
Tailoring a Model-Driven Quality-of-Service DSL for Various Stakeholders

Ernst Oberortner, Uwe Zdun, and Schahram Dustdar
Distributed Systems Group, Vienna University of Technology

Argentinierstr. 8/184-1, 1040 Vienna, Austria
{e.oberortner,zdun,dustdar}@infosys.tuwien.ac.at

Abstract

Many business systems have to comply to various
contracts and agreements. Multiple technical and non-
technical stakeholders with different background and
knowledge are involved in modeling such business con-
cerns. In many cases, these concerns are only encoded in
the technical models and implementations of the systems,
making it hard for non-technical stakeholders to get in-
volved in the modeling process. In this paper we propose
to tackle this problem by providing model-driven Domain-
specific Languages (DSL) for specifying the contracts and
agreements, as well as an approach to separate these DSLs
into sub-languages at different abstraction levels, where
each sub-language is tailored for the appropriate stakehold-
ers. We exemplify our approach by describing a Quality-of-
Service (QoS) DSL which can be used to describe Service
Level Agreements (SLA). This work provides insights into
how DSLs can be utilized to model and enrich business sys-
tems with concerns defined in contracts and agreements.

1. Introduction

A major requirement for many contemporary business
systems is to comply to contracts and agreements, such as
Service Level Agreements (SLA). SLAs are contracts be-
tween service providers and service consumers. SLAs as-
sure that customers get the service they paid for and that
the service fulfils the SLA’s requirements, such as availabil-
ity, accessibility, or performance. For a provider it could
result in serious financial consequences if the SLAs are not
fulfilled. Hence, service providers need to know what they
can promise within SLAs and what their IT infrastructure
can deliver. To validate SLAs, mainly Quality-of-Service
(QoS) is utilized. In this respect, QoS measurements col-
lect information about services [5].

Modeling business systems with different frameworks or
notations gains momentum. In this context, multiple stake-
holders – technical and non-technical – with different back-

ground and knowledge are involved in the modeling pro-
cess [8]. But, to the best of our knowledge, no framework
or notation exists which provides the facilities for modeling
business systems with contracts and agreements they have
to comply to and for involving multiple technical and non-
technical stakeholders.

One possible way of modeling business systems is to
use Domain-specific Languages (DSL). DSLs are small lan-
guages that are tailored to be particularly expressive in a
certain problem domain. A DSL describes the domain
knowledge via a graphical or textual syntax which is tied to
domain-specific modeling elements. Nowadays, DSLs are
often developed by following the Model-driven Software
Development (MDSD) paradigm to describe the graphical
or textual DSL syntax through a precisely specified lan-
guage model. Using MDSD-based DSLs for modeling busi-
ness systems enables technical and non-technical experts to
work at higher levels of abstraction [10].

In this paper we introduce our approach for specifying
the contracts and agreements, as well as an approach to
separate MDSD-based DSLs into sub-languages at different
abstraction levels, where each sub-language is tailored for
the appropriate stakeholders. To demonstrate our approach,
an example is provided, where an MDSD-based DSL for
specifying QoS measurements – which are used for vali-
dating SLAs – of services is illustrated. The DSL is sepa-
rated into two different languages. One language is tailored
for non-technical experts, and the other one for technical
experts. The DSL for non-technical experts, from now on
called domain experts, should provide constructs to specify
which QoS values have to be measured on which services,
such as response time or wrapping time [3]. Furthermore,
domain experts should be able to specify the SLAs and ac-
tions which should be performed if an SLA becomes vi-
olated. On the other hand, the DSL for technical experts
should provide constructs for specifying how the different
QoS values have to be measured and how the actions are
performed on a particular platform or technology.

This paper is organized as follows: The following Sec-
tion 2 illustrates the structure of MDSD-based DSLs. Sec-

tion 3 describes our approach. An example of following
our approach, using MDSD-based DSLs to specify QoS
concerns for service-oriented business systems, is shown in
Section 4. Next, Section 5 lists some benefits and draw-
backs of our approach which we have collected during this
work. Some related works are compared in Section 6. Fi-
nally, Section 7 summarizes the paper and characterizes fu-
ture work.

