
Monitoring Web Service Event Trails for Business Compliance

Emmanuel Mulo, Uwe Zdun, Schahram Dustdar
Distributed Systems Group

Institute of Information Systems
Vienna University of Technology

Vienna, Austria
{e.mulo,zdun,dustdar}@infosys.tuwien.ac.at

Abstract—Organizations today are required to adhere to a
number of compliance concerns from laws, regulations and
policies. Compliance is achieved through defining and imple-
menting so-called controls within the organizations’ business
processes. Organizations that build their systems based on
the process-driven SOA paradigm realize business processes
through invocation of services to handle the different process
activities. We propose an approach for monitoring business
compliance in service-oriented systems—we represent a ser-
vice invocation as an event, enabling us to map business
process activities into trails of events that make up compliant
business processes. The event trails guide the creation of
rules, which are leveraged by complex event processing
techniques to monitor business processes for compliance. A
case study from the telecommunications sector is used to
demonstrate how we achieve compliance detection. In this
case study, we use our approach to identify violations of
licensing compliance requirements in the business process of
a multimedia service provider.

Keywords-Web services, complex event processing, business
compliance monitoring

I. INTRODUCTION

Organizations today are required to adhere to a vast
number of compliance concerns, for example, acts of law
from governments, regulations drawn up by regulatory au-
thorities, and the organization’s own internal policies and
procedures. Non-adherence to compliance concerns may
have consequences such as loss of credibility, financial
losses, and possibly having legal actions taken against the
organization. These concerns should be taken into con-
sideration when designing and implementing information
systems in organizations. In particular, the compliance
concerns should translate into artifacts or controls, em-
bedded within the organization’s information systems, that
aim for prevention (or detection) of compliance violations.

Information systems, based on the Service-Oriented
Architecture (SOA) paradigm, are designed to have differ-
ent functions encapsulated as services. A process-driven
SOA [1] introduces a process engine that orchestrates
these services to perform the different activities that make
up a business process. In other words, a business pro-
cess execution is realized as the invocation of several
service operations, each performing a specific task in
the process. In large-scale process-driven SOA systems
[1], [2], multiple business process instances are executed
and coordinated on multiple process engines. All process
instances are realized through invoking operations from a
pool of services that are within and sometimes beyond the
boundary of an organization.

During execution of these processes, a number of issues
may occur, e.g., system failures, process failures, service
failures, or human errors, that can result in the processes
not executing as expected, and as a result not adhering
to the required compliance concerns. Monitoring business
processes as they execute provides organizations with
feedback that helps to rectify system issues, redesign
business processes, or alert responsible individuals to solve
the problematic issues. In this work, we are interested
in feedback related to violation of compliance concerns.
Since a business process is realized as a combination
of multiple service invocations, it follows that generating
service invocation events enables us to monitor the process
as it executes. In a large-scale process-driven SOA system,
a large volume of events would be generated.

A number of studies of monitoring solutions [3], [4],
[2], [5] propose an external component to which events
are sent. In these monitoring solutions events are recorded
in audit logs (files) that can later be analyzed to identify
anomalies in system behavior. Other research proposes
monitoring events in real-time using complex event pro-
cessing (CEP) techniques [6], [7]. With CEP, event-based
systems correlate and aggregate events as they occur, to
discover and respond to certain event patterns [7].

We propose an approach for monitoring service-oriented
systems, to detect violations of compliance concerns dur-
ing execution of an organization’s business processes. In
our approach, we represent a service invocation as an
event – we can then take an existing business process
that is considered compliant, break it down into individual
business activities, and map these activities into trails
of service invocation events. These event trails drive the
creation of rules and queries to identify anomalous process
executions, that may have resulted from compliance vio-
lations. We have evaluated our approach through a case
study from the telecommunications sector. In addition,
we have analyzed the performance and scalability of our
approach by running test scenarios realistically mimicking
a large-scale process-driven SOA with event monitoring.

The rest of this paper is structured as follows. First,
we give an example to motivate the approach we present.
Section III gives background information concerning com-
pliance and complex event processing. Next, Section IV
explains our proposed approach, and Section V goes
into details concerning the case study that we use to
demonstrate our approach. Section VI compares our work
to the related work, and finally Sections VII and VIII
present discussions and a conclusion to this work.

