997.

G. Neumann, U. Zdun: Filters as a Language Sup-
port for Design Patterns in Object-Oriented Script-
ing Languages, in: Proc. of COOTS’99, 5th Confer-
ence on Object-Oriented Technologies and Systems,
San Diego, May 1999.

G. Neumann, U.Zdun: Enhancing Object-Based
System Composition through Per-Object Mizins,
submitted for publication, 1999.

G. Neumann, U.Zdun: XOTcL, an Object-Oriented
Scripting Language, submitted for publication,
1998.

A. Oliva, L. E. Buzato: Design and Implementation
of Guarana, in: Proc. of COOTS’99, 5th Conference
on Object-Oriented Technologies and Systems, San
Diego, May 1999.

J. K. Ousterhout: Tcl: An embeddable Command
Language, in: Proc. of the 1990 Winter USENIX
Conference, January 1990.

J. K. Ousterhout: Scripting: Higher Level Program-
ming for the 21st Century, in: IEEE Computer, Vol.
31, No. 3, March 1998.

W. Pree: Design Patterns for Object-Oriented Soft-
ware Development, Addison-Wesley, 1995.

J. Soukup: Implementing Patterns, in: J.O. Coplien,
D.C. Schmidt (Eds.), Pattern Languages of Pro-
gram Design, Addison-Wesley 1995, pp 395-412,
also available as http://www. codefarms.com/
publications/papers/patterns.html, 1995.

P. Steyaert, W. Codenie, T. D’Hondt, K. De Hondt,
C. Lucas, M. Van Limberghen: Nested Mizin-
Methods in Agora, in: Proc. of ECOOP 93, LNCS
707, Springer-Verlag, 1993.

D. Wetherall, C.J. Lindblad: Extending Tcl for Dy-
namic Object-Oriented Programming, in: Proc. of
the Tcl/Tk Workshop ’95, Toronto, July 1995.

U. Zdun: Entwicklung und Implementierung von
Ansdtzen, wie Entwurfsmustern, Namensrdumen
und Zusicherungen, zur FEntwicklung von kom-
plezen Systemen in einer objektorientierten Skript-
sprache, Diplomarbeit (diploma thesis), Universitét
Gesamthochschule Essen, 1998.