2. Domain-specific Languages (DSL) based
on Model-driven Software Development
(MDSD)

A very common development approach for DSLs is
Model-driven Software Development (MDSD) because
MDSD provides high levels of abstraction and platform-
independence. Figure 1 depicts the infrastructure of
MDSD-based DSLs, which is also proposed in [15, 2].

Model Instance

DSL
Concrete Syntax

Model
(DSL Abstract Syntax)

Meta-Model
based on

defined in

based on

*

Transformation

1

*

1

represents

1

*

* 1

use defined using

**

Schematic
Recurring Code

produces

1..

1..* 1..*

Individual Code
uses

* *

Figure 1. DSLs based on MDSD – relevant
concepts

A DSL consists of an abstract and concrete syntax. The
abstract syntax, which represents the language model, de-
fines the elements of the domain and their relationships
without considering their notations. The meta-model de-
fines how the domain elements and their relations can be
described [15]. The concrete syntax describes the represen-
tation of the domain elements and their relationships in a
form suitable for the stakeholders using the DSL. Abstract
and concrete syntax enable DSL users to define model in-
stances with a familiar notation to represent particular prob-
lems of the domain. The ultimate goal of the transforma-
tions, which are defined on the language model, is to trans-
form the model instances into executable languages, such
as programming languages or process execution languages.
The MDSD tools are used to generate all those parts of the
(executable) code which are schematic and recurring, and
hence can be automated.

DSLs based on MDSD, from now on just called DSLs,
can provide multiple levels of abstractions to help multiple

stakeholders, with different backgrounds and knowledge, to
express relations and behaviors of a domain with familiar
notations. The goal is that each stakeholder – maybe with
the help of other stakeholders – can easily understand, val-
idate, and even develop parts of the needed solution. For
instance, domain experts do not have to deal with techno-
logical aspects, such as programming APIs or service in-
terface descriptions. Technical experts do not have to deal
with unfamiliar domain terminologies [14].

The goal of DSLs is to be more expressive, to tackle
complexity better, and to make modeling easier and more
convenient [7]. This leads to an intense collaboration be-
tween the different stakeholders and lowers the possibility
of misunderstandings [13]. However, successful develop-
ment of a DSL requires the involvement of domain and
technical experts, including the design of the notation and
evaluation of the clarity of the language.

3. Our DSL Approach

To offer expressive and convenient languages for the
different stakeholders, our approach provides a separation
of DSLs into multiple sub-languages, where each sub-
language is tailored for the appropriate stakeholders. Our
approach of separating DSLs into two sub-languages at dif-
ferent abstraction levels, where each sub-language is tai-
lored for the appropriate stakeholders, is illustrated in Fig-
ure 2.

High-level DSL
Syntax

High-Level
Language

Model

Low-level DSL
Syntax

extends

Low-Level
Language

Model

extends

represents

represents

*

*

1

1

High-Level
Model

Instance

Low-Level
Model

Instance

extends

instanceOf *

*

1

1 instanceOf

defined in

1 *

defined in

1 *

Domain Expert

Technical Expert

Figure 2. DSLs based on MDSD - separation
into high- and low-level languages

On the one hand, domain experts can work in a lan-
guage, from now on called high-level language, where the
terminologies and notations are close or equal to the domain
terminology. On the other hand, technical experts can ex-
press the additional technical aspects in a language, from
now on called low-level language, where the terminologies
and notations are close or equal to the terminology of the
used technology. The syntax of the high- and low-level lan-
guages is based on language models. Low-level language
models are extensions of the high-level language models or
vice versa. In this way, technical experts are able to add

the additionally needed technical aspects. DSLs are then
used to define model instances of the high- and low-level
language models. Each model instance represents concrete
solutions of a particular problems of the domain.

Following our approach does not mean that only a sep-
aration into two levels, such as high- and low-level, is pos-
sible. It is possible to provide multiple different levels of
abstractions where each level of abstraction is tailored for
the designated stakeholders. The number of different levels
of abstractions depends on the problem domain, as well as
on the number of the different stakeholders.