Credit

Report

Conditional

Approval

Appraisal

Final

Approval

Closing

Documentation

Loan

Process

Completed

Loan

Application

Received

Approval

Event 2

officer = Jonas

Approval

Event 1

officer = Karl

Where loan amount > 50,000

There must be two different

loan officer approvals

Figure 1. Loan process compliance

II. MOTIVATING EXAMPLE

We explain our proposed approach using a simple
motivating example of a loans issuing procedure in a bank.
A compliance control in the bank states that no loan officer
is allowed to single-handedly approve loans greater than
EUR 50,000. A simplified business process of the loans
procedure is shown in Figure 1.

The final approval activity of the process is imple-
mented as a service whose approval operation needs to
be invoked by two different loan officers (each invocation
counts as a separate event), if the loan amount is greater
than EUR 50,000. The loan approval process is compliant
if these conditions are fulfilled during execution of the
final approval activity.

With these conditions, the event trail for the final
approval business activity should consist of two service
invocation events in cases where the loan amount is greater
than EUR 50,000. The event trails drive the creation
of rules/queries that monitor for compliance at runtime.
For example, in Figure 1 we identify the flow of events
(approval event 1 followed by approval event 2) and can
thus define what pattern to search for. We also identify
conditions (loan amount greater than EUR 50,000) that
are used in predicates for event processing. These patterns
and predicates fit naturally into the kind of queries used
in CEP techniques to process events.

III. BACKGROUND

In this section, we consider some background informa-
tion on the two themes, compliance in business organi-
zations and complex event processing, that are brought
together in this paper.

A. Compliance in Organizations
Compliance concerns in an organization are related

to risks the organization and its stakeholders face in
achieving their mission. The concerns guide organizations
as to what measures should be taken to prevent occurrence
of these risks, e.g., Section 404 of Sarbanes-Oxley Act
(SOX) requires public companies to annually assess and
report on the design and effectiveness of internal control
over financial reporting. However, organizations are not
given guidelines on how to implement these measures.

During risk management exercises, organizations decide
on the controls, i.e., risk-reducing measures taken [8],
and their implementation. Preventative controls aim to
avoid the risks from occurring, whereas detective controls
warn of the occurrence of risks . However, organizations
need not invent all controls from scratch. A number
of established norms or standards define and describe
standard controls that must be adapted and implemented in
an organization to prevent certain risks. The Control Ob-
jectives for Information and related Technologies (COBIT)
1 framework, for example, describes control objectives that
an organization can use as a guide in making choices about
what controls to implement. These norms and standards
are fairly generic and abstract, and must be mapped to a
concrete systems implementation.

In many cases, unfortunately, this mapping does not
follow a generic strategy or guideline, and hence business
compliance is reached on a per-case basis. That is, orga-
nizations use ad hoc, hand-crafted solutions for specific
rules they must comply with. This usually means that,
for each set of compliance concerns to be addressed, a
separate project is started. Each separate project develops
an individual, custom solution for the particular compli-
ance concern to be addressed. From a software architecture
perspective, this is undesirable because such solutions are
often:

• hard to maintain because ad hoc, hand-crafted so-
lutions usually do not follow a clear architectural
concept throughout the SOA;

• hard to evolve or change because usually the ad hoc,
hand-crafted solutions lead to tangled code that is
spread over the systems and has many dependencies
to other components that are hard to resolve;

• hard to reuse because ad hoc, hand-crafted solutions
often involve special purpose code added into the
systems at several places;

• hard to understand because tangled code added at
several places offers no adequate separation of con-
cerns.

As a result, it becomes quite a task to ensure compliance
to a given set of rules and regulations, and to keep up with
constant changes in regulations and laws. In this paper, we
focus on a specific kind of compliance concerns: those
that can be observed as runtime events. For these kind,
we apply our approach as a generic strategy to monitor
compliance. This approach is based on observing event
trails via complex event processing – which is explained
as a background technique in the next section.

1www.isaca.org/cobit/

B. Complex Event Processing

Complex Event Processing (CEP) is a set of tools and
techniques for analyzing and controlling a complex series
of interrelated events [9]. These techniques have a number
of application areas, including policy enforcement and
regulatory compliance [9], [7].