The following section provides an example of follow-
ing our approach for separating and tailoring model-driven
DSLs. As illustrated in Figure 2, a separation into two lev-
els – high- and low-level – is provided, and the levels of
abstraction are tailored for domain and technical experts,
respectively.

4. An Example: The QoS DSL

The purpose of the following DSL is to enable the DSL
users to model service-oriented business systems for mea-
suring Quality-of-Service (QoS) of Web services, Service-
Level-Agreements (SLA) based upon QoS measurements,
and actions which should be performed if SLAs are vio-
lated. We provide two DSLs: The first one, the high-level
language, is tailored for domain experts, whereas the second
one, the low-level language, is tailored for technical experts
and extends the high-level language. Only the merging of
the two DSLs results in a complete language model from
which a running system can be generated.

Domain experts should be able to specify which QoS val-
ues have to be measured for a specific Web service to ful-
fil the contractually agreed SLAs, as well as actions which
should be performed if a certain SLA gets violated. The
high-level DSL should provide constructs and expressions
that are named similar to the terminology of the QoS and
SLA domain the DSL was designed for. An example of
specifying the given requirements is: If the response time is
longer than 2 minutes, then send an e-mail to the adminis-
trator of the service provider.

Technical experts need a language for specifying how
the different QoS values are measured in a particular tech-
nology, as well as how the defined actions are executed or
performed. In this example, the low-level language is an ex-
tension of the high-level one, because it enriches the high-
level language model with technical concerns, e.g., how to
measure the response time in a particular Web service en-
gine. Similar to high-level DSLs, the constructs and expres-
sions of the low-level DSL are named similar or equivalent
to the appropriate technology.

In the following we will describe the language models
of the high- and low-level DSLs, how the high-level models

get extended by the low-level ones, and how both DSLs can
be used by domain and technical experts.

4.1. The QoS DSL Models

4.1.1 The High-Level QoS Model

The requirements for the high-level QoS DSL can be for-
mulated as follows: SLAs are associated with QoS mea-
surements of Web services, as well as with actions. In this
example, the main attention lies on performance QoS mea-
surements, such as response time and wrapping time [4].

Figure 3 depicts the language model of the high-level
QoS DSL. Services are associated with QoSMeasure-
ments. For the time being, we provide classes for measur-
ing Performance and Dependability QoS measure-
ments, as described in [4]. Each QoS Measurement can
have Service Level Agreements which are in rela-
tion with different Actions that should be performed if an
SLA gets violated. For instance, if the response time of a
service is longer than 2 minutes, a mail should be sent to the
service provider.

Service QoS Measurement

Perfomance Dependability

Performance Wrapping Response Availability Accuracy

*

1 Service Level
Agreement

Action

*

1

*

Mail SMS

Figure 3. The model of the high-level QoS lan-
guage

The high-level language model is extended by the fol-
lowing low-level model which contains all necessary con-
structs for specifying the technological aspects to generate
a running system from the model instances described with
the DSLs.

4.1.2 The Low-Level QoS Model

The expressions of the low-level QoS DSL depend on the
technology on which the DSL is based. We decided to use
the open-source Apache CXF Web service framework [16]
in our prototype. The requirements can be modelled as fol-
lows: The communication between service client and ser-
vice provider is based on message-flows. Each message-
flow consists of a number of phases, where each phase can
contain handlers for measuring QoS values. For instance,
the handler for measuring the response time is associated to
two certain phases of the message flow on the client side.

Figure 4 depicts the low-level language model of the
QoS DSL and how the low-level model extends the

high-level model. The Service class of the low-level
model extends the Service class of the high-level lan-
guage model through inheritance. Services are enriched
with Operations which have a particular number of
Parameters. For measuring QoS values of services, such
as the response time, QoSHandlers are associated to ser-
vices. Again, QoS handlers extend QoS measurements of
the high-level language model. In our case, the QoS han-
dler class extends the Response class of the high-level
language model. In the Apache CXF framework, QoS han-
dlers are associated to Phases where each phase corre-
sponds to a certain MessageFlow. Using these classes,
the technical experts can specify in which phases of which
message-flows the QoS values of a service have to be mea-
sured.

JavaClass

Service

Operation

Parameter MessageFlow

Phase

QoSHandler1

*

1

*
*

*
*

*

*

* ** *
*

*

1

*

*

Service

High-level
model

Low-level
model

Performance

Figure 4. The model of the low-level QoS lan-
guage

The relationship between the names of the constructs of
the DSL syntaxes and the name of the classes defined in
the language models can be equivalent or different. If they
are different, complex mappings between the DSLs and the
language model constructs are required [10]. To avoid this
extra effort, the classes of the high- and low-level QoS lan-
guage models and the provided constructs within the high-
and low-level QoS languages in this example, are assumed
to be equal.

4.2. Using the QoS DSL: An Example

In this section we want to demonstrate how the language
models and the DSLs are connected, so that domain and
technical experts can use the appropriately tailored high-
and low-level DSLs, respectively. The following DSLs
were developed and used within Frag [17].

4.2.1 Using the High-Level QoS DSL

In the high-level language, the domain experts can assign
QoS measurements to Web services, define SLAs, and de-
fine actions which should be executed if a violation against
an SLA occurs. Figure 5 gives a quite technical view of the
high-level language, illustrated as Frag code [17].

define a service and
add some measurements to it
Service create QoSService
-measure [ResponseTime create QoSResponseTime
-assert [SLA create ResponseAssertion
-set predicate "LONGER THAN"
-set value "10"
-set unit "SECONDS"
-set actions [Mail create SendMailToProvider

-set mailto "admin@provider"]]]

Figure 5. Assign QoS measurements to a ser-
vice by using the high-level QoS DSL

In our example, a Web service, QoSService, is
created and it is specified that the ResponseTime of
the service should be measured. An SLA assertion,
ResponseAssertion, is assigned to the measured re-
sponse time and which should be performed if the response
time is LONGER THAN 10 SECONDS. The idea of spec-
ifying a predicate (e.g., LONGER THAN), a value (e.g.,
10), and a unit (e.g., SECONDS) for SLA assertions is
taken from [3]. The action to be performed is to sent a
Mail to the service provider which has the e-mail address
admin@provider.

Based on the technical view of the high-level QoS DSL
in Figure 5, better understandable textual or graphical user
interfaces can be generated automatically. A possible vi-
sualization of the technical view is illustraded in Figure 6,
which was generated by GraphViz [1].

QoSService:Service QoSResponseTime:ResponseTime

ResponseAssertion:SLA
 "LONGER THAN 10 SECONDS"

SendMailToProvider:Mail
 mailto "admin@provider"

Figure 6. A possible graphical view of the
high-level DSL

4.2.2 Using the Low-Level QoS DSL

Using the low-level QoS DSL helps the technical experts to
specify how messages flow – between service client and ser-
vice provider – within the Apache CXF Web service frame-
work [16]. The service client and service provider sides

have in- and out-flows, where in-flows are responsible for
handling incoming messages, and out-flows are responsi-
ble for handling outgoing messages. In- and out-flows con-
sist of phases. After specifying the phases, the technical
expert defines where each QoS value has to be measured.
Listing 7 provides an excerpt of the usage of the low-level
language that concentrates on the description of how the
response time can be measured in the Apache CXF Web
service framework [16].

define message flows of client
ClientFlow create ClientInFlow -superclasses ClientFlow
ClientFlow create ClientOutFlow -superclasses ClientFlow
...
define phases of the message flows
OutPhase create OutSetup
OutPhase create OutSetupEnding
...
assign phases to message flows
ClientOutFlow phases {OutSetup OutSetupEnding}
...
define in which phases
the response time is measured
ResponseTime measuredInFlows {ClientOutFlow}
ResponseTime measuredBetweenPhases {
OutSetup OutSetupEnding

}

Figure 7. Specifying technological require-
ments by using the low-level QoS DSL

First, the in- and out-flows of the service client,
ClientInFlow and ClientOutFlow, are speci-
fied. Then the phases of the out-flow, OutSetup and
OutSetupEnding, are defined and assigned to the out-
flow of the client, ClientOutFlow. Finally, the flows
and phases, between which the ResponseTime is mea-
sured, are specified.