Events represent the occurrence of an activity within a
system. They originate from a number of sources, e.g.,
RFID tags, network traffic data, and enterprise application
components, and they may contain information, e.g., the
event source, or time of occurrence. This information
enables us to analyze the events and determine how they
relate to each other.

Domain specialists are interested in events of signifi-
cance in their domain. In some cases we are not able to
directly observe such special events because they occur
as a combination of a number of other events. However,
through the use of event pattern languages (EPLs), it is
possible to aggregate what are termed low-level events
into complex (high-level) events. Low-level events are not
an abstraction of other events, and do not have seman-
tic significance on their own within a specific domain,
whereas complex events are an aggregated abstraction of
a number of other low-level and/or complex events [9],
[10]. CEP techniques filter and correlate low-level events
to yield other higher-level, more semantically significant
events [11], i.e. special events.

In our work, we draw parallels between the special,
domain-specific events of interest and complex events,
and between service invocation events (invoked from
executable business processes) and low-level events.

IV. EVENT-BASED COMPLIANCE DETECTION

A. Overview of Compliance Detection Approach

In process-driven service-oriented systems, services are
orchestrated in order to realize a business process. Each
service executes a particular function of the entire business
process. From the perspective of business operations,
however, the business process is realized by composing
a number of business activities.

For business operations, which are required to be com-
pliant, we are interested in monitoring the flow of business
activities. Since business activities are realized by one or
more service invocations, we are able to monitor these
activities by monitoring the service invocations.

To achieve this, we represent the invocation of each
service as an event with details like, the operation invoked,
and the parameters passed to the operation. These events
are gathered by either instrumenting a service or wrapping
its interface with event emitting code. Consequently, we
are able to identify the service invocation event trails that
realize each business activity. These event trails guide us
in creation of rules and queries to identify and monitor
business activities. As a result, we are able to determine
whether compliance is violated during the execution of
business processes. Figure 2 illustrates this transition from
business processes to compliance detection.

In Figure 3 we present a model illustrating the rela-
tionship between events, business activities and business

Business

Process

Business

Activities/Events

Service Invocation

Events/Event Trails

Rules/Queries

A

B C

D E

F G

2

3 4

1

5

D E

SELECT * FROM pattern [every e =

 EEvent -> (s = SEvent)]

WHERE o.ID = s.ID

Figure 2. Approach from business processes to compliance detection

EventTrail

Event

BusinessEvent ServiceInvocationEvent

0..1

*

Process

ServiceServiceInstance

ProcessInstance

* 1

* 1

* 1

* 1

0..* 1..*

Figure 3. Event model

processes. Business activities, which are the domain-
specific events of interest, are represented by business
events. Each business event may be related to at least one
service invocation event and any number of other business
events. Each service instance is related to a number of
service invocation events. This is because a service might
consist of several operations, each representing a different
event. We choose to have a one-to-one mapping of events
to operation invocations in order to identify the execution
trace of a business activity.

B. Mapping Business Activities to Event Trails

A service invocation event contains parameters such as
when it occurred, the source of the event, and operations
(along with parameter values) invoked on the service.
Service invocation event trails are essentially sequences of
events that represent a single business activity. At runtime,
these trails are identified by analyzing the parameters of
events within monitoring (event) streams. These parame-
ters can be said to leave a “trail” that relates a number of
different events together into a single business activity. It is
with these parameters that we derive queries that monitor

B

C

A FE

D

8 9 10

Event Trail

1 2

11 12 13

Figure 4. Business process graph and event trails

business activities and, ultimately, compliance.
Consider Figure 4 that shows a subgraph of a business

process, we have two possible flows; A-B-E-F or A-B-C-
D-E-F. Each node represents a business activity. However,
each business activity may be realized by multiple service
invocation events. For example, activity D could be real-
ized by the trail of events 8-9-10. Similar trails of events
are identified for each business activity in the business
process.

C. From Event Trails to CEP Queries/Rules

Event trails identified from business activities drive the
creation of event processing rules and queries. An event
monitoring system has a sequential view of all the events
as they arrive at its interface. As it executes, a single
business process emits service invocation events from the
individual business activities. However, in a large scale
SOA, multiple instances of different business processes
execute concurrently, resulting in the generation of an
interwoven sequence of events.

Using event trails, we are able to define queries (see
inset of Figure 5) that a CEP engine uses to correlate
events and identify which business activities belong to
which process instance. For example, the query shown
searches for a business activity D from a stream of events.
The event trail 8-9-10 matches activity D of a process in-
stance (we use the subscript x to indicate that these events
are in the same process instance). Correlation of events is
performed through comparison of their parameters. Within
the same stream in Figure 5, there are other events that
belong to different process instances and are correlated
into different business activities.

With the business activities identifiable, we are able to
monitor the flow of a business process at runtime. As a
result we can detect whether or not there have been any
violations of compliance.

D. Monitoring Infrastructure

In order to demonstrate this approach we design a
simple monitoring infrastructure consisting of three com-
ponents viz. a prototype of an event processing server, an

E

D

2 2 81 10 11 9 12 13
x y w xxx

y

y yy

B

10
x

x
x

INSERT INTO Event D

SELECT * FROM

pattern [8-9-10]

WHERE param.8 = param.9

Figure 5. Rules to correlate event trails

MonitoringInfrastructure::Event Processing Engine

Service 1Service 2Service 3

«send»

Message Queue

«send»

«send»

«send»

Figure 6. Monitoring infrastructure in SOA

event message queue, and web services. The integration
of all components is illustrated in Figure 6.

A CEP engine is embedded within the event processing
server (we use the Esper CEP engine [12]). At runtime, a
single instance of the engine is created and configured with
event types and event processing rules/patterns. Each rule
may have a listener attached to it, that is invoked whenever
the rule matches a pattern. Within the listeners, one can
program actions that are executed when the listener is
invoked, e.g., the listener can be programmed to update a
user interface about the occurrence of an event. A number
of worker threads receive events from the event message
queue, and feed them into the CEP engine for processing.

The event message queue provides a bridge between
the event processing server and the web services. The
queue allows for multiple clients to send messages without
overloading the event processing server. In our implemen-
tation we use the ActiveMQ [13] messaging provider as a
message queue.

The last component is the web services. In a process
driven SOA, a number of services are required to fulfill
the different activities of a business process. Whenever
they are invoked, these services send events to the event
processing server. In our tests, however, we simulate
the service invocation events of the business processes
described in our case study in section V.

V. CASE STUDY: APPLYING THE SOLUTION

In this section, we apply our approach to the multimedia
streaming business process. The process is a scenario of
advanced telecom services offered by a Mobile Virtual

Network Operator (MVNO). MVNOs provide value-added
services to users by accessing and aggregating various
facilities from other content providers. In our scenario,
multimedia streams are provided to mobile phone users
through a special web service, the WatchMe service. The
user’s access rights vary based on licensing options (pay
per use or time-based) they choose when paying for
stream access. After paying, a user has access to a media
stream for as long as their access rights are in accordance
with the license selected. In the scenario, an MVNO is
interested in monitoring the multimedia streaming process
for adherence to the licenses, as well as detection (and
reporting) of violations and anomalous events. We evaluate
the approach by simulating the MVNO’s business process
and monitoring events with a simple event monitoring
infrastructure.

A. Multimedia Streaming Business Process
The flow of the business process is modeled in Figure

7. The detailed flow of the business process is as follows;
1) The user contacts the WatchMe service to access a

media stream of interest.
2) The user enters search criteria which is submitted to

the WatchMe service. The service in turn contacts
a number of providers, with whom the MVNO
has agreements, to check whether they have media
streams matching the user’s search criteria.

3) All search results from different providers are aggre-
gated and provided to the user. The results contain
parameters, e.g., type and language of the (audio)
media streams.

4) The user selects a particular stream and is provided
with more details, e.g., a description and a preview.
In addition, the user is provided the costs/price and
relevant license plan of accessing the stream.

5) The user selects a license plan and confirms pay-
ment.

6) Once the WatchMe service receives confirmation
of payment, the stream is available to the user.
Whenever the user accesses the media stream, the
WatchMe service provides an access URL from a
particular provider.

7) Each time the user accesses the media stream, the
combination of the user identification and the stream
URL is checked to ensure that license agreements
are not violated.