5. Lessons Learned

This section explains the, during the development of the
above described QoS DSL, discovered benefits and draw-
backs which are important within our approach and which
have to be considered in our future work.

One of the big advantages of the separation into high-
and low-level languages, as proposed in the example of this
paper, is that the technical experts have to specify the tech-
nological aspects just once. For instance, the response time
is measured within the defined phases every time, inde-
pendent of the SLAs specified in the high-level language.
Hence, the SLAs can be specified multiple times without
changing any technological aspects. Furthermore, a com-
mon advantage of model-driven DSL approaches is that the
language models are easily extensible. Hence, when fol-
lowing our approach, each language model can be extended
separately in an easy way.

A drawback is that technological requirements have to
be redefined, or at worst remodeled, when the technologies
get changed or maybe by an upgrade of the current ver-
sion of the used technology. But, the requirements within
a domain change much more often than the technological
requirements. Another discovered disadvantage lies in the
overlapping concerns between the different language layers
when a separation into multiple sub-languages is provided.
To find a remedy, model-driven DSL approaches provide
facilities for extending high-level concerns with low-level
concerns or vice versa, such as inheritance, associations, or
compositions.

As shown, model-driven DSL approaches can suppress
the arising drawbacks of providing multiple languages
which are tailored for the appropriate stakeholders. The fol-
lowing section mentions some related work and their differ-
ences to our approach.

6. Related Work

This section is divided into three parts, where each part
refers to work that has been done or that is still in progress
with respect to our main contributions of this work.

MDSD-based DSLs:
Kelly and Tolvanen [8] illustrate their collected experi-
ences of designing and developing Domain-specific Mod-
eling Languages (DSML) by five examples. In contrast to
our work, their code generators aim to provide full code
generation from the defined models of the domain experts.
Hence, technical experts are not involved in the modeling
process. Dependent on the problem, modeling (service-
oriented) business systems without technical stakeholders
can be a drawback.

Tailoring DSLs for Various Stakeholders:
Voelkl et al. [9] write about the different roles in the soft-
ware development process with domain-specific model-
ing languages (DSML). An introduction to the MontiCore
framework is given, which is a code generator and a lan-
guage processing environment. Language developers can
define the syntax of the modeling language in form of a
context-free grammar. Within our approach, the syntax of
the DSLs is expressed by language models which facilitates
the definition of the DSL syntax.

Even though the realization of this approach is different
to ours, the idea of this work is similar, as Freudenstein et
al. [13] also support multiple stakeholders within their DSL
approaches for modeling Web applications.

Defining or Modeling QoS and SLAs:
Rosenberg et al. [3] propose a top-down modeling approach

for capturing functional and non-functional QoS concerns
of Web service based business processes. Their approach
is based on WS-CDL which is transformed to BPEL code.
This approach does not provide multiple separated and tai-
lored languages for technical and non-technical stakehold-
ers.

The following two approaches are extension to UML.
The Object Management Group (OMG) [11] introduces
a UML profile for modeling QoS. Their QoS frame-
work is separated into three packages: QoSCharacteristics,
QoSConstraints, and QoSLevels. A Service-oriented archi-
tecture Modeling Language (SoaML) is presented in [12].
This language is also a UML profile and provides the facil-
ity for modeling ServiceContracts between service
providers and consumers. In contrast to our approach, the
use of one QoS UML profile requires background knowl-
edge of the UML which is difficult to understand for non-
technical stakeholders.

7. Conclusion and Further Work

In this paper, we presented an approach for tailoring
model-driven DSLs for various stakeholders with different
background and knowledge. The approach is demonstrated
by using a DSL for specifying QoS concerns of service-
oriented business systems. The DSL was separated and tai-
lored for two different kinds of stakeholders, i.e., domain
and technical experts. One language – the high-level lan-
guage – was tailored for domain experts and provides con-
structs for specifying the SLAs and actions which should
be performed if an SLA becomes violated. The second lan-
guage – the low-level language – was tailored for technical
experts and provides constructs for specifying how the dif-
ferent QoS values have to be measured and how the actions
are performed on a particular platform or technology.