B. Multimedia Streaming Event Trails
Each activity in the business process is analyzed to

determine which service invocations are required to realize
business activities. We map the business activities to trails
of service invocation events as shown in table I. Each
service invocation event has a one-to-one mapping with
an operation provided by a service. For example, in table
I the activity Receive media stream request is realized
through invocations of the playMediaSteam and access-
MediaStream operations of the WatchMeMediaProviders
service as shown in Figure 7.

We use this mapping to create relevant rules and queries
required for event pattern identification, and by extension,

Compile

Search results

Provide media +

payment details

Process

payment

Provide

Media

access

WatchMe

Process

Completed

Receive

search

criteria

Receive

media

selection

Receive

play stream

request

Payment and

license valid
No

Yes

WatchMe Process Services

WatchMe

Media

Providers

User

search

data

search

results

Media

selection

Stream

request

Stream

Access

URL

WatchMe

Payment

Systems

search

data

Search

Results

data

Payment data

Stream

Selection

URL

Figure 7. Multimedia stream access business process

Table I
MAPPING BUSINESS ACTIVITIES TO SERVICE INVOCATION TRAILS

Business Activities Service Invocations

Receive search criteria searchMediaStream

Contact multiple providers searchAudioStream - searchVideoStream

Receive user media selec-
tion

Offer media details + pay-
ment request

Receive media stream re-
quest

playMediaStream - accessMediaStream

Confirm payment placeMediaOrder

Stream media

compliance violation checking. In this case, we consider
that the MVNO does not want users accessing media they
have not paid for, and that is outside of the licensing plan
the user has chosen.

Listing 1 shows a query derived from the pattern of
event trails in table I. On Lines 1–4 we search for a
trail of service invocation events corresponding to the
business activity Receive media stream request. Line 5 is
a condition that checks whether the attempt to play the
stream is accepted according to the license agreements, in
this case whether one is attempting to play a media stream
after the end date of the order in a time-based licensing
plan. In this way we have run a compliance check on the
licensing plan of the business process.

In our demonstration infrastructure, one can attach a
listener to the query statement of Listing 1. If the query

is matched during event stream processing, the listener
is invoked. For our tests we only make a simple console
log indicating that such an event–violation of compliance–
occurred. However, this information could also be passed
on to a more sophisticated dashboard for visualizations or
further processing.

1 SELECT ∗ FROM p a t t e r n [
e v e r y o r d e r E v e n t (o rde rType = ’TIME BASED ’) −>

3 (e v e r y p layMediaEven t (o r d e r I D = o r d e r E v e n t . o r d e r I D)
−>

a c c e s s E v e n t (o r d e r I D = playMediaEven t . o r d e r I D))]
5 WHERE a c c e s s E v e n t . c r e a t i o n T i m e S t a m p > o r d e r E v e n t .

endDate

Listing 1. Queries/Rules for Compliance Detection

C. Evaluation
In this section we present the evaluation of our ap-

proach. We give an overview of the test environment and
procedures, and then present results from test runs.

A dedicated server computer with an Intel Xeon
3.20GHz CPU and 2GB RAM is used to execute the tests.
The server is installed with Ubuntu Linux 9.04 Server
Edition. All three components for our test scenario are
installed on the server. For the message queue component,
we install ActiveMQ 5.2.0 and configure it to create a
single message queue providing point-to-point message
delivery. The event processing server uses the Esper 2.1.0
component as the embedded event processing engine.
Finally, the web services simulation component (we code
ourselves) creates multiple threads, each simulating a
business process instance and submitting events to the
message queue.

Our evaluation measures the performance of our moni-
toring infrastructure to give hints about the scalability of
the approach. We consider throughput (rate of event pro-
cessing) of the event processing server as a performance
measure. We simulate three different test batches:

• a single business process (pay per use license sce-
nario) with one rule to match the process pattern,

• two business processes with one rule to match the
pattern of only one of the processes – the second pro-
cess (time based license scenario) provides noise to
observe whether there is any change in performance,

• two business processes with two rules, each rule
matching one of the process patterns.

For each batch, we vary the number of threads (con-
current business process instances) executed by the web
services simulation component. This way we observe the
performance of the event processing server under different
loads. For each fixed load, the tests are run 10 times and
the average from all the runs is used to plot the graphs.

The processing time of the server is measured from the
time the first event is submitted to the CEP engine until
the last invocation of a listener. The processing time and
the total number of events processed determine the event
processing rate.