The example shows that it is possible to develop a frame-
work or notation for modeling business systems with con-
tracts and agreements they have to comply to. By following
our approach, multiple stakeholders – technical and non-
technical – with different background and knowledge can
be involved in the modeling process.

As future work we envision the adoptation of the pre-
sented QoS DSL to its foreseen users to get feedback of
the expressiveness of our DSLs from various stakeholders.
Also, we want to provide an automatic generation of easily
understandable user interfaces based on the language mod-
els as shown in Figure 6. Finally, we want to support defin-
ing QoS policies, facing the challenges introduced in [6].

Acknowledgement:
This work was supported by the European Union FP7
project COMPAS, grant no. 215175.

References

[1] AT&T Research. Graphviz - Graph Visualization Software.
http://www.graphviz.org/.

[2] Benoı̂t Langlois, Consuela-Elena Jitia, Eric Jouenne. DSL
Classification. In OOPSLA 7th Workshop on Domain Spe-
cific Modeling, 2007.

[3] Florian Rosenberg and Christian Enzi and Anton Michlmayr
and Christian Platzer and Schahram Dustdar. Integrating
Quality of Service Aspects in Top-Down Business Process
Development Using WS-CDL and WS-BPEL. In EDOC
’07: Proceedings of the 11th IEEE International Enterprise
Distributed Object Computing Conference, page 15, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

[4] Florian Rosenberg and Christian Platzer and Schahram
Dustdar. Bootstrapping Performance and Dependability At-
tributes of Web Services. In ICWS ’06: Proceedings of the
IEEE International Conference on Web Services, pages 205–
212, Washington, DC, USA, 2006. IEEE Computer Society.

[5] L. jie Jin, V. Machiraju, and A. Sahai. Analysis on Service
Level Agreement of Web Services. Technical report, HP
Laboratories, 2002.

[6] Joe Hoffert and Douglas Schmidt and Aniruddha Gokhale.
A QoS policy configuration modeling language for publish/-
subscribe middleware platforms. In DEBS ’07: Proceed-
ings of the 2007 inaugural international conference on Dis-
tributed event-based systems, pages 140–145, New York,
NY, USA, 2007. ACM.

[7] Juha-Pekka Tolvanen. Domain-Specific Modeling:
How to Start Defining Your Own Language, 2008.
http://www.devx.com/enterprise/Article/30550.

[8] S. Kelly and J.-P. Tolvanen. Domain-Specific Modeling: En-
abling Full Code Generation. John Wiley & Sons, March
2008.

[9] H. Krahn, B. Rumpe, and S. Völkel. Roles in Software De-
velopment using Domain Specific Modelling Languages. In
In Proceedings of the 6th OOPSLA Workshop on Domain-
Specific Modeling 2006, pages 150–158, 2006.

[10] E. Oberortner, U. Zdun, and S. Dustdar. Domain-Specific
Languages for Service-Oriented Architectures: An Explo-
rative Study. In ServiceWave, pages 159–170, 2008.

[11] OMG. UML Profile for Modeling Quality of Service and
Fault Tolerance Characteristics and Mechanisms.

[12] OMG. Service oriented architecture Modeling Language
(SoaML) – Specification for the UML Profile and Meta-
model for Services (UPMS), 2008.

[13] Patrick Freudenstein and Jan Buck and Martin Nuss-
baumer and Martin Gaedke. Model-driven Construction
of Workflow-based Web Applications with Domain-specific
Languages. In MDWE, 2007.

[14] D. C. Schmidt. Guest Editor’s Introduction: Model-Driven
Engineering. Computer, 39(2):25–31, 2006.

[15] T. Stahl and M. Voelter. Model-Driven Software Develop-
ment. J. Wiley and Sons Ltd., 2006.

[16] The Apache Software Foundation. Apache CXF. http://
cxf.apache.org/.

[17] Uwe Zdun. The Frag Language. http://frag.sourceforge.net/.