Figure 8 shows the data from the three test batches.
Note that the x-axis shows concurrent process instances
per business process. This means that in the scenarios with
two business processes, the total number of concurrent
process instances is doubled.

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 200 400 600 800 1000 1200 1400 1600

Se
rv

er
 th

ro
ug

hp
ut

 (e
ve

nt
s

/ s
ec

)

Number of concurrent process instances / business process

single process
single process with noise

two processes

Figure 8. Event processing server’s performance

In the single-process scenario, there seems to be an
almost constant throughput until 400 concurrent process
instances are run. Beyond that, the throughput declines
albeit gradually. The single-process-with-noise scenario
results in an almost identical plot as the first scenario, just
a scale higher on the graph. This tells us that the server
throughput is not degraded by the noise and the increase to
a higher scale accounts for noise events. The two-process
scenario suggests an acceptable scaling of this approach.
In this scenario, whereas twice the number of concurrent
process instances are running as compared to the single-
process scenario, the throughput is not significantly lower.
Moreover, for less than 400 concurrent processes instances
per business process, the throughput is higher in the two-
process scenario.

VI. RELATED WORK

Compliance assurance can be broadly categorized into
two main strategies: “compliance by design”, i.e., incorpo-
rating compliance directives into a system at design time,
and “compliance by detection”, i.e., observing a system to
ensure that its execution was compliant [14]. We consider
a number of related works that are to do with the second
approach, i.e. compliance by detection.

Giblin et al. [15], [16] propose REALM, a meta-
model for the specification of compliance regulations in
a technology-agnostic manner. A REALM model consists
of a concept model that captures the concepts and rela-
tionships of the domain in which regulations are being
applied, a compliance rule set that represents the regu-
latory requirements in a real-time temporal object logic,
and meta-data providing information about the regula-
tions, e.g. source and enactment dates. They also present
a framework to that uses the REALM specification to
generate technology specific correlation rules for runtime
monitoring. In our approach, we assume that compliance
controls are already defined within a business process
before we identify the different business activities and
service invocation event trails that the the process is com-
posed of. However, our approach also drives the creation

of rules and queries that are finally used for correlation
and monitoring of events.

Vaculı́n and Sycara [17] propose semantic monitoring
of web services also through correlation/aggregation of
primitive events into composite events. They achieve this
by extending an event algebra to enable specification
of composite events. These concepts are very similar to
that low-level, service invocation events and the higher
level business events, however, their work focuses on
monitoring for semantic web services. They do not filter
events based on syntax and parameters; rather they define
an event ontology and whenever a primitive event is fired,
it is actually an instance of the ontology class representing
the event type on which semantic filtering is performed.

Policy based runtime monitoring approaches that focus
on monitoring of the business process as it executes are
proposed by Erradi et al. [18] and Baresi et al. [19]. In
both approaches, the monitoring logic is woven within the
process control flow. Erradi et al. [18] propose a policy-
based approach to runtime monitoring and adaptation of
web service compositions. They achieve this through the
use of MASC, which is web service middleware that per-
forms monitoring and adaptation. MASC uses monitoring
policies specified with WS-Policy4MASC, which is the
authors’ extension to the WS-Policy Framework. They
perform message correlation by logging events / messages
to a database and having this database analyzed by the
correlation rules to identify desired aggregate business
events. Baresi et al. [19] propose WS-CoL (Web Service
Constraint Language), a domain independent language
that is used to express monitoring policies for WS-BPEL
processes. WS-CoL is compliant with the WS-Policy spec-
ification. Their approach proposes weaving the monitoring
directives into the WS-BPEL specification such that calls
to a monitoring manager are attached to certain parts of
the specification. This weaving is done at deployment time
to keep a separation between the WS-BPEL code and the
WS-CoL monitoring constraints. During runtime, when-
ever these constraints are encountered, the monitoring
manager performs constraint checking and then calls the
relevant service. In both these approaches the monitoring
logic is tightly coupled with the actual running system.

Finally, business protocols [20], [21] are related to our
work in the sense of monitoring web services through the
interception and observation of messages sent and received
by services in order to monitor their execution/interaction
patterns. Li et al. [20] propose a framework to monitor
and validate the runtime behaviour of web services against
pre-defined interaction constraints. Their approach relies
on the interception of every message that goes across
a service. In their framework interaction constraints are
expressed using finite state automata (FSA) and they have
a monitoring component that uses these FSAs to validate
the web service interactions.

VII. DISCUSSION

In this section, we discuss how our approach may enable
organizations to systematically and sustainably implement
compliance in their service-oriented systems.

We propose a stepwise process that moves progressively
from business processes to rules and queries for compli-
ance detection. For technical personnel in an organization,
there is a separation of issues concerning the system func-
tionality and issues concerning compliance assurance. As
a result, maintenance overheads that are incurred without
this clear separation are reduced. This separation charac-
teristic is also present in related works from the previous
section. However, when it comes to compliance issues, we
assume that business specialists have already incorporated
their choices on compliance controls into the business
process designs, and we make a mapping of these choices
to the technical implementation of monitoring logic. Other
works like Giblin et al. [15], [16] tackle expressing these
compliance controls (as compliance rule sets [16]) and
then mapping them to the technical implementation.

Considering that compliance requirements are ever-
changing, organizations have to continuously adapt their
compliance concerns. Our approach provides a clear
change strategy: Whenever a compliant business process
is changed, the change impact affects a set of event
trails, which in turn affect a set of CEP rules. Hence, the
explicit trace links in our approach foster understandabil-
ity, changeability, and maintainability of our event-based
compliance solutions.

The identification of event trails might foster reuse of
compliance rules. Whenever another business process can
be mapped to the same sequence of technical events,
we can identify the same business events. Hence, even
if the business process activities are not the same but
can be mapped to the same event trail, reuse of existing
compliance rules is possible.

We propose generating service invocations events to
monitor business processes. These events have a standard
format and only change the values of parameters depend-
ing on the service invoked. In an organization with many
services (as is the case in large scale SOAs), we are able
to reuse the event generation code across these services.
The approach proposed by Giblin et al. [16] expresses
compliance regulations in a technology-agnostic manner
and finally generates the technology-specific correlation
rules. This improves reuse in situations where the runtime
monitoring technology might change.

Finally the compliance detection rules/queries that are
used in CEP tools are in most cases written in simple
query languages like shown in Listing 1. They are thus
relatively easy to understand by technical personnel. Erradi
et al. [18] and Baresi et al. [19] use WS-Policy based
languages that are expressed in XML – making these lan-
guages readable and perhaps even providing opportunities
for automated processing and transformations. The other
monitoring approaches have more complicated expression
languages for the compliance concerns. Giblin et al. [15],
[16] use a compliance rule set based on temporal object
logic, while Vaculı́n and Sycara [17] uses an event algebra
to aggregate events.

VIII. SUMMARY AND CONCLUSION

Compliance with regulations, laws and policies is a
requirement for organizations to avoid negative conse-

quences. These organizations thus have to monitor their
information systems to ensure that they still adhere to these
compliance concerns. Considering that many organizations
today implement their systems based on process-driven
service-oriented architectures, we are proposing an ap-
proach for monitoring business processes for compliance
in such process-driven SOAs.

We propose a stepwise approach moving from business
processes, breaking them down to business activities,
and identifying the relevant service invocations needed
to realize each business activity. In order to monitor the
business activities, we represent each service invocation
as an event. The event trails, that is events representing
the service invocations of a business activity, drive the
creation of queries used to monitor business processes, and
detect compliance violations. We evaluate our approach on
a simple monitoring infrastructure, and run a number of
test scenarios that mimic a large-scale process-driven SOA
environment.

ACKNOWLEDGMENTS

This work was supported by funds from the European
Commission (contract No. 215175 for the FP7-ICT-2007-1
project COMPAS).

REFERENCES

[1] U. Zdun, C. Hentrich, and S. Dustdar, “Modeling process-
driven and service-oriented architectures using patterns and
pattern primitives,” ACM Trans. Web, vol. 1, no. 3, p. 14,
2007.

[2] P. Kung, C. Hagen, M. Rodel, and S. Seifert, “Business pro-
cess monitoring & measurement in a large bank: challenges
and selected approaches,” in Database and Expert Systems
Applications, 2005. Proceedings. Sixteenth International
Workshop on, Aug. 2005, pp. 955–961.

[3] C. McGregor and S. Kumaran, “Business process monitor-
ing using web services in B2B e-commerce,” in Parallel
and Distributed Processing Symposium., Proceedings In-
ternational, IPDPS 2002, Abstracts and CD-ROM, 2002,
pp. 219–226.

[4] M. zur Muehlen and M. Rosemann, “Workflow-based pro-
cess monitoring and controlling-technical and organiza-
tional issues,” in System Sciences, 2000. Proceedings of the
33rd Annual Hawaii International Conference on, 2000, p.
10 pp. vol.2.

[5] J. G. Kang and K. H. Han, “A business activity monitoring
system supporting real-time business performance manage-
ment,” in Convergence and Hybrid Information Technology,
2008. ICCIT ’08. Third International Conference on, vol. 1,
Nov. 2008, pp. 473–478.

[6] T. Greiner, W. Düster, F. Pouatcha, R. von Ammon, H.-M.
Brandl, and D. Guschakowski, “Business activity monitor-
ing of norisbank taking the example of the application easy-
credit and the future adoption of complex event processing
(CEP),” in PPPJ ’06: Proceedings of the 4th international
symposium on Principles and practice of programming in
Java. New York, NY, USA: ACM, 2006, pp. 237–242.

[7] S. Rozsnyai, R. Vecera, J. Schiefer, and A. Schatten, “Event
cloud - searching for correlated business events,” in E-
Commerce Technology and the 4th IEEE International
Conference on Enterprise Computing, E-Commerce, and
E-Services, 2007. CEC/EEE 2007. The 9th IEEE Interna-
tional Conference on, July 2007, pp. 409–420.

[8] “National institute of standards and technology special pub-
lications 800-30: Risk management guide for information
technology systems,” July 2002.

[9] D. C. Luckham, The Power of Events: An Introduction
to Complex Event Processing in Distributed Enterprise
Systems. Reading, MA: Addison-Wesley, 2002.

[10] H.-M. Brandl, “Complex event processing in the context of
business activity monitoring,” Master’s thesis, University of
Applied Sciences Regensburg, 2007.

[11] E. Wu, Y. Diao, and S. Rizvi, “High-performance complex
event processing over streams,” in SIGMOD ’06: Proceed-
ings of the 2006 ACM SIGMOD international conference
on Management of data. New York, NY, USA: ACM,
2006, pp. 407–418.

[12] http://esper.codehaus.org.

[13] http://activemq.apache.org.

[14] S. Sackmann, M. Kahmer, M. Gilliot, and L. Lowis, “A
classification model for automating compliance,” in 10th
IEEE Conf. EEE/CEC, July 2008, pp. 79–86.

[15] C. Giblin, A. Y. Liu, and X. Zhou, “Regulations expressed
as logical models (REALM),” in Proc. of the 18th Annual
Conference on Legal Knowledge and Information Systems
(JURIX 2005), A. I. O. S. Press, Ed., 2005, pp. 37–48.

[16] C. Giblin, S. Müller, and B. Pfitzmann, “From regulatory
policies to event monitoring rules: Towards model-driven
compliance automation,” IBM Research, Tech. Rep. RZ
3662, 2006.

[17] R. Vaculin and K. Sycara, “Specifying and monitoring com-
posite events for semantic web services,” in Web Services,
2007. ECOWS ’07. Fifth European Conference on, Nov.
2007, pp. 87–96.

[18] A. Erradi, P. Maheshwari, and V. Tosic, “WS-Policy based
monitoring of composite web services,” in Web Services,
2007. ECOWS ’07. Fifth European Conference on, Nov.
2007, pp. 99–108.

[19] L. Baresi, S. Guinea, and P. Plebani, WS-Policy for Ser-
vice Monitoring, ser. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2006, pp. 72–83.

[20] Z. Li, Y. Jin, and J. Han, “A runtime monitoring and vali-
dation framework for web service interactions,” in ASWEC,
2006, pp. 70–79.

[21] B. Benatallah, F. Casati, and F. Toumani, “Analysis and
management of web service protocols,” in Conceptual
Modeling - ER 2004, 23rd International Conference on
Conceptual Modeling, Shanghai, China, November 2004,
Proceedings, 2004, pp. 524–541.

